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Gauge and Gravity theories on a dynamical

principal bundle

Frédéric Hélein
∗

October 17, 2023

Abstract — In this paper we present original variational formulations of
Yang-Mills, Einstein’s gravitation and Kaluza-Klein theories, where, in the
spirit of General Relativity, the principal bundle structure over the space-time
is not fixed a priori but is dynamical. In the Yang-Mills case only a topolog-
ical fibration is given a priori. In the gravity and the Kaluza-Klein theories
no fibration is assumed: any critical point of the action functional defines
a foliation of the manifold and the leaves make up the space-time. The lat-
ter is naturally equipped with a pseudo-Riemannian metric and, under some
hypotheses, this foliation is actually a fibration. In all cases the apparition
of a (at least local) principal bundle structure and a connection follows from
the dynamics. Moreover the metric and the connection thus constructed are
solutions of the Yang-Mills, the Einstein-Cartan or the Yang-Mills-Einstein
equations, depending on the model. A crucial point is that we face the dif-
ficulty that some Lagrange multiplier fields (which are responsible for the
foliation, the principal bundle structure and the connection) create unwanted
terms in the equations. This difficulty is overcome by the observation that, if
the structure group is compact, these terms miraculously cancel.
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Paris 7, UFR de Mathématiques, Bâtiment Sophie Germain 75205 Paris Cedex 13, France,
helein@math.univ-paris-diderot.fr

1



1 INTRODUCTION 2

1 Introduction

A large part of theoretical Physics is based on the principle of gauge symme-
try, which itself amounts to postulate the existence of principal bundles over
the space-time, at a more or less formal level. However there is no funda-
mental rationale for explaining this postulate. This is in contrast to General
Relativity, the fundamental principle of which is the equivalence principle,
which results in the covariance of the theory with respect to diffeomorphisms
and which do not postulate the existence of a structure as particular as that of
a principal bundle. This lack of justification of the principal bundle structure
is particularly evident in Kaluza-Klein theories, aiming to combine General
Relativity with gauge theories: the most common hypothesis to explain the
symmetry breaking at the origin of gauge fields goes back to O. Klein, it
consists in assuming that the fibers of the total space above the space-time
are tiny and is not completely satisfactory. Moreover although in General
Relativity the principal bundle structure may appear as non essential for
pure gravity, it becomes necessary for a correct description of the fermions
on a curved space-time, through the introduction of the Spin bundle.

In this paper we present alternative theories in which the principal bundle
structure is not given a priori but derives from a solution of the equations
of dynamics. These theories sit on a manifold which is a candidate to get
a principal bundle structure. This bundle structure will be constructed out
of a dynamical field which is a 1-form with coefficients in the Lie algebra of
the structure group, which could also be interpreted as a connection form on
a trivial vector bundle on the manifold. Auxiliary fields are introduced in
order to force integrability conditions allowing to construct a foliation which,
under certain assumptions, will form a principal bundle over a quotient space,
equipped with an equivariant connection. The quotient space can then be
identified with a space-time manifold and the constructed fields can then be
shown to be the solutions of some gauge theoretical system of equations (such
as, e.g., the Yang–Mills equations) over this space-time.

However the auxiliary fields, which play the role of Lagrange multiplier
for imposing non holonomic constraints, could possibly spoil the theory since
they create unwanted sources in the r.h.s. of the dynamical equations. A
crucial step in the study of the Euler–Lagrange equations is to prove that,
under some hypotheses, these sources actually vanish. The main hypothesis
in order to achieve this cancellation is to assume that the structure group
is compact and simply connected. The cancellation phenomenon is then a
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consequence of the fact that, after a suitable trivialization of the bundle and
a gauge transform, the unwanted sources are simultaneously constant on each
fibers and equal to the integral of an exact form of maximal degree over the
fiber, which thus cancels thanks to Stokes theorem.

For instance, in the case of the Yang–Mills theory, the Lagrangian which
will be used is invariant by the group of diffeomorphisms which preserve the
fibers of a submersion. This large symmetry group reduces to the standard
gauge group acting on a principal bundle on classical solutions. Similarly the
Lagrangian of the 4-dimensional Gravitation theory which follows is invariant
by diffeomorphisms of a manifold of dimension 10 (i.e. the dimension of the
Poincaré group). Combining properties of both approaches leads to unify the
gravity and the Yang–Mills fields in the spirit of Kaluza–Klein theories but
without the need to assume a priori a fibration and the equivariance of the
fields along the fibration.

These various models follows the same main lines: given some Lie algebra
g of finite dimension dimg = r, they involve three dynamical objects:

1. a manifold F , of dimension N ≥ r;

2. a 1-form θg on F with coefficients in g and of rank r everywhere;

3. an (N − 2)-form πg on F with coefficients in the dual space g∗;

The main, naked term in the action functional is

A[F , θ, π] :=

∫

F

〈
πg ∧

(
dθg +

1

2
[θg ∧ θg]

)〉
=

∫

F

〈πg ∧Θg〉 , (1)

where 〈·, ·〉 denotes the duality pairing between g∗ and g and Θg := dθg +
1
2
[θg ∧ θg].

We note that the critical points of the action (1) satisfy the Euler–
Lagrange equations {

dθg + 1
2
[θg ∧ θg] = 0

dπg + ad∗
θg ∧ πg = 0

(2)

The first equation (obtained by using πg as a Lagrange multiplier) is the
Maurer–Cartan one. Assume that dimF = N = r = dimg and that the rank
of θg is maximal everywhere. This allows, by integrating θg, to construct a
diffeomorphism from any neighbourhood of a point in F to a neighbourhood
of the identity in the Lie group G, the Lie algebra of which is g. Hence F
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has locally the same structure as G. This corresponds to a local version of
the Cartan–Lie theorem asserting that a finite dimensional Lie algebra can
be integrated to produce a corresponding Lie group.

Variants of this mechanism, obtained by imposing some constraints on
the fields πg, lead to less rigid conditions on θg and thus to identify, at least
locally, F with a principal bundle. Indeed if we further add some extra terms
in the action, then critical points (θg, πg) correspond to solutions of gauge
theoretical problems (e.g. Maxwell, Yang–Mills, Einstein–Cartan) on X .

1.1 Principal bundle structure starting from a submer-

sion

Assume now that F is a manifold of dimension N = r + n, where n > 0,
set s := Rn and let (X , g) be a pseudo Riemannian manifold of dimension

n. Assume that there is a submersion F
P
−→ X . We suppose that there is

exists a 1-form βs on X with coefficients in s, the components of which are
an orthonormal coframe on (X , g) and we denote by βs the pull-back by

F
P
−→ X of βs.
Consider dynamical fields which are pairs (θg, πg), where θg is a 1-form on

F with coefficients in the Lie algebra g (with components θi in a basis) and
πg is a (N − 2)-form on F with coefficients in the Lie g∗ (with components
πi). We also assume that the rank of (βs, θg) is N everywhere, so that its
components (βa, θi)1≤a≤n<i≤N in a basis of s⊕ g provides us with a coframe
on F . This defines a volume N -form β(n) ∧ θ(r) on F , where β(n) and θ(r)

are the exterior products of the components of, respectively, βs and θg. We
then look at pairs (θg, πg) which are critical points of A given by (1) under
the constraint that for all 1 ≤ a, b ≤ n and n < i ≤ N , the coefficient πi

ab

such that βa ∧ βb ∧ πi = πi
abβ(n) ∧ θ(r) vanishes. Then the Euler–Lagrange

equations are {
dθg + 1

2
[θg ∧ θg] = 1

2
Θg

abβ
a ∧ βb

dπg + ad∗
θg ∧ πg = 0

(3)

Here the first equation means that, if we decompose dθg+ 1
2
[θg∧ θg] by using

the coframe (βa, θi)1≤a≤n<i≤N , the coefficients of βa ∧ θj and θi ∧ θj vanish.

This relation allows to identify locally each fiber of the submersion F
P
−→ X

with an open subset of G and hence to endow F with a local structure of
principal bundle with structure group G and base manifold X . Moreover θg

defines a connection on this bundle.
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Now assume that, instead of assuming the constraints πi
ab = 0 as pre-

viously, we add to the functional A in (1) the integral
∫
F

1
4
|πg

ss|2β(n) ∧ θ(r),
where πg

ss is the tensor, the components of which are (πi
ab)i,a,b and |πg

ss|2 is
its norm computed by using the pseudo Riemannian metric on X and an AdG-
invariant metric on g. Then the Euler–Lagrange equations imply that the
components of πg

ss correspond to (minus) the Hodge dual of dθg+ 1
2
[θg∧ θg].

Moreover instead of the second equation in (3) we get

dπi + ad∗
θg ∧ πi =

1

2
|πg

ss|2β(n) ∧ θ(r−1)
i

where θ
(r−1)
i := 1

(r−1)!
ǫii2···irθ

i1∧· · ·∧θir . It turns out that on can deduce from
this equation that the connection is a solution of a Yang–Mills equation with
a priori non vanishing sources which come from components of πg which are
different from πg

ss.
However a second mechanism comes into play and leads, under some gen-

eral hypotheses (in particular that the group G is compact), to the conclusion
that these sources actually vanish, so that actually we obtain a solution of the
Yang–Mills equation in vacuum. Thanks to this cancellation phenomenon we
obtain the following results, proved in Section 4.

Theorem 4.1 — Let g be a Lie algebra of dimension r. Let (X , g) be a
connected pseudo Riemannian manifold of dimension n, F a smooth manifold

of dimension N = n+ r such that there exists a smooth submersion F
P
−→ X

with connected fibers. Let (βa)1≤a≤n be the pull-back image by P of a given
orthonormal moving coframe on (X , g).

Let θg be a 1-form on F with coefficient in g of maximal rank everywhere
and πg an (N − 2)-form on F with coefficient in g∗. Assume that (θg, πg) is
a C2 critical point of

∫

F

〈
πg ∧

(
dθg +

1

2
[θg ∧ θg]

)〉
+

1

4
|πg

ss|2β(n) ∧ θ(r)

Assume that either, (i) g = u(1) and at least one fiber P−1({x}) is compact

or, (ii) g is the Lie algebra of a compact, simply connected Lie group Ĝ.
Then θg endows F with a principal bundle structure with a structure group

G, which is either U(1) in Case (i), or a quotient of Ĝ by a finite subgroup

in Case (ii). Moreover it defines a connection on F
P
−→ X which is either a

solution of the Maxwell equation on (X , g) in Case (i), or a solution of the
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Yang–Mills equation in Case (ii).

Examples of compact simply connected groups are the groups SU(k), for
k ≥ 2. However U(1) is not simply connected.

1.2 Principal bundle structure starting from nothing

It is possible to dispense with the assumption that there exists a submersion
from F to a lower dimensional manifold X . For that purpose we assume that
we replace βs (which was previously given a priori) by θs, which is now a
dynamical fields. This amounts to embedd the Lie algebra g in the larger
one u := s⊕ g, such that [g, g] ⊂ g and [g, s] ⊂ s and to consider (θu, πu) =
(θs + θg, πs + πg) as dynamical fields, with coefficients in, respectively, u and
u∗. We then assume that θu has a maximal rank, so that its components
(θI)1≤I≤N = (θa)1≤a≤n ∪ (θi)n<i≤N provides us with a coframe on F . We also
impose the constraint πu

ss = 0, where πu
ss is the tensor with components

(πI
ab)1≤a,b≤n;1≤I≤N which are defined by θa∧θb∧πI = πI

abθ(N), where θa and
θb are components of θs and θ(N) is the exterior product of all components of
θu. Under these assumptions a critical point of A satisfies the Euler–Lagrange
equations





dθs + 1
2
[θs ∧ θs]s + [θg ∧ θs] = 1

2
Θs

abθ
a ∧ θb

dθg + 1
2
[θs ∧ θs]g + 1

2
[θg ∧ θg] = 1

2
Θg

abθ
a ∧ θb

dπu + ad∗
θu ∧ πu = Ψu

iθ
(N−1)
i

(4)

where the Ψu
i’s are coefficients in u∗, the components of which are ΨJ

i =
ΘL

JKπL
iK . By considering the r-dimensional submanifolds f which are solu-

tions of the exterior differential system θs|f = 0 we obtain a foliation of F .
This leads to endow a neighbourhood of any point of F with a local princi-
pal bundle structure with structure group G over some quotient manifold X
of dimension n (the space of leaves) and to construct a pseudo Riemannian
metric and a g-value connection 1-form on X .

1.2.1 Kaluza–Klein theory

Assume that the subspace s ⊂ u is in the center of u (it leads to simplifications
in the two first equations in (4)) and fix a metric h on u which is invariant
by the adjoint action of G and such that s ⊥ g . We further append to
the dynamical fields (θu, πu) a 1-form ϕl with coefficients in the Lie algebra
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l := so(u, h) and we add the Palatini Lagrangian
∫
F

1
2
θ
(N−2)
IJ ∧ΦIJ to the action∫

F
〈πu ∧Θu〉. (Here the ΦIJ ’s are the components of Φl := dϕl+ 1

2
[ϕl∧ϕl] and,

still, Θu := dθu+ 1
2
[θu∧θu].) Then critical points of

∫
F
〈πu ∧Θu〉+ 1

2
θ
(N−2)
IJ ∧ΦIJ

under the constraint πu
ss = 0 satisfy the system





dθs = 1
2
Θs

abθ
a ∧ θb

dθg + 1
2
[θg ∧ θg] = 1

2
Θg

abθ
a ∧ θb

dπu + ad∗
θu ∧ πu = Ψu

iθ
(N−1)
i + 1

2
θ
(N−3)
IJu ∧ ΦIJ

dθI + ϕIJ ∧ θJ = 0

(5)

where ΨI
i := ΘJ

IaπJ
ia. By using the two first equations, if G is compact

and under mild topological hypotheses, we can construct a principal bundle
structure on F and a pseudo Riemannian metric and a g-valued connection
1-form on the quotient manifold X . Thanks to the last equation we can
identify ϕso with the Levi-Civita connection on F with the metric (θu)∗h.

Thus 1
2
θ
(N−3)
abu ∧ Φab can be interpreted as the Einstein tensor on (F , (θu)∗h).

Hence the third equation means that (F , (θu)∗h) is a solution of the Einstein

equation with a complicated source equal to dπu + ad∗
θu ∧ πu −Ψu

iθ
(N−1)
i .

By analyzing the latter equation (in a local trivialization) we deduce that
the metric (θs)∗h (not (θu)∗h !) and the connection on X are solutions of an
Einstein–Yang–Mills system of equations. Here again a subtle cancellation
mechanism comes into play which allow to let the sources of this system van-
ish. We can hence realize the Kaluza–Klein programme without assuming
any fibration a priori, under some generic topological hypotheses. The fol-
lowing result is proved in Section 5.

Theorem 5.1 — Assume that Ĝ is a simply connected Lie group of di-
mension r. Let u = s ⊕ g (where s := Rn) and let h a metric on u such

that s ⊥ g and which is invariant by the adjoint action of Ĝ. Let Y be a
connected oriented manifold of dimension N = n + r. Let θu = θs + θg, be
a 1-form on Y with coefficients in u of rank N everywhere, πs = πu + πg be
a (N − 2)-form on Y with coefficients in u∗ and ϕl be a 1-form on Y with
coefficients in l = so(u, h). Assume that (θu, πu, ϕ

l) is a critical point of class
C2 of ∫

Y

〈
πu ∧

(
dθu +

1

2
[θu ∧ θu]

)〉
+

1

2
θ
(N−2)
IJ ∧ ΦIJ

under the constraint that πu ∧ θa ∧ θb = 0, for any components θa and θb of
θs.
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Then Y is foliated by submanifolds f of codimension n which are diffeo-
morphic to a Lie group G which is a quotient of Ĝ by a finite subgroup and
on which Ĝ acts.

If furthermore G is compact, then the leaves are the fibers of a principal

bundle Y
P
−→ X over an n-dimensional manifold X with structure group G.

Moreover θu encodes a pseudo Riemannian metric g on X and a g-valued
connection 1-form Ag on X , which are solutions of the Einstein–Yang–Mills
system {

R(g)ss −
1
2
Rδss + Λδss = 1

2
Fg

ssFg
ss −

1
4
|F|2δss

∇TX ,A
s Fg

ss = 0

with some cosmological constant equal to Λ.

A special case is for Ĝ = R. Then, if one leaf is compact we obtain a
principal bundle with structure group U(1) and a solution of the Einstein–

Maxwell system. However if Ĝ = SU(k), then G is necessarily compact and
all conclusions of the theorem are satisfied.

1.2.2 Gravitation on the principal bundle of frames

In the two previous situations the group G played the role of a structure
group for a Yang–Mills gauge theory. For gravity theories we replace G by
a ’Lorentz’ group, i.e. a group L := SO(s, b) of isometries of some fixed Eu-
clidean or Minkowski space (s, b) of dimension n, or its spin group Spin(s, b).
We also introduce the ’Poincaré’ group P := L ⋉ s and we denote by l and
p = l⊕ s the Lie algebras of, respectively, L and P. Then on a given man-
ifold P of dimension N := n + n(n−1)

2
= dimP we consider a pair of fields

(ϕp, πp), where ϕp is a 1-form of rank N on P with coefficients in p and πp
is a (N − 2)-form with coefficients in p∗. Since ϕp has a maximal rank, its
components provide us with a coframe on P and by the splitting p = l ⊕ s

we have the decompositions ϕp = ϕl + ϕs and πp = πl + πs.
As previously we consider the action functional A[ϕp, πp] =

∫
P

〈
πp ∧

(
dϕp + 1

2
[ϕp ∧ ϕp]

)〉

and let us first impose to (ϕp, πp) to satisfy the constraint πp
ss = 0, meaning

that, for any components ϕa, ϕb of ϕs, ϕa∧ϕb∧πp = 0. Then a critical point
of A under these constraints satisfies exactly the system (4), by replacing θs,
θg, Θs and Θg by, respectively, ϕs, ϕl, Φs and Φl. This allows to locally iden-
tify P with a principal bundle with structure group L and a base manifold
of dimension n. The fields ϕs and ϕl also define respectively a metric and a
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metric preserving connection on the quotient manifold. Hence we obtain a
local structure of Cartan geometry (see §1.3 below).

Now we further add to the action A the ’Palatini’ term
∫
P

1
2
ϕ
(N−2)
ab ∧Φab,

where the Φab’s are the components of Φp := dϕp + 1
2
[ϕp ∧ ϕp]. Then (using

the assumption [g, s] ⊂ s) the critical points of the total action
∫
P
〈πp ∧ Φp〉+

1
2
ϕ
(N−2)
ab ∧ Φab are solutions of





dϕs + 1
2
[ϕs ∧ ϕs]s + [ϕg ∧ ϕs] = 1

2
Φs

abϕ
a ∧ ϕb

dϕg + 1
2
[ϕs ∧ ϕs]g + 1

2
[ϕg ∧ ϕg] = 1

2
Φg

abϕ
a ∧ ϕb

dπu + ad∗
ϕu ∧ πu = Ψu

iθ
(N−1)
i − 1

2
Ψθ

(N−1)
u

(6)

where Ψ := Ψa
a = ΦI abκI

ab. This leads to define a local Cartan geometry.
Moreover the metric and the connexion on the local quotient manifold X
are solutions of an Einstein–Cartan system of equations. As in the previous
situations some sources (coming from the complicated structure of the third
equation in (6)) may appear a priori in these Einstein–Cartan equations
(involving the Einstein tensor and the torsion). They may however vanish
thanks to the cancellation phenomenon and under some assumptions.

In the following the total action
∫
P
〈πp ∧ Φp〉+ 1

2
ϕ
(N−2)
ab ∧ Φab is replaced

by the equivalent one
∫
P
〈πp ∧ Φp〉 provided that, instead of the constraint

ϕa∧ϕb∧πg = 0, we impose that ϕa∧ϕb∧πs = 0 and ϕa∧ϕb∧πl = κl
abϕ(N),

where the κl
ab’s are the components of a tensor κl

ss ∈ l∗⊗s∧s which encodes
the canonical identification of l = so(s, b) with s∧ s. This approach leads to
the following, which is proved in Section 6:

Theorem 6.1 — Let P̂ be a Lie group of dimension N and L̂ ⊂ P̂ a simply
connected Lie subgroup of dimension r. Assume that their respective Lie
algebras p and l are unimodular and that there exists a vector subspace s ⊂ p

which is stable by AdL and such that p = s⊕ l (i.e. P̂/L̂ is reductive). Let
κl

ss be a tensor in p∗ ⊗ s ∧ s which is invariant by the adjoint action of L.
Let ϕp be a 1-form with coefficients in p on P of rank N everywhere and

πp be a (N − 2)-form with coefficients in p∗ on P. Assume that (πp, ϕ
p) is a

smooth critical point of
∫

P

〈
πp ∧

(
dϕp +

1

2
[ϕp ∧ ϕp]

)〉

under the constraint that ϕa ∧ϕb ∧ πs = 0 and ϕa ∧ϕb ∧ πl = κl
abϕ(N), where

the κl
ab are the components of κl

ss in a basis of s.
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Then F is foliated by smooth leaves of dimension r := diml covered by L̂

and, in a sufficiently small open subset of F , we can identify the set of leaves
with a quotient manifold X of dimension n := dims. Moreover ϕp encodes a
local principal structure on the leaves and a metric and a connection on the
local quotient manifold which are solutions of a generalized Einstein–Cartan
system of equations, the sources of which are total divergences on each leaf.

In the case where P̂ and L̂ are respectively the spin Poincaré group and
the spin group and if κl

ss encodes the canonical identification of so(s, b) with
s ∧ s, then the generalized Einstein–Cartan system of equations coincides
with the standard one, with sources which are total divergences.

More can be said under the additional hypothesis that the foliation is
actually a fibration: the quotient manifold X (which represents the space-
time) has then a manifold structure and the critical point produces a solution
of an Einstein–Cartan system on X in presence of a stress-energy tensor and
an angular momentum tensor. Lastly if we assume further that L is compact
(which is not the case if L is the Lorentz group!) or that the fields πu decay
at infinity, we can then conclude that the sources of the Einstein–Cartan
system actually vanish.

1.3 Cartan geometries

As alluded in §1.2.2 a pair (ϕp, πp) which is a critical point of
∫
P

〈
πp ∧

(
dϕp + 1

2
[ϕp ∧ ϕp]

)〉

under the constraints ϕa ∧ ϕb ∧ πp = 0 defines locally a structure of Cartan
geometry on P.

The relevance of Cartan geometry for General Relativity has been high-
lighted for instance in [20, 24]. It is based on the fact that, in the moving
frame approach on General Relativity, the so(1, 3)-valued spin connection
form ωl and the R4-valued soldering form θs should be understood as the two
components of a single 1-form with coefficients in the Lie algebra so(1, 3)⋉R4

of the Poincaré group (as in [19]). However the right geometric interpreta-
tion requires to consider all these forms as defined on the principal bundle of
orthonormal frames over the space-time X and to understand Ap = ωl + θs

as the expression of a Cartan connection ϕp in a particular trivialization of
the frame bundle.

In a few words each Cartan geometry can be seen as a deformation of
a rigid geometric model, called a Klein geometry, which can be defined as
a homogeneous space P/L, where P is a Lie Group and L a Lie sub-group
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of P. The space P/L has the canonical principal bundle structure L −→
P −→ P/L and P is canonically endowed with the (left invariant) Maurer–
Cartan 1-form ηp with coefficients in the Lie algebra p of P (if P is a matrix
group, ηpg = g−1dg). A Cartan geometry is described by a principal fiber
bundle L −→ P −→ X and the Maurer–Cartan form ηp is there replaced
by a 1-form ϕp defined on P with coefficients in the Lie algebra p which
has a maximal rank and is normalized and equivariant under the action
of L on P. The form ϕp is called a Cartan connection and is a concept
different from the well-known so-called Ehresmann connection. The value at
a point of the curvature 2-form dϕp+ 1

2
[ϕp∧ϕp] measures the obstruction for

(L −→ P −→ X , ϕp) to coincide at first order at this point with the model
(L −→ P −→ P/L, ηp).

The most natural situation is when P = SO(n)⋉R
n is the group of affine

Euclidean isometries of the Euclidean space of dimension n and L = SO(n).
Then P/L is just the Euclidean space of dimension n and the corresponding
Cartan geometry is just another way to look at the standard Riemannian
geometry. Replacing SO(n) by the Lorentz group SO(1, n − 1) then leads
to the pseudo Riemannian geometry, the framework for General Relativity.
Another interesting application to General Relativity is that, by replacing the
Minkowski space as a model by the de Sitter space (≃ SO(1, n)/SO(1, n−1))
or the anti-de Sitter space (≃ SO(2, n−1)/SO(1, n−1)), we get the Einstein
equations with a positive (respectively negative) cosmological constant, as
seen by S.W. MacDowell and F. Mansouri [19] (see §7.1). More comments on
Cartan geometry are presented in §2.2.1 in this paper and is e.g. expounded
in details in [21]. Recent accounts of its relation with General Relativity can
found in [24, 2].

1.4 A crucial point: the cancellation of the sources

One can notice in the examples expounded in this paper that the field πu
is not connected a priori with any physically observable quantity. Indeed
this field plays the role of a Lagrange multiplier for forcing the foliation and
the equivariance property along the fibers. However πg has also the effect to
create unwanted sources in the Euler–Lagrange equations (at least if we want
to recover the standard equations of Physics or of Geometry). A crucial step
is to ensure that, under some reasonable hypotheses, these sources vanish.
Here a subtle mechanism comes into play to cancel these sources, based
on the facts that, on the one hand, the average of these sources on each
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fiber vanishes because it is the integral of a closed form and, on the other
hand, these sources are constant on each fiber. However, in order to observe
this cancellation, a local trivialization based on a gauge transformation is
required, which requires a delicate computation. An alternative approach
have been developped by J. Pierard de Maujouy in [6].

Although this mechanism works perfectly if the fibers are compact, we
meet some difficulties for using it when G is not compact: we then need to
assume that the field πu and its first derivatives decay at infinity in each
fiber for being able to exploit it. This is the reason why, in Theorem 6.1 we
cannot conclude in full generality that the sources (the stress-energy and the
relativistic angular momentum tensors) vanish if L is not compact.

1.5 Further comments

1.5.1 Origin of the variational formulations

The various constructions in this paper do not come out of the blue, but have
been derived first in the two papers [10, 13] motivated by natural questions in
the framework of multisymplectic geometry. This framework generalizes the
symplectic geometry in the sense that it provides a geometrical description
of the Hamiltonian structure of solutions of problems in the Calculus of
Variations in several variables without depending on the choice of a particular
system of coordinates (such as, for instance, a time coordinates for evolution
problems). The Yang–Mills and the gravitation formulations were obtained,
first, by lifting in an equivariant way the standard Lagrangian formulation
of these theories on the principal bundle (see §2.1.4 and §2.2.3) and, second,
by performing a Legendre transformation (in the multisymplectic context)
by taking into account the equivariance of the connexion. The extra field πg
appears then naturally as the (multi)momentum variable conjugate to the
gauge field and the constraints on πu

ss are consequences of the equivariance of
the connexion (and thus reflects the gauge invariance of the initial problem).
Hence the action in (1) may be viewed as the analogue for gauge theories
of the integral

∫
pµdq

µ in Mechanics. It is important to notice that the
interpretation of πg as a (multi)momentum variable was a reliable indication
of its relevance and importance.

The Kaluza–Klein formulation was constructed afterwards in [11] by com-
bining ingredients from both theories.
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1.5.2 Perspectives

Kaluza–Klein theory — The Kaluza–Klein theory has a long history, start-
ing from the work of T. Kaluza [15] in 1921 and O. Klein [17] in 1926, for
the structure group R or U(1). Some inconsistency were observed and fixed
through the introduction of an additional fields (radion or dilaton) indepen-
dently by P. Jordan [14] in 1947 and Y. Thiry [22] in 1948. The addition of
this field may be avoided by renouncing to impose the Einstein equation on
the total space of the bundle and instead by looking for the critical points
of the Einstein–Hilbert action on the fiber bundle under the equivariance
constraint. By following this alternative option the theory was extended to
Yang–Mills fields by R. Kerner [16] in 1968, leading to the Einstein–Yang–
Mills system. Our theory is connected with the latter approach.

The most commonly used explanation for the fact that the universe we
observe is 4-dimensional is basically due to Klein and relies on the hypothesis
that the extra dimension is tiny and hence impossible to observe at our scale
(this is reinforced at the quantum level by Heisenberg’s uncertainty princi-
ple). Our formulation does not need this assumption.

Gravity theory — A physical motivation behind our gravity theory in Sec-
tion 6 is to build a framework for relativistic theories which is not restricted
to the set of events in space-time, but which also includes all possible frames
of reference at each events. This idea was proposed for quantum field theory
by F. Lurçat in 1964 [18]. Later on it was implemented for gravity theo-
ries by M. Toller [23] and, independently, by Y. Ne’eman and T. Regge [20]
in 1978. The latter work (which used ideas related to Cartan geometry)
was motivated by supergravity theories and was followed by a series of pa-
pers [3, 5, 4]. These papers proposed variational formulations for producing
dynamically principal bundle structures (called there group manifolds) and
solutions of the Einstein–Cartan system of equations. However they differ
from our approach since their action functionals involve an integral over an
n-dimensional section of the principal bundle (where n is the dimension of
space-time) and, as Ne’eman and Regge noted in [20], §5, no way to ‘extend
the integration to the entire group space’ was known at that time. Under the
hypothesis that the cancellation phenomenon holds (see below and §1.4) our
result Theorem 6.1 answers positively to this question.

Our method is based on the introduction of Lagrange multiplier fields πp
and most of the results in this paper involve the cancellation phenomenon
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(see §1.4) in order to remove these fields from physical observation. However
this cancellation phenomenon might not take place in gravitational theories
because the Lorentz group is not compact. If so this would lead to modify
the physics thus modelled, by adding new matter fields. The question of
analyzing such possibilities and their possible physical relevance is quite dif-
ficult, due to the complexity of the equations. This is why we endeavored to
derive the complete equations 130 and its consequence (134) in a geometrical
language.

Our point of view shares similarities with the interesting recent work by
S. Gielen an D.K. Wise [9]. Here the fundamental geometrical framework is
the bundle of unit time-like vectors on the space-time manifold. A variational
formulation of gravity is also proposed. The Authors remark also that the
latter fields may also create unwanted sources to the equations.

The models proposed here do not include fermions, i.e. Dirac fields. It is
however an essential question to incorporate them in, e.g., a gravity theory.
It is also natural in our framework by choosing the structure group for the
principal bundle to be the spin group. This question is addressed in [7].

Lastly this paper addresses only classical solutions of our models and
shows that they do not differ from standard classical solutions under mild
assumptions. However it is possible that their quantification leads to different
physical phenomena.

1.6 Content of this paper

Many results presented here were partially proved or sketched in [10, 13,
11, 12]. However we have endeavored to simplify the computations of the
Euler–Lagrange equations which were relatively tedious and to give more
precise informations about these equations and their structure through the
introduction of a general framework. In this process we developped a more
general approach, leading to some generalizations and improvements. In
particular we present the first complete and rigorous proof of the existence
of a fibration in our Yang–Mills and Kaluza–Klein models.

Section 2 is mainly pedagogical and is devoted to recall the relationship
between the standard geometry of connections and metric viewed on the
manifold and its lift to a principal bundle. We also discuss Cartan geometry
and about the Palatini functional.

Section 3 expounds notations and conventions which are used afterwards.
Some useful technical lemmas are also stated and proven.
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Section 4 is devoted to the pure Yang–Mills theory. For pedagogical
reasons we start by proving first Theorem 4.1 for Maxwell fields, i.e. for
G = U(1), on the flat Minkowski space. This result is new and its proof
allows to understand the cancellation phenomenon in a simple context (al-
though some arguments are different from the case where G is compact simply
connected). We prove afterwards Theorem 4.1 on Yang–Mills fields. This re-
sult generalizes the one in [10] since it allows more general hypotheses, for,
in [10], we made the assumption that the 1-form θg is normalized.

Section 5 is devoted to the proof of Theorem 5.1 on Kaluza–Klein models.
This result was proved in [11]. Here we reproduce most of the computations
of this paper in a, hopefully, more transparent and direct language and derive
the complete system of equations, including some of these which were hidden
in [11], and complete proof. Moreover we incorporate a cosmological term in
the action.

Section 6 contains the proof of Theorem 6.1 on gravitation, a result which
extends to a larger class of groups (P,L) the result in [13] which was spe-
cialized to the case where P = SO(1, 3) ⋉ R4 is the Poincaré group and
L = SO(1, 3) is the Lorentz group (or their spin covers Spin(1, 3)⋉ R4 and
Spin(1, 3)). We give applications of these results to the case where P is
SO(1, n), SO(1, n− 1)⋉Rn or SO(2, n− 1) and L = SO(n− 1). For n = 4,
we also show that one can deform the standard gravity by introducing the
Barbero–Immirzi parameter, through different choices of the tensor κp

ss.

2 Generalities on connections

2.1 Connections in gauge theories and Ehresmann con-
nections

Assume that X is an n-dimensional manifold and that G is a finite dimen-
sional Lie group. Let’s denote by g its Lie algebra.

2.1.1 In the physics literature

A gauge field on a manifold X is described by a 1-form Ag on X with coef-
ficient in g, i.e. Ag ∈ g⊗ Ω1(X ). Note that this means implicitely that the
associated principal bundle is trivial. Using local coordinates xµ on X , one
can decompose Ag = Ag

µdx
µ (where the summation over µ is assumed), and
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each Ag
µ is a g-valued function on X . Its curvature is :

Fg := dAg +
1

2
[Ag ∧Ag] =

1

2

(
∂Ag

ν

∂xµ
−
∂Ag

µ

∂xν
+ [Ag

µ,A
g
ν ]

)
dxµ ∧ dxν .

But since in all physically relevant cases G can be represented by matrices,
we can also write Fg = dAg + Ag ∧ Ag.

Let us fix some Riemannian or pseudo-Riemannian metric g on X and an
adG-invariant metric k on g. Then the Yang–Mills action is defined on the
set of g-valued forms on X by

YM[Ag] := −
1

4

∫

X

|Fg|2dvol,

where dvol is the Riemannian volume form on X and |Fg| is the Hilbert–
Schmidt norm of Fg computed using g and k. It is well-kown that YM is
invariant by gauge transformations:

{
Ag 7−→ g−1dg + g−1Agg
Fg 7−→ g−1Fgg,

for any smooth map g from X to G. Actually g-valued forms correspond to
connections on a principal bundle over X as described below.

2.1.2 Geometric viewpoint: principal bundles

A way to represent connections consists with working in an associated prin-
cipal principal bundle over X with structure group G:

G −→ F
P

−−→ X

Here, if r := dimG, F is an (n + r)-dimensional manifold equipped with a
submersion P : F −→ X , such that, for any x ∈ X , the fiber Fx := P−1({x})
is diffeomorphic to G and there exists a right action of G on F

F ×G 7−→ F
(z, g) 7−→ z · g

such that the G-orbit of any point z ∈ F coincides with the fiber FP (z)

containing z. We hence get a representation of g in the space of tangent
vector fields X (F)

F × g 7−→ TF
(z, ξg) 7−→ (z, z · ξg),
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where z·ξg := d(z·eεξ
g
)

dε
(0), which induces a vector space isomorphism Tz(FP (z)) ≃

g. As a consequence of these definitions, for any z ∈ F , the kernel of dPz in
TzF coincides with the vertical subspace Vz := z · g := {z · ξg; ξg ∈ g}.

2.1.3 General Ehresmann connections

A general Ehresmann connection (as defined in [8]) is a distribution (Hz)z∈F
of subspaces of TF such that, ∀z ∈ F , Hz ⊕ Vz = TzF . We call each
subspace Hz a horizontal subspace. It can be completely defined by a 1-form
θg ∈ Ω1(F)⊗ g, with coefficients in g, such that

∀z ∈ F , Kerθgz = Hz.

This form is not unique. However if we impose a normalization condition

∀z ∈ F , ∀ξg ∈ g, θgz(z · ξ
g) = ξg, (7)

then θg is uniquely defined.
Note that, for a general Ehresmann connection, the dependence of Hz in

z, where z runs in a fiber Fx, may be completely arbitrary. Hence this notion
is more general than the standard connection used in Physics. Indeed it turns
out that the standard connections in Physics and in Mathematics satisfy the
further equivariance condition

(
et(·ξ

g)
)∗
θg = Ade−tξgθg, ∀t, which implies

Lz·ξgθ
g + [ξg, θg] = 0. (8)

A key observation is that, if (7) is satisfied, then Lz·ξgθ
g + [ξg, θg] = d(z ·

ξg θg) + z · ξg dθg + [ξg, θg] = 0 + z · ξg (dθg + 1
2
[θg ∧ θg]). Hence

{
z · ξg θg = ξg

Lz·ξgθ
g + [ξg, θg] = 0

⇐⇒

{
z · ξg θg = ξg

z · ξg (dθg + 1
2
[θg ∧ θg]) = 0

Beware that in most references the term ’Ehresmann connection’ is used for
meaning ’normalized equivariant Ehresmann connection’.

2.1.4 Relationship between both points of view

Consider a section σ of F over some open subset of X . For avoiding clum-
siness we assume that σ is defined globally on X , i.e. σ : X −→ F . Then,
for any θg ∈ Ω1(F) ⊗ g which is normalized and equivariant, Ag = σ∗θg ∈
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Ω1(X ) ⊗ g represents a standard connection. Moreover if σ̃ : X −→ F is
another section, then Ãg := σ̃∗θg is another connection and Ag and Ãg are
related by a gauge transformation.

Actually any section σ : X −→ F gives us a diffeomorphism

X ×G −→ F
(x, g) 7−→ σ(x) · g

the inverse of which provides us with a local chart

F −→ X ×G

z 7−→ (x, g) s.t. z = σ(x) · g

In these coordinates the normalization condition (7) reads: ∃Ag ∈ Ω1(F)⊗g

s.t.
θg = g−1dg + g−1Agg and (z · ξg) Ag = 0, ∀ξg ∈ g (9)

and, if so, the equivariance condition (8) reads

Lz·ξgA
g = 0, ∀ξg ∈ g. (10)

Note that (9) means that Ag has the decomposition Ag = Ag
µdx

µ, where
each Ag

µ is a function on F (i.e. depending on the coordinates x and g),
whereas the equivariance condition (10) then means that actually the func-
tions Ag

µ depend only on x.

2.2 Gravity and Cartan connections

2.2.1 Levi-Civita connections in orthonormal moving frames

Let X be a manifold of dimension n and s a vector space of the same dimen-
sion n. Assume we are given es ∈ s ⊗ Ω1(X ), an s-valued 1-form of rank n
everywhere. It provides us with a solder form, i.e., at any point x ∈ X , an
isomorphism TxX −→ s. By choosing a basis (E1, · · · , En) of s we decompose
es as es = eaEa. Then the components (e1, · · · , en) form a coframe on X . We
will thus call coframe or soldering form any es ∈ s⊗Ω1(X ) of maximal rank
(see Definition 3.2). By the same token we define the dual frame (e1, · · · , en).
Then any connection ∇ on TX can be characterized by an End(s)-valued 1-
form γgl(s), the components in a basis (E1, · · · , En) of which are (γab)1≤a,b≤n
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so that ∇ is given by ∇Xea = γba(X)eb, for any smooth vector field X. We
define γabc := γab(ec), so that

γab = γabce
c (11)

This connection is torsion free iff dea + γab ∧ eb = 0.
If furthermore s is endowed with a non degenerate bilinear form b, then

X is endowed with the pseudo-Riemannian metric g := (es)∗b = babe
a ⊗ eb,

where bab := b(Ea, Eb). A connection ∇, which is defined by γgl(s), respects

the metric g iff the coefficients of γgl(s) are in so(s, b), i.e. γab := γab′b
b′b is

skewsymmetric.
The Levi-Civita connection ∇TX on TX on (X , g) is the unique connec-

tion which is torsion free and respects the metric.

2.2.2 The Palatini formulation of gravity

The previous framework allows us to set the so-called ’Palatini’ (also called
’Trautman’ in [20]) formulation of gravity theories and its n-dimensional
generalizations as follows. Suppose we are given some model n-dimensional
space (s, b) as in §2.2.1 and an n-dimensional oriented manifold X . Let
l := so(s, b). Consider the set of pairs

(
es, γl

)
, where es ∈ s ⊗ Ω1(X ) is a

solder form on X and γl ∈ l⊗Ω1(X ) is a 1-form with coefficients in so(s, b).
Using a decomposition of s in a basis as in §2.2.1, the Palatini action is then
given by

AP

(
es, γl

)
=

∫

X

1

2
e
(N−2)
ab ∧ (dγad + γac ∧ γ

c
d) bdb

where e
(n−2)
a1a2 = 1

(n−2)!
ǫa1···ane

a3 ∧ · · · ∧ ean and ǫa1···an is the completely anti-
symmetric tensor such that ǫ1···n = 1. Actually the expression γac ∧ γcb is
nothing but a component of 1

2
[γl∧γl], where [·, ·] is the Lie bracket of so(s, b).

By setting Γl := dγl + 1
2
[γl ∧ γl] and Γab := Γab′b

b′b, the Palatini action reads

AP

(
es, γl

)
=
∫
X

1
2
e
(N−2)
ab ∧ Γab.

It is well-known that critical points of AP correspond to solutions of
the Einstein equations in the vacuum on X : to es ≃ (ea)1≤a≤n and γl, it
corresponds a pseudo metric g := (es)∗b and a connection ∇ on TX . The
vanishing of the first variation AP with respect to variations of γl implies
that ∇ is the Levi-Civita connection. The vanishing of the first variation
with respect to es reads as the Einstein equation.
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This description requires the existence of a moving frame on X , which
is possible only locally in general, for topological reasons. This can be fixed
by, e.g., replacing the Rn-valued form es by a form with values in some
vector bundle V X of rank n equipped with a pseudo metric and which is
topologically equivalent to TX and γl by a 1-form with coefficients in the
bundle so(V X ). An alternative way to fix this point would be to work on
the frame bundle.

2.2.3 Lifting on the frame bundle

As in §2.1 one can associate to any connection ∇TX on TX a normalized and
equivariant Ehresmann connection ∇P on a principal bundle π : P −→ X
associated to TX . The simplest choice for P is the bundle F (TX ) defined
as follows, which can be identified with the following subset of s⊗ T ∗X :

F (TX ) := (s⊗T ∗X )iso := {(x, As) ∈ s⊗T ∗X ; As : TxX −→ s is an isomorphism}

The group GL(s) of linear automorphisms of s acts on the right on F (TX )
through (g, As) 7−→ As · g := g−1As.

The canonical fibration map π : s⊗ T ∗X −→ X , (x, As) 7−→ x, defines a
canonical s-valued 1-form ϕs on s⊗T ∗X , given by ϕs := π∗As. Its restriction
on (s⊗ T ∗X )iso (which we still denote by ϕs) is the canonical soldering form
on (s⊗ T ∗X )iso = F (TX ).

Now consider a (possibly local) section α : X −→ F (TX ). It allows us to
trivialize F (TX ), i.e. to construct a diffeomorphism

X ×GL(n,R) −→ F (TX )
(x, g) 7−→ (x, αx · g)

Then any connection ∇TX on TX is defined by a 1-form γgl(s) with coefficients
in gl(s) by setting that, for any smooth tangent vector fields X, Y on X ,

〈α,∇TX
X Y 〉 = LX〈α, Y 〉+ γgl(s)(X)〈α, Y 〉

where 〈·, ·〉 is the s-valued pairing between s⊗ T ∗X and TX .
Assume now that we are given a basis (E1, · · · , En) of s. Then, to any

(x, As) ∈ (s ⊗ T ∗X )iso it corresponds a unique frame in TxX which is the
inverse image of (E1, · · · , En) by As. By applying this in particular for
As = (αx)

∗ϕs we get a moving frame (e1, · · · , en) on X and hence the ma-
trix representation (γab)a,b of γgl(s) in this basis. Then the previous relation
translates as ∇TX

X Y a = LXY
a + γab(X)Y b, where X = Xaea and Y = Y beb.
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Moreover, still by using the trivialization, we can define a 1-form ϕgl(s)

on F (TX ) with coefficients in gl(s) by

ϕgl(s) := g−1γgl(s)g + g−1dg ∈ gl(s)⊗ Ω1(F (TX ))

This 1-form is obviously normalized and equivariant and its restriction to
the image of α coincides with γgl(s). As in 2.1.3 ϕgl(s) defines at each point
z ∈ F (TX ) a horizontal subspace Hz := Kerϕ

gl(s)
z ∈ TzF (TX ) and hence a

normalized and equivariant Ehresmann connection ∇F (TX ) on F (TX ). On
the other hand it is clear that the restriction of ϕs

z on the horizontal space Hz

is an isomorphism. Hence the rank of ϕs+ϕgl(s) ∈ (s⊕gl(s))⊗Ω1((s⊗T ∗X )iso)
is maximal everywhere, which means that it provides us with a coframe on
(s⊗ T ∗X )iso.

Assume furthermore that X is pseudo Riemannian and, for simplicity,
is oriented and that the connection ∇TX respects the metric. Then we can
reduce F (TX ) to the bundle of orthonormal frames SO(TX ) and replace
gl(s) by l := so(s, b). Hence ϕl = ϕgl(s) has coefficients in l. We remark that
ϕs+ϕl encodes exactly the pair (es, γl) which are the dynamical fields in the
Palatini formulation of gravity. The 1-form ϕs + ϕl is a particular case of
a Cartan connection. In the case where the bundle F (TX ) admits a two-
sheeted spin cover Spin(TX ) we can extend these definitions by considering
the pull-back images of ϕs and ϕl by the cover map Spin(TX ) −→ SO(TX ).

2.2.4 Cartan connections and Cartan geometries

Cartan connexions were defined by Ehresmann in [8]. A comprehensive pre-
sentation of Cartan geometries and of their relationship with gravity theories
can be found in [24] and a full treatise in [21].

Cartan geometries can be seen as smooth deformations of Klein geome-
tries which, themselves, are a way to understand and generalize Euclidean
spaces or the Minkowski space as symmetric spaces. Within Klein geometry
the relevant properties of a space are encoded in the group of symmetry P

(like Poincaré) acting on the space on the right. Moreover the subgroups of
P which leave a given point invariant can be identified with a subgroup L

(like Lorentz ) of P. As a consequence the space can be identified with the
coset P/L. All that defines a principal right bundle L −→ P −→ P/L over
P/L with structure group L. The infinitesimal structure of this geometry is
encoded by the canonical Maurer–Cartan 1-form g−1dg on P.
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A Cartan geometry is described by principal right bundle L −→ P −→ X
over a manifold X of dimension equal to dim(P/L), which is endowed with
a Cartan connection which can be seen as a deformation of the canonical
Maurer–Cartan 1-form g−1dg on P: let p and l be the Lie algebras of, re-
spectively, P and L. A Cartan connection on L −→ P −→ X is a 1-form
ϕp ∈ p⊗ Ω1(P) with maximal rank everywhere (i.e. a coframe on P), which
is equivariant with respect to the right action of l on P, i.e. such that,

∀z ∈ P, ∀ξl ∈ l, Lz·ξlϕ
p + [ξl, ϕp] = 0 (12)

and which is normalized with respect to the right action of l on P, i.e. such
that

∀z ∈ P, ∀ξl ∈ l, ϕp
z(z · ξ

l) = ξl, (13)

Note that the latter relation implies in particular that the restriction of ϕp

to a vertical subspace TzPx takes values in l ⊂ p. We note also that, as in
§2.1.3, conditions (12) and (13) are equivalent to the conditions

∀z ∈ P, ∀ξl ∈ l, z · ξl ϕp = ξl and z · ξl
(

dϕp +
1

2
[ϕp ∧ ϕp]

)
= 0

A Cartan geometry is a principal bundle L −→ P −→ X endowed with a
Cartan connection ϕp. Its curvature 2-form dϕp+ 1

2
[ϕp∧ϕp] is an obstruction

for X to be locally identified with P/L.
We consider here reductive Cartan geometries: a Cartan geometry (L −→

P −→ X ,∇) modeled on L −→ P −→ P/L is reductive if there exists a
vector space decomposition

p = l⊕ s

which is invariant by the adjoint action of L on p.
The example in §2.2.3 corresponds to a reductive Cartan geometry with

P = SO(s, b) ⋉ s, L = SO(s, b). In this case a Cartan connection ϕp on
L −→ P −→ X describes a pseudo Riemannian structure and a metric
preserving connection on X . Through the AdL-invariant splitting l ⊕ s, a
Cartan connection ϕp can be decomposed as ϕp = ϕs + ϕl. We recover
hence the description of §2.2.3. The standard General Relativity theory
corresponds to the case where where (s, b) is the 4-dimensional Minkowski
space, P = SO(1, 3)⋉ s and L = SO(1, 3).

Note that if a pseudo Riemannian manifold X admits a spin structure,
we can replace the bundle SO(TX ) by its 2-sheeted covering Spin(TX ) its
suffices to define its Cartan connection as the pull-back of ϕp ∈ so(TX ) ⊗
Ω1(P) by the covering map Spin(TX ) −→ SO(TX ).
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2.2.5 Generalized Palatini models

We may generalize the Palatini model in §2.2.2 by replacing the Klein model
SO(1, 3) −→ SO(1, 3)⋉ s −→ s of a Minkowski space by a reductive Klein
model L −→ P −→ P/L. For instance keeping L = SO(1, 3) but replacing
SO(1, 3)⋉ s by SO(1, 4) or SO(2, 3) leads to other gravitation theories with
a non vanishing cosmological constant (see §7.1).

The extra ingredient is a constant tensor κl
ss ∈ l∗⊗s∧s which is invariant

by the adjoint action of L, i.e. such that, ∀g ∈ L, Ad∗
g⊗Adg⊗Adg(κl

ss) = κl
ss.

We set

AP (θ
s, ϕl) =

∫

X

1

2
κ l

ssθ(n−2)
ss ∧ Φ l ,

where Φl := dϕl + 1
2
[ϕl ∧ ϕl] ∈ l ⊗ Ω2(X ) is the curvature 2-form of ϕl and

we use the conventions of §3.3 for κ l
ssθ

(n−2)
ss ∧Φ l : it means that if (Ea)1≤a≤n

is a basis of s and if (ti)1≤i≤r is a basis of l, if we let κi
ab be the coefficients

such that κl
ss := κi

abti ⊗ Ea ⊗Eb and if θs = θaEa and Φl = Φiti, then

1

2
κ l

ssθ(n−2)
ss ∧ Φ l :=

1

2
κi
abθ

(n−2)
ab ∧ Φi. (14)

Here it is worth to introduce a specific basis of l in the case where L =
SO(s, b), through the following, the proof of which is straightforward.

Proposition 2.1 (basis of l = so(s,b)) Let (s, b) be a vector space endowed
with a symmetric non degenerate bilinear form b. Let (Ea)1≤a≤n be a basis
of s. Then there exists a unique basis of l := so(s,b), which we denote by(
tab
)
1≤a<b≤n

, such that: for any ξl ∈ so(s,b), if (ξab)1≤a,b,≤n is the matrix of

ξl in (Ea)1≤a≤n, i.e. such that ξl(Ea) = ξbaEb, and if we let ξab := ξab′b
b′b,

then ξl =
∑

1≤a<b≤n ξ
abtab. Moreover since ξab + ξba = 0 (because ξl ∈ l), by

defining tba := −tab for 1 ≤ b ≤ a ≤ n, we can write

ξl =
1

2
ξabtab :=

1

2

∑

1≤a,b≤n

ξabtab (15)

Thus the set of indices {i ∈ N | 1 ≤ i ≤ r} in (14) is actually the set of
ordered pairs {ab = [a, b] ∈ N2 | 1 ≤ a < b ≤ n}. Back to (14), by choosing

κl
ss :=

1

2
tab ⊗ ta ∧ tb, i.e. κ[c,d]

ab = δabcd := δac δ
b
d − δadδ

b
c (16)

we recover the standard Palatini action∫

X

1

2
κ l

ssθ(n−2)
ss ∧ Φ l =

∫

X

1

4
κ[c,d]

abθ
(N−2)
ab ∧ Φcd =

∫

X

1

2
θ
(N−2)
ab ∧ Φab
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2.3 Towards variational formulations on the principal
bundle

The basic ideas behind the variational theories expounded in this paper is to
find a variational formulation of Yang–Mills equations or of gravitation sitting
on the principal bundle. In the case of Yang–Mills theories, a simple way to
proceed is based on the fact that, roughly speaking, if the structure group
G is compact, for any θg ∈ g ⊗ Ω1(F) which is normalized and equivariant
we can write θg = g−1dg+ g−1Agg in a trivialization, where Ag = Ag

µ(x)dx
µ

and hence ∫

X

|Fg|2 dvolX =
1

vol(G)

∫

F

|Θg|2 dvolF

where Fg = dAg + 1
2
[Ag ∧ Ag] and Θg := dθg + 1

2
[θg ∧ θg].

This tells us that we may replace the standard Yang–Mills action by∫
F
|Θg|2 dvolF provided that we assume the constraint that θg is equivariant

and normalised. The delicate point is to impose these constraints: z·ξg θg =
ξg and z · ξg (dθg + 1

2
[θg ∧ θg]) = 0. This is more or less what is done in

the action functional in Section 4 through the introduction of auxiliary fields
which play the role of Lagrange multipliers.

3 Notations, conventions and some useful re-

sults

Through the paper the interior product of a vector with an exterior differen-
tial form is denoted by . Some gothic letters have been chosen in relation
to their possible physical meaning:

s like space
G and g for a structure group (e.g. SU(m) or the Lorentz group) and its Lie algebra
L and l like the Lorentz group and its Lie algebra
P and p like the Poincaré group and its Lie algebra

Underlined letters s, g, l , p, u refer to pairs of repeated indices, i.e. duality
pairings, see §3.3 below.
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3.1 Linear representations and tensor products of rep-
resentations

In the following G is a finite dimensional Lie group of dimension r and g its
Lie algebra.

Dual representations — Let V be a finite dimensional vector space and
let V ∗ be its dual space. Let R : G −→ GL(V ), g 7−→ Rg, be a linear
representation of G. We define its dual representation R∗ : G −→ GL(V ∗)
by: ∀g ∈ G,

∀α ∈ V ∗, ∀u ∈ V, 〈R∗
gα, u〉 := 〈α,Rg−1u〉

where 〈·, ·〉 denotes the duality pairing. Similarly given a linear representation
ρ : g −→ gl(V ) of g, we define its dual representation ρ∗ : g −→ gl(V ∗) by:
∀ξ ∈ g,

∀α ∈ V ∗, ∀u ∈ V, 〈ρ∗(ξ)α, u〉 := −〈α, ρ(ξ)u〉

These definitions give rise to the relations

∀α ∈ V ∗, ∀u ∈ V, 〈R∗
gα,Rgu〉 = 〈α, u〉 (17)

and
∀α ∈ V ∗, ∀u ∈ V, 〈ρ∗(ξ)α, u〉+ 〈α, ρ(ξ)u〉 = 0 (18)

Adjoint and coadjoint representations — The adjoint representation
of G maps any g ∈ G to Adg ∈ GL(g) defined by: ∀ζ ∈ g, Adgζ :=
d
dt

(
getζg−1

)
|t=0 ∈ g. If we assume that G is a matrix group (which is

always the case in our context) then Adgζ = gζg−1. Following the pre-
vious definitions its dual representation1 is the co-adjoint representation
Ad∗ : G −→ GL(g∗), defined by: ∀g ∈ G,

∀λ ∈ g∗, ∀ζ ∈ g, 〈Ad∗
gλ, ζ〉 := 〈λ,Adg−1ζ〉, ∀ξ ∈ g.

The adjoint representation of g maps any ξ ∈ g to adξ ∈ gl(g) defined by:
∀ζ ∈ g, adξζ := d

dt
(Adetξζ) |t=0 = [ξ, ζ ] ∈ g. Its dual representation is

ad∗ : g −→ gl(g∗), defined by: ∀ξ ∈ g,

∀λ ∈ g∗, ∀ζ ∈ g, 〈ad∗
ξλ, ζ〉 := −〈λ, adξζ〉

1The definition given here for the adjoint representation of G on g∗ coincides with the
standard definition of the so-called coadjoint representation, denoted by most Authors by
Ad∗. Beware that the sign convention is opposite to the definition used by the author in
[10] and [13].
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As a consequence of (17) and (18) these representations satisfy the relations
〈Ad∗

gλ,Adgζ〉 = 〈λ, ζ〉 and 〈ad∗
ξλ, ζ〉+ 〈λ, adξζ〉 = 0, ∀λ ∈ g∗, ∀ζ ∈ g.

Use of bases — Let (ti)1≤i≤r be a basis of g and let (ti)1≤i≤r be its dual
basis. Then the Lie algebra structure is encoded in the structure coefficients
ckij, i.e. such that [ti, tj ] = tkc

k
ij . Then

adti
tj = ckijtk (19)

and, for the coadjoint representation ad∗ : g −→ gl(g∗),

ad∗
ti
tj = −cjikt

k (20)

Tensor products — Given a finite family of representations of G, Ri : G −→
GL(Vi), for 1 ≤ i ≤ a, we define their tensor product R := R1 ⊗ · · · ⊗ Ra to
be the map R : G −→ GL (V1 ⊗ · · · ⊗ Va) such that: ∀g ∈ G, ∀(u1, · · · , ua) ∈
V1 × · · · × Va

Rg(u1 ⊗ · · · ⊗ ua) = (R1)g(u1)⊗ · · · ⊗ (Ra)g(ua)

Given a finite family of representations of g, ρi : g −→ gl(Vi), for 1 ≤ i ≤ a,
we define their tensor product ρ := (ρ1⊗1⊗· · ·⊗1)+ · · ·+(1⊗· · ·⊗1⊗ρa)
to be the map ρ : g −→ gl (V1 ⊗ · · · ⊗ Va) such that: ∀ξ ∈ g, ∀(u1, · · · , ua) ∈
V1 × · · · × Va

ρ(ξ)(u1⊗· · ·⊗ua) = (ρ1(ξ)u1)⊗u2⊗· · ·⊗ua+ · · ·+u1⊗· · ·⊗(ρa(ξ)ua) (21)

3.2 Intrinsic indices and some standard tensors

The proofs of our results rely on expressions involving tensors with many
indices. In order to limit the proliferation of indices we adopt the following
conventions.

1. Given a vector space V , xV represents a vector in V .

2. If V1, · · · , Va are vector spaces, xV1···Va represents a tensor in V1⊗· · ·⊗Va.

3. If V ∗ is the dual space of V we may denote by ℓV (instead of ℓV
∗

) an
element of V ∗.
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4. We use this convention for any tensor: any index V will refer to V or
to its dual space, according to its position, upper or lower, respectively.

Using this convention, if g is a Lie algebra with basis (t1, · · · , tr) and dual
basis (t1, · · · , tr), if we denote ckij its structure coefficients in this basis, we
define

cggg := ckijtk ⊗ tj ⊗ tj ∈ g⊗ g∗ ⊗ g∗ (22)

If (s, b) is an n-dimensional Euclidean or Minkowski vector space with basis
(E1, · · · , En), we denote

δss := δabEa ⊗ Eb ∈ s⊗ s∗ and δs
s := δbaE

a ⊗Eb ∈ s∗ ⊗ s (23)

where δab is the Kronecker symbol.
If (M, g) is a (pseudo-)Riemannian manifold of the same dimension as s

and (e1, · · · , en) is a (possibly locally defined) orthonormal moving frame on
M, we set es = e1E1 + · · ·+ enEn.

A connection 1-form in this frame reads ωl, or ωs
s = ωabta ⊗ tb, through

the identification of l = so(s, b), the Lie algebra of isometries of (s, b), with
a subspace of s⊗ s∗.

Its curvature 2-form reads Ωl = dωl + 1
2
[ωl ∧ωl] or Ωs

s = dωs
s +ωs

a ∧ω
a
s

(= dωs
s + ωs

s ∧ ωs
s, according to the conventions in the next paragraph). It

can be represented by Ωss := Ωs
ab
as (= Ωs

sb
ss). The decomposition of Ωss in

the basis
(
ea ∧ eb

)
1≤a<b≤n

involves the coefficients of the Riemann curvature
tensor Rss

ss:

Ωss =
1

2

n∑

a,b=1

Rss
abe

a ∧ eb
(
=

1

2
Rss

sse
s ∧ es

)

from which we define the Ricci tensor and the scalar curvature:

Rs
s := Rsa

sa = Rss
ss and R := Ra

a = Rs
s (24)

and the Einstein tensor

Es
s := Rs

s −
1

2
Rδs

s (25)

3.3 Contractions of tensors and intrinsic indices

Using the previous conventions, in order to help to identify which pair of in-
dices are summed when summations on repeated indices occur, we introduce
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the following conventions (recall that the summation over pairs of repeated
indices corresponds to a duality product).

For any integer a ∈ N∗, let [[1, a]] := [1, a] ∩ N. Let a, b ∈ N∗ and let
(V1, · · · , Va) and (W1, · · · ,Wb) be two lists of vector spaces (possibly with
repetition). Let c ∈ N∗ such that c ≤ min(a, b) and let σ : [[1, c]] −→ [[1, a]] and
τ : [[1, c]] −→ [[1, b]] be two one-to-one maps. Assume that, ∀i ∈ [[1, c]], Vσ(i) is
in duality with Wτ(i). We then define the contracted tensor product to
be the bilinear map

Cσ,τ : (V1 ⊗ · · · ⊗ Va)× (W1 ⊗ · · · ⊗Wb) −→ Z1 ⊗ · · · ⊗ Za+b−2c

where Z1, · · · , Za+b−2c is the list of vector spaces obtained after removing all
vector spaces Vσ(i) andWτ(i) for i ∈ [[1, c]], from the list (V1, · · · , Va,W1, · · · ,Wb).
For S ∈ V1 ⊗ · · · ⊗ Va and T ∈ W1 ⊗ · · · ⊗Wb, Cσ,τ (S, T ) is the tensor in
Z1 ⊗ · · · ⊗ Za+b−2c obtained by contracting, in the tensor product S ⊗ T , all
pairs of indices associated to the positions (σ(i), τ(i)), for i ∈ [[1, c]].

A precise definition is given at the end of this paragraph. However it may
be more illuminating to start by illustrating this definition through examples.

A list of examples

In the following (vi)i is a basis of V and (vi)i is its dual basis.

1. we denote the duality product between xV and ℓV by

ℓV x
V := Cσ,τ (ℓV , x

V ) := ℓ1x
1 + · · ·+ ℓkx

k ∈ R

where we use the underlined out letter V repeated twice to indicate the
duality pairing, i.e. the summation over repeated indices. Here σ and
τ are such that a = b = c = 1 and (σ(1), τ(1)) = (1, 1).

2. however if two indices V are repeated but not underlined, then it means
that we consider their tensor product. Hence

ℓV x
V := ℓV ⊗ xV = ℓix

j vi ⊗ vj ∈ V ∗ ⊗ V

Beware it is not commutative!

These rules are then extended to tensors as follows:
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(iii) Suppose that V and W are two different vector spaces. Consider for
example two tensors SV WW = SiABvi⊗wA⊗wB ∈ V ⊗W ∗⊗W ∗ and
T V

WW = T j
CDvj ⊗ wC ⊗ wD ∈ V ∗ ⊗W ⊗W , then

SV WW T V
WW := SiAB T i

CDwA ⊗wB ⊗ wC ⊗ wD ∈ W ∗ ⊗W ∗ ⊗W ⊗W
SV WW T V

WW := SiAB T j
ADvi ⊗wB ⊗ vj ⊗wD ∈ V ⊗W ∗ ⊗ V ∗ ⊗W

SV WW T V
WW := SiAB T j

CAvi ⊗wB ⊗ vj ⊗wC ∈ V ⊗W ∗ ⊗ V ∗ ⊗W
SV WW T V

WW := SiAB T i
CAwB ⊗ wC ∈ W ∗ ⊗W

Here a = b = 3 and the expression on the left hand side is equal to
Cσ,τ (S, T ), where: on the first line, c = 1 and (σ(1), τ(1)) = (1, 1), on
the second line, c = 1 and (σ(1), τ(1)) = (2, 2), on the third line, c = 1
and (σ(1), τ(1)) = (2, 3) and, on the last line, c = 2 and (σ(1), τ(1)) =
(1, 1) and (σ(2), τ(2)) = (2, 3).

(iv) if the same vector space occurs several times in each factor and several
pairings occur between these factors by respecting the order, we also
struck the indices corresponding to these factors. For instance, for
SV WW and T V

WW as before,

SV WW T V
WW := SiAB T j

ABvi ⊗ vj ∈ V ⊗ V ∗

SV WW T V
WW := SiAB T i

AB ∈ R

Here a = b = 3 and the expression on the left hand side is equal to
Cσ,τ (S, T ), where: on the first line, c = 2, (σ(1), τ(1)) = (2, 2) and
(σ(2), τ(2)) = (3, 3), on the second line, c = 3 and (σ(1), τ(1)) = (1, 1),
(σ(2), τ(2)) = (2, 2) and (σ(3), τ(3)) = (3, 3).

(v) in case of ambiguity, e.g. if the same vector space occurs several times
in each factor and several pairings occur between these factors but the
pairing between these factors does not respect the order, we label the
factors by integers in order to indicate the right couplings. For instance,
for SV WW and T V

WW as before,

SV W
1
W

2
T V

W
2
W

1 := SiAB T j
BAvi ⊗ vj ∈ V ⊗ V ∗

SV W
1
W

2
T V

W
2
W

1 := SiAB T i
BA ∈ R

Here a = b = 3 and the expression on the left hand side is equal to
Cσ,τ (S, T ), where: on the first line, c = 2, (σ(1), τ(1)) = (2, 3) and
(σ(2), τ(2)) = (3, 2), on the second line, c = 3, (σ(1), τ(1)) = (1, 1),
(σ(2), τ(2)) = (2, 3) and (σ(3), τ(3)) = (3, 2).
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(vi) Lastly by using the definition of cggg given by (22), (19) translates as

∀ξg, ζg ∈ g, adξgζ
g = cgggξ

gζg (26)

and (20) as

∀ξg ∈ g, ∀ℓg ∈ g∗, adξgℓg = −cg1g
2
gξ

g
2ℓg

1

(27)

Note that all these conventions are independant of the choice of the bases of
the vector spaces.

We extend this operation to any pair of differential forms with coefficients
in tensor products: for a, b ∈ N

∗, V1, · · · , Va, W1, · · · ,Wb, c ∈ N
∗ and (σ, τ) :

[[1, c]] −→ [[1, a]] × [[1, b]] as previously, for p, q ∈ N, we define the contracted
wedge product to be the unique bilinear map

V1⊗· · ·⊗Va⊗Ωp(N )×W1⊗· · ·⊗Wb⊗Ωq(N )
Cσ,τ (·∧·)
−−−−−→ Z1⊗· · ·⊗Za+b−2c⊗Ωp+q(N )

such that, ∀S ∈ V1 ⊗ · · · ⊗ Va, ∀T ∈ W1 ⊗ · · · ⊗ Wb, ∀α ∈ Ωp(N ) and
∀β ∈ Ωq(N )

Cσ,τ (S ⊗ α ∧ T ⊗ β) = Cσ,τ (S, T ) α ∧ β.

Définition 3.1 Let a, b, c ∈ N
∗, (V1, · · · , Va) and (W1, · · · ,Wb), two lists

of vector spaces, σ : [[1, c]] −→ [[1, a]] and τ : [[1, c]] −→ [[1, b]] as in §3.3.
Let i1, · · · , ic ∈ [[1, a]] such that i1 < · · · < ic and {i1, · · · , ic} := σ([[1, c]])
and, similarly, j1, · · · , jc ∈ [[1, b]] such that j1 < · · · < jc and {j1, · · · , jc} :=
τ([[1, c]]). Let (v1, · · · , va, w1, · · · , wb) ∈ V1×· · ·×Va×W1×· · ·×Wb, p, q ∈ N

and α ∈ Ωp(N ) and β ∈ Ωq(N ). We then set

Cσ,τ ( v1 ⊗ · · · ⊗ va ⊗ α ∧ w1 ⊗ · · · ⊗ wb ⊗ β ) :=
c∏

k=1

〈vσ(k), wτ(k)〉


 ⊗

i∈[[1,a]]\σ([[1,c]])

vi


⊗


 ⊗

j∈[[1,b]]\τ([[1,c]])

wj


⊗ α ∧ β

(28)

Then the contracted wedge product is the unique extension of

Cσ,τ (· ∧ ·) : V1 ⊗ · · · ⊗ Va ⊗ Ωp(N )×W1 ⊗ · · · ⊗Wb ⊗ Ωq(N ) −→
 ⊗

i∈[[1,a]]\σ([[1,c]])

Vi


⊗


 ⊗

j∈[[1,b]]\τ([[1,c]])

Wi


⊗ Ωp+q(N )

which is bilinear.
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3.4 Vector and tensor valued forms and coframes on a
manifold

Définition 3.2 Let N be a manifold of dimension N and V, V1, · · · , Va be
vector spaces and p ∈ N. Let O ⊂ N an open subset.

1. A vector space valued p-form eV on O is an element of V ⊗Ωp(O), i.e.
a p-form on O with coefficients in V .

2. If p = 1, dimN = dimV and eV ∈ V ⊗ Ω1(O) has a maximal rank
everywhere, then eV is a coframe on O.

3. If V = V1 ⊕ V2 and eV ∈ V ⊗ Ωp(O), then eV1 ∈ V1 ⊗ Ω1(O) and
eV2 ∈ V2 ⊗ Ω1(O) are the projections of eV to, respectively, V1 and V2,
through the splitting V = V1 ⊕ V2, so that eV = eV1 + eV2.

Note that we will also meet tensor valued p-forms on O, i.e. elements of
V1 ⊗ · · · ⊗ Va ⊗ Ωp(O). Most of the time we will not specify the domain
O ⊂ N .

Consider a vector valued 1-form eV on N and let’s choose a basis (vA)1≤A≤m
of V , with dual basis

(
vA
)
1≤A≤m

. Then eV decomposes in this basis as

eV := eAvA for some collection
(
eA
)
1≤A≤m

of 1-forms on N . Obviously eV is

a coframe iff
(
eA
)
1≤A≤m

is a basis of T ∗N . For any k ∈ N we set

V ∧ · · · ∧ V︸ ︷︷ ︸
k

:= {SA1···AkvA1
⊗ · · · ⊗ vAk

∈ V ⊗ · · · ⊗ V |

Sσ(A1)···σ(Ak) = (−1)|σ|SA1···Ak , ∀σ ∈ S(k)}

We define

eV V := eV ∧ eV = vA ⊗ vBe
A ∧ eB ∈ V ∧ V ⊗ Ω2(N )

eV V V := eV ∧ eV ∧ eV = vA ⊗ vB ⊗ vCe
A ∧ eB ∧ eC ∈ V ∧ V ∧ V ⊗ Ω3(N )

(29)
and so on. We also set e(m) := e1 ∧ · · · ∧ em ∈ Ωm(N ) and

e
(m−1)
A := 1

(m−1)!
ǫAA2···Ame

A2 ∧ · · · ∧ eAm ∈ Ωm−1(N )

e
(m−2)
AB := 1

(m−2)!
ǫABA3···Ame

A3 ∧ · · · ∧ eAm ∈ Ωm−2(N )

e
(m−3)
ABC := 1

(m−3)!
ǫABCA4···Ame

A4 ∧ · · · ∧ eAm ∈ Ωm−3(N )
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and we define

e
(m−1)
V := vAe

(m−1)
A ∈ V ∗ ⊗ Ωm−1(F)

e
(m−2)
V V := vA ⊗ vBe

(m−2)
AB ∈ V ∗ ∧ V ∗ ⊗ Ωm−2(F)

e
(m−3)
V V V := vA ⊗ vB ⊗ vCe

(m−3)
ABC ∈ V ∗ ∧ V ∗ ∧ V ∗ ⊗ Ωm−3(F)

(30)

In the following we assume that eV is a coframe. Then

• any 1-form α ∈ Ω1(N ) can be decomposed as α = αAe
A and we asso-

ciate to it the V ∗-valued function αV := αAv
A ∈ V ∗ ⊗ C∞(N ).

• any 2-form β ∈ Ω2(N ) can be decomposed as β = 1
2
βABe

A ∧ eB, with
βAB + βBA = 0, we associate to it the V ∗ ∧ V ∗-valued function βV V :=
βABvA ⊗ vB ∈ V ∗ ∧ V ∗ ⊗ C∞(N ) .

• the generalization of these conventions to forms of arbitrary degress is
straightforward.

Hence the following isomorphisms, which are independant of the choice of
basis:

Ω1(N ) ∋ α = αAe
A 7−→ αV := vAαA ∈ V ∗ ⊗ C∞(N )

Ω2(N ) ∋ β = 1
2!
βABe

A ∧ eB 7−→ βV V := vA ⊗ vBβAB ∈ V ∗ ⊗ V ∗ ⊗ C∞(N )

Then by using the convention of §3.3 we have

α = αV e
V for α ∈ Ω1(N ) , β =

1

2!
βV V eV V for β ∈ Ω2(N ) (31)

and so on.
Forms of degree N − p and for small values of p (e.g. p = 1, 2 or 3) also

decompose in the bases
(
e
(N−1)
A

)
1≤A≤N

,
(
e
(N−2)
AB

)
1≤A<B≤N

and
(
e
(N−3)
ABC

)
1≤A<B<C≤N

of respectively ΩN−1(N ), ΩN−2(N ) and ΩN−3(N ). This allows us to de-
compose any form in ΩN−p(N ) for p = 1, 2 or 3 and leads to the following
isomorphisms, which depends of the choice of the basis of V ∗ only through
the m-form v1 ∧ · · · ∧ vm:

ΩN−1(N ) ∋ α = αAe
(N−1)
A 7−→ αV := vAα

A ∈ V ⊗ C∞(N )

ΩN−2(N ) ∋ β = 1
2!
αABe

(N−2)
AB 7−→ βV V := vA ⊗ vBβ

AB ∈ V ⊗ V ⊗ C∞(N )

ΩN−3(N ) ∋ γ = 1
3!
γABCe

(N−3)
ABC 7−→ γV V V := vA ⊗ vB ⊗ vCγ

ABC ∈ V ⊗ V ⊗ V ⊗ C∞(N )
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We hence can write

α = αV e
(N−1)
V , β =

1

2
βV V e

(N−2)
V V and γ =

1

3!
γV V V e

(N−3)
V V V (32)

Note that, if we let (e1, · · · , eN) be the moving frame on N which is dual to

(e1, · · · , eN), then e
(N−1)
A := eA e(N), e

(N−2)
AB := eB e

(N−1)
A and e

(N−3)
ABC :=

eC e
(N−2)
AB .

3.5 Connections

Let g be a Lie algebra and consider a g-valued-form ωg ∈ g⊗Ω1(N ) defined
on a smooth manifold N . Let V be a vector space representation of g and
denote by ρ : g −→ gl(V ) the associated morphism. On the trivial vector
bundle N ×V we define the connection associated to ωg, to be the first order
differential operator

dω
g

: V ⊗ C
∞(N ) −→ V ⊗ Ω1(N )

defined by
∀f g ∈ g⊗ C

∞(N ), dω
g

f g := df g + (ρωg)f g

and we extend this operator as dω
g

: V ⊗ Ωp(N ) −→ V ⊗ Ωp+1(N ) by

∀αV ∈ V ⊗ Ωp(N ), dω
g

αV := dαV + (ρωg) ∧ αV

where, if (ti)1≤i≤r is a basis of g and ωg = ωiti, (ρω
g) ∧ αg := ωi ∧ (ρti)α

g.
We define the curvature 2-form of dω

g

to be

Ωg := dωg +
1

2
[ωg ∧ ωg] ∈ g⊗ Ω2(N )

it satisfies the property that dω
g

◦dω
g

= (ρΩg)∧. Most of the representations
used within this paper are the adjoint adωg and the coadjoint ones ad∗

ωg and
their tensor products. Recall that, if ckij are the structure coefficients of g,
so that [ti, tj] = ckijtk (see Section 3.1), then

∀αg ∈ g⊗ Ωp(N ), adωg ∧ αg = [ωg ∧ αg] = ckij ω
i ∧ αj tk

and if (ti)1≤i≤r is the dual basis of g∗,

∀αg ∈ g∗ ⊗ Ωp(N ), ad∗
ωg ∧ αg = −ckij ω

i ∧ αk tj
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As a consequence of these definitions and of (21), if ρ1 : g −→ gl(V1), · · · ,
ρk : g −→ gl(Vk) are vector space representations and if V = V1 ⊗ · · · ⊗ Vk,
then ∀αV ∈ V ⊗ Ωp(N ),

dω
g

αV := dαV + (ρ1ω
g ⊗ 1⊗ · · · ⊗ 1) ∧ αV + · · ·+ (1⊗ 1⊗ · · · ⊗ ρkω

g) ∧ αV

(33)
Through a decomposition of αV by using bases of the spaces V1, · · · , Vk and
by denoting by (ρℓω

g)iℓjℓ the matrix coefficients of ρℓ(ω
g) in each basis, the

latter relation reads

dω
g

αi1···ik = dαi1···ik + (ρ1ω
g)i1jℓα

j1i2···ik + · · ·+ (ρkω
g)ikjkα

i1···ik−1jk

Most of the time, in order to lighten the notations we will write dω
g

= dω, if
there is no ambiguity.

3.6 Some useful results

3.6.1 Exterior differential algebra

Lemma 3.1 Let V be a vector space of dimension N . Let eV ∈ V ⊗ Ω1(N )

be a vector valued 1-form over a manifold N and let eA, e
(N−1)
A , e

(N−2)
AB and

e
(N−3)
ABC as in (30). Then





eA ∧ e(N−1)
A′ = δAA′e(N) (a)

eA ∧ e(N−2)
A′B′ = δAB′e

(N−1)
A′ − δAA′e

(N−1)
B′ (b)

eA ∧ e(N−3)
A′B′C′ = δAC′e

(N−2)
A′B′ + δAB′e

(N−2)
C′A′ + δAA′e

(N−2)
B′C′ (c)

eA ∧ eB ∧ e(N−2)
A′B′ = δABA′B′e(N) (d)

eA ∧ eB ∧ e(N−3)
A′B′C′ = δABB′C′e

(N−1)
A′ + δABC′A′e

(N−1)
B′ + δABA′B′e

(N−1)
C′ (e)

(34)
where δABCD := δACδ

B
D − δADδ

B
C . Moreover





de
(N−1)
A = deB ∧ e(N−2)

AB

de
(N−2)
AB = deC ∧ e(N−3)

ABC

de
(N−3)
ABC = deD ∧ e(N−3)

ABCD

(35)

Proof — Relation (34) is a consequence of the following elementary results.
Let (vA)1≤A≤N be a basis of V . We denote by (vA)1≤A≤N the basis of V ∗
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which is dual to (vA)1≤A≤N . Set v(N) := v1∧ · · ·∧vN = 1
N !
ǫA1···AN

vA1 ∧ · · ·∧
vAN ∈ ΛNV ∗ and

v
(N−1)
A = 1

(N−1)!
ǫAA2···AN

vA2 ∧ · · · ∧ vAN ∈ ΛN−1V ∗

v
(N−2)
AB = 1

(N−2)!
ǫABA3···AN

vA3 ∧ · · · ∧ vAN ∈ ΛN−2V ∗

v
(N−3)
ABC = 1

(N−3)!
ǫABCA4···AN

vA4 ∧ · · · ∧ vAN ∈ ΛN−3V ∗

A key observation is that

v
(N−1)
A := vA v(N), v

(N−2)
AB := vB v

(N−1)
A , v

(N−3)
ABC := vC v

(N−2)
AB ,

(36)
from which we can easily deduce the following

vA ∧ v
(N−1)
A′ = δAA′v(N) (a)

vA ∧ v
(N−2)
A′B′ = δAB′v

(N−1)
A′ − δAA′v

(N−1)
B′ (b)

vA ∧ v
(N−3)
A′B′C′ = δAC′v

(N−2)
A′B′ + δAB′v

(N−2)
C′A′ + δAA′v

(N−2)
B′C′ (c)

vA ∧ vB ∧ v
(N−2)
A′B′ = δABA′B′v(N) (d)

vA ∧ vB ∧ v
(N−3)
A′B′C′ = δABB′C′v

(N−1)
A′ + δABC′A′v

(N−1)
B′ + δABA′B′v

(N−1)
C′ (e)

(37)

where δABA′B′ := δAA′δBB′ − δAB′δBA′. To prove (a) it suffices to developp the
relation 0 = vA′ 0 = vA′ (vA ∧ v(N)) and to use the graded Leibniz rule
for the interior product. Computing the interior product by vB′ to both
sides of (a) leads to (b) and computing the interior product by vC′ to both
sides of (b) leads to (c). Then (d) follows from (a) and (b) and (e) follows
from (b) and (c). Lastly (34) follows from (37) by taking the pull-back by

eV , since eA = (eV )∗vA, e
(N−1)
A = (eV )∗v

(N−1)
A , e

(N−2)
AB = (eV )∗v

(N−2)
AB and

e
(N−3)
ABC = (eV )∗v

(N−3)
ABC .

Relations (35) are easy consequence of the graded Leibniz rule for the
exterior derivative. �

Lemma 3.2 Let eV ∈ V ⊗Ω1(N ) be a smooth frame over a manifold N and
let 1 ≤ p ≤ m− 1. Then

de
(m−p)
V ···V = deV ∧ e(m−p−1)

V ···V V (38)

(for instance de
(m−1)
V = deV ∧ e(m−2)

V V and de
(m−2)
V V = deV ∧ e(m−3)

V V V ).

Proof — This relation is a translation of (35). �
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Lemma 3.3 Let g be a Lie algebra and ωg ∈ g⊗ Ω1(N ). Then dω satisfies
the graded Leibniz rule with respect to the contracted wedge product, which
means the following.

Let a, b ∈ N∗ and let (V1, · · · , Va), (W1, · · · ,Wb) be two lists of vec-
tor spaces which are all linear representations of g. Let c ∈ N∗ and
σ : [[1, c]] −→ [[1, a]] and τ : [[1, c]] −→ [[1, b]] be two one-to-one maps. Let
p, q ∈ N. Then ∀β ∈ V1 ⊗ · · · ⊗ Va ⊗ Ωp(N ), ∀γ ∈ W1 ⊗ · · · ⊗Wb ⊗ Ωq(N ),

dωCσ,τ (β ∧ γ) = Cσ,τ (d
ωβ ∧ γ) + (−1)pCσ,τ (β ∧ dωγ) (39)

Proof — It is a consequence of the Leibniz rule for the exterior differential
d and of elementary properties of representations (18) and (21). �

For example let ωg ∈ g ⊗ Ω1(N ), let V be a vector space representation
of g and consider any βg

V V ∈ g ⊗ V ∗ ⊗ V ∗ ⊗ Ωp(N ) and any γV V g ∈ V ⊗
V ⊗ g∗ ⊗ Ωq(N ). Then

dω
(
βg

V V ∧ γV V g

)
= (dωβg

V V ) ∧ γV V g + (−1)pβg
V V ∧

(
dωγV V g

)

dω
(
βg

V V ∧ γV V g

)
= (dωβg

V V ) ∧ γV V g + (−1)pβg
V V ∧

(
dωγV V g

)

Lemma 3.4 Let ρ : g −→ gl(V ) be a linear representation and assume it is
unimodular, i.e. tr(ρξ) = (ρξ)BB = 0, ∀ξ ∈ g. Let eV ∈ V ⊗ Ω1(N ) and
dω := d + (ρω)∧. and let 1 ≤ p ≤ m− 1. Then

dωe
(m−p)
V ···V = dωeV ∧ e(m−p−1)

V ···V V (40)

(for instance dωe
(m−1)
V = deV ∧ e(m−2)

V V and dωe
(m−2)
V V = deV ∧ e(m−3)

V V V ).

Proof — Let us prove, for instance, (40) for p = 2. It amounts to prove

dωeC ∧ e(m−3)
ABC = dωe

(m−2)
AB . We use (34) and (35) in the follow computation

dωeC ∧ e(m−3)
ABC =

(
deC + (ρω)CD ∧ eD

)
∧ e(m−3)

ABC

= deC ∧ e(m−3)
ABC + (ρω)CD ∧

(
δDA e

(m−2)
BC − δDB e

(m−2)
AC + δDC e

(m−2)
AB

)

= de
(m−2)
AB + (ρω)CA ∧ e(m−2)

BC − (ρω)CB ∧ e(m−2)
AC + (ρω)CC ∧ e(m−2)

AB

But since ρ is unimodular, (ρω)CC = 0 and thus, by permuting indices,

dωeC ∧ e(m−3)
ABC = de

(m−2)
AB − (ρω)CA ∧ e(m−2)

CB − (ρω)CB ∧ e(m−2)
AC

which is the expression for dωe
(m−2)
AB . �
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3.6.2 Gauge transformations

Lemma 3.5 Let g ∈ C
∞(N ,G), R : G −→ GL(V ) be a linear representation

map of G on a vector space V . Let eV , fV ∈ V ⊗ Ω1(N ) such that

eV := Rgf
V (41)

then,

1. by using Notation (29)

eV V = Rg ⊗ Rg f
V V (42)

2. if Φg,Ωg ∈ g ⊗ Ω2(N ) decompose as Φg = 1
2
Φg

V V f
V V and Ωg =

1
2
Ωg

V V e
V V , then

AdgΦ
g = Ωg ⇐⇒ Adg ⊗ R∗

g ⊗ R∗
g (Φ

g
V V ) = Ωg

V V (43)

3. if, furthermore, R : G −→ GL(V ) is unimodular, then by using no-

tations (30), e
(m)
V = f

(m)
V and

e
(m−1)
V = R∗

gf
(m−1)
V , e

(m−2)
V V = R∗

g⊗R∗
gf

(m−2)
V V , e

(m−3)
V V V = R∗

g⊗R∗
g⊗R∗

gf
(m−3)
V V V

(44)

4. if R : G −→ GL(V ) is unimodular and πg, pg ∈ ΩN−2(N ) ⊗ g∗ de-

compose as πg =
1
2
πg

V V f
(N−2)
V V and pg =

1
2
pg
V V e

(N−2)
V V , then

Ad∗
gπg = pg ⇐⇒ Ad∗

g ⊗ Rg ⊗ Rg

(
πg

V V
)
= pg

V V (45)

Remark — If fV is a frame then eV is so and decompositions Φg = 1
2
Φg

uuf
uu,

Ωg = 1
2
Ωg

uue
uu, πg = 1

2
πg

uuf
(N−2)
uu and pg = 1

2
pg

uue
(N−2)
uu in (ii) and (iv) are

always possible.
Proof of Lemma 3.5 — The proofs of (i) and (iii) are straightforward. As-
sertion (ii) follows by using (17) from

AdgΦ
g = 1

2
Adg

(
Φg

V V f
V V
)
= 1

2

(
Adg ⊗ R∗

g ⊗ R∗
g Φ

g
V V

) (
Rg ⊗ Rg f

V V
)

= 1
2

(
Adg ⊗ R∗

g ⊗ R∗
g Φ

g
V V

)
eV V

Assertion (iv) follows from pg =
1
2
pg
V V e

(N−2)
V V and

Ad∗
gπg = 1

2
Ad∗

g

(
πg

V V f
(N−2)
V V

)
= 1

2

(
Ad∗

g ⊗ Rg ⊗ Rg πg
V V
) (

R∗
g ⊗ R∗

g f
(N−2)
V V

)

= 1
2

(
Ad∗

g ⊗ Rg ⊗ Rg πg
V V
)
e
(N−2)
V V

�
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Lemma 3.6 Let g ∈ C∞(N ,G) and θg, ωg ∈ g⊗ Ω1(N ) such that

ωg = Adgθ
g − dg g−1 (46)

1. then

dωg +
1

2
[ωg ∧ ωg] = Adg

(
dθg +

1

2
[θg ∧ θg]

)
(47)

2. for any φg ∈ g⊗ Ωp(N ),

dω (Adgφ
g) = Adg

(
dθφg

)
(48)

3. for any πg ∈ g∗ ⊗ Ωp(N ),

dω
(
Ad∗

gπg
)
= Ad∗

g

(
dθπg

)
. (49)

Proof — Result (i) is standard. The proof of (ii) is obtained as follows

dω (Adgφ
g) = d (g φgg−1) + adgθgg−1−dg g−1 ∧ (g φgg−1)

= [dg g−1 ∧ g φgg−1] + g dφg g−1 + g[θg ∧ φg]g−1 − [dg g−1 ∧ gφgg−1]
= g (dφg + [θg ∧ φg]) g−1

We now deduce (iii). Let πg ∈ g∗ ⊗ Ωp(N ). Then for any φg ∈ g ⊗ Ωq(N ),
by using (39) and (17) and by applying (ii), i.e. (48), to φg, we obtain

(
dωAd∗

gπg

)
∧ Adgφ

g = dω
(
Ad∗

gπg ∧ Adgφ
g
)
− (−1)pAd∗

gπg ∧ (dωAdgφ
g)

= dω
(
πg ∧ φ

g
)
− (−1)pAd∗

gπg ∧ Adg
(
dθφg

)

= dθ
(
πg ∧ φ

g
)
− (−1)pπg ∧

(
dθφg

)

=
(
dθπg

)
∧ φg =

(
Ad∗

gd
θπg

)
∧ Adgφ

g

Since this is true for any φg, we deduce dωAd∗
gπg = Ad∗

g

(
dθπg

)
. �

Lemma 3.7 Let ωg, eg ∈ g⊗ Ω1(N ) and g ∈ C∞(N ,G) such that

eg = ωg + dg g−1 (50)

Then, by setting Ωg := dωg + 1
2
[ωg ∧ ωg],

dωeg = Ωg +
1

2
[eg ∧ eg], (51)
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Proof — This is a computation which uses d (dg g−1) = 1
2
[dg g−1 ∧ dg g−1]

dωeg = deg + [ωg ∧ eg] = d (dg g−1 + ωg) + [ωg ∧ (dg g−1 + ωg)]
= d (dg g−1) + dωg + [ωg ∧ dg g−1] + [ωg ∧ ωg]
=

(
1
2
[dg g−1 ∧ dg g−1] + [ωg ∧ dg g−1] + 1

2
[ωg ∧ ωg]

)
+
(
dωg + 1

2
[ωg ∧ ωg]

)

= 1
2
[eg ∧ eg] + Ωg

�

Remark — Hypothesis (50) occurs for instance if there exists some θg ∈
g⊗ Ω1(N ) such that ωg := Adgθ

g − dg g−1 and eg := Adgθ
g.

4 Gauge theories

4.1 General framework

Assume we are given a vector space s ≃ R
n, endowed with a nondegener-

ate symmetric bilinear form b, and a smooth oriented pseudo Riemannian
manifold (X , g) of dimension n, such that, ∀x ∈ X , (TxX , gx) is isometric
to (s, b). In applications (s, b) will be either an Euclidean space (then X is
Riemannian) or a Minkowski space and (X , g) a curved space or space-time.
We fix a basis (E1, · · · , En) of s and we set bab := b(Ea, Eb).

We are also given a compact (hence unimodular) Lie group G of dimension
r, with Lie algebra g. We assume that g is endowed with a positive AdG-
invariant metric k, i.e. such that k(Adgξ,Adgζ) = k(ξ, ζ), ∀g ∈ G, ∀ξ, ζ ∈ g.
We let (t1, · · · , tr) be a basis of g and (t1, · · · , tr) its dual basis of g∗. We
set

N = n+ r and u := s⊕ g

A basis of u is (u1, · · · ,uN) = (E1, · · · , En, t1, · · · , tr).
We are going to build a generalized gauge theory on X with group struc-

ture G, starting from a smooth submersion P : F −→ X with connected
fibers over X , where P is a smooth manifold of dimension N (thus the di-
mension of the fibers is r).

The dynamical fields of the problem are:

1. a g-valued 1-form θg on F such that, ∀x ∈ X , the rank of the restriction
of θgx on the fiber Fx := P−1({x}) is equal to r (thus θg induces a
connection on F in the general sense of Ehresmann);
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2. a dual (N − 2)-form πg on F with coefficients in g∗.

We shall see that if θg is a classical solution of our dynamical equations, it
will impose constraints on the geometry of F . Hence the geometry of F is
also a part of the dynamical variables, a similarity with General Relativity.
More precisely, assuming some generic hypotheses, any solution (θg, πg) of
the dynamical equations will define a G-principal bundle structure on F and
also a solution of the Yang–Mills system of equations on X . One hypothesis
will based on the following notion.

Définition 4.1 Let u be a vector space and s, g ⊂ u be two vector subspaces
such that u = s ⊕ g. Let Y be a manifold of such that dimN = dimu and
θu = θs+θg ∈ u⊗Ω1(N ) be a coframe. We say that (Y , θs, θg) is g-complete

if, for any continuous map vg from [0, 1] to g and for any point y ∈ Y, there
exists an unique C1 map γ : [0, 1] −→ Y, which is a solution of (γ∗θs)t = 0
and (γ∗θg)t = vg(t)dt, ∀t ∈ [0, 1], with the initial condition γ(0) = y.

4.1.1 Presentation of the model

Working locally if necessary, we assume that there exists an oriented or-
thonormal coframe βs on X , such that, in particular, (βs)∗b = g. We define
the lifted forms βs := P ∗βs ∈ Ω1(F) which can be decomposed as βs := βaEa
and we let β(n) := β1∧· · ·∧βn ∈ Ωn(F). Similarly θg ∈ g⊗Ω1(F) decomposes
as θg = θiti and the g∗-valued (N − 2)-form πg decomposes as πg = πit

i. We
set θ(r) := θ1 ∧ · · · ∧ θr. We can consider βs and θg as the two components of
the 1-form f u = fAuA = βs + θg ∈ u⊗Ω1(F) and we have f (N) = β(n) ∧ θ(r).

The set of dynamical fields is

E := {(θg, πg) ∈
(
g⊗ Ω1(F)

)
×
(
g∗ ⊗ ΩN−2(F)

)
of class C

2 ; f (N) 6= 0} (52)

Observe that the condition f (N) = β(n)∧θ(r) 6= 0 ensures that f u = βs+θg is a
coframe on T ∗F and that rank(θg|Fx

) = r. We denote by ( ∂
∂β1 , · · · ,

∂
∂βn ,

∂
∂θ1
, · · · , ∂

∂θr
)

its dual basis. We also define f
(N−1)
u , f

(N−2)
uu , β

(n−1)
s , β

(n−2)
ss , θ

(r−1)
g and θ

(r−2)
gg

by following the rules in (30). By applying the convention (32) we can de-

compose πg as πg =
1
2
πg

uuf
(n−2)
uu . By splitting πg

uu = πg
ss+πg

sg+πg
gs+πg

gg,
this gives also

πg =
1

2
πg

uuf (n−2)
uu =

1

2
πg

ssβ(n−2)
ss ∧θ(r)−(−1)nπg

sgβ(n−1)
s ∧θ(r−1)

g +
1

2
πg

ggβ(n)∧θ(r−2)
gg

(53)
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The coefficient πg
ss = πi

abti ⊗ Ea ⊗ Eb ∈ g∗ ⊗ s ⊗ s which is also defined
implicitely by

πg ∧ β
s ∧ βs = πg

ssβ(n) ∧ θ(r). (54)

plays a special role. It defines the map

Qg
ss : E −→ g∗ ⊗ s ∧ s⊗ C∞(F)

(θg, πg) 7−→ πg
ss (55)

We set
|πg

ss|2 = |Qg
ss(θg, πg)|

2 := kijbaa′bbb′πi
abπj

a′b′

or, by setting bss := babE
a ⊗Eb ∈ s∗ ⊗ s∗ and kgg := kijt

i ⊗ tj ∈ g∗ ⊗ g∗;

|πg
ss|2 :=

1

2
πg

ss πg
ss where πg

ss := kgg ⊗ bss ⊗ bss

(
πg

ss
)

(56)

Lastly we define

A[θg, πg] :=

∫

F

1

2
|πg

ss|2β(n) ∧ θ(r) + πg ∧

(
dθg +

1

2
[θg ∧ θg]g

)
. (57)

We will prove the following result.

Theorem 4.1 Let g a Lie algebra of dimension r. Let F and X be two
smooth connected manifolds of dimensions N := n + r and n, respectively
and P : F −→ X be a smooth submersion with connected fibers. Consider
the set E defined by (52). Assume that

1. either g = u(1) ≃ R and the fibers Fx := P−1({x}) are compact;

2. or g is the Lie algebra of a compact, simply connected Lie group Ĝ.

Let (θg, πg) ∈ E be a critical point of the functional (57) and assume that
(F , βs, θg) is g-complete. Then (θg, πg) endows P with a G-principal bundle
structure, where G is a compact connected Lie group. In case (i) G = U(1),

in case (ii) G is a quotient of Ĝ by a finite subgroup.
Moreover for any point in X there exist an open neighbourhood O of

this point in X and a G-valued map g defined on O such that, if Ag :=
Adgθ

g−dg g−1, Fg := dAg+ 1
2
[Ag∧Ag] and pg

gg and pg
gs are the coefficients

of pg := Ad∗
gπg in the decomposition by using the coframe eg := Adgθ

g, then
these fields are solutions of the system
{

∂γ,As Fg
ss = 0 (Yang–Mills)

∂γ,As pg
gs +

(
∂gpg

gg + 1
2
cgg

1
g
2

pg
g
1
g
2

)
= 1

2
|Fg

ss|2δgg −
1
2
Fg

s
1
s
2Fg

s
1
s
2

(58)
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Note that, in Case (i), where g = u(1), the Yang–Mills system reduces to
the Maxwell equations and the second equation in (58) reduces to ∂γs p

s =

−1
2
|Fss|2, where ps := pg

gs.
The proofs of both cases follow similar key steps, although some argu-

ments differ. As a warm up we first show Case (i) by assuming for simplicity
that X is the flat Minkowski space s of dimension 4, since it allows to get
rid of unimportant details which can be fixed easily. After introducing some
extra notations, we will then address Case (ii) in full generality. The crucial
property that any compact Lie group is unimodular will used repeatedly.

4.2 Study of the Maxwell case

As announced we assume here that g = u(1) = R and X = s = R
4. Since

the fibers of F
P
−→ X are compact, connected and 1-dimensional they are

all topologically equivalent to a circle. Hence the manifold F is diffeo-
morphic to R4 × S1. This allows us to choose global coordinates (xµ, y) =
(x0, x1, x2, x3, y), where (x0, x1, x2, x3) ∈ R4 and y ∈ S1 ≃ R/2πZ. We can
then choose the coframe (β0, β1, β2, β3) to be equal to (dx0, dx1, dx2, dx3).

We set dx(4) := dx0 ∧ dx1 ∧ dx2 ∧ dx3, dx
(3)
µ := ∂

∂xµ
dx(4) and dx

(3)
µν :=

∂
∂xν

dx
(4)
µ .

Obviously we can identify g∗ ≃ g and the metric h with the standard
metric on R. We can also dropp the index g in θg, πg and Qg

ss. The set (52)
reads here

EMaxwell = {(θ, π); θ ∈ Ω1(F), π ∈ Ω3(F), dx(4) ∧ θ 6= 0}

Condition dx(4) ∧ θ 6= 0 means that, if we decompose

θ = θ0dx
0 + θ1dx

1 + θ2dx
2 + θ3dx

3 + θ4dy,

where the coefficients θA are functions of (xµ, y), then θ4 does not vanish.
Without loss of generality (since F is connected) we assume that θ4 > 0.
The 3-form π decomposes a priori as

π =
1

2
πµνdx(2)µν ∧ θ − πµdx(3)µ

which implies (see (37)) dxµ ∧ dxν ∧ π = πµνdx(4) ∧ θ. The quantity |πss|2

reads |πss|2 = 1
2
bµµ′bνν′π

µνπµ
′ν′ = 1

2
πµνπµν , where πµν := bµµ′bνν′π

µ′ν′ , and



4 GAUGE THEORIES 43

the action is

A[θ, π] =

∫

F

1

2
|πss|2dx(4) ∧ θ + π ∧ dθ.

The ’curvature’ 2-form is simply Θ := dθ, which we decompose as

dθ = Θ =
1

2
Θµνdx

µ ∧ dxν +Θµdx
µ ∧ θ.

Hence by using (37), π ∧ dθ =
(
1
2
Θµνπ

µν + Θµπ
µ
)
dx(4) ∧ θ.

4.2.1 Study of the first variation

First variation with respect to π — We write that the action is stationary
with respect to variations (θ, π) 7−→ (θ, π+εδπ), for ε small. This means that
δθ = 0 and the variations of π are induced by the variations δπµν and δπµ of,
respectively, πµν and πµ. We obtain straightforwardly (note that 1

4
πµνπ

µν is
quadratic in π, whereas Θµνπ

µν is linear)

{
πµν +Θµν = 0 (a)

Θµ = 0 (b)
(59)

(equivalentely ∂θν
∂xµ

− ∂θµ
∂xν

= −πµν and ∂θ4
∂xµ

= ∂θµ
∂y

). Equation (b) means that
∂
∂y

dθ = 0 and has the following consequence: let Fx1 and Fx2 be two fibers

over x1 and x2 ∈ R4 respectively. Both are diffeomorphic to the circle S1.
Consider a path Γ joining x1 to x2 in R4. Its lift S := P−1(Γ) is a surface
(having the topology of a cylinder) the boundary of which is ∂S = Fx2 −Fx1

(choosing the orientation in an appropriate way). Thus

∫

Fx2

θ −

∫

Fx1

θ =

∫

∂S

θ =

∫

S

dθ = 0, (60)

where we have used dθ|S = 0, because ∂
∂y

is tangent to S and ∂
∂y

dθ = 0.

Since R4 is connected, this leads to a normalization of the fibers: ∃q ∈
(0,+∞) such that

q =

∫

Fx

θ, ∀x ∈ R
4.
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Thus we can thus define a map f : F −→ R/qZ such that ∀x ∈ R4, df |Fx =
θ|Fx , i.e. ∂f

∂y
= θ4, by setting e.g.2 f(x, y) =

∫ y
0
θ4(x, y

′)dy′. Then the map

T : F −→ R
4 × (R/qZ)

(x, y) 7−→ (x, f(x, y))

is a diffeomorphism. We denote by (xµ, s) coordinates on R4 × (R/qZ).
Moreover

θ =

(
θµ −

∂f

∂xµ

)
dxµ + df.

and hence, by setting

Aµ :=

(
θµ −

∂f

∂xµ

)
◦ T−1, for 0 ≤ µ ≤ 3, (61)

and A := Aµdx
µ, we have

θ = (Aµ ◦ T )dx
µ + df = T ∗ (A+ ds) . (62)

In particular A + ds is normalized (i.e. ∂
∂s

(A + ds) = 1).

Moreover since T ∗
(
T∗

∂
∂y

dA
)
= ∂

∂y
T ∗dA = ∂

∂y
dθ = 0 by (59) and

T∗
∂
∂y

= (θ4 ◦ T−1) ∂
∂s

, (59, b) translates as

∂

∂s
dA = 0

Since we have obviously ∂
∂s

A = 0 we also get that L ∂
∂s

A = d
(
∂
∂s

A
)
+

∂
∂s

dA = 0, i.e. ∂Aµ

∂s
= 0, ∀µ, i.e. Aµ is a function of x ∈ R4 only.

Lastly we define F := dA, so that Θ = dθ = T ∗F and we deduce from
the previous results the decomposition

F =
1

2
Fµνdx

µ ∧ dxν (63)

where the coefficients Fµν are functions of x ∈ R
4 only. Equation (a) in (59)

translates then as Fµν =
∂Aν

∂xµ
− ∂Aµ

∂xν
= −pµν .

2One may as well define f by f(x, y) =
∫ y

0
θ4(x, σ(x)+ y′)dy′, where σ : R4 −→ R/2πZ

is any section of F .
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First variation with respect to θ — Here we write the condition for the
action to be stationary with respect to variations (θ, π) 7−→ (θ + εδθ, π), for
ε small (hence δπ = 0). We decompose

δθ = τµdx
µ + τθ

which induces the variation δ(dx(4)∧θ) = τdx(4)∧θ. Since δ(dxµ∧dxν∧π) = 0
and we must respect the constraint dxµ ∧ dxν ∧ π = πµνdx(4) ∧ θ, this forces
to have

0 = δ
(
πµνdx(4) ∧ θ

)
= δπµνdx(4)∧ θ+πµνdx(4)∧ δθ = (δπµν + τπµν) dx(4)∧ θ

Hence we must impose δπµν + τπµν = 0. The induced variations on |πss|2 is
δ|πss|2 = −2τ |πss|2. Hence

δ

(
1

2
|πss|2dx(4) ∧ θ

)
= −

1

2
|πss|2λdx(4) ∧ θ = −

1

2
|πss|2δθ ∧ dx(4)

Moreover δ(π ∧ dθ) = d(δθ) ∧ π = d(δθ ∧ π) + δθ ∧ dπ, hence the vanishing
of the first variation of A leads to

0 =

∫

F

d(δθ ∧ π) + δθ ∧

(
dπ −

1

2
|πss|2dx(4)

)
, ∀δθ

i.e., if δθ has compact support,

dπ =
1

2
|πss|2dx(4) (64)

By using (62) we can write (see (37))

π = 1
2
πµνdx

(2)
µν ∧

(
(Aλ ◦ T )dxλ + df

)
− πµdx

(3)
µ

= πµν(Aν ◦ T )dx
(3)
µ + 1

2
πµνdx

(2)
µν ∧ df − πµdx

(3)
µ

= 1
2
πµνdx

(2)
µν ∧ (T ∗ds) + (πµν(Aν ◦ T )− πµ) dx

(3)
µ

thus, by defining pµν and pµ such that pµν◦T := πµν , pµ◦T := πµ−(πµν)(Aν◦

T ) and p := 1
2
pµνdx

(2)
µν ∧ ds− pµdx

(3)
µ , we obtain

π = T ∗p = T ∗

(
1

2
pµνdx(2)µν ∧ ds− pµdx(3)µ

)
.
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Then dπ = T ∗dp with

dp = d

(
1

2
pµνdx(2)µν ∧ ds− pµdx(3)µ

)
=

1

2
dpµν ∧ dx(2)µν ∧ ds− dpµ ∧ dx(3)µ

Thus setting dpµν = ∂λp
µνdxλ+∂sp

µνds and dpµ = ∂λp
µdxλ+∂sp

µds, we get

dp = 1
2

(
∂λp

µνdxλ + ∂sp
µνds

)
∧ dx

(2)
µν ∧ ds−

(
∂λp

µdxλ + ∂sp
µds
)
∧ dx

(3)
µ

= ∂νp
µνdx

(3)
µ ∧ ds− ∂µp

µdx(4) − ∂sp
µds ∧ dx

(3)
µ

= (∂νp
µν + ∂sp

µ)dx
(3)
µ ∧ ds− ∂µp

µdx(4)

We also note that pµν◦T = πµν implies T ∗
(
1
2
|pss|2dx(4)

)
= 1

2
|πss|2dx(4). Hence

(64) reads T ∗dp = T ∗
(
1
2
|pss|2dx(4)

)
, which is equivalent to dp = 1

2
|pss|2dx(4).

In view of the previous computations, this is equivalent to the system
{
∂νp

µν = −∂spµ (a)
∂µp

µ = −1
2
|pss|2 (b)

(65)

4.2.2 Cancellation of the sources

We deduced from (59,a) that Fµν := bµµ
′

bνν
′

Fµ′ν′ = −pµν . However we also
deduced from (63) that the coefficients Fµν are functions of x ∈ R4 only.
Hence we deduce by averaging both sides of (65a) over a fiber Fx that

∂νF
µν =

∫
Fx
∂νF

µνds∫
Fx

ds
=

∫
Fx

−∂νpµνds∫
Fx

ds
=

∫
Fx
∂sp

µds∫
Fx

ds
=

∫
Fx

dpµ∫
Fx

ds
= 0

and we conclude that the Maxwell equation in vacuum holds

∂Fµν

∂xν
= 0. (66)

4.2.3 Gauge symmetries

We consider the transformation:

(θ, π) 7−→ (θ + α, π + ψ) (67)

and we look at sufficient conditions for this transformation to provide us
with a gauge symmetry of the action A[θ, π] =

∫
F
π ∧ dθ + 1

4
|πss|2

R4dx(4) ∧
θ. We have the a priori decompositions α = αµ(x, y)dx

µ + α4(x, y)dy and
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ψ = 1
2
ψµν(x, y)dx

(2)
µν ∧ dy − ψµ(x, y)dx

(3)
µ . In order to keep the quantity

|πss|2
R4 := 1

2
bµµ′bνν′π

µνπµ
′ν′ invariant, we assume that the coefficients ψµν

vanish, so that ψ = −ψµ(x, y)dx(3)µ .
Then the computation of A[θ + α, π + ψ] gives us

A[θ + α, π + ψ] = A[θ, π] +

∫

F

(π + ψ) ∧ dα + ψ ∧ dθ +
1

2
|πss|2

R4dx(4) ∧ α

We note that dx(4) ∧α = α4dx
(4) ∧ dy, thus, in order for the last term in the

r.h.s. to cancel, we need to assume α4 = 0. Hence α = αµ(x, y)dx
µ. Then we

observe that we need to require that dα = 0 for (π+ψ)∧dα to vanish and, if
so, we need to assume that

∫
F
ψ∧dθ = 0 for having A[θ+α, π+ψ] = A[θ, π].

For that purpose we assume that ψ has compact support or decays at
infinity so that

∫

F

ψ ∧ dθ =

∫

F

d(θ ∧ ψ) + θ ∧ dψ =

∫

F

θ ∧ dψ

Then it suffices to choose ψ so that dψ = 0 for (67) to be a symmetry of A.
Hence, to summarize, if

1. α = αµ(x, y)dx
µ ∈ Ω1(F) is closed ;

2. ψ = −ψµ(x, y)dx(3)µ ∈ Ω3(F) is closed and decays at infinity,

then A[θ + α, π + ψ] = A[θ, π].
However since dα = 1

2
(∂αν

∂xµ
− ∂αµ

∂xν
)dxµ ∧ dxν − ∂αµ

∂y
dxµ ∧ dy and dψ =

−∂ψµ

∂xµ
dx(4)+ ∂ψµ

∂y
dx

(3)
µ ∧dy, the previous conditions imply that coefficients αµ

and ψµ are independant of y. Hence α = αµ(x)dx
µ and ψ = −ψµ(x)dx(3)µ ,

with
∂αν
∂xµ

−
∂αµ
∂xν

= 0 and
∂ψµ

∂xµ
= 0.

The first equation is equivalent to the existence of a function V ∈ C∞(R4)
such that α = dV .

4.2.4 Invariance by fiber bundle diffeomorphisms

Let us consider a diffeomorphism T : F −→ F such that P ◦ T = P , i.e. of
the form

T : F −→ F
(x, y) 7−→ (x, f(x, y))
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and such that ∂f
∂y
> 0. It acts on the fields by pull-back

(θ, π) 7−→ (T ∗θ, T ∗π)

We note that Qss[T ∗θ, T ∗π] = Qµν [T ∗θ, T ∗π]Eµ⊗Eν is defined implicitely by
using (54), i.e.

(T ∗π) ∧ dxµ ∧ dxν = Qµν [T ∗θ, T ∗π] dx(n) ∧ T ∗θ.

On the other hand the pull-back by T of both sides of the relation π ∧ dxµ ∧
dxν = Qµν [θ, π]dx(n) ∧ θ gives us

(T ∗π) ∧ dxµ ∧ dxν = (Qµν [θ, π] ◦ T ) dx(n) ∧ T ∗θ

By comparing both relations we deduce that Qss[T ∗θ, T ∗π] = Qss[θ, π] ◦ T .
This implies that |πss|2

R4 is transformed into |πss|2
R4 ◦T . Thus the Lagrangian

density transforms as

π ∧ dθ +
1

2
|πss|2

R4dx(4) ∧ θ 7−→ T ∗

(
π ∧ dθ +

1

2
|πss|2

R4dx(4) ∧ θ

)

Hence the action A[θ, π] =
∫
F

1
2
|πss|2

R4dx(4) ∧ θ + π ∧ dθ is invariant by this
transformation.

This invariance by fiber bundle diffeomorphisms may be fixed as follows.
Consider some (θ, π) ∈ EMaxwell and, for any x ∈ R4, let u(x) := 1

2π

∫
Fx
θ and

f(x, y) := 1
u(x)

∫ y
0
θ4(x, y

′)dy′ and define the map

T : F −→ R4 × (R/2πZ)
(x, y) 7−→ (x, f(x, y) mod [2π]) ,

which is a diffeomorphism. Then df = ∂f
∂xµ

dxµ + θ4(x,y)
u(x)

dy and thus

θ = θµdx
µ + θ4dy =

(
θµ − u

∂f

∂xµ

)
dxµ + u df.

Hence by defining φµ :=
(
θµ − u ∂f

∂xµ

)
◦ T−1 and φ := φµdx

µ + u ds and by
observing that u ◦ T = u, we have

T ∗φ = (φµ ◦ T )dx
µ + (u ◦ T )df = θ (68)

Thus the image of the transformation (θ, π) 7−→ ((T−1)∗θ, (T−1)∗π) is (φ, p),
so that φ has the form φ = φµdx

µ + φ4ds, where φ4(x, s) = u(x) is indepen-
dant on s.

This show that, by such a ’gauge transform’, which does not change the
action as seen in the previous paragraph, we can assume that the coefficient
∂
∂y

θ is independant of the coordinate on the fiber.
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4.3 Study of the Yang–Mills case

We now prove Theorem 4.1 in Case (ii), i.e. for g which is the Lie algebra

of a compact, simply connected structure group Ĝ and on a curved base
pseudo Riemannian manifold (X , g). Recall that, since Ĝ is compact, its Lie
algebra g is unimodular. We endow u := s ⊕ g with the metric h such that
its restriction to s coincides with b, its restriction to g coincides with k and
s ⊥ g. We let βs be a g-orthonormal coframe and we set f u := βs+ θg. Note
that, by hypothesis, f u is a coframe on F .

Abusing notation we denote by Ad : Ĝ −→ GL(u) and ad : g −→
gl(u) the representations which extends trivially, respectively, the adjoint

representations Ad : Ĝ −→ GL(g) and ad : g −→ gl(g), i.e. such that:

∀g ∈ Ĝ, ∀ξ ∈ g,

∀(X, ζ) ∈ s× g, Adg(X + ζ) = X +Adgζ, adξ(X + ζ) = X + [ξ, ζ ] (69)

In other words, s and g are stable by AdG and adg and their restrictions to s

is trivial whereas their restrictions to g coincides with, respectively, AdG and
adg.

Letting cijk be the structure coefficients of g in the basis (t1, · · · , tr) and

using the notation cggg := cijkti ⊗ tj ⊗ tk ∈ g ⊗ g∗ ⊗ g∗ (see (22)), we can
write that, ∀ξg, ηg ∈ g, [ξg, ηg] = cgggξ

gηg.

4.3.1 First variation

First variation with respect to πg — We write that the action is station-
ary with respect to variations (θg, πg) 7−→ (θg, πg + εδπg), for ε small, where

δπg = χg = 1
2
χg

uuf
(N−2)
uu (by using Convention (31)), so that δπg is induced

by δπg
uu. Similarly the curvature 2-form Θg := dθg + 1

2
[θg ∧ θg] decomposes

as

Θg =
1

2
Θg

uuf
uu =

1

2
Θg

ssf
ss +Θg

sgf
sg +

1

2
Θg

ggf
gg

Hence πg ∧ Θg = 1
2
πg

uu Θg
uu f

(N). By using (53) and (34) we obtain the
condition

∫

F

(
1

2
χg

ss (πg
ss +Θg

ss) + χg
sgΘg

sg +
1

2
χg

ggΘg
gg

)
f (N) = 0, ∀χg

uu
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which gives us the relations





πg
ss +Θg

ss = 0 (a)
Θg

sg = 0 (b)
Θg

gg = 0 (c).
(70)

First variation with respect to θg — We now look at the first variation
of A through variations (θg, πg) 7−→ (θg + εδθg, πg), where δθg has a compact
support. It is useful to decompose δθg as:

δθg = τ g = τ gsβ
s + τ ggθ

g

This induces the variation f (N) 7−→ f (N)+εδf (N)+o(ε) with δf (N) = τ ggf
(N).

From (54), which implies 0 = δ(πg
ssf (N)), we deduce that the induced vari-

ation of πg
ss is equal to δπg

ss = −τ ggπg
ss and thus |πg

ss|2 7−→ |πg
ss|2 +

εδ|πg
ss|2 + o(ε) with δ|πg

ss|2 = −2τ gg|πg
ss|2. Hence

δ

(
1

2
|πg

ss|2f (N)

)
=

(
−τ gg +

τ gg

2

)
|πg

ss|2f (N) = −
|πg

ss|2

2
τ ggf

(N) = −
|πg

ss|2

2
τ g∧f (N−1)

g

Let us set dθ(τ g) := d(τ g)+[θg∧τ g] and dθ(πg) := dπg+ad∗
θ∧πg. We remark

that δΘg = δ
(
dθg + 1

2
[θg ∧ θg]

)
= dθτ g and thus by (39)

δ
(
πg ∧Θg

)
= δΘg ∧ πg =

(
dθτ g

)
∧ πg = dθ

(
τ g ∧ πg

)
+ τ g ∧ dθπg

Lastly we observe that
∫
F

dθ
(
τ g ∧ πg

)
=
∫
F

d
(
τ g ∧ πg

)
since the coefficients

of τ g ∧ πg are in R, a trivial representation of g. Thus the first variation of
the action vanishes iff

∫

F

τ g ∧

(
dθπg −

|πg
ss|2

2
f (N−1)
g

)
, ∀τ g with compact support,

which give us the equation

dθπg =
|πg

ss|2

2
f (N−1)
g (71)
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4.3.2 Principal bundle structure and equivariance of the connec-
tion

We first exploit Equation (c) in system (70), i.e. dθg + 1
2
[θg ∧ θg] = 0.

Consider on the product manifold Ĝ×Y = {(h, y) ∈ Ĝ×Y} the g-valued
1-form τ g := θg − h−1dh. It satisfies the identity dτ g = dθg + 1

2
[θg ∧ θg] −

[θg ∧ τ g] + 1
2
[τ g ∧ τ g] and its rank is clearly equal to r. However Equation

(c) in (70) implies that, for any fiber Fx, dθg + 1
2
[θg ∧ θg]|Fx = 0 and thus

d(τ g|Fx×Ĝ
) = 0 mod[τ g]. Hence, by Frobenius’ theorem, for any (g0, y0) ∈

Ĝ×Fx, there exists a unique r-dimensional submanifold Γ ⊂ Fx × Ĝ which
is a maximal solution of τ g|Γ = 0 and which contains (g0, y0).

It is clear also that, ∀(g, y) ∈ Ĝ×Fx, ∀(ξ, v) ∈ TgĜ× TyFx, the equation
g−1dg(ξ) = θg(v) defines the graph of a vector space isomorphism between

TgĜ and TyFx. This implies that, around each point (g, y) ∈ Γ, Γ is locally

the graph of a diffeomorphism between a neighbourhood of g in Ĝ and a
neighbourhood of y in Fx. But we have more: since each fiber Fx is actually
a maximal solution of the system θs|f = 0, we can apply the following lemma

to deduce that there exists a map from Ĝ to Fx, the graph of which is Γ, and
thus this map is a universal cover of Fx.

Lemma 4.1 Assume that Ĝ is simply connected and that (Y , θs, θg) is g-
complete. Let f be a maximal integral solution of the system θs|f = 0 of

dimension r. Then Ĝ is a universal cover of f.
As a corollary, f is diffeomorphic to a quotient of Ĝ by a finite subgroup

and, if Ĝ is furthermore compact, then f is compact.

Proof — Fix any base point y0 ∈ f and consider:

• the set P
Ĝ,1

Ĝ

of based paths γ ∈ C1([0, 1], Ĝ) such that γ(0) = 1
Ĝ

and

• the set Pf,y0 of based paths u ∈ C1([0, 1], f) such that u(0) = y0.

We define an operator T from P
Ĝ,1

Ĝ

to Pf,y0 as follows: to any γ ∈ P
Ĝ,1

Ĝ

we

associate the unique path u = T(γ) ∈ Pf,y0 such that

u(0) = y0 and
[
γ−1dγ = u∗θg ⇐⇒ (γ, u)∗τ g = 0

]

We will show that, for any γ ∈ P
Ĝ,1

Ĝ

, the end point T(γ)(1) of u = T(γ)

depends uniquely on the end point γ(1) of γ, i.e.,

∀γ0, γ1 ∈ PG,1
Ĝ
, γ0(1) = γ1(1) =⇒ T(γ0)(1) = T(γ1)(1) (72)
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Since Ĝ is connected, for any g ∈ Ĝ, there exists a path γ ∈ P
Ĝ,1

Ĝ

such that

γ(1) = g, thus (72) shows the existence of a unique map T : Ĝ −→ f such
that, for any γ ∈ P

Ĝ,1
Ĝ

, T (γ(1)) = T(γ)(1). The graph of T clearly coincides

with the integral leaf of τ g in Ĝ × f passing through (1
Ĝ
, y0) and thus T is

a smooth cover of f, which is actually the universal cover since Ĝ is simply
connected.

Let us prove (72). Let γ0 and γ1 be in P
Ĝ,1

Ĝ

and assume that γ0(1) =

γ1(1). Since Ĝ is simply connected there exists a smooth homotopy Γ ∈

C1([0, 1]2, Ĝ) such that, ∀t, s ∈ [0, 1],

Γ(0, 1) = 1
Ĝ

Γ(t, 1) = γ1(t) Γ(1, 1) = γ0(1)

Γ(0, s) = 1
Ĝ

Γ(1, s) = γ0(1)

Γ(0, 0) = 1
Ĝ

Γ(t, 0) = γ0(t) Γ(1, 0) = γ0(1)

To this map we associate the unique map U ∈ C1([0, 1]2, f) defined by




U(0, 0) = y0
θgU(t,0)

(
∂U
∂t
(t, 0)

)
=

(
Γ−1 ∂Γ

∂t

)
(t, 0), ∀t ∈ [0, 1]

θgU(t,s)

(
∂U
∂s
(t, s)

)
=

(
Γ−1 ∂Γ

∂s

)
(t, s), ∀(t, s) ∈ [0, 1]2

Thus if we set F := (Γ, U) ∈ C1([0, 1]2, Ĝ × f), the previous relations read
F (0, 0) = (1

Ĝ
, f0) and

(F ∗τ)(t,0)

(
∂

∂t

)
= 0 and (F ∗τ)(t,s)

(
∂

∂s

)
= 0, ∀t, s ∈ [0, 1] (73)

Set σ := 1
2
adτg −adθg|Ĝ×f

∈ End(g)⊗Ω1(Ĝ× f), so that dτ g|
Ĝ×f

= σ∧ τ g|
Ĝ×f

,
and set α := F ∗τ g and β := F ∗σ. Then dα = β ∧ α and the second relation
in (73) translates as α

(
∂
∂s

)
= 0. We now use Cartan’s formula

dα

(
∂

∂t
,
∂

∂s

)
+ α

([
∂

∂t
,
∂

∂s

])
=

∂

∂t

(
α

(
∂

∂s

))
−

∂

∂s

(
α

(
∂

∂t

))

which simplifies to

β ∧ α

(
∂

∂t
,
∂

∂s

)
+ 0 = 0−

∂

∂s

(
α

(
∂

∂t

))
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and thus

∂

∂s

(
α

(
∂

∂t

))
(t, s) = β

(
∂

∂s

)
α

(
∂

∂t

)
(t, s), ∀(t, s) ∈ [0, 1]2

Since by (73) we also have the initial condition α
(
∂
∂t

)
(t, 0) = 0, ∀t ∈ [0, 1],

we deduce that

α

(
∂

∂t

)
(t, s) = 0, ∀(t, s) ∈ [0, 1]2

This means that, ∀(t; s) ∈ [0, 1]2, (F ∗τ)(t,s)
(
∂
∂t

)
= 0, i.e., θgU(t,s)

(
∂U
∂t
(t, s)

)
=(

Γ−1 ∂Γ
∂t

)
(t, s). This can also be translated by defining the maps γs ∈ Pf,y0

and us ∈ P
Ĝ,1

Ĝ

such that, respectively, ∀(t, s) ∈ [0, 1]2, Γ(t, s) = γs(t) and

U(t, s) = us(t), by writing u∗sθ
g = γ−1

s dγs, ∀s ∈ [0, 1]. Since, ∀s ∈ [0, 1],
us(0) = y0, we conclude that us = T(γs).

But we also have, by the definition of Γ, Γ−1 ∂Γ
∂s
(1, s) = 0, ∀s ∈ [0, 1],

and hence ∂U
∂s
(1, s) = 0, ∀s ∈ [0, 1]. This implies that us(1) = u0(1), i.e.,

T(γs)(1) = T(γ0)(1), ∀s ∈ [0, 1] and, in particular T(γ1)(1) = T(γ0)(1). �

A consequence of this Lemma 4.1 is that, if Ĝ is compact, all fibers
are compact. Hence by a result of Ehresmann [8] we deduce that F has a
structure of fiber bundle over X . In particular all fibers are diffeomorphic to
a quotient G of Ĝ. (Note that the latter conclusion can also be achieved by
applying a straightforward variant of Lemma 5.1 below.)

Thus, by choosing some (possibly local) section Σ of F , there exists a
unique map g : F −→ G such that, for any x,

θg − g−1dg|Fx
= 0 ⇐⇒ Ag|Fx

= 0, where Ag := gθgg−1 − dg g−1. (74)

and such that g is equal to 1G on Σ. Condition (74) implies that the 1-
form Ag ∈ g ⊗ Ω1(F) decomposes as Ag = Ag

sβ
s. It also means that

θg = g−1Agg + g−1dg is normalized and implies that dθg + 1
2
[θg ∧ θg] =

g−1(dAg + 1
2
[Ag ∧Ag])g, i.e. by defining Fg := dAg + 1

2
[Ag ∧Ag],

Fg = AdgΘ
g (75)

For any function α on F , let us denote by ∂sα and ∂gα the coefficients in
the decomposition dα = ∂sα βs + ∂gα θg. Then through the decomposition
Ag = Ag

sβ
s, Fg decomposes as

Fg =
1

2
(∂s

1
Ag

s
2
− ∂s

2
Ag

s
1
+ [Ag

s
1
,Ag

s
2
])βs

1
s
2 − ∂gA

g
s β

s ∧ θg.
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Equations (70–b) and (75) now imply ∂gA
g
s = 0, which means that Ag

s

is constant on each fiber (i.e. the coefficients Ag
s depends only on x ∈

X ). Equivalentely θg is equivariant. Hence the coefficients Fg
ss in the

decomposition Fg = 1
2
Fg

s
1
s
2
βs

1
s
2 are also independent of g.

We next introduce the frame eu := Adgf
u. This implies in particular by

(74) that
eg := Adgθ

g = Ag + dg g−1 (76)

We also set

pg := Ad∗
gπg = Ad∗

g

(
1

2
πg

uuf (N−2)
uu

)
(77)

and its decomposition by using the (N−2)-form e
(N−2)
uu := Ad∗

g⊗Ad∗
g

(
f
(N−2)
uu

)
:

pg =
1

2
pg

uue(N−2)
uu

where, according to (44), pg
uu := Ad∗

g ⊗ Adg ⊗ Adg (πg
uu).

In particular (since the action of Adg on s is trivial) pg
ss = Ad∗

g ⊗ 1s ⊗
1s (πg

ss). At this point we exploit Equation (70–a) that we translate as

πg
ss + Θg

ss = 0, where Θg
ss =

(
kgg ⊗ bss ⊗ bss

)
Θg

ss. Thus actually pg
ss =

−Ad∗
g ⊗ 1s ⊗ 1s (Θg

ss). Hence by using (43)

−pgss = Ad∗
g ⊗ 1s ⊗ 1s (Θg

ss) = Ad∗
g ⊗ 1s ⊗ 1s

((
kgg ⊗ bss ⊗ bss

)
Θg

ss

)

⋆
=

(
kgg ⊗ bss ⊗ bss

)
(Adg ⊗ 1s∗ ⊗ 1s∗ (Θ

g
ss)) =

(
kgg ⊗ bss ⊗ bss

)
Fg

ss

where in
⋆
= we used the fact that k is invariant by Adg, i.e. Ad∗

g⊗Ad∗
g (kgg) =

kgg. Hence by setting Fg
ss :=

(
kgg ⊗ bss ⊗ bss

)
Fg

ss (70-a), translates as

pg
ss = −Fg

ss (78)

Lastly we translate (71) as follows: by (44) we have Ad∗
gf

(N−1)
g = e

(N−1)
g .

Moreover by using (77) and (49) we obtain that dApg := dpg + ad∗
A
pg =

Ad∗
g

(
dθπg

)
. Hence since k is Adg-invariant (which implies |πg

ss|2 = |pgss|2)
and because of (71) and (78) we deduce

dApg = Ad∗
g

(
|πg

ss|2

2
f (N−1)
g

)
=

|Fg
ss|2

2
e(N−1)
g (79)

—
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4.3.3 Computation of the left hand side of (79)

It turns out that Equation (79) implies that the connection Ag is a solution of
the Yang–Mills system of equations. However the proof of that fact requires
a careful computation of the left hand side of (79) using a decomposition of

pg in the basis e
(N−2)
uu obtained out of eu. (Note that an alternative method

is possible, by using the coframe (βs, g−1dg) instead of eu.) This is the most
delicate part.

Let γso(s) ∈ so(s, b)⊗ Ω1(X ) be the connection 1-form of the Levi-Civita

connection ∇ on (X , g) and γ := γso(s) := P ∗γso(s) ∈ so(s, b) ⊗ Ω1(F). The
orthogonal splitting u = s ⊕ g induces an embedding of so(s, b) in so(u, h)
so that actually γ ∈ so(u, h) ⊗ Ω1(F). Similarly adA ∈ so(g, k) ⊗ Ω1(F) ⊂
so(u, h) ⊗ Ω1(F) and thus γ + adA ∈ so(u, h) ⊗ Ω1(X ). We then define the
connection dγ,A acting on functions ξu from F to u by

dγ,Aξu := dAξu + γ ξu = dγξs + dAξg

with dγξs := dξs + γ ξs and dAξg := dξg + adAξ
g (80)

and extend it by using the graded Leibniz rule to any exterior differential
form with coefficients in a tensor product of u and u∗.

A key point is to observe that, since the action of so(s, b) on g is trivial,

dApg = dγ,Apg. By using the decomposition pg =
1
2
pg

uue
(N−2)
uu and the Leibniz

rule (39) we deduce dApg =
1
2
dγ,Apg

uu ∧ e(N−2)
uu + 1

2
pg

uudγ,Ae
(N−2)
uu . Moreover

if we denote by ∂γ,Au pg
uu ∈ u∗⊗ g∗ ⊗ u⊗ u⊗C∞(F) the coefficients such that

dγ,Apg
uu = (∂γ,Au pg

uu)eu, then 1
2
dγ,Apg

uu ∧ e(N−2)
uu = 1

2
(∂γ,Au pg

u
1
u
2)eu ∧ e(N−2)

u
1
u
2

=

∂γ,Au
2

pg
uu

2e
(N−1)
u . Hence

dApg = dγ,Apg = ∂γ,Au
2
pg

uu
2e(N−1)

u +
1

2
pg

uudγ,Ae(N−2)
uu (81)

By introducing the coefficients ∂upu
uu such that dpu

uu = (∂upu
uu) eu and the

coefficients γu such that γ = γue
u, the coefficients ∂γ,Au pg

uu read3





∂γ,Au pg
ss = ∂upg

ss +
(
ad∗

Au
⊗ 1⊗ 1 + 1⊗ γu ⊗ 1 + 1⊗ 1⊗ γu

)
pg

ss

∂γ,Au pg
sg = ∂upg

sg +
(
ad∗

Au
⊗ 1⊗ 1 + 1⊗ γu ⊗ 1 + 1⊗ 1⊗ adAu

)
pg

sg

∂γ,Au pg
gs = ∂upg

gs +
(
ad∗

Au
⊗ 1⊗ 1 + 1⊗ adAu

⊗ 1 + 1⊗ 1⊗ γu
)
pg

gs

∂γ,Au pg
gg = ∂upg

gg +
(
ad∗

Au
⊗ 1⊗ 1 + 1⊗ adAu

⊗ 1 + 1⊗ 1⊗ adAu

)
pg

gg

3Alternatively, for instance, the second relation in this system reads ∂γ,A
u pg

sg =
∂upg

sg − c
g
g
0
gA

g
0upg

sg + γs
supg

sg + c
g
g
0
gA

g
0upg

sg.
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The sum ∂γ,Au pg
uu splits as ∂γ,Au pg

uu = ∂γ,Au pg
su + ∂γ,Au pg

gu, with

∂γ,Au pg
su = ∂γ,As pg

ss + ∂γ,Ag pg
sg and ∂γ,Au pg

gu = ∂γ,As pg
gs + ∂γ,Ag pg

gg

where the first terms on the r.h.s are




∂γ,As pg
ss := ∂spg

ss +
(
ad∗

As
⊗ 1⊗ 1 + 1⊗ γs ⊗ 1 + 1⊗ 1⊗ γs

)
pg

ss

∂γ,As pg
gs := ∂spg

gs +
(
ad∗

As
⊗ 1⊗ 1 + 1⊗ adAs

⊗ 1 + 1⊗ 1⊗ γs

)
pg

gs

The expressions of the second terms ∂γ,Ag pg
sg and ∂γ,Ag pg

gg simplify because

of the observations that Ag
u = Ag

s and γu = γs (i.e. Ag
g = γg = 0):

∂γ,Ag pg
sg = ∂gpg

sg and ∂γ,Ag pg
gg = ∂gpg

gg

Thus
(
∂γ,Au

1

pg
uu

1

)
e(N−1)
u =

(
∂γ,As

1

pg
ss

1 + ∂gpg
sg
)
e(N−1)
s +

(
∂γ,As pg

gs + ∂g
1

pg
gg

1

)
e(N−1)
g

(82)

In order to compute the second term 1
2
pg

uudγ,Ae
(N−2)
uu we use (40), i.e.

dγ,Ae
(N−2)
uu = dγ,Aeu ∧ e

(N−2)
uuu and hence we need to compute dγ,Aeu. We

recall that eu = Adgf
u = Adg(β

s + θg) = βs + Ag + dg g−1, i.e. eu = es + eg

with es = βs and eg = Ag+dg g−1. Thus since by (51) dAeg = Fg+ 1
2
[eg∧eg]

we have

dγ,Aeu = dγes + dAeg = dγes + Fg +
1

2
[eg ∧ eg]

where dγes := des + γ ∧ es. However the latter quantity is the torsion, which
vanishes since γ = γso(s) corresponds to the Levi-Civita connection. Thus
the previous identity reduces to

dγ,Aeu = Fg +
1

2
[eg ∧ eg] =

1

2
Fg

sse
ss +

1

2
cggge

gg (83)

where we used the notation cggg introduced in (22). Hence

dγ,Ae
(N−2)
u1u2 = dγ,Aeu ∧ e(N−3)

u1u2u =
(

1
2
Fg

s
1
s
2
es1s2 + 1

2
cgg

1
g
2

eg1g2
)
∧ e(N−3)

u1u2g

= Fg
u1u2e

(N−1)
g + cgu1u2e

(N−1)
g + cggu1e

(N−1)
u2 + cgu2ge

(N−1)
u1

= Fg
u1u2e

(N−1)
g + cgu1u2e

(N−1)
g
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where we used the hypothesis that g is unimodular, i.e. cgug = cggu = 0.
Thus

1

2
pg

u
1
u
2dγ,Ae(N−2)

u
1
u
2

=
1

2

(
Fg

s
1
s
2
pg

s
1
s
2 + cgg

1
g
2

pg
g
1
g
2

)
e(N−1)
g (84)

By collecting (82) and (84) in (81) we obtain

dApg =
(
∂γ,As

1

pg
ss

1 + ∂gpg
sg
)
e(N−1)
s

+

(
∂γ,As pg

gs + ∂g
1

pg
gg

1 +
1

2
Fg

s
1
s
2
pg

s
1
s
2 +

1

2
cgg

1
g
2

pg
g
1
g
2

)
e(N−1)
g

(85)
Note however that it follows from (83) that deg = 1

2
cgg

1
g
2

eg1g2+Fg− [Ag∧eg],

which implies that de
(N−2)
g1g2 = deg ∧ e(N−3)

g1g2g = cgg1g2e
(N−1)
g , thus

d

(
1

2
pg

g
1
g
2e(N−2)

g
1
g
2

)
=

(
∂g

1

pg
gg

1 +
1

2
cgg

1
g
2

pg
g
1
g
2

)
e(N−1)
g

Hence (85) can be written as

dApg =
(
∂γ,As

1

pg
ss

1 + ∂gpg
sg
)
e(N−1)
s +

(
∂γ,As pg

gs +
1

2
Fg

s
1
s
2
pg

s
1
s
2

)
e(N−1)
g +d

(
1

2
pg

g
1
g
2e(N−2)

g
1
g
2

)

(86)

4.3.4 Cancellation of the sources

We come back to Equation (79) (dApg =
1
2
|Fg

ss|2e(N−1)
g ) which is equivalent

to the fact that the r.h.s. of (86) is equal to 1
2
|Fg

ss|2e(N−1)
g . By using (78)

(pg
ss = −Fg

ss) we deduce the two following equations

∂γ,As Fg
ss = ∂gpg

sg (87)

and

(∂γ,As pg
gs)e(N−1)

g + d

(
1

2
pg

g
1
g
2e(N−2)

g
1
g
2

)
=

1

2
|Fg

ss|2e(N−1)
g −

1

2
Fg

s
1
s
2
Fg

s
1
s
2e(N−1)

g

(88)
Here comes the conclusion about (87). Let (t1, · · · , tr) be a basis of g∗ and

set t(r) := t1 ∧ · · · ∧ tr, (eg)(r) := (eg)∗t(r) and (eg)
(r−1)
g := (eg)∗t

(r−1)
g . A

first observation here is that, for any x ∈ X , since the fiber Fx is compact,
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the integration of both sides of (87) on Fx gives us (note that de
(N−1)
g = 0

because g is unimodular)

∫

Fx

∂γ,As Fg
ss (eg)(r) =

∫

Fx

(
∂gpg

sg
)
(eg)(r) =

∫

Fx

d
(
pg

sg (eg)(r−1)
g

)
= 0.

A second observation is that the left hand side of (87) is constant on any
fiber. Thus, again since Fx is compact,

∂γ,As Fg
ss =

∫
Fx

∂γ,As Fg
ss (eg)(r)∫

Fx

(eg)(r)
= 0. (89)

And this relation exactly means that Ag is a solution of the (pure) Yang–Mills
equations.

4.3.5 A conservation law for the current

Let us introduce the notation

Jg
s := ∂gpg

sg (90)

for the right hand side of (87). As seen previously (87) implies that Jg
s

is constant on each fiber and hence is a function of x ∈ X . However it
may not vanish in the case where, in the previous model, G is not compact,
because (89) would not hold in general. However Equation (88) still implies
a conservation law on Jg

s, as shown by the following.

Proposition 4.1 Let (pg,Fg) be a solution (88). Then

∂As Jg
s = 0 (91)

Proof — By computing the exterior differential of both sides of (88) and by

using the facts that ∂gF
g
ss = 0 and de

(N−1)
g = 0 one obtains that ∂g

(
∂γ,As pg

gs
)
=

0. Recall that

∂γ,As pg
gs = ∂spg

gs − cg1g
0
gA

g
0spg

1

gs + cgg
0
g
2

Ag
0spg

g
2
s + γssspg

gs

and hence, since γsss = 0 because the coefficients of γ are in so(s, b),

∂γ,As pg
gs = ∂spg

gs − cg1g
0
gA

g
0spg

1

gs + cgg
0
g
2

Ag
0spg

g
2
s
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Thus

∂g
(
∂γ,As pg

gs
)
= ∂g (∂spg

gs)−cg1g
0
gA

g
0s

(
∂gpg

1

gs
)
+cgg

0
g
2

Ag
0s

(
∂gpg1

g
2
s
)

(92)

However by using Cartan’s formula (83) implies that

eu([∂g, ∂s]) = −deu(∂g, ∂s) = γ∧es(∂g, ∂s)+[Ag∧eg](∂g, ∂s) = −cg
g
0
g
2

Ag
0se

g
2(∂g)

and hence [∂g, ∂s] = −cgg
0
gA

g
0s∂g, which implies

∂g (∂spg
gs) = ∂s

(
∂gpg

gs
)
− cgg

0
g
2

Ag
0s

(
∂gpg

g
2
s
)

This leads to the following simplification in (92)

∂g
(
∂γ,As pg

gs
)
= ∂s

(
∂gpg

gs
)
− cg1g

0
gA

g
0s

(
∂gpg

1

gs
)
= ∂sJg

s − cg1g
0
gA

g
0sJg

1

s

The right hand side of the latter equation is equal to ∂As Jg
s. Since we know

from the beginning that the left hand side is zero, we deduce (91). �

4.3.6 Standard gauge symmetries

The Yang–Mills action (57) is invariant by several types of gauge symmetries,
which generalizes the gauge symmetries of the Maxwell model seen previously.

For any g ∈ C∞(X ,G) the action A[θg, πg] =
∫
F

1
2
|πg

ss|2β(n) ∧ θ(r) + πg ∧

(dθg + 1
2
[θg ∧ θg]g) is invariant by the gauge transformation

{
θg 7−→ Adgθ

g − dg g−1 = gθgg−1 − dg g−1

πg 7−→ Ad∗
gπg

meaning that
A[Adgθ

g − dg g−1,Ad∗
gπg] = A[θg, πg] (93)

Indeed on the one hand since the scalar product k on g is invariant by the
adjoint action of G, we have |Ad∗

g ⊗ 1s ⊗ 1s(πg
ss)|2 = |πg

ss|2. On the other
hand the relations

d
(
Adgθ

g − dg g−1
)
+
1

2

[(
Adgθ

g − dg g−1
)
∧
(
Adgθ

g − dg g−1
)]

= Adg

(
dθg +

1

2
[θg ∧ θg]

)

and Ad∗
gπg ∧ Adg(dθ

g + 1
2
[θg ∧ θg]g) = πg ∧ (dθg + 1

2
[θg ∧ θg]g) imply that the

integral
∫
F
πg ∧ (dθg + 1

2
[θg ∧ θg]g) is invariant by this transformation. Hence

(93) follows.
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4.3.7 Gauge symmetries of the dual fields

Let χg ∈ g∗ ⊗ ΩN−2(F) and assume that we replace πg by πg + χg. Then by
observing that Θg := dθg + 1

2
[θg ∧ θg] = dθ/2θg and by using (39)

(πg+χg)∧Θg = πg∧Θg+(dθ/2θg)∧χg = πg∧Θg+dθ/2
(
θg ∧ χg

)
+θg∧dθ/2χg

But since θg ∧χg has real coefficients (hence in a trivial representation of g),

we have actually dθ/2
(
θg ∧ χg

)
= d

(
θg ∧ χg

)
, so that

(πg + χg) ∧Θg = πg ∧Θg + d
(
θg ∧ χg

)
+ θg ∧ dθ/2χg (94)

Assume further that
χg ∧ β

ss = 0, (95)

i.e. χg decomposes as χg = χg
sgf

(N−2)
sg + 1

2
χg

ggf
(N−2)
gg or χg

ss = 0. Then |πg
ss+

χg
ss|2 = |πg

ss|2. Hence if we assume that χg ∈ g∗⊗ΩN−2(F) satisfies (95) and

decreases at infinity (or is compactly supported), so that
∫
F

d
(
θg ∧ χg

)
= 0,

it follows then from (94) that

A[θg, πg + χg] = A[θg, πg] +

∫

F

θg ∧ dθ/2χg

Thus the action satisfies A[θg, πg + χg] = A[θg, πg] if χg ∈ g∗ ⊗ΩN−2(F) sat-
isfies (95), decreases at infinity and satisfies θg∧dθ/2χg = 0. As a conclusion:

Lemma 4.2 Let χg ∈ g∗ ⊗ ΩN−2(F). Assume that

1. χg decays at infinity or has compact support;

2. χg
ss = 0, i.e. χg decomposes as

χg = χg
sgf (N−2)

sg +
1

2
χg

ggf (N−2)
gg (96)

3.
θg ∧ dθ/2χg = 0 (97)

then we have A[θg, πg + χg] = A[θg, πg].

Note that Condition (96) is actually sufficient for χg to be an on shell gauge
symmetry. Indeed if the Euler–Lagrange equations (70) are satisfied then
Θg = 1

2
Θg

ssθ
ss and thus the action

∫
F

1
2
|πg

ss|2+πg∧Θg is obviously invariant
by the transformation (θg, πg) 7−→ (θg, πg + χg) if χg satisfies (96).



5 KALUZA–KLEIN THEORIES 61

4.3.8 Invariance by fiber bundle diffeomorphisms

Let T : F −→ F be a diffeomorphism such that P ◦ T = P (i.e. which
preserves each fiber of the fibration P : F −→ X ). Then our action enjoys
the symmetry

A[T ∗θg, T ∗πg] = A[θg, πg] (98)

Indeed remind that πg
ss = Qg

ss(θg, πg) (55) is characterized by πg
ssβ(n)∧θ(r) =

πg ∧ βss (54). Hence since β(n) and βss are invariant by T ∗, this implies
(πg

ss ◦ T )β(n) ∧ T ∗θ(r) = (T ∗πg) ∧ βss, so that πg
ss ◦ T satisfies the same

relation as Qg
ss(T ∗θg, T ∗πg). Hence Qg

ss(T ∗θg, T ∗πg) = Qg
ss(θg, πg) ◦ T . It

follows that

1
2
|Qg

ss(T ∗θg, T ∗πg)|
2 β(n) ∧ T ∗θ(r) + T ∗πg ∧

(
dT ∗θg + 1

2
[T ∗θg ∧ T ∗θg]g

)

= T ∗
[
1
2
|Qg

ss(θg, πg)|
2 β(n) ∧ θ(r) + πg ∧

(
dθg + 1

2
[θg ∧ θg]g

)]

and by integration over F we deduce (98).

5 Kaluza–Klein theories

A Kaluza–Klein action functional can be obtained by adding a quantity of
the kind

∫
πg ∧Θg, where Θg := dθg + 1

2
[θg ∧ θg], from the Yang–Mills action

to a higher dimensional version of the Palatini action functional as defined
in §2.2.2.

Starting from the Palatini action described in §2.2.2 we replace s by a
larger space u := s ⊕ g, where (g, [·, ·]) is a Lie algebra of dimension r and,
in the role of l, we replace so(s, b) by so(u, h). Hence

u := s⊕ g and l = so(u, h)

so that dimu = N := n + r. We extend the Lie bracket of g on u in such a
way that s is in the center of (u, [·, ·]). In a way similar to the Yang–Mills
theory (see §4.3) we assume that g is the Lie algebra of a simply connected

Lie group Ĝ (but not necessarily compact in the following). We also assume
that u is endowed with a symmetric nondegenerate bilinear form h which is
invariant by the adjoint action of Ĝ (see (69)) and such that s ⊥ g. We
denote by b and k the restriction of h on, respectively, s and g.

Let Y be a smooth oriented manifold of dimension N . The dynamical
fields on Y will be a pair (θu, ϕl), where θu ∈ u⊗ Ω1(Y) and ϕl ∈ l⊗ Ω1(Y),
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for the ’Palatini’ part of the action plus an extra field πu ∈ u∗ ⊗ ΩN−2(Y)
which satisfies the constraint θss ∧ πu = 0. Hence the space of fields is:

E := { (θu, ϕl, πu) ∈ (u⊗ Ω1(Y))× (l⊗ Ω1(Y))×
(
u∗ ⊗ ΩN−2(Y)

)
;

(θu, ϕl, πu) are of class C2 and θs ∧ θs ∧ πu = 0}

We let κl
uu ∈ l∗ ⊗ u⊗ u be defined as in (16) (this tensor is invariant by Ad

Ĝ

as expounded in §2.2.5) and we set Φl := dϕl + 1
2
[ϕl ∧ ϕl] and, for shortness,

Φuu := κ l
uuΦ l . Then with the same conventions as before, we define on E

the action functional A by:

A[θu, ϕl, πu] :=

∫

Y

πu ∧Θu +
1

2
θ(N−2)
uu ∧ Φuu − Λ0θ

(N) (99)

Theorem 5.1 Let Ĝ be a simply connected Lie group with Lie algebra g, of
dimension r, and s be a vector space of dimension n. Let u = s⊕g, endowed
with the Lie bracket [·, ·] which extends the Lie algebra structure on g in such
a way such that s belongs to the center of (u, [·, ·]). Assume that u is endowed
with a symmetric bilinear form h = b ⊕ k which is invariant by the adjoint
action of g on u and such that s ⊥ g.

Let Y be a connected, oriented manifold of dimension N := n + r. Let
(θu, ϕl, πu) ∈ E be a critical point of A and let h := (θu)∗h. Assume that the
rank of θu is equal to N everywhere and that (Y , θs, θg) is g-complete (see
Definition 4.1). Then

1. the exterior differential system θs|f = 0, for r-dimensional submanifolds
f ⊂ Y, is completely integrable and Y is foliated by the integral leaves
f.

2. there exists a Lie group G, which is a quotient of Ĝ by a finite subgroup
such that all integral leaves f are diffeomorphic to G.

Assume the additional hypothesis that G is compact. Then the foliation
forms actually a fibration and the following holds.

(iii) the manifold Y acquires the structure of a principal bundle over an
n-dimensional manifold X with structure group G:

G −→ Y
P

−−→ X
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(iv) g := (θs)∗b = bssθ
s ⊗ θs is constant on each fiber of P and induces a

pseudo metric (also denoted by) g on X ;

(v) in any local trivialization YU ≃ U ×G (where U ⊂ X is an open subset
and YU := P−1(U)) we can write θg = g−1Agg + g−1dg, where g ∈ G

and Ag is depends only on x ∈ X ;

(vi) g and Ag are solutions of the Einstein–Yang–Mills system

{
R(g)ss −

1
2
Rδss + Λδss = 1

2
Fg

ssFg
ss −

1
4
|F|2δss

∇TX ,A
s Fg

ss = 0

with a cosmological constant equal to Λ = Λ0 +
1
4
〈B, k〉, where Bgg :=

cg1g
2
gc

g
2g

1
g is the Killing form on g and 〈B, k〉 := 1

2
Bggk

gg.

A straightforward corollary of Theorem 5.1 is the following.

Corollary 5.1 Assume exactly the same Hypotheses as in Theorem 5.1 and,
in addition, that Ĝ is compact. Then Conclusions (iii) to (vi) in Theorem
5.1 hold.

Remark 5.1 One may replace κl
uu given by (16) by any tensor which is in-

variant by Ad
Ĝ
, as expounded in §2.2.5, and such that the map u∗ ⊗ u∗ ∋

ξuu 7−→ κl
uuξuu has a non trivial kernel. Most computations still holds, how-

ever the interpretation of the resulting system of equations would be different.

Remark 5.2 The action A in (99) and the constraint πu ∧ θss = 0 are obvi-
ously invariant under the action (θu, ϕl, πu) 7−→ (T ∗θu, T ∗ϕl, T ∗πu) of orienta-
tion preserving diffeomorphisms T : Y −→ Y. It is also invariant through the
transformation (θu, ϕl, πu) 7−→ (Adgθ

u, (Adg)ϕ
l(Adg)

−1,Ad∗
gπu), where g ∈ G

is constant. However there is apparentely no way to extend this finite sym-
metry to a gauge group action, because the curvature form Φl = dϕl+ 1

2
[ϕl∧ϕl]

does not transform in a simple way.

The next sections are devoted to the proof of Theorem 5.1.



5 KALUZA–KLEIN THEORIES 64

5.1 The Euler–Lagrange equations

In the following we assume that (θu, ϕl, πu) ∈ E is a critical point of A such
that rankθu = N . We denote by h = bssθ

sθs + kggθ
gθg the induced met-

ric on Y and we assume that (Y , θs, θg) is g-complete. Recall that Θu :=
dθu + 1

2
[θu ∧ θu] and Φl := dϕl + 1

2
[ϕl ∧ ϕl] and the a priori decompositions

Θu = 1
2
Θu

uu θ
uu = 1

2
Θu

ss θ
ss + Θu

sg θ
sg + 1

2
Θu

gg θ
gg and πu = 1

2
πu

uu θ
(N−2)
uu =

1
2
πu

ss θ
(N−2)
ss + πu

sg θ
(N−2)
sg + 1

2
πu

gg θ
(N−2)
gg . The constraint πu ∧ θss = 0 in the

definition of E then reads πu
ss = 0 or

πu = πu
sg θ(N−2)

sg +
1

2
πu

gg θ(N−2)
gg (100)

5.1.1 Study of the first variation

First variation with respect to coefficients of πu — We write that the
action functional is stationary with respect to first order variations (θu, ϕl, πu) 7−→

(θu, ϕl, πu + εδπu), where δπu = χu = χu
sg θ

(N−2)
sg + 1

2
χu

gg θ
(N−2)
gg , so that it re-

spects (100). It gives us:

∀χu
sl, χu

ll, 0 =

∫

Y

χu ∧Θu =

∫

Y

(
χu

sgΘu
sg +

1

2
χu

ggΘu
gg

)
θ(N)

This is equivalent to Θu
sg = Θu

gg = 0. Hence Θu = 1
2
Θu

ss θ
ss, which reads

{
dθs = 1

2
Θs

ss θ
s ∧ θs

dθg + 1
2
[θg ∧ θg] = 1

2
Θg

ss θ
s ∧ θs

(101)

First variation with respect to ϕl — We look at first order variations
(θu, ϕl, πu) 7−→ (θu, ϕl + εδϕl, πu), for any δϕl = λl with compact support.
This induces the transformation Φuu 7−→ Φuu + dϕλuu (where λuu := κ l

uuλ l )
since κl

uu is constant and adl-invariant. This yields the condition that, ∀λl

with compact support,

0 =

∫

Y

1

2
dϕλuu ∧ θ(N−2)

uu =

∫

Y

1

2
dϕ
(
λuu ∧ θ(N−2)

uu

)
+

1

2
λuu ∧ dϕθ(N−2)

uu

However dϕ
(
λuu ∧ θ(N−2)

uu

)
= d

(
λuu ∧ θ(N−2)

uu

)
, since the adjoint action of l

on this quantity is trivial. We thus obtain the condition

0 =

∫

Y

d

(
1

2
θ(N−2)
uu ∧ λuu

)
+

1

2
λuudϕθ(N−2)

uu
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from which deduce (since u∗ ⊗ u∗ ∋ ξuu 7−→ κl
uuξuu has a trivial kernel) that

dϕθ
(N−2)
uu = 0. Lastly since dϕθ

(N−2)
uu = dϕθu ∧ θ(N−3)

uuu and N > 2 we deduce
dϕθu = 0 (a similar result is derived in (205)). This means that the connec-
tion on TY defined by ϕl is torsion free, i.e. coincides with the Levi-Civita
connection of (Y ,h).

First variation with respect to θu — Lastly we look at variations (θu, ϕl, πu) 7−→
(θu + εδθu, ϕl, πu + εδπu), for any δθu = τ u with compact support, where δπu
is chosen in such a way that the coefficients πu

uu are fixed (in particular we
preserve the constraint πu ∧ θss = 0). Through these variations,




πu 7−→ πu + εδπu + o(ε) with δπu = πu
sg τ u ∧ θ(N−3)

sgu + 1
2
πu

gg τ u ∧ θ(N−3)
ggu

θ
(N−2)
uu 7−→ θ

(N−2)
uu + εδθ

(N−2)
uu + o(ε) with δθ

(N−2)
uu = τ u ∧ θ(N−3)

uuu

Θu 7−→ Θu + εδΘu + o(ε) with δΘu = dθτ u

θ(N) 7−→ θ(N) + εδθ(N) + o(ε) with δθ(N) = τ u ∧ θ(N−1)
u

Hence in particular, on the one hand, by using (101) and (34)

δπu ∧Θu =

(
πu

s
1
g
2 τ u3 ∧ θ(N−3)

s
1
g
2
u
3

+
1

2
πu

g
1
g
2 τ u3 ∧ θ(N−3)

g
1
g
2
u
3

)
∧
1

2
Θu

ssθ
ss

= τ u ∧
(
πu

1

sgΘu
1
us θ

(N−1)
g

)

On the other hand

πu ∧ δΘ
u = dθτ u ∧ πu = dθ (τ u ∧ πu) + τ u ∧ dθπu = d (τ u ∧ πu) + τ u ∧ dθπu

Thus by using the fact that τ u has a compact support, we deduce the condi-
tion

∀τ u, 0 =

∫

Y

τ u ∧

(
dθπu −Θu

1
usπu

1

gs θ(N−1)
g +

1

2
θ(N−3)
u
1
u
2
u ∧ Φu

1
u
2 − Λ0θ

(N−1)
u

)

which gives us the equation

dθπu +
1

2
θ(N−3)
uuu ∧ Φuu − Λ0θ

(N−1)
u = Θu

usπu
gs θ(N−1)

g (102)

5.2 Geometric consequences of the Euler–Lagrange equa-
tions

5.2.1 Existence of a foliation

From the first equation in (101) we deduce that dθs =0 mod[θs]. Since the
rank of θs is equal to n everywhere, we deduce from Frobenius’ theorem that
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Y is foliated by integral leaves f which are solutions of the system θs|f = 0 of
dimension r. We denote by X the set of integral leaves.

5.2.2 The structure of the leaves

Consider on the product manifold Ĝ × Y = {(h, y) ∈ Ĝ × Y} the g-valued
1-form

τ g := θg − h−1dh

It satisfies the identity dτ g = dθg + 1
2
[θg ∧ θg]− [θg ∧ τ g] + 1

2
[τ g ∧ τ g] and its

rank is clearly equal to r. However the second equation in (101) implies that,
for any integral leaf f, dθg + 1

2
[θg ∧ θg]|f = 0 and thus d(τ g|f×G) = 0 mod[τ g].

Hence, again by Frobenius’ theorem, for any (g0, y0) ∈ Ĝ × f, there exists a

unique r-dimensional submanifold Γ ⊂ Ĝ× f which is a solution of τ g|Γ = 0
and which contains (g0, y0).

As for the Yang–Mills theory, ∀(g, y) ∈ Ĝ × f, ∀(ξ, v) ∈ TgĜ × Tyf, the
equation g−1dg(ξ) = θg(v) defines the graph of a vector space isomorphism

between TgĜ and Tyf. This implies that, around each point (g, y) ∈ Γ, Γ is

locally the graph of a diffeomorphism between a neighbourhood of g in Ĝ

and a neighbourhood of y in f.
But we have more: since (Y , θs, θg) is g-complete by hypothesis, by ap-

plying Lemma 4.1 we deduce that Ĝ is a universal cover of each leaf f.

5.2.3 All integral leaves are diffeomorphic

In the following result we still assume the hypotheses of Theorem 5.1.

Lemma 5.1 Assume that (Y , θs, θg) is g-complete and that Y is connected.
Then for any pair f0, f1 of integral leaves, f0 is diffeomorphic to f1.

Proof Let f̌ ⊂ Y be any fixed integral leaf and consider

Y̌ := {y ∈ Y ; the leaf which contains y is diffeomorphic to f̌}

We will show that Y̌ is open and closed. It is clear that Y̌ 6= ∅ since f̌ ⊂ Y̌ .
Thus it will prove that Y̌ = Y since Y is connected.

(i) We first prove that Y̌ is open. Let y0 ∈ Y̌ and let us denote by f0 the leaf
which contains y0 (which is hence diffeomorphic to f̌).
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To any fixed ξu ∈ u we associated the vector field X(ξu) on Y defined by
X(ξu) = ξu ∂

∂θu
(in an equivalent way, θu(X(ξu)) = ξu). For any (y, ξu) ∈ Y×u,

denote by, if it exists, eX(ξu)(y) the value at time t = 1 of the solution
γ ∈ C1([0, 1],Y) of the equation dγ

dt
= X(ξu)(γ), with the initial condition

γ(0) = y. We consider the open subset ∆Φ ⊂ Y×u and the map Φ : ∆Φ −→ Y
such that Φ(y, ξu) = eX(ξu)(y) and ∆Φ (’life set’) is the maximal open subset
of Y × u on which Φ can be defined.

For any value r > 0 we let Bu(r) be the ball of radius r centered at 0
in u (for any norm on u). For r > 0 sufficiently small, we define the map
Ψ : Bu(r) −→ Y as follows. For any ξu ∈ Bu(r), we use the unique splitting
ξu = ξs + ξg according to the decomposition u = s⊕ g and we set

Ψ(ξu) = Φ(Φ(y0, ξ
s), ξg) (103)

The differential of Ψ at 0 is the inverse map of θuy0 and hence is invertible.
Thus, thanks to the inverse mapping theorem, by choosing r sufficiently small
we can assume that Ψ is a diffeomorphism between Bu(r) and its image O in
Y , which is a neighbourhood of y0. Let z ∈ O be an arbitrary point and let
f be the integral leaf which contains z. We will show that f is diffeomorphic
to f0 and hence to f̌. For that purpose we will show that the flow map eX(ξs)

is defined on f0 and maps f0 to f in a diffeomorphic way.
We remark that, since any integral leaf is invariant by y 7−→ Φ(y, ξg), f

contains also y1 := Φ(y0, ξ
s) and hence is characterized by this property.

Let y′0 ∈ f0. There exists a path γ ∈ C1([0, 1], f0) based on γ(0) = y0 and
with end point γ(1) = y′0. We build the map U : [0, 1]2 −→ Y by:

{
U(t, 0) = Φ(y0, tξ

s) ∀t ∈ [0, 1](
U∗θu

(
∂
∂s

))
(t, s) =

(
γ∗θu

(
d
ds

))
(s) ∀(t, s) ∈ [0, 1]× [0, 1]

A key point is that, since γ takes value in the leaf f0, γ
∗θs = 0, which implies(

U∗θs
(
∂
∂s

))
(t, s) = 0. This has the first consequence that the existence of

U is guaranteed by the hypothesis (iii), i.e. that the manifold is g-complete.
From Equations (101) we deduce

{
d (U∗θs) = 1

2
U∗ (Θs

ssθ
s ∧ θs)

d (U∗θg) + 1
2
U∗ ([θg ∧ θg]) = 1

2
U∗ (Θg

ssθ
s ∧ θs)
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This implies, since
(
U∗θs

(
∂
∂s

))
(t, s) = 0, that





d (U∗θs)

(
∂

∂t
,
∂

∂s

)
= 0

d (U∗θg)

(
∂

∂t
,
∂

∂s

)
+

[
U∗θg

(
∂

∂t

)
, U∗θg

(
∂

∂s

)]
= 0

On the other hand Cartan’s formula

d (U∗θu)

(
∂

∂t
,
∂

∂s

)
+U∗θu

([
∂

∂t
,
∂

∂s

])
=

∂

∂t

(
U∗θu

(
∂

∂s

))
−
∂

∂s

(
U∗θu

(
∂

∂t

))

simplifies to d (U∗θu)
(
∂
∂t
, ∂
∂s

)
+0 = 0− ∂

∂s

(
U∗θu

(
∂
∂t

))
. We hence deduce that,

for all t ∈ [0, 1], s 7−→ U∗θu
(
∂
∂t

)
(t, s) is solution of the system of differential

equations




∂

∂s

(
U∗θs

(
∂

∂t

))
= 0

∂

∂s

(
U∗θg

(
∂

∂t

))
=

[
U∗θg

(
∂

∂t

)
, U∗θg

(
∂

∂s

)]

However we also have the following initial conditions at s = 0:

U∗θs
(
∂

∂t

)
(t, 0) = ξs and U∗θg

(
∂

∂t

)
(t, 0) = 0

We thus conclude that U∗θs
(
∂
∂t

)
(t, s) = ξs and U∗θg

(
∂
∂t

)
(t, s) = 0, ∀(t, s) ∈

[0, 1]2. This is equivalent to the relation ∂U
∂s

= X(ξs)(U). This shows that
the flow map of X(ξs) is well defined at least for all time in [0, 1] on f0 and
maps f0 to f. Since the reasoning can be reversed (by exchanging f0 and f)
this map is actually a diffeomorphism and, in particular, f is compact. Thus
z ∈ Y̌ .

(ii) We show that Y̌ is closed. Let y be in the closure of Y̌. In a way
similar to the previous step, for r > 0 sufficiently small, we define the map
Ψ : Bu(r) −→ Y by Ψ(ξu) = Φ(Φ(y, ξs), ξg), where, ∀ξu ∈ Bu(r), ξ

u = ξs+ ξg.
For r > 0 sufficiently small, we can assume that Ψ is a diffeomorphism
between Bu(r) and its image O in Y and O is a neighbourhood of y.

Since y belongs to the closure of Y̌ , there exists a sequence (yn)n∈N of

points in Y̌ which converges to y. We can fix a value of n sufficiently large



5 KALUZA–KLEIN THEORIES 69

so that yn ∈ O. Since yn ∈ Y̌ , the leaf fn which contains yn is diffeomorphic
to f̌. We can then repeat the arguments of the previous step by replacing
y0 by y′0 := Φ(yn,−ξ

g
n), where ξgn is such that Ψ(ξsn + ξgn) = yn. (Note that

Φ(y′0,−ξ
s
n) = y.) We thus obtain that f is diffeomorphic to f̌. �

5.2.4 Intermediate conclusion

By using Lemmas 4.1 and 5.1 we immediately obtain Conclusions (i) and (ii)
in Theorem 5.1 holds, i.e. that all integral fibers are diffeomorphic to a Lie
group G := Ĝ/π1(f), where π1(f) is the fundamental group of any integral
leaf f.

5.2.5 Construction of a principal fiber bundle structure

In the following we exploit Lemmas 4.1 and 5.1 by assuming furthermore
that G := Ĝ/π1(f) is compact. Then all integral leaves f are compact and
we will prove that these leaves are actually the fibers of a principal bundle
with structure group G.

As in the proof of Lemma 5.1, to any ξu ∈ u we associate the vector field
X(ξu) on Y such that θu(X(ξu)) = ξu. A useful property is

∀(ξs, ξg) ∈ s× g, [X(ξs), X(ξg)] = 0 (104)

The proof of (104) follows again from Cartan’s formula dθu(X, Y )+θu([X, Y ]) =
X · θu(Y ) − Y · θu(X), with X = X(ξs) and Y = X(ξg), which gives
θu([X, Y ]) = −dθu(X, Y ). This implies by using (101) that θu([X, Y ]) = 0
and hence [X, Y ] = 0.

For any integral leaf f and any point y0 ∈ f we define the map

G −→ f

g 7−→ g · y0

as follows. Let ĝ ∈ Ĝ be any point which is mapped to g through the
projection mapping Ĝ −→ G = Ĝ/π1(f). We then set g · y0 = T (ĝ), where
T is the map constructed in the proof of Lemma 4.1. It follows from the
definition of the action of π1(f) on Ĝ that this value does not depend on the
choice of ĝ.

For any r ∈ (0,+∞) let Bs(r) be the open ball of radius r and of center
0 in s. We fix an arbitrary point y0 ∈ Y and we define the map

Ar : Bs(r)×G −→ Y
(ξs, g) 7−→ Ar(ξ

s, g) = g ·
(
eX(ξg)(y0)

)
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Note that, for g = exp ξg, we have Ar(ξ
s, exp ξg) = Ψ(ξs + ξg) (where Ψ is

defined by (103)). For r sufficiently small, it is clear that Ar is well-defined
and is a local diffeomorphism. However it is not clear a priori whether Ar is
a global diffeomorphism between Bs(r)× G and its image since Ar may not
be one-to-one in general. Indeed although, for any ξs ∈ Bs(r), the restriction
of Ar to {ξs} × G is a diffeomorphism whose image is an integral leaf, it
may happen that there exists two different values ξs, ζs ∈ Bs(r) such that
Ar({ξ

s} ×G) = Ar({ζ
s} ×G).

For h ∈ (0,+∞) let Bg(h) be the open ball of center 0 and of radius h
in g and let Ψr,h be the restriction of Ψ (defined by (103)) to Bs(r)×Bg(h).
Since dΨr,h is invertible, we may choose (r, h) in such a way that Ψr,h is a
diffeomorphism onto its image Or,h := Ψr,h(Bs(r)× Bg(h)).

Let f̌ be the integral leaf which contains y0. Since f̌ is compact the intersec-
tion f̌ ∩Or,h is composed of a finite number N +1 of connected components.
We denote by f̌0, f̌1, · · · , f̌N these connected components, where f̌0 is the image
of {0} ×G by Ψr,g.

For any pair f′, f′′ of submanifolds of Or,h which are open subsets of inte-
grals leaves, define

d(f′, f′′) := inf{‖ζs‖ ; ζs ∈ s, eX(ζs)(f′) ∩ f′′ 6= ∅}

It is clear that ∃δ ∈ (0,+∞) such that d(̌f0, f̌j) > 2δ, ∀j = 1, · · · , N . (This
means in particular that the inverse image of f̌ by Ψ2δ,h is reduced to {0} ×
Bg(h).)

Now we observe that, by the proof of Lemma 5.1, for all ξs in a neigh-
bourhood of 0 in s and for any j ∈ {0, · · · , N}, eX(ξs)(̌fj) is well defined and
depends in a continuous way on ξs. Thus in particular, ∃ρ ∈ (0, δ) such that

∀ξs ∈ Bs(ρ), ∀j ∈ {1, · · · , N}, d
(
f̌0, e

X(ξs)(̌fj)
)
> δ. Hence, if ξs ∈ Bs(ρ), on

the one hand, eX(ξs)(̌f0) = Ψρ,h({ξ
s} ×Bg(h)) ⊂ Ψρ,h(Bs(ρ)×Bg(h)) =: Oρ,h

and, on the other hand, all the other connected components eX(ξs)(̌fj) (for
1 ≤ j ≤ N) are outside Oδ,h. Since ρ < δ, this ensures that the inverse
image by Ψρ,h of the intersection of any integral leaf with Oρ,h is reduced to
{ξs} ×Bg(h).

As a consequence the map Aρ is a diffeomorphism between Bs(ρ)×G and
its image. This shows that Y has a principal bundle structure, with structure
group G, the map Aρ providing us with a local trivialization. Hence the set
X of integral leaves has the structure of an n-dimensional manifold. We
denote by P : Y −→ X the quotient map.
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Set es := θs. From ∂
∂θg

es = ∂
∂θg

des = 0 we deduce that there exists
a coframe es on X such that es = P ∗es. Thus we can equipp X with the
pseudo Riemannian metric g := babe

a ⊗ eb.

5.2.6 Working in a local trivialization of the bundle

In the following we choose an n-dimensional submanifold Σ ⊂ Y transverse
to the fibration. Without loss of generality (replacing Y by an open subset
of Y if necessary) we can assume that Σ intersects all fibers of P (i.e. defines
a section of P : Y −→ X ) and we define the map g : Y −→ G which is
constant equal to 1G on Σ and such that

dg − gθg|f = 0

for any integral leaf f. We then define

Au := Adgθ
u − dg · g−1

which means that As = θs and Ag := Adgθ
g−dg·g−1. Obviously As|f = 0 and

moreover the relation dg − gθg|f = 0 translates as Ag|f = 0. Thus Au|f = 0
so that we have the decomposition Au = Au

sθ
s (with As

s = δss). Moreover
since

θu = g−1Aug + g−1dg, (105)

we have dθu + 1
2
[θu ∧ θu] = g−1(dAu + 1

2
[Au ∧ Au])g = g−1Fug, where Fu :=

dAu + 1
2
[Au ∧ Au]. From (101) we deduce ∂

∂θg
Θu = 0 which is equivalent

to ∂
∂θu

Fg = 0. But since ∂
∂θg

Au = 0, this implies furthermore that
∂
∂θg

dAu = 0 and thus the coefficients Au
s are constants on the fibers f.

Hence

Fu =
1

2
Fu

ssθ
ss (106)

where the coefficients Fu
ss = Adg ⊗ 1s∗ ⊗ 1s∗Θ

u
ss are constant on the fibers.

5.3 The Euler–Lagrange system in a local trivialization

We proceed similarly as for Yang–Mills in §4.3. Consider the map Adg :
Y −→ End(u), where g : Y −→ G is the map defined previously. Actually
Adg takes values in SO(u, h) since h is invariant by AdG. We define the
coframe eu := Adgθ

u = Au + dg g−1. Note that

es = θs = As

eg = Adgθ
g = Ag + dg g−1 (107)



5 KALUZA–KLEIN THEORIES 72

and (106) becomes

Fu =
1

2
Fu

sse
ss,

By using (51) we get

dAeg = Fg +
1

2
[eg ∧ eg] (108)

We also define pu := Ad∗
gπu and

ωl := (Adg)ϕ
l(Adg)

−1 − d(Adg)(Adg)
−1 ∈ l⊗ Ω1(Y)

We note then that

Ωl := dωl +
1

2
[ωl ∧ ωl] = (Adg)Φ

l(Adg)
−1 and set Ωuu := κ l

uuΩ l

We translate Equation (102) by computing the images of its both sides by Ad∗
g

in terms of these new variables. From Lemma 3.6 we deduce Ad∗
g(d

θuπu) =

dAdgθu−dg g−1

Ad∗
gπu = dθ

s+A
g

pu. However since s belongs to the center of

(u, [·, ·]), this relation reduces to Ad∗
g(d

θuπu) = dA
g

pu. Hence by using the
fact that κl

uu is invariant by AdG, we get

dApu +
1

2
e(N−3)
uuu ∧ Ωuu − Λ0e

(N−1)
u = Fu

uspu
gs e(N−1)

g (109)

We note that the second term on the l.h.s. is nothing but (minus) the Einstein
tensor E(h)u

u (see (25)) on (Y ,h):

1

2
e(N−3)
uuu ∧ Ωuu = −E(h)u

ue(N−1)
u (110)

Thus we obtain

E(h)u
ue(N−1)

u + Λ0e
(N−1)
u = dApu − Fu

uspu
gs e(N−1)

g (111)

The computation of dApu follows the same steps as for the Yang–Mills case
(see (85)), by using dA given by (108) instead of dγ,A given by (80) and with
the simplification that pu

ss = 0:

dApu = ∂gpu
sge(N−1)

s +

(
∂A

s pu
gs + ∂g

1

pu
gg

1 +
1

2
cgg

1
g
2

pu
g
1
g
2

)
e(N−1)
g (112)
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Hence, by using pu
ss = 0, we can write (111) as the system

{
E(h)u

s + Λ0δu
s = ∂gpu

sg

E(h)u
g + Λ0δu

g = ∂A

s pu
gs + ∂gpu

gg + 1
2
pu

ggcggg − Fu
uspu

gs (113)

Equivalentely by using the splitting u∗ = s∗ + g∗ and with the simplification
Fu

gs = 0,

(
E(h)s

s + Λ0δs
s E(h)g

s

E(h)s
g E(h)g

g + Λ0δg
g

)

=

(
∂gps

sg ∂gpg
sg

∂A

s ps
gs + ∂gps

gg + 1
2
ps

ggcggg − Fu
sspu

gs ∂A

s pg
gs + ∂gpg

gg + 1
2
pg

ggcggg

)

(114)
Observe here that, because of the symmetry of the Einstein tensor and since
s ⊥ g, we have hss

E(h)s
g = hgg

E(h)g
s

Again a crucial point is to observe that the l.h.s. E(h)u
s+Λ0δu

s of the first
equation in (113) is constant on any fiber of the fibration P : Y −→ X . By

setting (eg)(r) := en+1 ∧ · · · ∧ eN and (eg)
(r−1)
g := ∂

∂ei
e(r)ti and by using the

fact that the fibers are compact we deduce from (113) that the cancellation
phenomenon holds:

E(h)u
s + Λ0δu

s =

∫
Yx

(E(h)u
s + Λ0δu

s) (eg)(r)∫
Yx

(eg)(r)
=

∫
Yx

d
(
pu

sg(eg)
(r−1)
g

)

∫
Yx

(eg)(r)
= 0

(115)
Hence by taking into account the symmetry of the Einstein tensor we deduce
that (114) reduces to

(
E(h)s

s + Λ0δs
s E(h)g

s

E(h)s
g E(h)g

g + Λ0δg
g

)
=

(
0 0
0 ∂A

s pg
gs + ∂gpg

gg + 1
2
pg

ggcggg

)

(116)
Beware that it does mean that (Y ,h) is a solution of the Einstein equation
with a cosmological constant since E(h)gg+Λ0δ

g
g does not vanish in general.

5.4 The Einstein–Yang–Mills system

Lastly we translate equations E(h)s
s+Λ0δs

s = 0 and E(h)s
g = 0 as equations

on fields defined on X . We introduce a basis (u1, · · · ,uN) of u such that
(u1, · · · ,ub) is a basis of s and (un+1, · · · ,uN) is a basis of g.
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From eu we build the metric g := (θs)∗b = (es)∗b on X and the associated
Levi-Civita connection ∇TX . The connection form γso(s) ∈ so(s, b)⊗ Ω1(F)
of ∇TX can be computed by comparing (101), which gives us des = 1

2
Θs

sse
ss,

with the zero torsion condition des+γso(s)∧es = 0: by using the notations γab
for the matrix coefficients of γso(s) in the basis (u1, · · · ,un) and γabc for its

coefficients (see (11), we have γabc =
1
2

(
Θa

bc − baa
′

bbb′Θ
b′
a′c − baa

′

bcc′Θ
c′
a′b

)
.

Let also (ωAB)1≤A,B≤N be the matrix coefficients of the Levi-Civita con-
nection 1-form ωl. In [11] ωl is computed in function of γso(s) and of Ag

and Fg. The result is the following: let ωu
u := ωABuA ⊗ uB and γss =

γabua ⊗ ub = γabcua ⊗ ub ⊗ ec. By setting Fg
s
s := (kgg ⊗ bss ⊗ 1)Fg

ss and
Fgs

s := (kgg ⊗ 1⊗ bss)Fg
ss

(
ωs

s ωs
g

ωg
s ωg

g

)
=

(
γss −

1
2
Fg

s
se

g 1
2
Fgs

ses
1
2
Fg

sse
s 1

2
cggg(e

g − 2Ag)

)

We deduce the curvature 2-form Ωu
u = dωu

u+ω
u
u∧ωu

u and the components of
the Ricci tensor R(h)s

s and of the Einstein tensor E(h)s
s. By setting |F|2 :=

1
2
Fg

s
1
s
2Fg

s
1
s
2

and 〈B, k〉 := 1
2
cg1g

2
g
3

cg2g
1
g
4

kg3g4 (here Bgg := cg1g
2
gc

g
2g

1
g is the

Killing form on g), the scalar curvature reads R(h) = R(γ)− 1
2
|F|2− 1

2
〈B, k〉

and

E(h)s
s = E(g)s

s −
1

2

(
Fg

ssFg
ss −

1

2
|F|2δs

s

)
+

1

4
〈B, k〉δs

s (117)

E(h)g
s =

1

2

(
∂sFg

ss + Fg
s
1
sγss

1
s + γss

1
sFg

ss
1 − cg1g

2
gA

g
2sFg

1

ss
)

(118)

E(h)g
g =

1

4
Fg

ssFg
ss −

1

4
cg1gg

3

cgg
1
g
2

kg2g3 −
1

2
R(h)δg

g (119)

We note that (118) can be written E(h)g
s = 1

2
∇TX ,A

s Fg
ss, where ∇TX ,A =

∇TX + ad∗
A
∧. In conclusion, by setting Λ := 1

4
〈B, k〉+ Λ0, we get a solution

of the system

{
E(g)s

s + Λδs
s = 1

2
Fg

ssFg
ss − 1

4
|F|2δss

∇TX ,A
s Fg

ss = 0
(120)

i.e. the Einstein–Yang–Mills system on (X , g) with the connection Ag on
Y −→ X and the cosmological constant 1

4
〈B, k〉+ Λ0.
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6 Gravity theory

We now turn to generalized gravity theories the formulation of which takes
place on manifolds which look locally as principal bundles. For general solu-
tions the corresponding space-time will be built as a set of leaves of a foliation
(hence non separable in general). In special circumstances this quotient space
is a true manifold and we recover usual gravity theories on this manifold.

We let L̂ and P̂ be two simply connected unimodular Lie groups and we
assume that L̂ is a subgroup of P̂. As a motivation we may think that L̂ is
the connected component of the identity of the Spin group Spin0(1, 3) and

that P̂ is the corresponding Spin Poincaré group Spin0(1, 3)⋉ R4. We let l

and p be, respectively, the Lie algebras of L̂ and P̂.
The unknown fields will be a p-valued 1-form ϕp which is a coframe on

an oriented manifold F (where dimF = dimP =: N) and a dual field πp,
which is an (N − 2)-form with coefficients in p∗. Then by looking at the
Euler–Lagrange equations of the action functional

∫
F
πp∧ (dϕp+ 1

2
[ϕp∧ϕp]p)

on a class of fields satisfying a particular constraint we find dynamical equa-
tions which implies the existence of a foliation of F which, under some extra
topological hypotheses, gives rise to a principal bundle structure on F with
a structure group L, which is a quotient of L̂ by a finite subgroup. The
space of leaves X has the same dimension as P̂/L̂ and can be interpreted as
the space-time X . The dynamical equations then imply that on can extract
some fields defined on X out of ϕp, which satisfy an Einstein–Cartan system
of equations.

6.1 General setting for gravity

6.1.1 Hypotheses on the structure groups

We denote by l and p the Lie algebras of, respectively, L̂ and P̂. Our hy-
potheses are:

1. p is reductive, i.e. there exists some vector subspace s ⊂ p such that

l⊕ s = p. (121)

and s is stable under the ajdoint action of L̂, i.e.

Ad
L̂
s ⊂ s, i.e.: ∀g ∈ L̂, ∀ξ ∈ s,Adgξ = gξg−1 ∈ s. (122)
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2. P̂/L̂ is a symmetric space, which amounts to assume that

[s, s] ⊂ l, meaning that ∀ξ, ζ ∈ s, [ξ, ζ ] ∈ l (123)

3. the Lie algebras p and l are unimodular.

Note that the fact that L̂ is a subgroup of P̂, (121) and (123) imply respec-
tively that:

[l, l] ⊂ l, [l, s] ⊂ s and [s, s] ⊂ l. (124)

The latter property is equivalent to the fact that the linear map τ : p −→ p

such that l and s are the eigenspaces of τ for the eigenvalues 1 and −1,
respectively, is a Lie algebra automorphism.

We define s⊥ := {α ∈ p∗; 〈α, ξ〉 = 0, ∀ξ ∈ s} and similarly l⊥ := {α ∈
p∗; 〈α, ξ〉 = 0, ∀ξ ∈ l} and we will systematically use the identifications

l∗ := s⊥ and s∗ := l⊥.

We hence have p∗ = l∗ ⊕ s∗.
Note that, if α ∈ l∗ = s⊥, then ∀(ξ, ζ) ∈ (l × s) ∪ (s × l), [ξ, ζ ] ∈ s

because of (124), and hence 〈ad∗
ξα, ζ〉 = 〈α, [ξ, ζ ]〉 = 0. Hence (α, ξ) ∈ l∗ × l

implies ad∗
ξα ∈ s⊥ = l∗ and (α, ξ) ∈ l∗ × s implies ad∗

ξα ∈ l⊥ = s∗. A similar
reasonning shows that (α, ξ) ∈ s∗ × l implies ad∗

ξα ∈ s∗ and (α, ξ) ∈ s∗ × s

implies ad∗
ξα ∈ l∗. To summarize:

ad∗
l l

∗ ⊂ l∗, ad∗
l s

∗ ⊂ s∗

ad∗
s l

∗ ⊂ s∗, ad∗
ss

∗ ⊂ l∗
(125)

6.1.2 The space of fields and action functional

We assume that P̂ and L̂ satisfy Hypotheses (121,122,123). We suppose that
there exists some tensor κp

ss ∈ p∗⊗Λ2s ⊂ p∗⊗ s⊗ s which is invariant by

the adjoint action of L̂:

Ad∗
g ⊗ Adg ⊗ Adg(κp

ss) = κp
ss, ∀g ∈ L̂. (126)

A fundamental example of a tensor κp
ss is presented in §2.2.5. We fix a

non vanishing volume form volp ∈ ΛNp∗ and we consider a N -dimensional
oriented manifold F . We then consider the class of fields

EE :=
{
(πp, ϕ

p) ∈ (p∗ ⊗ ΩN−2(F))× (p⊗ Ω1(F)) of class C2

rankϕp
z = N, ∀z ∈ F and πp ∧ ϕss = κp

ss (ϕp)∗volp}
(127)
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we set Φp := dϕp + 1
2
[ϕp ∧ ϕp] and we define on EE the functional

A[πp, ϕ
p] =

∫

F

πp ∧ Φp (128)

Theorem 6.1 Let P̂ be a simply connected Lie group of finite dimension N
and L̂ ⊂ P̂ a simply connected Lie subgroup. Let p and l be their respective
Lie algebras. Assume that p and l are unimodular, that there exists a vector
subspace s ⊂ p which is stable by Ad

L̂
and such that p = s⊕ l and that P̂/L̂

is a symmetric space (123).
Let F be smooth oriented manifold of dimension N and consider the func-

tional A defined by (128) on EE. Assume that κp
ss (in the definition of EE)

satisfies the additional hypothesis:

κp
ss = κl

ss ∈ l∗ ⊗ Λ2s i.e. κs
ss = 0. (129)

Let (πp, ϕ
p) ∈ EE be a smooth critical point of A. Then

1. F is foliated by smooth leaves f of dimension r := diml, which are
solutions of the exterior differential system θs|f = 0.

2. for any point in F there exists an open neighbourhood O ⊂ F of
this point such we can endow the set of intersections XO := {f ∩
O ; f is an integral leaf} with a structure of manifold XO of dimension
n := dims.

3. there exist local charts O ∋ z 7−→ (x, g) ∈ XO × L̂, such that the projec-

tion map O
PO−−−→ XO is a submersion and we have the decompositions

ϕs = g−1θsg and ϕl = g−1ωlg + g−1dg, where θs and ωl are pull-backs

by O
PO−−−→ XO of 1-forms on XO. Moreover g := (ϕs)∗b := bssϕ

s ⊗ ϕs

is the pull-back by O
PO−−−→ XO of a pseudo metric (also denoted by) g

on TXO and θs provides us with an orthonormal coframe for g and ωg

defines a connection on TXO which respects g.

4. θs, ωl and pp := Ad∗
gπp are solutions of the following equations

1
2
κg

s
1
s
2Ωl

s
1
s
2
+ (∂ωs +Θ∗

s∗)pp
ls + cs

0
ls ps

0

ls + ∂ l
1
pp

l l
1 + 1

2
cl

l
1
l
2
pp

l
1
l
2

= Θs
0
ss ps

0

ls + Ω l
ssp l

ls − 1
2
Qδl

l

(130)
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and

1

2
κg

s
1
s
2Θ̊s

s
1
s
2
+ ∂ l pp

s l = Ω l
ss

1
κ l

ss
1 −

1

2
(Ω l

s
1
s
2
+ c l

s
1
s
2
)κ l

s
1
s
2δs

s (131)

where we set Θ∗
s∗ := Θs

ss and Θ̊s
s1s2 = Θs

s1s2 − δss2Θ
∗
s1∗ + δss1Θ

∗
s2∗ and

Q = Ω l
ssκ l

ss + c l
ssκ l

ss (132)

5. if we assume furthermore that the integral leaves f are the fibers of a

global fibration F
P

−−→ X , then the previous equations make sense on
this fiber bundle

Comments on Equations (130) and (131) may be welcome. By defining
the generalized Cartan tensor C̃g

s := −1
2
κg

s
1
s
2Θ̊s

s
1
s
2

(equivalent to the tor-

sion tensor Θs
ss in most situations), the generalized Einstein tensor Ẽs

s =
Ωg

s
1
sκg

s
1
s− 1

2
(Ωg

s
1
s
2
κg

s
1
s
2)δs

s (see (23) for the definition of δs
s) and by setting

T p
s := ∂ l pp

s l , Equation (131) has the form of a generalized Einstein–Cartan
system {

C̃l
s = T l

s

Ẽs
s + Λδs

s = T s
s

(133)

where Λ := −1
2
cgs

1
s
2
κg

s
1
s
2 . Hence T l

s can be interpreted as an angular mo-
mentum tensor and T s

s as a stress-energy tensor.
Equation (130) does not look that friendly but leads however to interest-

ing open questions. We prove in Lemma 6.1 that, independently of (131),
Equation (130) implies that T p

s is a solution of

∂ωs T p
s +Θ∗

s∗T p
s + cs0 ls T s

0

s = Θs
0
ss

1
T s

0

s
1 + Ω l

0
ss

1
T l

0

s
1 (134)

which expresses the conservation of the angular and the stres-energy momen-
tum tensors. We will derive in Proposition 6.1 the constraint equations on
the Cartan and the Einstein tensors which derive from the Bianchi identities
and check that they are compatible with (134).

Corollary 6.1 Assume all the hypotheses of Theorem 6.1 and that further-

more the integral leaves f are the fibers of a principal bundle structure F
P

−−→
X with structure group L, where L is a quotient of L̂ by a finite subgroup.

Assume in addition that L is compact, or that the first derivatives of pp
gs

decay to zero at infinity in each fiber. Then the fields θs and ωg are solutions
of a generalized Einstein–Cartan system of equations in vacuum, i.e.

C̃l
s = Ẽs

s + Λδs
s = 0
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The next paragraphs until §6.3.5 are devoted to the proof of Theorem 6.1.
Most computations will be performed without assuming Hypothesis (129).
The latter hypothesis will be used only in the conclusion. The proof of
Corollary 6.1 will be given in Section 6.5.

6.2 Study of the critical points

We let (ta)1≤a≤n be a basis of s and let (ti)n+1≤i≤N be a basis of l. Then
(tI)1≤I≤N := (ta)1≤a≤n ∪ (ti)n+1≤i≤N is a basis of p. Here we make the
following implicit assumptions on the indices: 1 ≤ I, J,K, . . . ≤ N , 1 ≤
a, b, c, . . . ≤ n and n+ 1 ≤ i, j, k, . . . ≤ N . We denote by (tI)1≤I≤N the basis
of p∗ which is dual of (tI)1≤I≤N . Note that (ta)1≤a≤n is a basis of s∗ := l⊥

and (ti)n<i≤N is a basis of l∗ := s⊥ ⊂ p. We denote by cKIJ the structure
coefficients of p such that [tI , tJ ] = tKcKIJ and ad∗

tI
tJ = −cJIKtK . We can

thus decompose κp
ss = 1

2
κI

bc tI ⊗ (tb ∧ tc) ≃ 1
2
κI

bctI(tb ∧ tc).
Without loss of generality we assume that volp = t1∧ · · ·∧ tN . Hence the

constraint πp ∧ ϕ
s ∧ ϕs = κp

ssϕ∗volp reads

πp ∧ ϕ
s ∧ ϕs = κp

ss ϕ(N), where ϕ(N) := ϕ1 ∧ · · · ∧ ϕN . (135)

Since ϕp ∈ p⊗ Ω1(F) is a coframe on F we can decompose

Φp := dϕp +
1

2
[ϕp ∧ ϕp] =

1

2
Φp

pp ϕ
pp (136)

(see (31)) and πp ∈ p∗ ⊗ ΩN−2(F) as (see (32)) πp = 1
2
πp

pp ϕ
(N−2)
pp =

1
2
πp

ss ϕ
(N−2)
ss + πp

s l ϕ
(N−2)
s l + 1

2
πp

l l ϕ
(N−2)
l l . Condition (135) reads

πp
ss = κp

ss. (137)

First variation with respect to the coefficients of πp — We look at
infinitesimal variations of the form

(ϕp, πp) 7−→ (ϕp, πp + εδπp)

where δπp = χp has the form χp = χp
s lϕ

(N−2)
s l + 1

2
χp

l lϕ
(N−2)
l l , so that the

constraint (135) is preserved. The first variation of the action vanishes under
such variations iff

∀χp
sl, χp

llϕ
(N−2)
l l ,

∫

F

(
χp

s lΦp
s l +

1

2
χp

l lΦp
l l

)
ϕ(N) = 0
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which leads to the equations

Φp
ll = Φp

sl = 0 (138)

First variation with respect to ϕp — We compute the first variation of
the action under an infinitesimal variation of (ϕp, πp) of the form

(ϕp, πp) 7−→ (ϕp + εδϕp, πp + εδπp + o(ε)),

where δϕp = λp = λppϕ
p has a compact support and by keeping the co-

efficients πp
pp constant, so that δπp = 1

2
πp

p
1
p
2λp3 ∧ ϕ

(N−3)
p
1
p
2
p
3

(we hence pre-

serve the constraint (135)). The first order variation of πp ∧ Φp splits as
δ(πp ∧ Φp) = δπp ∧ Φp + πp ∧ δΦ

p. On the one hand:

δπp ∧ Φp =
(

1
2
πp

p
1
p
2 λp3 ∧ ϕ(N−3)

p
1
p
2
p
3

)
∧
(

1
2
Φp

p
4
p
5

ϕp
4
p
5

)

= 1
2
Φp

p
4
p
5

(
πp

p
1
p
4λp5 ∧ ϕ(N−1)

p
1

+ πp
p
5
p
2λp4 ∧ ϕ(N−1)

p
2

+ πp
p
4
p
5λp3 ∧ ϕ(N−1)

p
3

)

= 1
2
Φp

p
4
p
5

(
πp

p
1
p
4λp5p

1

+ πp
p
5
p
2λp4p

2

+ πp
p
4
p
5λp3p

3

)
ϕ(N)

It is then convenient to introduce the following notations




Ψpp
pp := Φp

ppπp
pp

Ψp
p := Ψpp

pp = Φp
pp

2

πp
pp

2

Ψ := Ψp
p = Φp

p
1
p
2

πp
p
1
p
2

(139)

so that we obtain δπp∧Φp = 1
2

(
−Ψp

5

p
1λp5p

1

−Ψp
4

p
2λp4p

2

+Ψλp3p
3

)
ϕ(N), i.e.

δπp ∧ Φp = −

(
Ψp

1

p
2λp1p

2

−
1

2
Ψλpp

)
ϕ(N) = −

(
Ψp

1

pλp1 −
1

2
Ψλp

)
∧ ϕ(N−1)

p

On the other hand δΦp = dλp + [ϕp ∧ λp] = dϕλp and thus, by (39),

πp ∧ δΦ
p = (dϕλp) ∧ πp = dϕ(λp ∧ πp) + λp ∧ dϕπp

where actually, since the coefficients of λp ∧ πp are in a trivial represent of p,
dϕ(λp ∧ πp) = d(λp ∧ πp).

In conclusion δ(πp∧Φ
p) = d(λp∧πp)+λ

p∧
(
dϕπp −Ψp

p
1ϕ

(N−1)
p
1

+ 1
2
Ψϕ

(N−1)
p

)
.

Thus since λp has a compact support the action is stationary with respect to
these variations iff

∀λp,

∫

F

λp ∧

(
dϕπp −Ψp

p
1ϕ

(N−1)
p
1

+
1

2
Ψϕ

(N−1)
p

)
= 0
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which leads to the equation (see (23) for the definition of δp
p)

dϕπp = Ψp
pϕ

(N−1)
p −

1

2
Ψϕ

(N−1)
p =

(
Ψp

p −
1

2
Ψδp

p

)
ϕ
(N−1)
p (140)

We observe that direct consequences of (138) and (139) are Ψll
pp = Ψsl

pp = 0
and hence

Ψl
p = 0, Ψs

p = Ψss
ps = Φp

ssπp
ps, Ψ = Ψs

s = Φp
ssπp

ss

This implies that (140) can be written

{
dϕπs = Ψs

pϕ
(N−1)
p − 1

2
Ψϕ

(N−1)
s

dϕπl = −1
2
Ψϕ

(N−1)
l

or dϕπp = Ψp−
1
2
Ψϕ

(N−1)
p , where Ψp := Ψp

p ϕ
(N−1)
p . In conclusion the Euler–

Lagrange system is

{
Φp

ll = Φp
sl = 0

dϕπp = Ψp −
1

2
Ψϕ

(N−1)
p

(141)

or, by splitting p = l⊕ s and by using the relation Ψl
p = 0,





dϕp + 1
2
[ϕp ∧ ϕp] =

1

2
Φp

ss ϕ
ss

dϕπp = Ψs
l ϕ

(N−1)
l +Ψs

s ϕ
(N−1)
s − 1

2
Ψ ϕ

(N−1)
p

(142)

6.2.1 Spontaneous foliation

We first exploit the Euler–Lagrange equation dϕp+ 1
2
[ϕp∧ϕp] = 1

2
Φp

ssϕ
ss. For

that purpose we split ϕp = ϕl+ϕs and similarly [ϕp∧ϕp] = [ϕp∧ϕp]l+[ϕp∧ϕp]s,
according to the decomposition. p = l⊕ s We have

[ϕp ∧ ϕp] = [(ϕl + ϕs) ∧ (ϕl + ϕs)] = [ϕl ∧ ϕl] + 2[ϕl ∧ ϕs] + [ϕs ∧ ϕs].

Thus by using the hypotheses [l, l] ⊂ l, [s, s] ⊂ l and [l, s] ⊂ s, we deduce

[ϕp ∧ ϕp]l = [ϕl ∧ ϕl] + [ϕs ∧ ϕs]
[ϕp ∧ ϕp]s = 2[ϕl ∧ ϕs]
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Hence the relation dϕp + 1
2
[ϕp ∧ ϕp] = 1

2
Φp

ssϕ
s ∧ ϕs is equivalent to

{
dϕl + 1

2
[ϕl ∧ ϕl] + 1

2
[ϕs ∧ ϕs] = 1

2
Φl

ssϕ
s ∧ ϕs

dϕs + [ϕl ∧ ϕs] = 1
2
Φs

ssϕ
s ∧ ϕs (143)

In order to apply these relations let us look for r-dimensional submanifolds
f of F which are solutions of the Pfaffian system

ϕs|f = 0 (144)

By using the second equation in (143) (dϕs + [ϕl ∧ ϕs] = 1
2
Φs

ssϕ
ss, which

implies dϕs = 0 mod [ϕs]) we deduce from Frobenius’ theorem that, for any
point z ∈ F , there exists a neighbourhood of z in F such that there exists
an unique solution f to (144) that passes through z. We hence deduce the
existence of a foliation of F by leaves f of dimension r and codimension n.
For any z ∈ F , we denote by fz the unique integral leaf which contains z.

We denote by X := {fz; z ∈ F} the set of leaves and

x : F −→ X
z 7−→ x(z) such that z ∈ fx(z)

(145)

the quotient map. Note that in general X is just a topological space and
may not be a manifold, unless it is a separated (Hausdorff) space.

In the following we restrict ourself to some open subset O of F such that
there exists an n-dimensional submanifold Σ which crosses transversally each
leaf in O at one and only one point. Then the image of the restriction x|O
has the structure of an n-dimensional manifold, which may be identified with
an open subset of Σ.

6.2.2 Local principal bundle structure and trivialization

Consider the product manifold O × L̂ := {(z, h); z ∈ O, h ∈ L̂} and the
l-valued 1-form ψl ∈ l⊗Ω1(O × L) defined by ψl := dh− hϕl. Observe that

dψl = −h

(
dϕl +

1

2
[ϕl ∧ ϕl]

)
− ψl ∧ ϕl.

However the first equation in (143) implies that the restriction of dϕl +
1
2
[ϕl ∧ ϕl] on any leaf f vanishes: dϕl + 1

2
[ϕl ∧ ϕl]|f = 0. Thus, for any leaf f,

dψl|
f×L̂

= 0 mod [ψl], which implies by Frobenius’ theorem that the Pfaffian
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system ψl|
f×L̂

= 0 is integrable on each fiber and thus there exists a map

g : O −→ L̂ such that (Id × g)∗ψl|f = 0, i.e.

dg|f = gϕl|f ⇐⇒ ϕl|f = g−1dg|f. (146)

Moreover by requiring that g is equal to 1
L̂

on Σ, g is unique.
Note that since the rank of ϕl is equal to the dimension of the leaves,

each restriction map g|f is a local diffeomorphism between f and an open

neighbourhood of 1
L̂

in L̂. Thus, by replacing O by another open subset if

necessary, we deduce that there exists a neighbourhood V
L̂

of 1
L̂

in L̂ such
that the map

O −→ Σ× V
L̂
⊂ Σ× L̂

z 7−→ (x(z), g)

is a diffeomorphism.
Let us define the p-valued 1-forms

ep := Adgϕ
p and Ap := Adgϕ

p − dg g−1 = ep − dg g−1 (147)

or equivalentely
{
es := Adgϕ

s

el := Adgϕ
l and

{
As := Adgϕ

s = es

Al := Adgϕ
l − dg g−1 = el − dg g−1

(148)
and the p-valued 2-form

Fp := dAp +
1

2
[Ap ∧ Ap] (149)

A direct computation of Fp gives the following. We denote by Ap
p the coef-

ficients in the decomposition Ap = Ap
pe

p and by ∂pA
p
p the coefficients such

that dAp
p = ∂pA

p
pe

p. We obtain

Fp =
1

2

(
∂p

1

Ap
p
2

− ∂p
2

Ap
p
1

+ [Ap
p
1

,Ap
p
1

]
)
ep1p2 (150)

By (148) Equation (144) translates as es|f = 0. Still by (148) we get ϕl =
Adg−1Al + g−1dg, so that Relation (146) reads Al|f = 0. The latter relation
is thus equivalent to Al = Al

se
s (i.e. Al

l = 0). But we also have As = es and
thus we conclude that Ap = Ap

se
s (i.e. Ap

l = 0). Hence (150) reduces to

Fp =
1

2

(
∂s

1
Ap

s
2
− ∂s

2
Ap

s
1
+ [Ap

s
1
,Ap

s
1
]
)
es1s2 + ∂ lA

p
se

l s (151)
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A consequence of (149) and (147) is

Fp = Adg

(
dϕp +

1

2
[ϕp ∧ ϕp]

)
= AdgΦ

p (152)

Thus by letting Fp
pp := Adg ⊗ Ad∗

g ⊗ Ad∗
g Φ

p
pp (see (136)) we have Fp =

1
2
Fp

ppe
pp by Lemma 3.5. However (138) translates as

Fp
sl = Fp

ls = Fp
ll = 0 (153)

and thus Fp = 1
2
Fp

sse
ss. By comparing with (151) we deduce that ∂lA

p
s = 0.

As a consequence:

The coefficients Ap
s and Fp

ss are constant on each fiber f (154)

The next step is to look at the image by Adg of both sides of the relation

dϕπp = Ψp −
1
2
Ψϕ

(N−1)
p in (141) (recall that Ψp := Ψp

p ϕ
(N−1)
p ), i.e. to

compute both sides of

Ad∗
g (d

ϕπp) = Ad∗
g

(
Ψp −

1

2
Ψϕ

(N−1)
p

)
(155)

6.2.3 Translation of Equation (155)

We recall that ep := Adgϕ
p. We also introduce

pp := Ad∗
gπp. (156)

and we set pp
pp := Ad∗

g ⊗Adg ⊗Adg πp
pp. Since p is unimodular we have the

decomposition pp =
1
2
pp

pp e
(N−2)
pp , by (44) and (45).

Let us define




Qpp
pp := Fp

pp pp
pp

Qp
p := Qpp

pp = Fp
pp pp

pp

Q := Qp
p = Fp

pp pp
pp

(157)

It follows from these definitions that

Qpp
pp =

(
Adg ⊗ Ad∗

g ⊗ Ad∗
g Φ

p
pp

) (
Ad∗

g ⊗ Adg ⊗ Adg πp
pp
)

= Ad∗
g ⊗ Ad∗

g ⊗ Adg ⊗ Adg (Φ
p
ppπp

pp)

= Ad∗
g ⊗ Ad∗

g ⊗ Adg ⊗ Adg Ψpp
pp.
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(see (139)) and hence

Qp
p = Ad∗

g ⊗ Adg Ψp
p and Q = Ψ (158)

Thus

Qp := Qp
p e

(N−1)
p =

(
Ad∗

g ⊗ Adg Ψp
p
) (

Ad∗
gϕ

(N−1)
p

)
= Ad∗

g

(
Ψp

pϕ
(N−1)
p

)
= Ad∗

gΨp

Hence

Ad∗
g

(
Ψp −

1

2
Ψϕ

(N−1)
p

)
= Qp −

1

2
Qe

(N−1)
p (159)

Thus Equation (155) is equivalent to Ad∗
g (d

ϕπp) = Qp −
1
2
Qe

(N−1)
p . We can

conclude by using (49) which says that Ad∗
g (d

ϕπp) = dApp that Equation
(155) is equivalent to the fundamental equation

dApp = Qp −
1
2
Qe

(N−1)
p (160)

6.3 The dynamical equation (160) in a local trivializa-

tion

6.3.1 Remarks on the dual fields and computation of the right
hand side

First the facts that pp
pp = (Ad∗

g ⊗ Adg ⊗ Adg)πp
pp and that the adjoint

(respectively coadjoint) action of L̂ on p (respectively p∗) leaves the decom-
position p = l ⊕ s (respectively p∗ = l∗ ⊕ s∗) invariant imply in particular

that pp
ss = (Ad∗

g⊗Adg⊗Adg)πp
ss. Hence since πp

ss = κp
ss is L̂-invariant, we

deduce that
pp

ss = κp
ss. (161)

Second (141) and (153) imply Fp
sl = Fp

ls = 0. Hence Qsl
pp = Qls

pp = Qll
pp =

0 and thus
Qpp

pp = Qss
pp +Qsl

pp +Qls
pp +Qll

pp = Qss
pp. (162)

This implies also that Ql
p = Qlp

pp = Qls
ps + Ql l

p l = 0 and Qs
p = Qsp

pp =

Qss
ps +Qs l

p l = Qss
ps. To summarize

(
Ql

l Qs
l

Ql
s Qs

s

)
=

(
0 Fp

ss pp
ls

0 Fp
ss κp

ss

)
and Q = Fp

ss κp
ss
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Thus by setting δl
l := δijt

j ⊗ ti and δs
s := δab t

b ⊗ ta,

Qp −
1

2
Qe

(N−1)
p =

(
Fp

ss
1
pp

l s
1 −

1

2
Qδl

l

)
e
(N−1)
l +

(
Fp

ss
1
κp

ss
1 −

1

2
Qδs

s

)
e(N−1)
s

(163)

6.3.2 Introducing a solder form and a connection form

Recall that by (148)
ep = dg g−1 + Ap (164)

and, by decomposing Ap = As +Al, that es = As and el = dg g−1 +Al. For
later interpretation, we give special names to these two forms:

θs := As = es and ωl := Al = el − dg g−1, (165)

so that
Ap = θs + ωl. (166)

We will see later that ωl plays the role of a connection 1-form and θs the role
of a soldering 1-form (meaning that the components θa = ea forms a coframe
over the space-time). We also define

Ωl := dωl +
1

2
[ωl ∧ ωl] ∈ l⊗ Ω2(F) (167)

which can be interpreted as a curvature form, and

Θs := dωes = dωθs = dθs + [ωl ∧ θs] ∈ s⊗ Ω2(F) (168)

which can be interpreted as a torsion form. It follows from (149) that

Fp := dAp +
1

2
[Ap ∧Ap] = Θs + Ωl +

1

2
[θs ∧ θs] (169)

6.3.3 Computation of the left hand side of (160)

Since s, l and κp
ss are not stable by Ad

P̂
but are stable by AdG it will be

convenient to define
dωpp := dpp + ad∗

ω ∧ pp, (170)

to split
dApp = dωpp + ad∗

θ ∧ pp. (171)
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and to compute separately dωpp and ad∗
θ ∧ pp. Using (39) with dω and

the decomposition pp := 1
2
pp

pp e
(N−2)
pp , we get dωpp = 1

2
dωpp

pp ∧ e
(N−2)
pp +

1
2
pp

pp dωe
(N−2)
pp . Summarizing with (171) we see that we need to compute

each term in the r.h.s. of

dApp =
1
2
dωpp

pp ∧ e(N−2)
pp + 1

2
pp

pp dωe
(N−2)
pp + ad∗

θ ∧ pp (172)

Computation of 1
2
dωpp

pp∧e(N−2)
pp — Let us introduce the coefficients ∂ppp

pp

and ∂ωp pp
pp such that dpp

pp =
(
∂ppp

pp
)
ep and dωpp

pp =
(
∂ωp pp

pp
)
ep. They are

related by

∂ωp pp
pp = ∂ppp

pp +
(
ad∗

ωs
⊗ 1⊗ 1 + 1⊗ adωs

⊗ 1 + 1⊗ 1⊗ adωs

)
pp

pp (173)

which, through the decomposition (see (22) for the notation)

cppp := cIJKtI ⊗ tJ ⊗ tK = clll + csls + cssl + clss (174)

means:

∂ωp pp0
p1p2 = ∂ppp0

p1p2 − cp l p0 ω
l
s pp

p1p2 + cp1 l p ω
l
s pp0

pp2 + cp2 l p ω
l
s pp0

p1p

Then

1

2
dωpp

pp ∧ e(N−2)
pp =

1

2

(
∂ωp pp

p
1
p
2

)
ep ∧ e(N−2)

p
1
p
2

= ∂ωp pp
p
1
p e

(N−1)
p
1

(175)

We have ∂ωp pp
pp = ∂ωs pp

ps+∂ωl pp
p l but, since ωl = ωl

se
s (i.e. ωl

l = 0), actually

∂ωl pp
p l = ∂ l pp

p l . Hence ∂ωp pp
pp = ∂ωs pp

ps + ∂ l pp
p l , i.e.

{
∂ωp pp

sp = ∂ωs pp
ss + ∂ l pp

s l

∂ωp pp
lp = ∂ωs pp

ls + ∂ l pp
l l

Moreover pp
ss = κp

ss as observed in (161). Thus since κp
ss is constant and

adl-invariant, ∂ωs pp
ss = ∂ωs κp

ss = 0. Hence ∂ωp pp
sp = 0 + ∂ l pp

s l . In conclusion

(175) gives us

1
2
dωpp

pp ∧ e(N−2)
pp = ∂ l pp

s l e
(N−1)
s +

(
∂ωs pp

l s + ∂ l
1
pp

l l
1

)
e
(N−1)
l

(176)
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Computation of 1
2
pp

pp dωe
(N−2)
pp — By applying (40) we get dωe

(N−2)
pp =

dωep ∧ ω
(N−2)
ppp . We thus need to compute dωep. For that purpose we split

ep = es + el and we use (51), i.e. dωel = Ωl + 1
2
[el ∧ el]. Hence

dωep = dωes + dωel = Θs + Ωl +
1

2
[el ∧ el] (177)

or by using the notation (174), dωep = 1
2
Θs

sse
ss + 1

2
Ωl

sse
ss + 1

2
cl l l e

l l . Thus

dωe
(N−2)
pp =

1

2
Θs

s
1
s
2
es1s2 ∧e(N−2)

pps +
1

2
Ω l

s
1
s
2
es1s2 ∧e(N−2)

pp l +
1

2
c l

l
1
l
2
e l 1 l 2 ∧e(N−2)

pp l

We compute the r.h.s. by using (34) (e). The first term is (recall (154) and
(165))

1

2
Θs

s
1
s
2
es1s2 ∧ e(N−2)

p1p2s = Θs
p1p2e

(N−1)
s +Θs

p2se
(N−1)
p1 +Θs

sp1e
(N−1)
p2 (178)

(we use here the fact that Θs
pp = Θs

ss, because of (154) and (165)) the

second term is 1
2
Ω l

s
1
s
2
es1s2∧e(N−2)

p1p2 l
= Ω l

p1p2e
(N−1)
l +Ω l

p2 l e
(N−1)
p1 +Ω l

l p1e
(N−1)
p2 ,

which is equal to Ω l
p1p2e

(N−1)
l because Ωl

p2l = Ωl
lp1 = 0. The last term is

1
2
c l

l
1
l
2
e l 1 l 2∧e(N−2)

p1p2 l
= c l

p1p2e
(N−1)
l +c l

p2 l e
(N−1)
p1 +c l

l p1e
(N−1)
p2 which simplifies

to c l
p1p2e

(N−1)
l , because c l

p l = c l
l p = 0 since l is unimodular. In conclusion

by setting
Θ∗

s∗ := Θs
ss (179)

we get

dωe
(N−2)
p1p2 = Θs

p1p2e
(N−1)
s +Θ∗

p2∗e
(N−1)
p1 −Θ∗

p1∗e
(N−1)
p2 +Ω l

p1p2e
(N−1)
l +c l

p1p2e
(N−1)
l

This implies by using the fact that Θs
pp = Θs

ss, Ω
l
pp = Ωl

ss and c l
pp = c l

ll,
that

1
2
pp

pp dωe
(N−2)
pp = 1

2
pp

s
1
s
2Θs

s
1
s
2
e
(N−1)
s − pp

s
1
p
2Θ∗

s
1
∗e

(N−1)
p
2

+ 1
2

(
pp

s
1
s
2Ω l

s
1
s
2
+ pp

l
1
l
2c l

l
1
l
2

)
e
(N−1)
l

By splitting pp
s
1
p
2Θ∗

s
1
∗ e

(N−1)
p
2

= pp
s
1
s
2Θ∗

s
1
∗ e

(N−1)
s
2

+ pp2
s
1
l
2Θ∗

s
1
∗ e

(N−1)
l
2

and
by grouping together we obtain

1
2
pp

pp dωe
(N−2)
pp =

(
1
2
pp

s
1
s
2Θs

s
1
s
2
− pp

s
1
sΘ∗

s
1
∗

)
e
(N−1)
s

+
(
1
2
pp

s
1
s
2Ω l

s
1
s
2
− pp

s
1
lΘ∗

s
1
∗ +

1
2
pp

l
1
l
2c l

l
1
l
2

)
e
(N−1)
l

(180)
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6.3.4 Introducing the generalized Cartan and Einstein tensors

For further use we introduce the notations

Θ̊s
s1s2 := Θs

s1s2 + δss1Θ
∗
s2∗ − δss2Θ

∗
s1∗ = Θs

s1s2 − δss1Θ
s
ss2 − δss2Θ

s
s1s

and
Ω̊g

s1s2s3
s := Ωg

s1s2δ
s
s3
+ Ωg

s2s3δ
s
s1
+ Ωg

s3s1δ
s
s2

We observe (through a computation similar to (178)) that the first coefficient
in the right hand side of (180) can be written

1

2
pp

s
1
s
2Θs

s
1
s
2
− pp

s
1
sΘ∗

s
1
∗ =

1

2
pp

s
1
s
2Θ̊s

s
1
s
2

so that (180) reads

1
2
pp

pp dωe
(N−2)
pp = 1

2
pp

s
1
s
2Θ̊s

s
1
s
2
e
(N−1)
s +

(
1
2
pp

ssΩ l
ss − pp

s lΘ∗
s∗ +

1
2
pp

l
1
l
2c l

l
1
l
2

)
e
(N−1)
l

(181)
Actually Θ̊s

ss and Ω̊g
sss

s are defined implicitely by

Θ̊s
ss e

(N−1)
s := Θs ∧ e(N−3)

sss (182)

and
Ω̊g

s1s2s
s e(N−1)

s := Ωg ∧ e(N−3)
s1s2s

(183)

We note that these relations imply that Θ̊s
ss = Ω̊g

sss
s = 0 whenever N ≤ 2.

We further define

C̃g
s := −

1

2
κg

s
1
s
2Θ̊s

s
1
s
2

(184)

and

Ẽs
s := −

1

2
κg

s
1
s
2Ω̊g

s
1
s
2
s
s (185)

which can also be defined implicitely by

C̃g
s e(N−1)

s := −
1

2
κg

s
1
s
2Θs ∧ e(N−3)

s
1
s
2
s (186)

and

Ẽs
s e(N−1)

s := −
1

2
κg

s
1
s
2Ωg ∧ e(N−3)

s
1
s
2
s (187)
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We shall see that, in standard situations, C̃g
s (or equivalentely Θ̊s

ss) corre-
sponds to the Cartan tensor and Ẽs

s to the Einstein tensor. Indeed

Ẽs
s = −1

2

(
Ωg

s
1
s
2
δss + Ωg

s
2
sδ

s
s
1

+ Ωg
ss

1
δss

2

)
κg

s
1
s
2

= −1
2
(Ωg

s
1
s
2
κg

s
1
s
2)δss −

1
2
Ωg

s
2
sκg

ss
2 − 1

2
Ωg

ss
1
κg

s
1
s

= Ωg
s
1
sκg

s
1
s − 1

2
(Ωg

s
1
s
2
κg

s
1
s
2)δss

(188)

i.e., by denoting R̃s
s := Ωg

s
1
sκg

s
1
s and R̃ := R̃s

s (generalized versions of,

respectively, the Ricci tensor and the scalar curvature), we have Ẽs
s =

R̃s
s − 1

2
R̃δss .

Computation of ad∗
θ ∧ pl — Our last task consists in computing ad∗

θ ∧

pp, i.e., since θ = es, ad∗
θ ∧ pp = −cpspe

s ∧ pp. Since pp = 1
2
pp

ss e
(N−2)
ss +

pp
s l e

(N−2)
s l + 1

2
pp

l l e
(N−2)
l l , this quantity is the sum of three terms. The first

one is −1
2
cpsp pp

s
1
s
2 es ∧ e

(N−2)
s
1
s
2

. Since by (161), pp
ss = κp

ss, it is equal to

−
1

2
cpsp κp

s
1
s
2 es ∧ e(N−2)

s
1
s
2

= cps
1
p κp

s
1
s
2 e(N−1)

s
2

The second term is

−cp
sp pp

s
1
l
2 es ∧ e

(N−2)
s
1
l
2

= cpsp pp
s l e

(N−1)
l

Lastly since θs ∧ e(N−2)
ll = 0, the last term in the r.h.s. vanishes. Hence we

get
ad∗

θ ∧ pp = cps
1
pκp

s
1
se

(N−1)
s + cpsp pp

s l e
(N−1)
l

(189)

6.3.5 Conclusion

We go back to (172), by collecting (176), (181) and (189):

dApp =
(

1
2
pp

s
1
s
2Ω l

s
1
s
2
+ (∂ωs +Θ∗

s∗)pp
l s − cpsp pp

l s + ∂ l
1
pp

l l
1 + 1

2
c l

l
1
l
2
pp

l
1
l
2

)
e
(N−1)
l

+
(

1
2
pp

s
1
s
2Θ̊s

s
1
s
2
+ ∂ l pp

s l + cps
1
pκp

s
1
s
)
e
(N−1)
s

(190)
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Summarizing with (163) and taking into account that pp
ss = κp

ss, the funda-

mental equation dApp = Qp −
1
2
Qe

(N−1)
p (160) is equivalent to the system





1
2
κp

s
1
s
2Ωl

s
1
s
2
+ (∂ωs +Θ∗

s∗)pp
ls − cpsp pp

ls + ∂ l
1
pp

l l
1 + 1

2
cl l

1
l
2
pp

l
1
l
2

= Fp
ss

1
pp

ls
1 − 1

2
Qδl

l

1
2
κp

s
1
s
2Θ̊s

s
1
s
2
+ ∂ l pp

s l + cpspκp
ss = Fp

ss
1
κp

ss
1 − 1

2
Qδs

s

(191)
where Q = Fp

ss κp
ss. Note that, by (169), Fp

ss = Θs
ss + Ωl

ss + clss. Hence
the first equation of (191) reads

1
2
κp

s
1
s
2Ωl

s
1
s
2
+ (∂ωs +Θ∗

s∗)pp
ls − cpsp pp

ls + ∂ l
1
pp

l l
1 + 1

2
cl l

1
l
2
pp

l
1
l
2

= Θs
0
ss ps

0

ls + (Ω l
ss + c l

ss)p l
ls − 1

2
Qδl

l

However we observe that the term −cpsp pp
ls on the left hand side is equal

to cpps pp
ls = cs0ps ps

0

ls + c l
ps p l

ls = cs0 ls ps
0

ls + c l
ss p l

ls, whereas the term

c l
ss p l

ls appears also on the right hand side. Hence the first equation in
(191) simplifies to

1
2
κp

s
1
s
2Ωl

s
1
s
2
+ (∂ωs +Θ∗

s∗)pp
ls + cs0 ls ps

0

ls + ∂ l
1
pp

l l
1 + 1

2
cl l

1
l
2
pp

l
1
l
2

= Θs
0
ss ps

0

ls + Ω l
ssp l

ls − 1
2
Qδl

l

(192)
with

Q = Θs
s
1
s
2
κs

s
1
s
2 + (Ω l

s
1
s
2
+ c l

s
1
s
2
)κ l

s
1
s
2 (193)

We call Equation (192) the (dynamical) equation on hidden fields.

The second equation reads

1
2
κp

s
1
s
2Θ̊s

s
1
s
2
+ ∂ l pp

s l + cpspκp
ss = Θs

0
ss

1
κs

0

ss
1 + (Ω l

ss
1
+ c l

ss
1
)κ l

ss
1 − 1

2
Qδs

s

Similarly the left hand side contains the term cpspκp
ss = cs0spκs

0

ss+c l
spκ l

ss =

cs0slκs
0

ss+c l
ssκ l

ss, whereas the right hand side contains c l
ss

1
κ l

ss
1 = c l

ssκ l
ss.

This leads to the simplification of the second equation in (191):

1
2
κp

s
1
s
2Θ̊s

s
1
s
2
+ ∂ l pp

s l + cs0slκs
0

ss = Θs
0
ss

1
κs

0

ss
1 + Ω l

ss
1
κ l

ss
1 − 1

2
Qδs

s

(194)
We call Equation (194) the (dynamical) equation on physical fields. �

This completes the proof of Theorem 6.1. It is important to keep in mind
that, in all Equations (192) and (194),
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• quantities κp
ss and cppp are constant,

• quantities ωl, Fp
ss and hence Θs

ss, Θ̊
s
ss, Ω

l
ss and Q are constant along

the integral leaves.

6.4 Analysis of the dynamical equations

6.4.1 The equation on hidden fields (192)

This equation can be written as:

(
1
2
κp

s
1
s
2Ω l

s
1
s
2
+ (∂ωs +Θ∗

s∗)pp
l s + cs0 ls ps

0

l s + ∂ l
1
pp

l l
1 + 1

2
c l

l
1
l
2
pp

l
1
l
2

)
e
(N−1)
l

=
(
Θs

0
ss

1
ps

0

ls
1 + Ω l

0
ss

1
p l

0

l s
1

)
e
(N−1)
l − 1

2
Qe

(N−1)
l

(195)
We observe that the quantity ∂ l

1
pp

l l
1+ 1

2
cl l

1
l
2
pp

l
1
l
2 in the left hand side rep-

resents an exact term. Indeed, since ωl = ωl
se

s, one has de
(N−2)
ll = dωe

(N−2)
ll ,

which implies because of (177) that de
(N−2)
ll = dωe

(N−2)
ll = c l

lle
(N−1)
l . Hence

d

(
1

2
pp

l l e
(N−2)
l l

)
=

1

2
dpp

l l∧e(N−2)
l l +

1

2
pp

l lde
(N−2)
l l =

(
∂ l

1
pp

l l
1 +

1

2
pp

l
1
l
2c l

l
1
l
2

)
e
(N−1)
l

Thus (192) or (195) is equivalent to

(
1
2
κp

s
1
s
2Ω l

s
1
s
2
+ (∂ωs +Θ∗

s∗)pp
l s + cs0 ls ps

0

l s
)
e
(N−1)
l + d

(
1
2
pp

l l e
(N−1)
l l

)

=
(
Θs

0
ss

1
ps

0

l s
1 + Ω l

0
ss

1
p l

0

l s
1

)
e
(N−1)
l − 1

2
Qe

(N−1)
l

(196)
Hence pp

ll enters into play in the system only through an exact term.

6.4.2 A conservation law

By applying the exterior derivative to both sides of (196) and by using the

facts that ∂lΩ
l
ss = ∂lΘ

s
ss = ∂lQ = 0 and that de

(N−1)
l = 0 because l is

unimodular, we obtain

∂ l (∂
ω
s pp

l s)+Θ∗
s∗∂ l pp

l s+cs0 ls ∂ l ps
0

l s = Θs
0
ss

1
∂ l ps

0

l s
1+Ω l

0
ss

1
∂ l p l

0

l s
1 (197)
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Lemma 6.1 Let us define
T p

s := ∂ l pp
s l (198)

and set ∂ωs T p
s = ∂sT p

s − cp l pω
l
s T p

s + cs l sω
l
s T p

s. Then

∂ l (∂
ω
s pp

s l ) = ∂ωs T p
s

A consequence of Lemma 6.1 is that Equation (197) is equivalent to

∂ωs T p
s +Θ∗

s∗T p
s + cs0 ls T s

0

s = Θs
0
ss

1
T s

0

s
1 + Ω l

0
ss

1
T l

0

s
1 (199)

Equation (199) can be splitted into the system

{
∂ωs T l

s +Θ∗
s∗T l

s + cs0 ls T s
0

s = 0
∂ωs T s

s +Θ∗
s∗T s

s = Θs
0
ss

1
T s

0

s
1 + Ω l

0
ss

1
T l

0

s
1

(200)

We will see later on that T l
s and T s

s can be interpreted as, respectively, an
angular momentum tensor and a stress-energy tensor. Hence Relations (200)
express the conservation of these tensors. The proof of Lemma 6.1 rests on
the following result.

Lemma 6.2 The vector fields ∂p satisfy the following commutation relation:





[∂s1 , ∂s2 ] = − Θs
s1s2 ∂s − Ω l

s1s2 ∂ l + (cs l s2 ω
l
s1 − cs l s1 ω

l
s2)∂s

[∂s, ∂l] = c l
l
1
l ω

l
1
s ∂ l

[∂l1 , ∂l2] = − c l
l1l2 ∂ l

(201)

Proof of Lemma 6.2 — We first deduce from (177), which reads dep+[ωl∧ep] =
Θs + Ωl + 1

2
[el ∧ el], that

dep = Θs + Ωl +
1

2
[el ∧ el]− [ωl ∧ ep] (202)

By using Cartan’s formula dep(∂p1 , ∂p1)+e
p([∂p1 , ∂p2 ]) = ∂p1(e

p(∂p2))−∂p2(e
p(∂p1)) =

0 we get ep([∂p1 , ∂p2 ]) = −dep(∂p1 , ∂p1) and hence, by (202) we get that

ep([∂p1 , ∂p2 ]) = −Θs(∂p1 , ∂p2)−Ωl(∂p1 , ∂p2)−
1

2
[el∧el](∂p1 , ∂p2)+[ωl∧ep](∂p1 , ∂p2)

Hence we deduce (201). �
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Proof of Lemma 6.1 — From

∂ωs pp
sl = ∂spp

sl − cp l pω
l
s pp

sl + cl l l
2
ω l

s pp
s l

2 + cs l s
2
ω l

s pp
s
2
l

we get first

∂ l (∂
ω
s pp

s l ) = ∂ l

(
∂spp

s l − cp l
1
pω

l
1
s pp

s l + c l
l
1
l
2
ω l

1
s pp

s l
2 + cs l

1
s
2
ω l

1
s pp

s
2
l
)

= ∂ l

(
∂spp

s l
)
− cp l

1
pω

l
1
s T p

s + c l
l
1
l
2
ω l

1
s ∂ l pp

s l
2 + cs l

1
s
2
ω l

1
s T p

s
2

On the other hand we deduce from (201) that

∂l
(
∂spp

sl
)
= ∂s

(
∂lpp

sl
)
+ [∂l, ∂s]pp

sl = ∂s
(
∂lpp

sl
)
− c l

l
1
lω

l
1
s∂ l pp

sl

hence

∂ l

(
∂spp

s l
)
= ∂s

(
∂ l pp

s l
)
− c l

l
1
l
2
ω l

1
s∂ l pp

s l
2 = ∂sT p

s − c l
l
1
l
2
ω l

1
s∂ l pp

s l
2

We thus deduce by replacing this expression for ∂ l

(
∂spp

s l
)

in the formula
giving ∂ l (∂

ω
s pp

s l ) that

∂ l (∂
ω
s pp

s l ) = ∂sT p
s − cp l

1
pω

l
1
s T p

s + cs l
1
s
2
ω l

1
s T p

s
2

The equivalence between (197) and (199) is then straightforward. �

6.4.3 The equation on physical fields (194)

We can split (194) into the system

{
−1

2
κl

s
1
s
2Θ̊s

s
1
s
2

= ∂ l pl
s l + cs0sl κs

0

ss

Ω l
ss

1
κ l

ss
1 − 1

2
Qδs

s = ∂ l ps
s l − (Θs

0
ss

1
κs

0

ss
1 − 1

2
Θ̊s

s
1
s
2
κs

s
1
s
2)

(203)

It can be rephrased by using the notations C̃l
s and Ẽs

s given in (184) (185)
and (188) and the relation (193) for Q for the left hand sides and by using
the notation T p

s (198) for the right hand sides:

{
C̃l

s = T l
s + cs0sl κs

0

ss

Ẽs
s + Λδs

s = T s
s + 1

2
(Θs

s
1
s
2
κs

s
1
s
2)δs

sΘs
0
ss

1
κs

0

ss
1 + 1

2
Θ̊s

s
1
s
2
κs

s
1
s
2

where Λ := −1
2
c l

s
1
s
2
κ l

s
1
s
2 .
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In the following we will assume the additional Hypothesis κs
ss = 0

(129), which is satisfied in all usual gravity theories. The previous system
simplifies to {

C̃l
s = T l

s

Ẽs
s + Λδs

s = T s
s

(204)

The first equation can be interpreted as a generalization of the Cartan equa-
tion involving the torsion of the connection ωl, whereas in the second equation
the left hand side can be interpreted as the Einstein tensor with a cosmo-
logical constant Λ.

Indeed recall that C̃g
s := −1

2
κg

s
1
s
2Θ̊s

s
1
s
2

(184) and assume for simplicity
that T l

s = 0. Then, by assuming that the tensor κl
ss is non degenerate (i.e.

the map Λ2s∗ ∋ ξss 7−→ ξssκl
ss ∈ l∗ is invertible), which is true in all standard

situations, then the equation Cg
s = 0 is equivalent to Θ̊s

ss = 0. Since

Θ̊s
ss = Θ̊c

abtc ⊗ ta ⊗ tb, with Θ̊c
ab = Θc

ab − δcbΘ
d
ad − δcaΘ

d
db, we have Θ̊c

ac =
(2− n)Θd

ad, from which we deduce that, if n 6= 2, Θs
ss =

1
2
Θc

abtc ⊗ ta ⊗ tb,
with

Θc
ab = Θ̊c

ab −
1

n− 2

(
δcbΘ̊

d
ad + δcaΘ̊

d
db

)
(205)

and thus, if n > 2, Θs
ss = 0 if and only if Θ̊s

ss = 0. Alternatively this
conclusion can also be deduced from (182). Similarly the second equation in
(204) relates the sum of the generalized Einstein tensor and a cosmological
constant on the left hand side to T s

s = −∂ l ps
s l which plays here the role of

a stress-energy tensor.
We see that the only way coupling between the fields (θs, ωl) and the fields

pp
pp in the generalized Einstein–Cartan system is operated by T p

s = ∂ l pp
s l .

Moreover System (204) tells us that T p
s is constant on each leaf of the integral

foliation, since the left hand side of this system is so.

6.4.4 Constraints on the generalized Einstein and Cartan tensors

It is well-known in General Relativity that, for any connection without tor-
sion, the Einstein tensor Es

s satisfies the constraint ∂ωs Es
s = 0. Thus a

necessary condition for the Einstein equation Es
s = T s

s to admit solutions is
that the stress-energy tensor T s

s satisfies the similar relation ∂ωs T s
s = 0. The

latter constraint expresses the conservation of the energy-momentum tensor.
Similarly the left hand side of the Einstein–Cartan system (204) satisfies

constraints which match with the conservation laws (200). Indeed if the
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generalized Einstein–Cartan system (204) and the conservation law (199)
are satisfied, then, by replacing T u

s in (199) by its expression in function of
C̃l

s and Ẽs
s given by (204), one obtains





∂ωs C̃l
s +Θ∗

s∗C̃l
s + cs0 ls

(
Ẽs

0

s + Λδs
0

s
)

= 0

∂ωs

(
Ẽs

s + Λδs
s
)
+Θ∗

s∗

(
Ẽs

s + Λδs
s
)

= Θs
0
ss

1

(
Ẽs

0

s
1 + Λδs

0

s
1

)
+ Ω l

0
ss

1
C̃ l

0

s
1

This system can easily be simplified by observing that cppl−c l
l l = 0−0 = 0

(because p are l unimodular), cs0 ls Λδs
0

s = Λ csls = 0, ∂ωs (Λδs
s) = 0 and

Θ∗
s∗ (Λδs

s) = Θs
0
ss

1

(
Λδs

0

s
1

)
= ΛΘ∗

s∗, leading to the following
{
∂ωs C̃l

s +Θ∗
s∗C̃l

s + cs0 ls Ẽs
0

s = 0

∂ωs Ẽs
s +Θ∗

s∗Ẽs
s = Θs

0
ss

1
Ẽs

0

s
1 + Ω l

0
ss

1
C̃ l

0

s
1

(206)

In Proposition 6.1 (see the Appendix) we prove that (206) is actually a
consequence of the very definition of C̃l

s and Ẽs
s, confirming that (192)

is a necessary condition for (204) to have solutions.

6.5 Exploitation of the equations

In the following we prove Corollary 6.1. We start by assuming the following

Fibration hypothesis :
The integral leaves of the exterior differential system (144)

form a fibration of F .
(207)

Hence the manifold F is the total space of a principal bundle over some
manifold X , the structure group of which is Ĝ or a quotient of Ĝ by a finite
subgroup. Note that, even if the group is compact and F is l-complete (see
Definition 4.1), so that one can prove that each leaf is compact, there may be
some obstructions for the Fibration hypothesis to be true since the topology
of the leaves may vary (see [7]).

A consequence of (207) is that we can interpret θs and ωl as respectively a
soldering and a connection form on this bundle defining a geometric structure
on X .

The key point in the Einstein–Cartan equations (203) or (204) is that the
left hand sides are constant along the fibers. Thus these Einstein–Cartan
equations imply that the restrictions on any fiber of T l

s = ∂ l pl
l s and T s

s =
∂ l ps

l s are also constant. Hence if we assume that one of the two following
hypotheses holds, we will deduce that these right hand sides vanish.
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1. (non compactness) the fibers are non compact (which occurs if, for

instance, L̂ is isomorphic to Spin(1, n)) and the first derivatives of the
field pp

sl decay at infinity in each fiber.

2. (compactness) each fiber f is compact. This case occurs if, for instance,

L̂ is isomorphic to Spin(n) (or its spin group).

Indeed if we assume (i), then we deduce that each ∂ l pp
l s decays at infinity

on each fiber, but on the other hand such a quantity is constant along the
fibers, hence it vanishes.

If we assume (ii) then the value of ∂ l pp
l s at any point is equal to its

average on the fiber f which contains this point, hence, by setting (el)(r) :=

en+1 ∧ · · · ∧ eN and (el)
(r−1)
l := ∂

∂el
(el)(r),

T p
s = ∂ l pp

l s =

∫

f

∂ l pp
l s(el)(r)

∫

f

(el)(r)
=

∫

f

d
(
pp

l s(el)
(r−1)
l

)

∫

f

(el)(r)
= 0 (208)

and we achieve the same conclusion. Hence assuming either (i) or (ii) and
assuming also κs

ss = 0 for simplicity we deduce from (204) that our fields are
solutions of the system

{
1
2
κl

s
1
s
2Θ̊s

s
1
s
2

= 0
Ω l

s
1
s κ l

s
1
s − 1

2
(Ω l

s
1
s
2
κ l

s
1
s
2)δs

s + Λδs
s = 0

(209)

The first equation will imply that the generalized torsion Θ vanishes, provided
that the kernel of the linear map Θ̊s

ss 7−→
1
2
κl

ssΘ̊s
ss is {0}, which will be the

case in the following examples. The second equation is a generalization of
the Einstein equation in vacuum with a cosmological constant (and it will be
so in basic examples).

6.6 Gauge symmetries

6.6.1 Invariance by diffeomorphisms

A is invariant under the transformation (πp, ϕ
p) 7−→ (T ∗πp, T

∗ϕp), where T :
F −→ F is a diffeomorphism which preserves the orientation A[T ∗πp, T

∗ϕp] =
A[πp, ϕ

p]. Moreover the constraint πp ∧ ϕs ∧ ϕs = κp
ssϕ(N) is invariant by

such transformations.
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6.6.2 Adjoint action of the gauge group

For any g ∈ C∞(F , L̂) the action is clearly invariant by the gauge transfor-
mation {

ϕp 7−→ Adgϕ
p − dg g−1 = gϕpg−1 − dg g−1

πp 7−→ Ad∗
gπp

(210)

Moreover, since Adgκp
ss = κp

ss, the constraint πp ∧ϕ
s ∧ϕs = κp

ssϕ(N) is also
invariant by this action.

6.6.3 Gauge symmetries of the dual gauge fields

Using exactly the same arguments as in §4.3.7 for Yang–Mills theory we may
write, for any χp ∈ p∗ ⊗ ΩN−2(F),

A[πp + χp, ϕ
p] = A[πp, ϕ

p] +

∫

F

d
(
ϕp ∧ χp

)
+ ϕp ∧ dϕ/2χp

Thus if χp ∈ p∗ ⊗ ΩN−2(F) decays rapidly at infinity and is a solution of

ϕp ∧ dϕ/2χp = 0 (211)

then
A[πp + χp, ϕ

p] = A[πp, ϕ
p].

If furthermore χp satisfies

χp ∧ ϕ
s ∧ ϕs = 0, (212)

then (πp+χp, ϕ
p) satisfies the constraint (135). Hence these three conditions

are sufficient for having a gauge symmetry of the variational problem.
Moreover as for the Yang–Mills model (see §4.3.7)) any field χp which

satisfies (212) provides us with an on shell symmetry of the action.

6.7 Appendix: proof of the generalized Bianchi identi-

ties

We prove here that identities (206), i.e.
{
∂ωs C̃l

s +Θ∗
s∗C̃l

s + cs0 ls Ẽs
0

s = 0

∂ωs Ẽs
s +Θ∗

s∗Ẽs
s = Θs

0
ss

1
Ẽs

0

s
1 + Ω l

0
ss

1
C̃ l

0

s
1

are structure equations, hence automatically satisfied.
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Proposition 6.1 Let C̃l
s and Ẽs

s be defined by, respectively, (184) and (185)
(or, equivalentely, (186) and (187)). Assume that the tensor κp

ss is invariant
by the adjoint action of l. Then the relations (206) hold.

Proof of Proposition 6.1 — Step 1: preliminary results — We first prove the
Bianchi relations {

dωΘs +
[
es ∧ Ωl

]
= 0

dωΩl = 0
(213)

These relations follows from the relation

dFp + [Ap ∧ Fp] = 0 (214)

where we recall that Ap = θs + ωg = es + ωg and Fp := dAp + 1
2
[Ap ∧Ap] =

Θs + Ωl + cl, where we set cl := 1
2
clsse

s ∧ es. Identity (214) thus reads

d
(
Θs + Ωl + cl

)
+
[
(θs + ωg) ∧

(
Θs + Ωl + cl

)]
= 0

which, through the decomposition p = s⊕ l, splits into :

{
dΘs +

[
θs ∧ (Ωl + cl)

]
+ [ωg ∧Θs] = 0

d
(
Ωl + cl

)
+ [θs ∧Θs] +

[
ωg ∧

(
Ωl + cl

)]
= 0

or {
dωΘs +

[
θs ∧ (Ωl + cl)

]
= 0

dω
(
Ωl + cl

)
+ [θs ∧Θs] = 0

(215)

However, a consequence of the Jacobi identity is that

[θs ∧ cl] = [es ∧ cl] = cssge
s ∧

(
1

2
cgs

1
s
2
es1 ∧ es2

)
=

1

2
csspc

p
s
1
s
2
ess1s2 = 0

and on the other hand

dωcl = dω
(
1
2
cls

1
s
2
es1 ∧ es2

)
= 1

2
cls

1
s
2
(dωes1 ∧ es2 − es1 ∧ dωes2)

= 1
2
cls

1
s
2
(Θs

1 ∧ es2 − es1 ∧Θs
2) = [Θs ∧ es]

Hence (215) implies (213).
We also need the two following lemmas.

Lemma 6.3 By using Notation (179) for Θ∗
s∗, we have

dωe(N−1)
s = Θ∗

s∗ e
(N) (216)
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Proof — dωe
(N−1)
s = dωes ∧ e(N−2)

ss = Θs ∧ e(N−2)
ss = Θs

ss e
(N) = Θ∗

s∗ e
(N). �

Lemma 6.4

dωe
(N−3)
s1s2s3 = Θ∗

s3∗e
(N−2)
s1s2 +Θ∗

s1∗e
(N−2)
s2s3 +Θ∗

s2∗e
(N−2)
s3s1

+ Θs
s3s2e

(N−2)
ss1 +Θs

s1s3e
(N−2)
ss2 +Θs

s2s1e
(N−2)
ss3

(217)

Proof — A computation gives

es4s5 ∧ e(N−4)
s1s2s3s = δs4s5s3s

e
(N−2)
s1s2 + δs4s5s1s

e
(N−2)
s2s3 + δs4s5s2s

e
(N−2)
s3s1

+ δs4s5s3s2
e
(N−2)
ss1 + δs4s5s1s3

e
(N−2)
ss2 + δs4s5s2s1

e
(N−2)
ss3

and we deduce (217) by developping dωe
(N−3)
s1s2s3 = dωes∧e(N−4)

s1s2s3s =
1
2
Θs

s
4
s
5
es4s5∧

e
(N−4)
s1s2s3s. �

Step 2: the proof of the first relation in (206) — We first compute the term
∂ωs C̃l

s +Θ∗
s∗C̃l

s. We start by observing that, by Lemma 6.3,
(
∂ωs C̃l

s +Θ∗
s∗C̃l

s
)
e(N) = dωC̃l

s ∧ e(N−1)
s + C̃l

s dωe(N−1)
s = dω

(
C̃l

s e(N−1)
s

)

This implies by using first (186), then (213), that
(
∂ωs C̃l

s +Θ∗
s∗C̃l

s
)
e(N) = −1

2
κl

s
1
s
2dω

(
Θs ∧ e(N−3)

s
1
s
2
s

)

= −1
2
κl

s
1
s
2

(
dωΘs ∧ e(N−3)

s
1
s
2
s +Θs ∧ dωe

(N−3)
s
1
s
2
s

)

= −1
2
κl

s
1
s
2

(
−
[
θs ∧ Ωl

]s
∧ e(N−3)

s
1
s
2
s +Θs ∧ dωe

(N−3)
s
1
s
2
s

)

However we get from (217) that

Θs
3 ∧ dωe

(N−3)
s1s2s3

= Θ∗
s
3
∗Θ

s
3
s1s2e

(N) +Θ∗
s1∗Θ

s
3
s2s3

e(N) +Θ∗
s2∗Θ

s
3
s
3
s1e

(N)

+ Θs
s
3
s2Θ

s
3
ss1e

(N) +Θs
s1s3

Θs
3
ss2e

(N) +Θs
s2s1Θ

s
3
ss

3
e(N)

= Θ∗
s∗Θ

s
s1s2e

(N) +Θ∗
s1∗Θ

∗
s2∗e

(N) −Θ∗
s2∗Θ

∗
s1∗e

(N)

+ Θs
s
3
s2Θ

s
3
ss1e

(N) +Θs
s1s3

Θs
3
ss2e

(N) +Θs
s2s1Θ

∗
s∗e

(N)

= 0

(indeed the first term and the last term cancel together, the second and the
third ones also, the fourth and the fifth ones also). It follows that
(
∂ωs C̃l

s +Θ∗
s∗C̃l

s
)
e(N) = 1

2
κl

s
1
s
2

[
θs ∧ Ωl

]s
∧ e(N−3)

s
1
s
2
s

= 1
2
κl

s
1
s
2cs0s l e

s ∧ Ω l ∧ e(N−3)
s
1
s
2
s
0

= 1
2
κl

s
1
s
2Ω l ∧

(
css l e

(N−2)
s
1
s
2

+ cs0s
1
l e

(N−2)
s
2
s
0

+ cs0s
2
l e

(N−2)
s
0
s
1

)
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But since cssl = 0 this gives us

(
∂ωs C̃l

s +Θ∗
s∗C̃l

s
)
e(N) = 1

2
κl

s
1
s
2cs0s

1
lΩ

l ∧ e(N−2)
s
2
s
0

+ 1
2
κl

s
1
s
2cs0s

2
lΩ

l ∧ e(N−2)
s
0
s
1

= 1
2

(
cs0s

1
lκl

s
1
s
2Ω l

s
2
s
0
+ cs0s

2
lκl

s
1
s
2Ω l

s
0
s
1

)
e(N)

By exchanging indices s0 ↔ s1 in the first term and indices s0 ↔ s2 in the
second term, we obtain that the two first terms in the left hand side of the
first equation in (206) are equal to

∂ωs C̃l
s +Θ∗

s∗C̃l
s =

1

2

(
cs1s

0
lκl

s
0
s
2Ω l

s
2
s
1
+ cs2s

0
lκl

s
1
s
0Ω l

s
2
s
1

)
(218)

We now compute the term cs0 lsẼs
0

s. For that purpose we use (187):

cs0 lsẼs
0

se(N) = cs0 ls
1
es1 ∧ Ẽs

0

se
(N)
s

= cs0 lse
s ∧
(
−1

2
κ l

s
1
s
2Ω l ∧ e(N−3)

s
1
s
2
s
0

)

= −1
2
κ l

s
1
s
2Ω l ∧

(
cs0 ls

0
e
(N−2)
s
1
s
2

+ cs0 ls
1
e
(N−2)
s
2
s
0

+ cs0 ls
2
e
(N−2)
s
0
s
1

)

and thus since cs0 ls
0
= 0

cs0 lsẼs
0

se(N) = −1
2
κ l

s
1
s
2Ω l ∧

(
cs0 ls

1
e
(N−2)
s
2
s
0

+ cs0 ls
2
e
(N−2)
s
0
s
1

)

= −1
2

(
cs0 ls

1
κ l

s
1
s
2Ω l

s
2
s
0
+ cs0 ls

2
κ l

s
1
s
2Ω l

s
0
s
1

)
e(N)

By exchanging indices s0 ↔ s1 in the first term and s0 ↔ s2 in the second
term, this gives us

cs0 lsẼs
0

s = −
1

2

(
cs1 ls

0
κ l

s
0
s
2Ω l

s
2
s
1
+ cs2 ls

0
κ l

s
1
s
0Ω l

s
2
s
1

)
(219)

Now by gathering (218) and (219) we obtain

∂ωs C̃l
s +Θ∗

s∗C̃l
s + cs0 lsẼs

0

s

= 1
2

(
cs1 l s

0
κl

s
0
s
2 + cs2 l s

0
κl

s
1
s
0

)
Ω l

s
1
s
2
+ 1

2

(
cs1 ls

0
κ l

s
0
s
2 + cs2 ls

0
κ l

s
1
s
0

)
Ω l

s
1
s
2

(220)
To conclude we use the fact that κl

ss is invariant by the adjoint action of l,
i.e. adl1κ

s1s2
l2

= 0. Since adl1κ
s1s2
l2

= −cgl1l2κ l
s1s2 + cs1 l1s0κl2

s
0
s2 + cs2 l1s0κl2

s1s0 ,
this implies

cs1 l1s0κl2
s
0
s2 + cs2 l1s0κl2

s1s0 = c l
0
l1l2κ l

0

s1s2 (221)
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By applying this relation for (l1, l2) = ( l , l) in the first term of the right hand
side of (220) and for (l1, l2) = (l, l ) in the second term of the right hand side,
this gives us

∂ωs C̃l
s +Θ∗

s∗C̃l
s + cs0 lsẼs

0

s =
1

2

(
c l

0
l lκ l

0

s
1
s
2 + c l

0
l lκ l

0

s
1
s
2

)
Ω l

s
1
s
2
= 0

Step 3: the proof of the second relation in (206) — It amounts to show that

∂ωs Ẽs
s +Θ∗

s∗Ẽs
s = Θs

0
ssẼs

0

s + Ω l
ssC̃ l

s (222)

On the one hand by using first (216), then (187) we get
(
∂ωs Ẽs

s +Θ∗
s∗Ẽs

s
)
e(N) = dω

(
Es

se
(N−1)
s

)
= dω

(
−1

2
κ l

s
1
s
2Ω l ∧ e(N−3)

s
1
s
1
s

)

= −1
2
κ l

s
1
s
2

(
dωΩ l ∧ e(N−3) + Ω l ∧ dωe

(N−3)
s
1
s
1
s

)

and since dωΩl = 0 by (213) we deduce by using (217) that

∂ωs Ẽs
s +Θ∗

s∗Ẽs
s = −1

2
κ l

s
1
s
2

(
Θ∗

s∗Ω
l
s
1
s
2
+Θ∗

s
1
∗Ω

l
s
2
s +Θ∗

s
2
∗Ω

l
ss

1

+ Θs
ss

2
Ω l

ss
1
+Θs

s
1
sΩ

l
ss

2
+Θs

s
2
s
1
Ω l

ss

)

(223)
On the other hand(

Θs
0
ssẼs

0

s + Ω l
ssC̃ l

s
)
e(N) = Θs

0
ss

3
es3 ∧ Ẽs

0

se(N−1)
s + Ω l

ss
3
es3 ∧ C̃ l

se(N−1)
s

and thus by using (186) and (187)
(
Θs

0
ssẼs

0

s + Ω l
ssC̃ l

s
)
e(N)

= Θs
0
ss

3
es3 ∧

(
−1

2
κ l

s
1
s
2Ω l ∧ e(N−3)

s
1
s
2
s
0

)
+ Ω l

ss
3
es3 ∧

(
−1

2
κ l

s
1
s
2Θs

0 ∧ e(N−3)
s
1
s
2
s
0

)

= −1
2
κ l

s
1
s
2Ω l ∧

(
Θs

0
ss

0
e
(N−2)
s
1
s
2

+Θs
0
ss

2
e
(N−2)
s
0
s
1

+Θs
0
ss

1
e
(N−2)
s
2
s
0

)

−1
2
κ l

s
1
s
2Θs

0 ∧
(
Ω l

ss
0
e
(N−2)
s
1
s
2

+ Ω l
ss

2
e
(N−2)
s
0
s
1

+ Ω l
ss

1
e
(N−2)
s
2
s
0

)

= −1
2
κ l

s
1
s
2

(
Θs

0
ss

0
Ω l

s
1
s
2
+Θs

0
ss

2
Ω l

s
0
s
1
+Θs

0
ss

1
Ω l

s
2
s
0

+ Θs
0
s
1
s
2
Ω l

ss
0
+Θs

0
s
0
s
1
Ω l

ss
2
+Θs

0
s
2
s
0
Ω l

ss
1

)
e(N)

Hence

Θs
0
ssẼs

0

s + Ω l
ssC̃ l

s = −1
2
κ l

s
1
s
2

(
Θ∗

s∗Ω
l
s
1
s
2
+Θs

ss
2
Ω l

ss
1
+Θs

ss
1
Ω l

s
2
s

+ Θs
s
1
s
2
Ω l

ss +Θ∗
∗s

1
Ω l

s
2
s +Θ∗

s
2
∗Ω

l
ss

1

)

(224)
By comparing (223) and (224) we conclude that (222) is satisfied (in the right
hand side of (224) the term ranked 1, 2, 3, 4, 5, 6 coincides with, respectively,
the term ranked 1, 4, 5, 6, 2, 3 in the right hand side of (223)). �
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7 Applications

7.1 Gravity with a cosmological constant

The most natural theory is obtained by choosing P̂ to be the universal cover
of the Poincaré group Spin0(1, n−1)⋉Rn for n ≥ 2. However it is also inter-
esting to consider their deformations Spin0(2, n− 1) and Spin0(1, n). Since
our description is local it can be given by using their quotients SO0(1, n −
1) ⋉ Rn, SO0(2, n − 1) and SO0(1, n), respectively. These Lie groups can
be represented as subgroups of the matrix group GL(n + 1,R) as follows.

We define h :=




h11 · · · h1n
...

...
hn1 · · · hnn


 and h = (h)−1 =




h11 · · · h1n

...
...

hn1 · · · hnn


 (a

Minkowski metric on Rn) and H :=

(
h 0
0 k

)
, where k ∈ R (a metric on

Rn+1). We let

Pk(n) :=
{
G ∈ GL(n+ 1,R); GHGt = H, detG = 1

}
. (225)

Assuming that the signature of h is (−,+, · · · ,+), we have the following
identifications

• if k < 0, Pk(n) is isomorphic to SO(1, n);

• if k = 0, P0(n) is isomorphic to the Poincaré group P(n) = SO(1, n−
1)⋉Rn;

• if k > 0, Pk(n) is isomorphic to SO(2, n− 1).

In each case we get a theory of gravitation with a cosmological constant Λ =
n(n−1)k

2
. The representation of the Lorentz subgroup Lk(n) (≃ SO(1, n− 1))

is

Lk(n) :=

{
G =

(
g 0
0 1

)
; g ∈ GL(n,R), ghgt = h, detg = 1

}
.

For

(
g 0
0 1

)
∈ Lk(n), we deduce from ghgt = h the following useful rela-

tions:
gh = h(g−1)t and hg−1 = gth (226)
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7.1.1 Lie algebras

The Lie algebra of Pk(n) is pk(n) :=
{
ξ ∈M(n + 1,R); ξH + Hξt = 0

}
. Any

element ξ ∈ pk(n) can be written

ξ =




ξ11 · · · ξ1n ξ1n+1
...

...
...

ξn1 · · · ξnn ξnn+1

ξn+1
1 · · · ξn+1

n 0


 =




ξ1bhb1 · · · ξ1bhbn ξ1

...
...

...
ξnbhb1 · · · ξnbhbn ξn

−kξbhb1 · · · −kξbhbn 0




where (ξab)1≤a,b≤n and (ξa)1≤a≤n are real coefficients such that ξab + ξba = 0.
Clearly there exists a unique family of matrices (tA)1≤A≤n(n+1)/2 = ((ta)1≤a≤n, (tab)1≤a<b≤n)

in pk(n) such that, ∀ξ ∈ pk(n), ξ =
∑

1≤a<b≤n tabξ
ab +

∑
1≤a≤n taξ

a. Obvi-
ously this family forms a base of pk(n). It is convenient to define tba := −tab,
for 1 ≤ a ≤ b ≤ n, and to write

ξ =
1

2

∑

1≤a,b≤n

tabξ
ab +

∑

1≤a≤n

taξ
a =

1

2
tabξ

ab + taξ
a

The Lie algebra of Lk(n) is simply lk(n) :=
{
ξ = 1

2
tabξ

ab; ξab ∈ R, ξab + ξba = 0
}
.

and we have pk(n) = lk(n) ⊕ sk(n), with sk(n) := {ξ = taξ
a; ξa ∈ R}. The

Lie bracket in this basis reads
[
[tab, tcd] [tab, tc]
[ta, tcd] [ta, tc]

]
=

[
hbctad − hbdtac − hactbd + hadtbc hbcta − hactb

hactd − hadtc −ktac

]

Equivalentely the structure coefficients cIJK = 〈tI , [tB, tK ]〉 of the Lie algebra
pk(n) in the chosen basis are given by
(

c
[ef ]
[ab][cd]

ce[ab][cd]

)
=

(
δefadhbc − δefac hbd − δefbd hac + δefbc had

0

) (
c
[ef ]
[ab]c

ce[ab]c

)
=

(
0

δeahbc − δebhac

)

(
c
[ef ]
a [cd]

cea[cd]

)
=

(
0

δedhac − δechad

) (
c
[ef ]
a c

ceac

)
=

(
−kδefac

0

)

where δefab := δeaδ
f
b − δebδ

f
a .

The adjoint action of an element g ∈ Lk(n) on ξ ∈ pk(n) reads Adg
(
1
2
tabξ

ab + taξ
a
)
=

1
2
tabg

a
a′g

b
b′ξ

a′b′+tag
a
a′ξ

a′ and the coadjoint action of g ∈ Lk(n) on α = 1
2
αabt

ab+

αat
a ∈ p∗k(n) expresses as Ad∗

g

(
1
2
αabt

ab + αat
a
)
= 1

2
αa′b′(g

−1)a
′

a (g
−1)b

′

b t
ab +

αa′(g
−1)a

′

a ta.
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7.1.2 Checking the hypotheses

Hypothesis (i), that Pk(n) is unimodular, can be checked by a direct com-
putation: on the one hand, for any a, b,

1
2
c
[cd]
[ab][cd] + cc[ab]c = 1

2

(
δcdadhbc − δcdachbd − δcdbdhac + δcdbchad

)
+ δcahbc − δcbhac

= 1
2
((n− 1)hba − (1− n)hba − (n− 1)hab + (1− n)hab) + hba − hab = 0

and, on the other hand, for any a, we have obviously 1
2
c
[cd]
a[cd]+ c

c
ac = 0+0 = 0.

Hypothesis (ii), that AdLs ⊂ s and [s, s] ⊂ l, is straightforward. We
choose

(
κ[cd]

ab κc
ab
)
:=
(
δabcd 0

)
⇐⇒ κp

ss :=
1

2
tab ⊗ ta ∧ tb

We can check easily that Adgκp
ss = κp

ss, ∀g ∈ Lk(n), i.e. that Hypothesis
(iii) is satisfied. Lastly κp

ss satisfies obviously Hypothesis (129), i.e. that
κp

ss ∈ l∗ ⊗ Λ2s. Hence Theorem 6.1 can be applied: any smooth critical
point (ϕp, πp) ∈ EE of A (given by (128) gives rise locally to a solution of the
system (204).

7.1.3 The equations of dynamics

Assume n > 2. Let (πp, ϕ
p) ∈ EE be a critical point of the action (128)

∫
F
πp∧

ϕp and assume that it satisfies the Fibration hypothesis (207). Then the
manifold F is fibered over an n-dimensional manifold X and X is equipped
with a metric g the pull-back by F −→ X of which is habe

a ⊗ eb and TX is
endowed with a metric connection ∇ defined by ω.

Let us assume furthermore that either (i) or (ii) in §6.5 holds. Then
the fields (πp, ϕ

p) give rise to a solution of the generalized Einstein–Cartan
system in vacuum with a cosmological constant Λ := −1

2
cgssκg

ss i.e. System
(209).

Since κg
ss is given by κ[ab]

cd = δcdab the first equation in System (209) is

obviously equivalent to Θ̊s
ss = 0, which, since n > 2, is itself equivalent to

Θs
ss = 0 as seen in §6.4.3. This means that the connection ∇ is torsion free,

i.e. that it is the Levi-Civita connection for the metric g.

The second equation in System (209) reads Ωg
ssκg

ss − 1
2

(
Ωg

ssκg
ss
)
δs

s +

Λδs
s = 0. The computation in terms of the standard Riemann and Ricci

tensors Rss
ss and Rs

s is straightforward:

Ωg
saκg

sb =
1

2
Ω[cd]

aeκ[cd]
be =

1

2
Ω[cd]

aeδ
be
cd = Ω[be]

ae = Rbe
ae = Rb

a = Ra
b



7 APPLICATIONS 106

(we use the symmetry of the Ricci tensor). Hence Ωg
ssκg

ss = Ra
a = R is the

scalar curvature. We also have

Λ = −
1

2
cgssκg

ss = −
1

4

(
−kδcdab

)
δabcd =

n(n− 1)

2
k

Thus we obtain that Ẽs
s = Es

s, so that the second equation in (209) is
exactly the Einstein equation

Ea
b + Λδa

b = 0, (227)

with Ea
b := Ra

b − 1
2
Rδa

b and the cosmological constant Λ = n(n−1)
2

k.

7.2 Gravity with a Barbero–Immirzi parameter

This example is a variant of the previous case for n = 4. We use the groups
Pk(4) and Lk(4). Hence Hypotheses (i), (ii) and (iii) have been already
checked. However the tensor κ is now

(
κ[cd]

ab κc
ab
)
=
(
δabcd −

1
γ
ǫabcd 0

)
(228)

where ǫabcd := ǫa′b′cdh
a′ahb

′b and ǫabcd is the completely antisymmetric tensor
such that ǫ1234 = 1 and where γ ∈ C∗ is a constant (the Barbero–Immirzi
parameter). Alternatively

κp
ss =

1

2
tab ⊗ ta ∧ tb −

1

4γ
haa

′

hbb
′

ǫa′b′cdt
[cd] ⊗ ta ∧ tb =

1

2
tab ⊗ ta ∧ tb −

1

γ
ηp

ss,

where ηp
ss := 1

4
haa

′

hbb
′

ǫa′b′cdt
[cd] ⊗ ta ∧ tb.

Hypothesis (129) is obviously satisfied. In order to check that κp
ss defined

by (228) is invariant by the adjoint action of Lk(4), it suffices to check that

ηp
ss := 1

4
haa

′

hbb
′

ǫa′b′cdt
[cd] ⊗ ta ∧ tb is so. Using (226) we get

Ad∗
g ⊗ Adg ⊗ Adgηp

ss = Ad∗
g ⊗ Adg ⊗ Adg

(
1
4
haa

′′

hbb
′′

ǫa′′b′′cdt
[cd] ⊗ ta ∧ tb

)

= 1
4
gaa′h

a′a′′gbb′h
b′b′′ǫa′′b′′c′d′(g

−1)c
′

c (g
−1)d

′

d t[cd] ⊗ ta ∧ tb
= 1

4
haa

′

hbb
′

(g−1)a
′′

a′ (g
−1)b

′′

b′ ǫa′′b′′c′d′(g
−1)c

′

c (g
−1)d

′

d t[cd] ⊗ ta ∧ tb
= 1

4
haa

′

hbb
′

det(g−1)ǫa′b′cdt
[cd] ⊗ ta ∧ tb

= 1
4
ǫabcdt

[cd] ⊗ ta ∧ tb = ηp
ss

where we have used det(g−1) = 1.
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Although the action takes complex values, this does not change the deriva-
tion of the Euler–Lagrange equations and, in particular, our conclusion about
the local fibration of F over some 4-dimensional manifold X . Thus if assume
the Fibration hypothesis (207) and one of the two hypotheses (i) and (ii) in
§6.5, we get Equations (209).

Let us prove that the first equation (c), i.e. 1
2
κl

ssΘ̊s
ss = 0, implies that

Θ̊s
ss = 0 (which is equivalent to the fact that the connection ∇ is torsion

free). The proof relies on two different arguments, according to the value of
γ:

• if γ = ±i the condition 1
2
κl

ssΘ̊s
ss = 0 reads also Θ̊c

ab =
1
2γ
Θ̊c

a′b′ǫ
a′b′

ab,

which implies straightforwardly that Θ̊s
ss = 0 since this quantity is real

(this case corresponds to the Ashtekar action).

• in general, if h is a Minkowski metric which is suitably normalized, the

condition 1
2
κl

ssΘ̊s
ss = 0 is equivalent to

(
1 + 1

γ2

)
Θ̊s

ss = 0 (see Lemma

7.1 below). This implies Θ̊s
ss = 0 if γ 6= ±i.

Lemma 7.1 Assume that the metric h is Minkowski4 and that det h = −1

Then the condition 1
2
κl

ssΘ̊s
ss = 0 implies

(
1 + 1

γ2

)
Θ̊c

ab = 0.

Proof — Condition 1
2
κl

ssΘ̊s
ss = 0 is equivalent to Θ̊c

ab =
1
2γ
Θ̊c

a′b′ǫ
a′b′

ab. By

iterating this relation we obtain Θ̊c
ab =

1
4γ2

Θ̊c
a′′b′′ǫ

a′′b′′
a′b′ǫ

a′b′
ab. But since

ǫabc′d′ǫ
c′d′

cd = haa
′

hbb
′

ǫa′b′c′d′h
c′c′′hd

′d′′ǫc′′d′′cd =
(
haa

′

hbb
′

hc
′′c′hd

′′d′ǫa′b′c′d′
)
ǫc′′d′′cd

=
∑

1≤ c′′, d′′≤4

(det h)ǫabc′′d′′ ǫc′′d′′cd = 2(det h)δabcd

we deduce

Θ̊c
ab =

1

2γ2
(det h)δa

′b′

ab Θ̊c
a′b′ =

det h

γ2
Θ̊c

ab

Thus if we normalize h such that deth = −1 (which is always possible if h is
a Minkowski metric), we deduce the result. �

4In an Euclidean theory where we would assume that the metric h has the signa-
ture (+, · · · ,+), the natural normalization would be deth = 1, leading to the relation(
1− 1

γ2

)
Θ̊c

ab = 0.
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Recall that the fact that Θs = 0 implies through the Bianchi identity that
Ωl ∧ θs = dΘs + [ωl ∧ Θs] = 0, which reads Rabcd +Racdb +Radbc = 0. This
implies in particular Rabcd = Rcdab.

Let us look at the second equation in System (209). By using the com-
putation of Ωg

ssκg
ss in the previous paragraph we obtain

Ωg
saκg

sb =
1

2
Ω[cd]

ae

(
δbecd −

1

γ
ǫbecd

)
= Ra

b −
1

2γ
ǫbecdR

cd
ae

However

1

2γ
ǫbecdR

cd
ae =

1

2γ
ǫacefRefbc =

1

2γ
ǫacefRbcef =

1

6γ
ǫacef (Rbcef +Rbefc +Rbfce) = 0

Hence Ωg
saκg

sb = Ra
b, which implies Ωg

ssκg
ss = R. Similarly,

Λ = −
1

2
cgssκg

ss = −
1

4

(
−kδcdab

)(
δabcd −

1

γ
ǫabcd

)
=
n(n− 1)

2
k −

k

4γ
ǫabab = 6k

Hence the equation Ωg
ssκg

ss − 1
2

(
Ωg

ssκg
ss
)
δs

s + Λδs
s = 0 gives us again the

Einstein equation with a cosmological constant Es
s + 6kδs

s = 0.
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