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Gauge and Gravity theories on a dynamical
principal bundle

Frédéric HELEIN*

October 17, 2023

Abstract — In this paper we present original variational formulations of
Yang-Mills, Finstein’s gravitation and Kaluza-Klein theories, where, in the
spirit of General Relativity, the principal bundle structure over the space-time
is not fived a priori but is dynamical. In the Yang-Mills case only a topolog-
ical fibration is given a priori. In the gravity and the Kaluza-Klein theories
no fibration is assumed: any critical point of the action functional defines
a foliation of the manifold and the leaves make up the space-time. The lat-
ter is naturally equipped with a pseudo-Riemannian metric and, under some
hypotheses, this foliation is actually a fibration. In all cases the apparition
of a (at least local) principal bundle structure and a connection follows from
the dynamics. Moreover the metric and the connection thus constructed are
solutions of the Yang-Mills, the Finstein-Cartan or the Yang-Mills-Einstein
equations, depending on the model. A crucial point is that we face the dif-
ficulty that some Lagrange multiplier fields (which are responsible for the
foliation, the principal bundle structure and the connection) create unwanted
terms in the equations. This difficulty is overcome by the observation that, if
the structure group is compact, these terms miraculously cancel.

*Institut de Mathématiques de Jussieu, UMR CNRS 7586 Université Denis Diderot —
Paris 7, UFR de Mathématiques, Batiment Sophie Germain 75205 Paris Cedex 13, France,
helein@math.univ-paris-diderot.fr
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1 Introduction

A large part of theoretical Physics is based on the principle of gauge symme-
try, which itself amounts to postulate the existence of principal bundles over
the space-time, at a more or less formal level. However there is no funda-
mental rationale for explaining this postulate. This is in contrast to General
Relativity, the fundamental principle of which is the equivalence principle,
which results in the covariance of the theory with respect to diffeomorphisms
and which do not postulate the existence of a structure as particular as that of
a principal bundle. This lack of justification of the principal bundle structure
is particularly evident in Kaluza-Klein theories, aiming to combine General
Relativity with gauge theories: the most common hypothesis to explain the
symmetry breaking at the origin of gauge fields goes back to O. Klein, it
consists in assuming that the fibers of the total space above the space-time
are tiny and is not completely satisfactory. Moreover although in General
Relativity the principal bundle structure may appear as non essential for
pure gravity, it becomes necessary for a correct description of the fermions
on a curved space-time, through the introduction of the Spin bundle.

In this paper we present alternative theories in which the principal bundle
structure is not given a priori but derives from a solution of the equations
of dynamics. These theories sit on a manifold which is a candidate to get
a principal bundle structure. This bundle structure will be constructed out
of a dynamical field which is a 1-form with coefficients in the Lie algebra of
the structure group, which could also be interpreted as a connection form on
a trivial vector bundle on the manifold. Auxiliary fields are introduced in
order to force integrability conditions allowing to construct a foliation which,
under certain assumptions, will form a principal bundle over a quotient space,
equipped with an equivariant connection. The quotient space can then be
identified with a space-time manifold and the constructed fields can then be
shown to be the solutions of some gauge theoretical system of equations (such
as, e.g., the Yang-Mills equations) over this space-time.

However the auxiliary fields, which play the role of Lagrange multiplier
for imposing non holonomic constraints, could possibly spoil the theory since
they create unwanted sources in the r.h.s. of the dynamical equations. A
crucial step in the study of the Euler-Lagrange equations is to prove that,
under some hypotheses, these sources actually vanish. The main hypothesis
in order to achieve this cancellation is to assume that the structure group
is compact and simply connected. The cancellation phenomenon is then a
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consequence of the fact that, after a suitable trivialization of the bundle and
a gauge transform, the unwanted sources are simultaneously constant on each
fibers and equal to the integral of an exact form of maximal degree over the
fiber, which thus cancels thanks to Stokes theorem.

For instance, in the case of the Yang—Mills theory, the Lagrangian which
will be used is invariant by the group of diffeomorphisms which preserve the
fibers of a submersion. This large symmetry group reduces to the standard
gauge group acting on a principal bundle on classical solutions. Similarly the
Lagrangian of the 4-dimensional Gravitation theory which follows is invariant
by diffeomorphisms of a manifold of dimension 10 (i.e. the dimension of the
Poincaré group). Combining properties of both approaches leads to unify the
gravity and the Yang-Mills fields in the spirit of Kaluza—Klein theories but
without the need to assume a priori a fibration and the equivariance of the
fields along the fibration.

These various models follows the same main lines: given some Lie algebra
g of finite dimension dimg = r, they involve three dynamical objects:

1. a manifold F, of dimension N > r;
2. a 1-form #°% on F with coefficients in g and of rank r everywhere;
3. an (N — 2)-form 7y on F with coefficients in the dual space g*;

The main, naked term in the action functional is

A[F, 0, 7] ::/F<7rg/\ <d99+%[99/\99])>:/F<7rg/\@9), (1)

where (-, ) denotes the duality pairing between g* and g and ©9 := d#? +
(69 A 69).
We note that the critical points of the action (I satisfy the Euler—
Lagrange equations
{ do? + L1[ge N 6] = 0 @)
drg +adps Amg = 0
The first equation (obtained by using 7, as a Lagrange multiplier) is the
Maurer—Cartan one. Assume that dimF = N = r = dimg and that the rank
of 69 is maximal everywhere. This allows, by integrating 69, to construct a
diffeomorphism from any neighbourhood of a point in F to a neighbourhood
of the identity in the Lie group &, the Lie algebra of which is g. Hence F
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has locally the same structure as &. This corresponds to a local version of
the Cartan—Lie theorem asserting that a finite dimensional Lie algebra can
be integrated to produce a corresponding Lie group.

Variants of this mechanism, obtained by imposing some constraints on
the fields 7y, lead to less rigid conditions on 6% and thus to identify, at least
locally, F with a principal bundle. Indeed if we further add some extra terms
in the action, then critical points (69, m,) correspond to solutions of gauge
theoretical problems (e.g. Maxwell, Yang—Mills, Einstein—Cartan) on X

1.1 Principal bundle structure starting from a submer-
sion

Assume now that F is a manifold of dimension N = r + n, where n > 0,
set 5 := R™ and let (X, g) be a pseudo Riemannian manifold of dimension

n. Assume that there is a submersion F — X. We suppose that there is
exists a 1-form 5° on X' with coefficients in s, the components of which are
an orthonormal coframe on (X,g) and we denote by 3° the pull-back by

F L4 x of g
Consider dynamical fields which are pairs (69, mg), Where 69 is a 1-form on
F with coefficients in the Lie algebra g (with components 6° in a basis) and
7y is a (N — 2)-form on F with coefficients in the Lie g* (with components
m;). We also assume that the rank of (5°,69) is N everywhere, so that its
components (3%, 60%);<,<n<i<n in a basis of 5 & g provides us with a coframe
on F. This defines a volume N-form 8™ A 6" on F, where 3™ and ")
are the exterior products of the components of, respectively, 8° and 6. We
then look at pairs (6%, m,) which are critical points of A given by (I under
the constraint that for all 1 < a,b < n and n < i < N, the coefficient 7;%
such that 5 A B° A m; = m;% B A 07) vanishes. Then the Euler-Lagrange

equations are
{ doe + 1[0 N 6°] = 1O9,8°AB° 3)

dmy+adg, Amg = 0

Here the first equation means that, if we decompose d6® + %[99 A 6%] by using
the coframe (3%, 60")1<a<n<i<n, the coefficients of 5* A 7 and 6" A 67 vanish.

This relation allows to identify locally each fiber of the submersion F 5o
with an open subset of & and hence to endow F with a local structure of
principal bundle with structure group & and base manifold X. Moreover #°
defines a connection on this bundle.
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Now assume that, instead of assuming the constraints ;% = 0 as pre-
viously, we add to the functional A in (I)) the integral [, g™ |28™ A6,
where ;% is the tensor, the components of which are (m;%); . and |7, | is
its norm computed by using the pseudo Riemannian metric on X and an Adg-
invariant metric on g. Then the Euler-Lagrange equations imply that the
components of m,* correspond to (minus) the Hodge dual of d6® + 2 [99 N 09].
Moreover instead of the second equation in (3] we get

1 r_
dm; +ady, A = §|7r955|25(") A 6’1( 2

where H(T_l = “€iigi, 0 A+ - - NG Tt turns out that on can deduce from
this equation that tiie connection is a solution of a Yang—Mills equation with
a priori non vanishing sources which come from components of 7, which are
different from 74>

However a second mechanism comes into play and leads, under some gen-
eral hypotheses (in particular that the group & is compact), to the conclusion
that these sources actually vanish, so that actually we obtain a solution of the
Yang—Mills equation in vacuum. Thanks to this cancellation phenomenon we
obtain the following results, proved in Section [l

Theorem [4.1] — Let g be a Lie algebra of dimension r. Let (X,g) be a
connected pseudo Riemannian manifold of dimension n, F a smooth manifold
of dimension N = n + r such that there exists a smooth submersion F 5
with connected fibers. Let (%)1<a<n be the pull-back image by P of a given
orthonormal moving coframe on (X,g).

Let 0% be a 1-form on F with coefficient in g of maximal rank everywhere
and my an (N — 2)-form on F with coefficient in g*. Assume that (69, my) is
a C% critical point of

1 1
/ <7rg A <d99 + =67 A 99])> + w280 A 9
* 2 4

Assume that either, (i) g = u(1) and at least one fiber P~*({z}) is compact
or, (1) g is the Lie algebra of a compact, simply connected Lie group &.

Then 6® endows F with a principal bundle structure with a structure group
&, which is either U(1) in Case (i), or a quotient of & by a finite subgroup
in Case (ii). Moreover it defines a connection on F Ly X which is either a
solution of the Mazwell equation on (X, g) in Case (i), or a solution of the
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Yang-Mills equation in Case (ii).

Examples of compact simply connected groups are the groups SU(k), for
k > 2. However U(1) is not simply connected.

1.2 Principal bundle structure starting from nothing

It is possible to dispense with the assumption that there exists a submersion
from F to a lower dimensional manifold X. For that purpose we assume that
we replace [3° (which was previously given a priori) by 6°, which is now a
dynamical fields. This amounts to embedd the Lie algebra g in the larger
one u := s @ g, such that [g,g] C g and [g,s] C s and to consider (6", 7,) =
(6° 4 6%, w5 + m,y) as dynamical fields, with coefficients in, respectively, u and
u*. We then assume that 6" has a maximal rank, so that its components
(01)1<7<n = (0%)1<a<n U (0")<i<n provides us with a coframe on F. We also
impose the constraint m,* = 0, where 7,* is the tensor with components
(71%)1<ap<ni1<1<n Which are defined by 8¢ A0° A = 7;°0™) | where 6% and
6" are components of 6° and V) is the exterior product of all components of
6". Under these assumptions a critical point of A satisfies the Euler-Lagrange

equations

d6° + L[6° A 6] + [6° A 6°] 193,60 A 0"
g9 + 176° A 6°]% + L[60 A 69] 50%,0% A 0° (4)
dm, + adju A Ty = P9

where the ¥,%s are coefficients in u*, the components of which are ¥;* =
O ;xm . By considering the r-dimensional submanifolds f which are solu-
tions of the exterior differential system 6°|¢ = 0 we obtain a foliation of F.
This leads to endow a neighbourhood of any point of F with a local princi-
pal bundle structure with structure group & over some quotient manifold X
of dimension n (the space of leaves) and to construct a pseudo Riemannian
metric and a g-value connection 1-form on X.

1.2.1 Kaluza—Klein theory

Assume that the subspace s C uis in the center of u (it leads to simplifications
in the two first equations in () and fix a metric h on u which is invariant
by the adjoint action of & and such that s 1L g . We further append to
the dynamical fields (6%, 7,) a 1-form ' with coefficients in the Lie algebra
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[ := so(u, h) and we add the Palatini Lagrangian [ 3 1902 Ap!7 to the action
[z (my A ©¥). (Here the ®'”’s are the components of CI)[ = dp'+1[p'A¢'] and,

still, O := d@"+3[0"A6"].) Then critical points of [, (m, A ©*)+1 o2 Ap!Y
under the constraint m,* = 0 satisfy the system

a = 10,07 A 0P
doe + 1[0 A 6] = 1O9,600 A6 5)
dm + adju Am, = W8N 4 190 A @l
Ao’ + o'y N0 = 0
where U;% := 7,7, By using the two first equations, if ® is compact

and under mild topological hypotheses, we can construct a principal bundle
structure on F and a pseudo Riemannian metric and a g-valued connection
1-form on the quotient manifold X. Thanks to the last equation we can
identify ¢* With the Levi-Civita connection on F with the metric (6*)*h.

Thus H(N A ®% can be interpreted as the Einstein tensor on (F, (6*)*h).

abu
Hence the third equation means that (F, (6*)*h) is a solution of the Einstein
equation with a complicated source equal to dm, + ady. A m, — \I/u’ﬂi(N_l
By analyzing the latter equation (in a local trivialization) we deduce that
the metric (6°)*h (not (6*)*h !) and the connection on & are solutions of an
Einstein—Yang-Mills system of equations. Here again a subtle cancellation
mechanism comes into play which allow to let the sources of this system van-
ish. We can hence realize the Kaluza—Klein programme without assuming
any fibration a priori, under some generic topological hypotheses. The fol-

lowing result is proved in Section

Theorem 5.1 — Assume that & is a stmply connected Lie group of di-
mension r. Let u = § @ g (where s := R™) and let h a metric on u such
that s 1 g and which s invariant by the adjoint action of ®. Let Y be a
connected oriented manifold of dimension N = n +r. Let 0" = 6° + 6%, be
a I-form on Y with coefficients in u of rank N everywhere, s = m, + 7y be
a (N — 2)-form on Y with coefficients in u* and @' be a 1-form on Y with
coefficients in [ = so(u,h). Assume that (0“, my,, ©") is a critical point of class

€% o
/<7Tu/\ <d9”+%[9“/\9“])>+ N
y

under the constraint that my A 0% A 0° = 0, for any components 0% and 6° of
6°.



1 INTRODUCTION 8

Then Y is foliated by submanifolds f of codimension n which are diffeo-
morphic to a Lie group & which is a quotient of & by a finite subgroup and
on which & acts.

If furthermore & is compact, then the leaves are the fibers of a principal

bundle ) Ly X over an n-dimensional manifold X with structure group &.
Moreover 68 encodes a pseudo Riemannian metric g on X and a g-valued
connection 1-form A® on X, which are solutions of the Einstein—Yang—Mills
system

R(g)%s — 3RO + A6y = F=FY, — 1|F|*5,

with some cosmological constant equal to A.

A special case is for & = R. Then, if one leaf is compact we obtain a
principal bundle with structure group U(1) and a solution of the Einstein—
Maxwell system. However if & = SU(k), then & is necessarily compact and
all conclusions of the theorem are satisfied.

1.2.2 Gravitation on the principal bundle of frames

In the two previous situations the group & played the role of a structure
group for a Yang-Mills gauge theory. For gravity theories we replace & by
a 'Lorentz’ group, i.e. a group £ := SO(s,b) of isometries of some fixed Eu-
clidean or Minkowski space (s, b) of dimension n, or its spin group Spin(s,b).
We also introduce the "Poincaré’ group B := £ x s and we denote by [ and
p = [ & s the Lie algebras of, respectively, £ and 3. Then on a given man-
ifold P of dimension N :=n + @ = dim’PB we consider a pair of fields
(P, mp,), where ¢F is a 1-form of rank N on P with coefficients in p and m,
is a (N — 2)-form with coefficients in p*. Since ¢* has a maximal rank, its
components provide us with a coframe on P and by the splitting p = [ D s
we have the decompositions ¢f = '+ ¢° and 7, = m + 7s.

As previously we consider the action functional A[p?, m,] = [, (my A (dg” + [¢" A ¢P]))
and let us first impose to (¢, m,) to satisfy the constraint 7,* = 0, meaning
that, for any components ¢?, ¢° of ©*, * A@? A, = 0. Then a critical point
of A under these constraints satisfies exactly the system (), by replacing 6°,
69, ©° and ©° by, respectively, ©°, ¢', ® and ®'. This allows to locally iden-
tify 3 with a principal bundle with structure group £ and a base manifold
of dimension n. The fields ¢* and ¢' also define respectively a metric and a
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metric preserving connection on the quotient manifold. Hence we obtain a
local structure of Cartan geometry (see §1.3] below).

Now we further add to the action A the 'Palatini’ term fp %apfg—m A D,

where the ®’s are the components of ® := dy? + 1[p? A ¢P]. Then (using
the assumption [g, ] C s) the critical points of the total action [}, (m, A @)+
%<pg];]_2) A @ are solutions of

d(ps 4 %[4,05 A (,05]5 + [4,09 A 4,05] — %(I)sab@a A SOb
dp? + 3@ AT+ 3P A @] = P AT (6)
dm, +adl A, = P9V — Ly

where U := ¥,% = &, 5;%°. This leads to define a local Cartan geometry.
Moreover the metric and the connexion on the local quotient manifold X
are solutions of an Finstein—Cartan system of equations. As in the previous
situations some sources (coming from the complicated structure of the third
equation in (@l)) may appear a priori in these Einstein—Cartan equations
(involving the Einstein tensor and the torsion). They may however vanish
thanks to the cancellation phenomenon and under some assumptions.

In the following the total action [, (m, A ®P) + %cp((g_m A &% is replaced
by the equivalent one fp (my A @P) provided that, instead of the constraint
©* A p® Ay = 0, we impose that @ A p? A, = 0 and p? A p® A = k@),
where the £%’s are the components of a tensor £* € I* ®sAs which encodes
the canonical identification of [ = so(s, b) with s A s. This approach leads to
the following, which is proved in Section [Gt

Theorem — Let ‘,]A3 be a Lie group of dimension N and ec ‘ﬁ a stmply
connected Lie subgroup of dimension r. Assume that their respective Lie
algebras p and [ are unimodular and that there exists a vector subspace s C p
which is stable by Adg and such that p = s & (i.e. P/L is reductive). Let
K™ be a tensor in p* ® s A s which is invariant by the adjoint action of £.

Let P be a 1-form with coefficients in p on P of rank N everywhere and
Ty be a (N — 2)-form with coefficients in p* on P. Assume that (my, ¢P) is a
smooth critical point of

/P <7rp A <dg0p + %[@p A <p”])>

under the constraint that ¢® A @® Ams = 0 and * A ® A1 = kW) | where
the kK% are the components of k* in a basis of s.
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Then F 1s foliated by smooth leaves of dimension r := diml covered by [y
and, in a sufficiently small open subset of F, we can identify the set of leaves
with a quotient manifold X of dimension n := dims. Moreover ¥ encodes a
local principal structure on the leaves and a metric and a connection on the
local quotient manifold which are solutions of a generalized Einstein—Cartan
system of equations, the sources of which are total divergences on each leaf.

In the case where ‘ﬁ and € are respectively the spin Poincaré group and
the spin group and if x(* encodes the canonical identification of so(s, b) with
s A\ s, then the generalized Einstein—Cartan system of equations coincides
with the standard one, with sources which are total divergences.

More can be said under the additional hypothesis that the foliation is
actually a fibration: the quotient manifold X (which represents the space-
time) has then a manifold structure and the critical point produces a solution
of an Einstein—Cartan system on X’ in presence of a stress-energy tensor and
an angular momentum tensor. Lastly if we assume further that £ is compact
(which is not the case if £ is the Lorentz group!) or that the fields m, decay
at infinity, we can then conclude that the sources of the Einstein—Cartan
system actually vanish.

1.3 Cartan geometries

As alluded in §1.2.2]a pair (¢*, m,) which is a critical point of [, (1 A (P + [P A P]))
under the constraints ¢ A ¢® A 1, = 0 defines locally a structure of Cartan
geometry on P.

The relevance of Cartan geometry for General Relativity has been high-
lighted for instance in [20] 24]. It is based on the fact that, in the moving
frame approach on General Relativity, the so(1,3)-valued spin connection
form w' and the R*-valued soldering form #* should be understood as the two
components of a single 1-form with coefficients in the Lie algebra so(1, 3) x R*
of the Poincaré group (as in [19]). However the right geometric interpreta-
tion requires to consider all these forms as defined on the principal bundle of
orthonormal frames over the space-time X and to understand A¥ = w' + 6°
as the expression of a Cartan connection ¢P in a particular trivialization of
the frame bundle.

In a few words each Cartan geometry can be seen as a deformation of
a rigid geometric model, called a Klein geometry, which can be defined as
a homogeneous space /£, where B is a Lie Group and £ a Lie sub-group
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of PB. The space /L has the canonical principal bundle structure £ —
P — P/L and P is canonically endowed with the (left invariant) Maurer—
Cartan 1-form n* with coefficients in the Lie algebra p of B (if P is a matrix
group, n} = g~'dg). A Cartan geometry is described by a principal fiber
bundle £ — P — & and the Maurer—Cartan form 7® is there replaced
by a 1-form ¢P defined on P with coefficients in the Lie algebra p which
has a maximal rank and is normalized and equivariant under the action
of £ on P. The form ¢ is called a Cartan connection and is a concept
different from the well-known so-called Ehresmann connection. The value at
a point of the curvature 2-form de? 4+ %[app A ©*] measures the obstruction for
(£ — P — X,¢P) to coincide at first order at this point with the model
(& — P — P/L,7").

The most natural situation is when 8 = SO(n) x R™ is the group of affine
Euclidean isometries of the Euclidean space of dimension n and £ = SO(n).
Then B /L is just the Euclidean space of dimension n and the corresponding
Cartan geometry is just another way to look at the standard Riemannian
geometry. Replacing SO(n) by the Lorentz group SO(1,n — 1) then leads
to the pseudo Riemannian geometry, the framework for General Relativity.
Another interesting application to General Relativity is that, by replacing the
Minkowski space as a model by the de Sitter space (~ SO(1,n)/SO(1,n—1))
or the anti-de Sitter space (~ SO(2,n—1)/SO(1,n—1)), we get the Einstein
equations with a positive (respectively negative) cosmological constant, as
seen by S.W. MacDowell and F. Mansouri [19] (see §7.1). More comments on
Cartan geometry are presented in §2.2.1lin this paper and is e.g. expounded
in details in [21]. Recent accounts of its relation with General Relativity can
found in [24] 2].

1.4 A crucial point: the cancellation of the sources

One can notice in the examples expounded in this paper that the field m,
is not connected a prior: with any physically observable quantity. Indeed
this field plays the role of a Lagrange multiplier for forcing the foliation and
the equivariance property along the fibers. However 7, has also the effect to
create unwanted sources in the Euler-Lagrange equations (at least if we want
to recover the standard equations of Physics or of Geometry). A crucial step
is to ensure that, under some reasonable hypotheses, these sources vanish.
Here a subtle mechanism comes into play to cancel these sources, based
on the facts that, on the one hand, the average of these sources on each
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fiber vanishes because it is the integral of a closed form and, on the other
hand, these sources are constant on each fiber. However, in order to observe
this cancellation, a local trivialization based on a gauge transformation is
required, which requires a delicate computation. An alternative approach
have been developped by J. Pierard de Maujouy in [0].

Although this mechanism works perfectly if the fibers are compact, we
meet some difficulties for using it when & is not compact: we then need to
assume that the field 7, and its first derivatives decay at infinity in each
fiber for being able to exploit it. This is the reason why, in Theorem we
cannot conclude in full generality that the sources (the stress-energy and the
relativistic angular momentum tensors) vanish if £ is not compact.

1.5 Further comments
1.5.1 Origin of the variational formulations

The various constructions in this paper do not come out of the blue, but have
been derived first in the two papers [10, [13] motivated by natural questions in
the framework of multisymplectic geometry. This framework generalizes the
symplectic geometry in the sense that it provides a geometrical description
of the Hamiltonian structure of solutions of problems in the Calculus of
Variations in several variables without depending on the choice of a particular
system of coordinates (such as, for instance, a time coordinates for evolution
problems). The Yang—Mills and the gravitation formulations were obtained,
first, by lifting in an equivariant way the standard Lagrangian formulation
of these theories on the principal bundle (see §2T.4] and §2.2.3]) and, second,
by performing a Legendre transformation (in the multisymplectic context)
by taking into account the equivariance of the connexion. The extra field 7,
appears then naturally as the (multi)momentum variable conjugate to the
gauge field and the constraints on 7,% are consequences of the equivariance of
the connexion (and thus reflects the gauge invariance of the initial problem).
Hence the action in (Il) may be viewed as the analogue for gauge theories
of the integral [ p,dg" in Mechanics. It is important to notice that the
interpretation of 7, as a (multi)momentum variable was a reliable indication
of its relevance and importance.

The Kaluza—Klein formulation was constructed afterwards in [I1] by com-
bining ingredients from both theories.
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1.5.2 Perspectives

Kaluza—Klein theory — The Kaluza—Klein theory has a long history, start-
ing from the work of T. Kaluza [I5] in 1921 and O. Klein [I7] in 1926, for
the structure group R or U(1). Some inconsistency were observed and fixed
through the introduction of an additional fields (radion or dilaton) indepen-
dently by P. Jordan [14] in 1947 and Y. Thiry [22] in 1948. The addition of
this field may be avoided by renouncing to impose the Einstein equation on
the total space of the bundle and instead by looking for the critical points
of the Einstein—Hilbert action on the fiber bundle under the equivariance
constraint. By following this alternative option the theory was extended to
Yang—Mills fields by R. Kerner [16] in 1968, leading to the Einstein—Yang—
Mills system. Our theory is connected with the latter approach.

The most commonly used explanation for the fact that the universe we
observe is 4-dimensional is basically due to Klein and relies on the hypothesis
that the extra dimension is tiny and hence impossible to observe at our scale
(this is reinforced at the quantum level by Heisenberg’s uncertainty princi-
ple). Our formulation does not need this assumption.

Gravity theory — A physical motivation behind our gravity theory in Sec-
tion [0l is to build a framework for relativistic theories which is not restricted
to the set of events in space-time, but which also includes all possible frames
of reference at each events. This idea was proposed for quantum field theory
by F. Lurcat in 1964 [I8]. Later on it was implemented for gravity theo-
ries by M. Toller [23] and, independently, by Y. Ne’eman and T. Regge [20]
in 1978. The latter work (which used ideas related to Cartan geometry)
was motivated by supergravity theories and was followed by a series of pa-
pers [3, 5L 4]. These papers proposed variational formulations for producing
dynamically principal bundle structures (called there group manifolds) and
solutions of the Einstein—Cartan system of equations. However they differ
from our approach since their action functionals involve an integral over an
n-dimensional section of the principal bundle (where n is the dimension of
space-time) and, as Ne’eman and Regge noted in [20], §5, no way to ‘extend
the integration to the entire group space’ was known at that time. Under the
hypothesis that the cancellation phenomenon holds (see below and §I.4) our
result Theorem answers positively to this question.

Our method is based on the introduction of Lagrange multiplier fields m,
and most of the results in this paper involve the cancellation phenomenon
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(see §1.4)) in order to remove these fields from physical observation. However
this cancellation phenomenon might not take place in gravitational theories
because the Lorentz group is not compact. If so this would lead to modify
the physics thus modelled, by adding new matter fields. The question of
analyzing such possibilities and their possible physical relevance is quite dif-
ficult, due to the complexity of the equations. This is why we endeavored to
derive the complete equations and its consequence (I34]) in a geometrical
language.

Our point of view shares similarities with the interesting recent work by
S. Gielen an D.K. Wise [9]. Here the fundamental geometrical framework is
the bundle of unit time-like vectors on the space-time manifold. A variational
formulation of gravity is also proposed. The Authors remark also that the
latter fields may also create unwanted sources to the equations.

The models proposed here do not include fermions, i.e. Dirac fields. It is
however an essential question to incorporate them in, e.g., a gravity theory.
It is also natural in our framework by choosing the structure group for the
principal bundle to be the spin group. This question is addressed in [7].

Lastly this paper addresses only classical solutions of our models and
shows that they do not differ from standard classical solutions under mild
assumptions. However it is possible that their quantification leads to different
physical phenomena.

1.6 Content of this paper

Many results presented here were partially proved or sketched in [10] 13
11, 12]. However we have endeavored to simplify the computations of the
Euler-Lagrange equations which were relatively tedious and to give more
precise informations about these equations and their structure through the
introduction of a general framework. In this process we developped a more
general approach, leading to some generalizations and improvements. In
particular we present the first complete and rigorous proof of the existence
of a fibration in our Yang—Mills and Kaluza-Klein models.

Section 2] is mainly pedagogical and is devoted to recall the relationship
between the standard geometry of connections and metric viewed on the
manifold and its lift to a principal bundle. We also discuss Cartan geometry
and about the Palatini functional.

Section [3] expounds notations and conventions which are used afterwards.
Some useful technical lemmas are also stated and proven.
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Section Ml is devoted to the pure Yang—Mills theory. For pedagogical
reasons we start by proving first Theorem [41] for Maxwell fields, i.e. for
® = U(1), on the flat Minkowski space. This result is new and its proof
allows to understand the cancellation phenomenon in a simple context (al-
though some arguments are different from the case where & is compact simply
connected). We prove afterwards Theorem 4.1 on Yang—Mills fields. This re-
sult generalizes the one in [10] since it allows more general hypotheses, for,
in [I0], we made the assumption that the 1-form 69 is normalized.

Section [Blis devoted to the proof of Theorem [b.1]on Kaluza—Klein models.
This result was proved in [11]. Here we reproduce most of the computations
of this paper in a, hopefully, more transparent and direct language and derive
the complete system of equations, including some of these which were hidden
in [11], and complete proof. Moreover we incorporate a cosmological term in
the action.

Section [6] contains the proof of Theorem [6.1]on gravitation, a result which
extends to a larger class of groups (3, £) the result in [I3]| which was spe-
cialized to the case where P = SO(1,3) x R* is the Poincaré group and
£ = S0(1,3) is the Lorentz group (or their spin covers Spin(1,3) x R* and
Spin(1,3)). We give applications of these results to the case where P is
SO(1,n), SO(1,n—1)x R" or SO(2,n—1) and £ = SO(n—1). For n = 4,
we also show that one can deform the standard gravity by introducing the
Barbero-Immirzi parameter, through different choices of the tensor x,.

2 Generalities on connections

2.1 Connections in gauge theories and Ehresmann con-
nections

Assume that X is an n-dimensional manifold and that & is a finite dimen-
sional Lie group. Let’s denote by g its Lie algebra.

2.1.1 In the physics literature

A gauge field on a manifold X’ is described by a 1-form A? on X with coef-
ficient in g, i.e. A? € g® Q(X). Note that this means implicitely that the
associated principal bundle is trivial. Using local coordinates z* on X, one
can decompose A? = A9, dx" (where the summation over y is assumed), and
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each A9, is a g-valued function on X'. Its curvature is :

0A®, B 0A9,
oxH oxv

1 1
F? .= dA% + §[Ag NAf| = 3 < + [A?,, Ag,,]) dz* A dx”.
But since in all physically relevant cases & can be represented by matrices,
we can also write F9 = dA9 + A9 A AS.

Let us fix some Riemannian or pseudo-Riemannian metric g on X and an
adg-invariant metric k on g. Then the Yang-Mills action is defined on the

set of g-valued forms on X by
1
YMIA?] = ——/ |F?|?dvol,
4 Jx

where dvol is the Riemannian volume form on X and |F9| is the Hilbert—
Schmidt norm of F? computed using g and k. It is well-kown that Y M is
invariant by gauge transformations:

A — gldg+ g 'A%
F* —— ¢ 'Fdg,

for any smooth map ¢ from X to &. Actually g-valued forms correspond to

connections on a principal bundle over X as described below.

2.1.2 Geometric viewpoint: principal bundles

A way to represent connections consists with working in an associated prin-
cipal principal bundle over X with structure group &:

6 75X

Here, if r := dim®, F is an (n + r)-dimensional manifold equipped with a
submersion P : F — X, such that, for any x € X, the fiber F, := P~!1({x})
is diffeomorphic to & and there exists a right action of & on F

Fx® — F
(z,9) +— z-g

such that the &-orbit of any point z € F coincides with the fiber Fp,
containing z. We hence get a representation of g in the space of tangent
vector fields X' (F)

Fxg — TF

(Z> Sg) — (Za z: é"g)’
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e

where z-£% := d(%:) (0), which induces a vector space isomorphism 75 (Fp()) ~
g. As a consequence of these definitions, for any z € F, the kernel of dP, in
T,F coincides with the vertical subspace V, :=z-g:={z-£%; &% € g}.

2.1.3 General Ehresmann connections

A general Ehresmann connection (as defined in [8]) is a distribution (H,),er
of subspaces of T'F such that, Vz € F, H, ® V, = T,F. We call each
subspace H, a horizontal subspace. It can be completely defined by a 1-form
0% € Q' (F) ® g, with coefficients in g, such that

Vze F, Kerb = H,.
This form is not unique. However if we impose a normalization condition
Vze F,V¢eg, 0(z- &) =¢", (7)

then 69 is uniquely defined.

Note that, for a general Ehresmann connection, the dependence of H, in
z, where z runs in a fiber F,, may be completely arbitrary. Hence this notion
is more general than the standard connection used in Physics. Indeed it turns
out that the standard connections in Physics and in Mathematics satisfy the
further equivariance condition (et(fg))* 0% = Ad, -+ 09, Vt, which implies

L,e6® +[£°,6° = 0. (8)
A key observation is that, if (7) is satisfied, then L,..0° + €%, 6] = d(z -
9 109 +z-£% 1dO" 4 [€9,60%] =0+ 2z-&% 1 (dO9 + %[99 A 69]). Hence
z-£9 109 = &8 — z-69 1 609 = &9
L, e+ 69,69 = O z-&% 1 (do® + %[99 ANO%) = 0
Beware that in most references the term "Ehresmann connection’ is used for
meaning ‘'normalized equivariant Ehresmann connection’.
2.1.4 Relationship between both points of view

Consider a section ¢ of F over some open subset of X. For avoiding clum-
siness we assume that o is defined globally on X, i.e. 0 : X — F. Then,
for any 0% € QY(F) ® g which is normalized and equivariant, A% = o*0? €
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Q1(X) ® g represents a standard connection. Moreover if 5 : X — F is
another section, then A% := 5*69 is another connection and A9 and A¢ are
related by a gauge transformation.

Actually any section o : X — F gives us a diffeomorphism

AXxB — F
(ng) = O-(X)'g

the inverse of which provides us with a local chart

F — XA x6®
z — (x,9)st.z=0(x)-g

In these coordinates the normalization condition (7)) reads: JA? € QY(F)®g
s.t.
0 =g 'dg+g 'A% and (z-€9) JAP=0, V&cg 9)

and, if so, the equivariance condition (&) reads
L,eA® =0, V& eg. (10)

Note that (@) means that A9 has the decomposition A8 = A8, dz*, where
each A%, is a function on F (i.e. depending on the coordinates z and g),
whereas the equivariance condition (I0) then means that actually the func-
tions Af, depend only on x.

2.2 Gravity and Cartan connections
2.2.1 Levi-Civita connections in orthonormal moving frames

Let X be a manifold of dimension n and s a vector space of the same dimen-
sion n. Assume we are given €° € 5 ® Q'(X), an s-valued 1-form of rank n
everywhere. It provides us with a solder form, i.e., at any point x € X', an
isomorphism T, X — s. By choosing a basis (F1, -« - , E,) of s we decompose
e® as e® = e*E,. Then the components (e!,--- ,e") form a coframe on X'. We
will thus call coframe or soldering form any e° € 5 ® Q'(X) of maximal rank
(see Definition B.2]). By the same token we define the dual frame (eq, - - - , e,).
Then any connection V on T'X can be characterized by an End(s)-valued 1-
form ~9!®) the components in a basis (F, - - , E,) of which are (V) 1<ap<n
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so that V is given by Ve, = 7°4(X)es, for any smooth vector field X. We
define v%,. := v%(e.), so that

V=i (1)

This connection is torsion free iff de® 4+ %, A € = 0.

If furthermore s is endowed with a non degenerate bilinear form b, then
X is endowed with the pseudo-Riemannian metric g := (€°)*b = bye® ® €,
where b, := b(E,, E}). A connection V, which is defined by v9®) respects
the metric g iff the coefficients of v are in so(s,b), i.e. y% := vab/bb,b is
skewsymmetric.

The Levi-Civita connection VI on TX on (X, g) is the unique connec-
tion which is torsion free and respects the metric.

2.2.2 The Palatini formulation of gravity

The previous framework allows us to set the so-called 'Palatini’ (also called
"Trautman’ in [20]) formulation of gravity theories and its n-dimensional
generalizations as follows. Suppose we are given some model n-dimensional
space (s,b) as in §2.2.I] and an n-dimensional oriented manifold X. Let
[ := so(s,b). Consider the set of pairs (e°,7'), where ¢* € s ® QY(X) is a
solder form on X and +' € [® Q'(X) is a 1-form with coefficients in so(s, b).
Using a decomposition of s in a basis as in §2.2.1] the Palatini action is then
given by

Ap (¢,9) = / S Ay a7 Ay ) b
X

where e,(ﬁa_f) = n+2)!ea1,,,ane‘“ A= ANe®™ and €4 ..q, 1s the completely anti-
symmetric tensor such that €;..,, = 1. Actually the expression . A 7%, is

nothing but a component of £[y'A~'], where [+, -] is the Lie bracket of so(s, b).
By setting I'" := dv' + %[7[ Av'] and T% := Iy b"?, the Palatini action reads
Ap (7)) = [ezem AT

It is well-known that critical points of Ap correspond to solutions of
the Einstein equations in the vacuum on X: to €® ~ (e%),. ., and 7', it
corresponds a pseudo metric g := (e°)*b and a connection V on TX. The
vanishing of the first variation Ap with respect to variations of 4' implies
that V is the Levi-Civita connection. The vanishing of the first variation

with respect to e° reads as the Einstein equation.
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This description requires the existence of a moving frame on X', which
is possible only locally in general, for topological reasons. This can be fixed
by, e.g., replacing the R"-valued form e* by a form with values in some
vector bundle VX of rank n equipped with a pseudo metric and which is
topologically equivalent to TX and ~' by a 1-form with coefficients in the
bundle so(VX). An alternative way to fix this point would be to work on
the frame bundle.

2.2.3 Lifting on the frame bundle

As in §2.T one can associate to any connection VZ* on T X a normalized and
equivariant Ehresmann connection V” on a principal bundle 7 : P — X
associated to TX. The simplest choice for P is the bundle F(T'X') defined
as follows, which can be identified with the following subset of s ® T*X:

F(TX):= (s@T"X)iso == {(x, A®) € T X ; A* : T, X — s is an isomorphism}

The group GL(s) of linear automorphisms of s acts on the right on F(TX)
through (g, A%) — A% .- g := g 1A%

The canonical fibration map 7 : s @ T*X — X, (x, A°) — X, defines a
canonical s-valued 1-form ¢° on s  T* X, given by ¢° := 7*A°. Its restriction
on (6§ ® T*X);s, (which we still denote by ¢*) is the canonical soldering form
on (5 © T*X)isy = F(TX).

Now consider a (possibly local) section o : X — F(T'X). It allows us to
trivialize F/(TX), i.e. to construct a diffeomorphism

X x GL(n,R) —s F(TX)
(X>g) — (X>ax'g)

Then any connection V7% on TX is defined by a 1-form v9'®) with coefficients
in gl(s) by setting that, for any smooth tangent vector fields X,Y on X,

<a7 V§XY> = Lx <a7 Y) + 791(5) (X) <a7 Y>

where (-, -) is the s-valued pairing between s ® T*X and T'X.

Assume now that we are given a basis (Ey,---, F,) of . Then, to any
(x,A%) € (§ ® T*X);s0 it corresponds a unique frame in 7, X which is the
inverse image of (Ei,---,E,) by A®. By applying this in particular for
A® = (ay)*¢® we get a moving frame (e, - ,e,) on X and hence the ma-
trix representation (y%)qp of vgl(s) in this basis. Then the previous relation
translates as V{'Y? = Ly Y + 4% (X)Y? where X = X%, and Y = Y,
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Moreover, still by using the trivialization, we can define a 1-form @9
on F(TX) with coefficients in gl(s) by

P = g7y g 1 g7 ldg € gl(s) ® QY(F(T X))

This 1-form is obviously normalized and equivariant and its restriction to
the image of a coincides with 49®). As in 213l fgl(s) defines at each point
z € F(TX) a horizontal subspace H, := Kergd'® e T,F(TX) and hence a
normalized and equivariant Ehresmann connection VFT%) on F(TX). On
the other hand it is clear that the restriction of ¢ on the horizontal space H,
is an isomorphism. Hence the rank of ¢*+¢9) € (s@gl(5)) Q! ((sRT* X )iso)
is maximal everywhere, which means that it provides us with a coframe on
(5 @ T*X)is0-

Assume furthermore that X is pseudo Riemannian and, for simplicity,
is oriented and that the connection V7% respects the metric. Then we can
reduce F'(T'X) to the bundle of orthonormal frames SO(T'X) and replace
gl(s) by [ := so0(s,b). Hence ' = ¢©9®) has coefficients in [. We remark that
©° + ¢ encodes exactly the pair (e°,4') which are the dynamical fields in the
Palatini formulation of gravity. The 1-form ¢° + ¢' is a particular case of
a Cartan connection. In the case where the bundle F(T'X) admits a two-
sheeted spin cover Spin(T'X) we can extend these definitions by considering
the pull-back images of ©® and ' by the cover map Spin(TX) — SO(TX).

2.2.4 Cartan connections and Cartan geometries

Cartan connexions were defined by Ehresmann in [8]. A comprehensive pre-
sentation of Cartan geometries and of their relationship with gravity theories
can be found in [24] and a full treatise in [21].

Cartan geometries can be seen as smooth deformations of Klein geome-
tries which, themselves, are a way to understand and generalize Euclidean
spaces or the Minkowski space as symmetric spaces. Within Klein geometry
the relevant properties of a space are encoded in the group of symmetry B
(like Poincaré) acting on the space on the right. Moreover the subgroups of
B which leave a given point invariant can be identified with a subgroup £
(like Lorentz) of B. As a consequence the space can be identified with the
coset PB/L. All that defines a principal right bundle £ — P — P/ L over
P/ L with structure group £. The infinitesimal structure of this geometry is
encoded by the canonical Maurer-Cartan 1-form ¢~'dg on 3.
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A Cartan geometry is described by principal right bundle £ — P — X
over a manifold X of dimension equal to dim(*33/£), which is endowed with
a Cartan connection which can be seen as a deformation of the canonical
Maurer-Cartan 1-form ¢~'dg on 3: let p and [ be the Lie algebras of, re-
spectively, B and £. A Cartan connection on £ — P — X is a 1-form
P € p @ QY (P) with mazimal rank everywhere (i.e. a coframe on P), which
is equivariant with respect to the right action of [ on P, i.e. such that,

Vze PVE €L, Lag®+ [, 4" =0 (12)

and which is normalized with respect to the right action of [ on P, i.e. such
that

Vze P Vel ¢i(z-&)=¢, (13)
Note that the latter relation implies in particular that the restriction of ¢?

to a vertical subspace T,P, takes values in [ C p. We note also that, as in
§2.1.3) conditions (I2) and (I3]) are equivalent to the conditions

1
VzeP Ve el, z-& 1P =¢" and z-€' (d(pp+§[g0p/\g0p]):()

A Cartan geometry is a principal bundle £ — P — X endowed with a
Cartan connection ¢¥. Its curvature 2-form deP + % [P ApP] is an obstruction
for X to be locally identified with J3/£.

We consider here reductive Cartan geometries: a Cartan geometry (£ —
P — X, V) modeled on £ — P — P/L is reductive if there exists a
vector space decomposition

p=I1Ds
which is invariant by the adjoint action of £ on p.

The example in §2.2.3 corresponds to a reductive Cartan geometry with
P = SO(s,b) x s, £ = SO(s,b). In this case a Cartan connection ¢” on
£ — P — X describes a pseudo Riemannian structure and a metric
preserving connection on X. Through the Ade-invariant splitting [ @ s, a
Cartan connection P can be decomposed as P = ©* + ¢'. We recover
hence the description of §2.2.31 The standard General Relativity theory
corresponds to the case where where (s,b) is the 4-dimensional Minkowski
space, B = SO(1,3) x s and £ = SO(1,3).

Note that if a pseudo Riemannian manifold X admits a spin structure,
we can replace the bundle SO(T'X) by its 2-sheeted covering Spin(T'X) its
suffices to define its Cartan connection as the pull-back of ¢? € so(TX) ®
QY(P) by the covering map Spin(TX) — SO(TX).
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2.2.5 Generalized Palatini models

We may generalize the Palatini model in §2.2.2] by replacing the Klein model
SO(1,3) — SO(1,3) x s — s of a Minkowski space by a reductive Klein
model £ — P — P/L. For instance keeping £ = SO(1,3) but replacing
SO(1,3) xs by SO(1,4) or SO(2,3) leads to other gravitation theories with
a non vanishing cosmological constant (see §7.1]).

The extra ingredient is a constant tensor x** € [*®sAs which is invariant
by the adjoint action of £, i.e. such that, Vg € £, Ad;®Ad;®Ady (k™) = k™.
We set

1
Ap(8°, ') = / L2 A oL,
x 2 =

where @' := dp' + 1[p' A ¢f] € [® Q*(X) is the curvature 2-form of ¢' and
we use the conventions of §3.3] for /{L@QS(_?_z) A ®L: it means that if (E,),<,<,
is a basis of s and if (t;),..., is a basis of [, if we let 5,%° be the coefficients
such that k™ = k;' @ E, ® E, and if 6° = §°F, and ®' = ®'t;, then

1

1 )« i
SRS A D= ST A B (14)

Here it is worth to introduce a specific basis of [ in the case where £ =
SO(s,b), through the following, the proof of which is straightforward.

Proposition 2.1 (basis of [ = so(s,b)) Let (s, b) be a vector space endowed
with a symmetric non degenerate bilinear form b. Let (E,),.,., be a basis
of 5. Then there exists a unique basis of | :== so(s,b), which we denote by
(t“b)1<a<b<n, such that: for any &' € so(s,b), if (£%)1<ap.<n 1S the matriz of

£ in (Ea)i<a<ns € such that E(E,) = €% Ey, and if we let £ = f“b/bblb,
then &' = > i<ach<n £%%,,. Moreover since €% + €% = 0 (because £' € 1), by

defining ty, == —ty for 1 < b <a <n, we can write
1 1
[ ab ab
= =&y == t. 15
3 25 b=y E " (15)
1<a,b<n

Thus the set of indices {i € N|1 < i < r} in (I4) is actually the set of
ordered pairs {ab = [a,b] € N*|1 < a < b < n}. Back to (I4), by choosing

1
K™ = §t“b ® to Aty, Lo Kieg™ = 0% = 5265 — 656" (16)

we recover the standard Palatini action

1 1 _ 1 (nvo
/ §/€L£9£E—;l—2) A (I)L — / Z’L{’[C,d}abec(é,v 2) A (I)Cd _ / 59[(1117\7 2) A (I)ab
X X X
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2.3 Towards variational formulations on the principal
bundle

The basic ideas behind the variational theories expounded in this paper is to
find a variational formulation of Yang-Mills equations or of gravitation sitting
on the principal bundle. In the case of Yang—Mills theories, a simple way to
proceed is based on the fact that, roughly speaking, if the structure group
& is compact, for any 6¢ € g ® Q'(F) which is normalized and equivariant
we can write 09 = g7'dg + g7t A% in a trivialization, where A% = AJ(z)dz"

and hence
/ |F?|* dvoly =

where F® = dA? + 1[A? A A?] and ©F := d§°® + 1[6% A 69].

This tells us that we may replace the standard Yang-Mills action by
I= |98” dvolz provided that we assume the constraint that ® is equivariant
and normalised. The delicate point is to impose these constraints: z-£% 1 09 =
€% and z - €9 1 (d6® + 169 A 69]) = 0. This is more or less what is done in
the action functional in Section [l through the introduction of auxiliary fields
which play the role of Lagrange multipliers.

* dvol

3 Notations, conventions and some useful re-
sults

Through the paper the interior product of a vector with an exterior differen-
tial form is denoted by . Some gothic letters have been chosen in relation
to their possible physical meaning:

s like space

® and g for a structure group (e.g. SU(m) or the Lorentz group) and its Lie algebra
£ and [ like the Lorentz group and its Lie algebra

B and p like the Poincaré group and its Lie algebra

Underlined letters s, g, [, p,u refer to pairs of repeated indices, i.e. duality
pairings, see §3.3 below.
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3.1 Linear representations and tensor products of rep-
resentations

In the following & is a finite dimensional Lie group of dimension r and g its
Lie algebra.

Dual representations — Let V' be a finite dimensional vector space and
let V* be its dual space. Let R : & — GL(V), ¢ —> R,, be a linear
representation of &. We define its dual representation R* : & — GL(V™)
by: Vg € &,

Vae ViYueV, (Rja,u):=(a,Ry1u)

where (-, ) denotes the duality pairing. Similarly given a linear representation
p:g— gl(V) of g, we define its dual representation p* : g — gl(V*) by:
v ey,

VaeViVueV, (p"(§a,u) = —(a p(§)u)

These definitions give rise to the relations
Vae Vi, VueV, (Rya,Ryu) = (o, u) (17)

and
Vae Vi VueV, (p"(§a,u) + (o, p(§u) =0 (18)

Adjoint and coadjoint representations — The adjoint representation
of ® maps any ¢ € ® to Ad, € GL(g) defined by: V( € g, Ad,( :=
% (getcg_l) li=o € g. If we assume that & is a matrix group (which is
always the case in our context) then Ad,( = gC(g~'. Following the pre-
vious definitions its dual representatio is the co-adjoint representation

Ad*: & — GL(g*), defined by: Vg € &,
VAEG L VC e (AN C) = (\Ad, (), VEcg.

The adjoint representation of g maps any £ € g to ade € gl(g) defined by:
V¢ € g, adeC = %(AngC) lio = [£,¢] € g. Its dual representation is
ad” : g — gl(g*), defined by: V¢ € g,

VAe gV eg, (adi) ()= —()\ ade()

!The definition given here for the adjoint representation of & on g* coincides with the
standard definition of the so-called coadjoint representation, denoted by most Authors by
Ad*. Beware that the sign convention is opposite to the definition used by the author in
[10] and [13].
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As a consequence of (I7)) and (I8) these representations satisfy the relations
(AdJA, Ady() = (A, ¢) and (adgA, () + (A adeC) =0, VA € g*, V( € g.

Use of bases — Let (t;)1<i<, be a basis of g and let (t');<;<, be its dual
basis. Then the Lie algebra structure is encoded in the structure coefficients
cl;, i.e. such that [t;, t;] = txc;. Then

adg,t; = cfjtk (19)
and, for the coadjoint representation ad” : g — ¢l(g*),

adg t/ = —cl, tF (20)

Tensor products — Given a finite family of representations of &, R; : & —
GL(V;), for 1 <i < a, we define their tensor product R:=R; ® --- ® R, to
bethemapR:® — GL (V1 ® --- ® V,) such that: Vg € &, Y(uy, -+ ,u,) €
Vix---xV,

Ry(ur @ -+ @ ua) = (Ri)g(ur) @ - -+ @ (Ra)g(ua)

Given a finite family of representations of g, p; : g — gl(V;), for 1 <i < a,
we define their tensor product p := ()1 ®1®-- 1)+ +(1®---R1®p,)
to be themap p: g — gl (V; ® --- ® V,) such that: V€ € g, V(uq, -+ ,u,) €
‘/1 NEEEE Va

PE) (1@ ®ua) = (p1(§)ur) RUa®- - RUg+++ - +u1 @+ @ (pa(§)ua) (21)

3.2 Intrinsic indices and some standard tensors

The proofs of our results rely on expressions involving tensors with many
indices. In order to limit the proliferation of indices we adopt the following
conventions.

1. Given a vector space V, 2V represents a vector in V.

Vi-

2. IfVy,---,V, are vector spaces, "7"V= represents a tensor in V,®- - -QV,,.

3. If V* is the dual space of V we may denote by ¢y (instead of £V") an
element of V*.
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4. We use this convention for any tensor: any index V' will refer to V' or
to its dual space, according to its position, upper or lower, respectively.

Using this convention, if g is a Lie algebra with basis (t,--- ,t,) and dual
basis (t!,---,t"), if we denote cfj its structure coefficients in this basis, we
define

clyy = cfjtk 'Rt cgRgg" (22)

If (s,b) is an n-dimensional Euclidean or Minkowski vector space with basis
(E1, -+, E,), we denote

=0 FE,®FE" cs®s" and 6, =0F'®FE cs'®s  (23)

where 47 is the Kronecker symbol.

If (M, g) is a (pseudo-)Riemannian manifold of the same dimension as s
and (el, -+ e") is a (possibly locally defined) orthonormal moving frame on
M, we set € =e'F; +---+e"E,.

A connection 1-form in this frame reads ', or w®; = w%t, ® t°, through
the identification of [ = so(s,b), the Lie algebra of isometries of (s, b), with
a subspace of § ® s*.

Its curvature 2-form reads Q' = dw' + %[w[ Aw'l or O, = dw®s +w®y Aw?
(= dw®s + ws A wi, according to the conventions in the next paragraph). It
can be represented by Q% := Q°,b* (= Q°b*). The decomposition of Q2 in
the basis (e“ A eb) L<ach<n MvOlves the coefficients of the Riemann curvature
tensor R%,:

1 — 1
0% — 5 Z Rssabea A 6b (: §R55£6§/\ ef_’)
a,b=1
from which we define the Ricci tensor and the scalar curvature:
R, :=R",, =R%, and R:=R% =R% (24)

and the Einstein tensor

1
E.:=R.’ — ;R4 (25)

3.3 Contractions of tensors and intrinsic indices

Using the previous conventions, in order to help to identify which pair of in-
dices are summed when summations on repeated indices occur, we introduce
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the following conventions (recall that the summation over pairs of repeated
indices corresponds to a duality product).

For any integer a € N*, let [1,a] := [1,a)| " N. Let a,b € N* and let
(Vi,---,V,) and (Wy,--- W) be two lists of vector spaces (possibly with
repetition). Let ¢ € N* such that ¢ < min(a,b) andlet o : [1,¢] — [1,a] and
7 [1,¢] — [1, ] be two one-to-one maps. Assume that, Vi € [1,c], V) is
in duality with W_.;. We then define the contracted tensor product to
be the bilinear map

Cor V1@ @V)x (W@ @W,p) — Z1® -+ @ Zgipae

where Z1, -+, Z,1p_o. is the list of vector spaces obtained after removing all
vector spaces V, ;) and W) for i € [1,c], from the list (V3,---, V,, Wi, -+, W}).
For SeVi®@---@V,and T € W, ® --- @ Wy, Cp (S, T) is the tensor in
Z1® -+ Zyip—2e Obtained by contracting, in the tensor product S ® T, all
pairs of indices associated to the positions (o (i), 7(4)), for ¢ € [1,].

A precise definition is given at the end of this paragraph. However it may
be more illuminating to start by illustrating this definition through examples.

A list of examples

In the following (v;); is a basis of V and (v'); is its dual basis.

1. we denote the duality product between 2" and ¢y by
EKI’K = Cgﬂ-(fv, l’v) = gll'l + -+ Ekl’k eR

where we use the underlined out letter V repeated twice to indicate the
duality pairing, i.e. the summation over repeated indices. Here o and
T are such thata =b=c=1 and (c(1),7(1)) = (1, 1).

2. however if two indices V' are repeated but not underlined, then it means
that we consider their tensor product. Hence

byxV =ty @V =07 Vi®Vj eV*eV
Beware it is not commutative!

These rules are then extended to tensors as follows:
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(iii) Suppose that V and W are two different vector spaces. Consider for
example two tensors SYyw = Sapv; QWA @ WP € Vo W* @ W* and
TvWW =T;Pvigwe@wp € V'@ W @ W, then

SV ww TKWW = S TPwiAowlowe@wp € W'W* W W
SVEW TyWYW =  Sip TjADVZ'®WB®Vj @wp € VoW VoW
SVWW TVWW = SiAB TjCAVZ-@WB@Vj ®Wc S V@W* ®V*®W
SKWW TKWE = SiAB TZ'CAWB & Wo S W*e W

Here a = b = 3 and the expression on the left hand side is equal to
Cor(S,T), where: on the first line, c =1 and (o(1),7(1)) = (1,1), on
the second line, c =1 and (o(1),7(1)) = (2,2), on the third line, ¢ = 1
and (o(1),7(1)) = (2,3) and, on the last line, c =2 and (o(1),7(1)) =
(1,1) and (0(2),7(2)) = (2,3).

(iv) if the same vector space occurs several times in each factor and several
pairings occur between these factors by respecting the order, we also
struck the indices corresponding to these factors. For instance, for
SVww and Ty"'W as before,

SVM T‘VM = SiAB TjABVZ' ®Vj e VeVr
SKM TKM = SiAB TZ'AB S R

Here a = b = 3 and the expression on the left hand side is equal to
Cor(S,T), where: on the first line, ¢ = 2, (o(1),7(1)) = (2,2) and
(0(2),7(2)) = (3,3), on the second line, ¢ = 3 and (o(1),7(1)) = (1,1),
(0(2),7(2)) = (2,2) and (0(3),7(3)) = (3,3).

(v) in case of ambiguity, e.g. if the same vector space occurs several times
in each factor and several pairings occur between these factors but the
pairing between these factors does not respect the order, we label the
factors by integers in order to indicate the right couplings. For instance,
for SVyw and Ty"'"W as before,

SVE1E2 va2wl = SiAB TjBAVz' ®Vj e VeV
SV w, TyPe = Siap T84 € R

Here a = b = 3 and the expression on the left hand side is equal to
Cor(S,T), where: on the first line, ¢ = 2, (o(1),7(1)) = (2,3) and
(0(2),7(2)) = (3,2), on the second line, ¢ = 3, (o(1),7(1)) = (1,1),
(0(2),7(2)) = (2,3) and (¢(3),7(3)) = (3,2).
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(vi) Lastly by using the definition of ¢94 given by (22), (19) translates as
Ve, (P e g, ade(? = e LN¢T (26)

and (20) as
VT € g, Vg € 9", adaly = —chy ({2l (27)

Note that all these conventions are independant of the choice of the bases of
the vector spaces.

We extend this operation to any pair of differential forms with coefficients
in tensor products: for a,b € N*, Vj,--- V,, Wy,--- W), ¢ € N* and (o, 7) :
[1,¢] — [1,a] x [1,0] as previously, for p,q € N, we define the contracted
wedge product to be the unique bilinear map

Vi@ @V, @ (N)x W@ - - @ W@ (N) 22 7,1 @2, 00 @)

such that, VS € 1 ® --- @V, VT € W1 ® --- @ W}, YVa € QP(N) and

VB € QUN)
Cor(S@aNT®p)=Cor(S,T) aNB.

Définition 3.1 Let a,b,c € N*, (Vi,---,V,) and (Wy,--- | W,), two lists
of vector spaces, o : [1,c] — [1,a] and 7 : [1,¢] — [1,0] as in §3.3
Let iy,- -+ i, € [1,a] such that iy < -+ < i. and {i1, -+ ,i.} = o([1,c])
and, similarly, ji,--- ,jec € [1,b] such that j; < --- < j. and {j1, -+, je} :=
T([1,¢]). Let (vy,- -+ v, w1, - ,wp) € Vi XXV xWyx---xW,, p,g eN
and a € P(N) and € QIN). We then set

Cor (1B QU@ AN w1 @ Quy®P ) =

[

(00w, wrw) X v &R w|®ang (28)

k=1 1€[1,a]\o([1,c]) JELB)\T([1,c])
Then the contracted wedge product is the unique extension of
CU’T(./\.) . V1®...®VQ®QP(_/\/’) X W1®...®Wb®9q(_/\/’) —
QR vile|l @ Wi|eotw)
i€[La]\o([1,c]) FEMDN\T([1,e])

which is bilinear.



3 NOTATIONS, CONVENTIONS AND SOME USEFUL RESULTS 31

3.4 Vector and tensor valued forms and coframes on a
manifold

Définition 3.2 Let N be a manifold of dimension N and V,Vi,--- .V, be
vector spaces and p € N. Let O C N an open subset.

1. A vector space valued p-form e on O is an element of V @QP(0), i.e.
a p-form on O with coefficients in V.

2. If p =1, dimN = dimV and ¢V € V @ QY(O) has a mazimal rank
everywhere, then eV is a coframe on O.

IV =Vi@eV, and &V € V@ QP(O), then e € Vi @ QY(O) and
e’z € Vo @ QY O) are the projections of €V to, respectively, Vi and Vs,
through the splitting V. =V, @ Va, so that ¢V = "1 + "2,

Note that we will also meet tensor valued p-forms on O, i.e. elements of
Vi®- @V, ®Q(0). Most of the time we will not specify the domain
O CN.

Consider a vector valued 1-form " on A and let’s choose a basis (V)< 1<,

of V, with dual basis (VA)1 <A< Then eV decomposes in this basis as

|4

eV = eAv, for some collection (eA) of 1-forms on A. Obviously eV is

1<A<m

a coframe iff (eA) is a basis of T*N . For any k € N we set

1<A<m
VA AV ={S0 My, @ - @va €VR---QV |

k
So(An)-o(de) — (_1)lolgA-A vo e S(k)}

We define

Vo= YA = va ®vged AeP e VAVeQWN)
eVVV o= VA ANV = vi@vp@veet AeBAe € VAVAV ®@DBWN)
(29)
and so on. We also set (™ := el A--- A e™ € Q™(N) and
= ﬁeAA?..AmeA? A-ee A efm e QM L(N)
6%3_2) = ﬁeABAB...AmeAS A= ANedm € QM (N)

-3 _
6%30) = mEABCAALWA eM A netn e QTN

m
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and we define

e = vy - V@ Qo (F)
= vAgvBTTY e VAV @ QMR (F) (30)
e%}f’) = vievie v%g"g‘(j”) € VFAVFAV*@ Q™ 3(F)

In the following we assume that €' is a coframe. Then

e any 1-form o € Q'(N) can be decomposed as a = a e and we asso-
ciate to it the V*-valued function ay := a v € V* ®@ C®(N).

e any 2-form § € Q*(N) can be decomposed as § = 18ape A €?, with
Bag + Bea = 0, we associate to it the V* A V*-valued function Sy :=
Bapvr @vE € VEAV* @ CX(N) .

e the generalization of these conventions to forms of arbitrary degress is
straightforward.

Hence the following isomorphisms, which are independant of the choice of
basis:

QYN) > a = ayet — ay = viay € V* @ C°(N)
DP(N) > B= %ﬁABeA NeP o By i=vA@vBBap € VPR Ve (W)

Then by using the convention of §3.3] we have

a = aye’ for a € QHN) , B:lﬁvve for B € Q*(N) (31)

and so on.
Forms of degree N — p and for small values of p (e.g. p =1, 2 or 3) also
decompose in the bases

<e(N )) <(N 2)) and (6(1\7—3))
A casn’ \AB ) upen ABC ) cacB<o<nN

of respectively QN"HN), QN 2(N) and QV3(N). This allows us to de-
compose any form in QVP(N) for p = 1,2 or 3 and leads to the following
isomorphisms, which depends of the choice of the basis of V* only through
the m-form vi A -+ A V™

OVLAN) 5 a=atel a = vt € V @ C>®(N)
ON2N) 5 f=datBelly? BV i=va@vpsit € VeVeeXW)
OV3(N) 3> = ?)ll,yABcequC) WYY = v,y ® v ® verABC € VeVeVee W)

lll
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We hence can write

_ 1 _ 1 _
a=atey "V, f= oY and g =gy (32)
ote that, if we let (e1,---,eyn) be the moving frame on /N which 18 dual to
N hat, if 1 be th ing f N which is dual
(el, -, eM), then N = ey g™, 6%3_2) = ep e;N_l) and 654]\][3_6?) =
eo 654]%_2).

3.5 Connections

Let g be a Lie algebra and consider a g-valued-form w? € g ® QY(N') defined
on a smooth manifold N. Let V be a vector space representation of g and
denote by p : g — ¢l(V) the associated morphism. On the trivial vector
bundle N x V' we define the connection associated to w?, to be the first order
differential operator

AV @ CP(N) — V@ Q'(N)

defined by
VP e g e (N), d¥fTi=dft+ () [

and we extend this operator as d* : V @ QP(N) — V @ QP*1(N) by
Va¥ e Ve PW), d¥a" :=da" + (pw®) AoV

where, if (t;)1<i<, is a basis of g and w9 = W't;, (pw?) A a® := W' A (pt;)a®.
We define the curvature 2-form of d*° to be

Q8 = dwd + %[wg AWt € g® 2N

it satisfies the property that d** o d*® = (pQf)A. Most of the representations
used within this paper are the adjoint ad,s and the coadjoint ones ad’, and
their tensor products. Recall that, if cfj are the structure coefficients of g,
so that [t;, t;] = ¢ty (see Section B.)), then

Vol € g@ QP(N), adus Aa? =W Aa?] = cfj w' Aol ty,
and if (t')1<;<, is the dual basis of g*,

Vag € g" @ QP(N), adls Aay = —cfj W' A ay t7
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As a consequence of these definitions and of (1)), if p; : g — gl(V1), - -,
pr - 8 — gl(Vy) are vector space representations and if V=V, ® - ® Vj,
then Va¥' € V @ QP(N),

AoV :=da" + (' @1@- - @A +--- + (121 - @ pw®) A

(33)
Through a decomposition of oV by using bases of the spaces Vi, -,V and
by denoting by (pew?); the matrix coefficients of p,(w?) in each basis, the
latter relation reads

w9 qpedy 11 11, J1i2-- ik ik i1l
d¥ o = da™t k“‘(plwg)ﬂa]lQ k+"'+(pkwg)Jka1 k—1Jk

Most of the time, in order to lighten the notations we will write d** = d“, if
there is no ambiguity.

3.6 Some useful results
3.6.1 Exterior differential algebra
Lemma 3.1 Let V be a vector space of dimension N. Let eV € V @ QY(N)

be a vector valued 1-form over a manifold N and let e, e(AN_l), eﬁf\; 2 and
NP as in (30). Then
([ eAnelTY = 5;{,e<N> (a)
el A 654]\,[3/2) = dpe (N — 64 53]\,7 2 (b)
N-3 (N-2
et A 654’3’6)” = 5£'6A'B' + 5B'€C'Af +due B’C’) (c)
eA AeB A eEiYB,z) = 51‘2%/6(” (d)
N N- (N-1
\ 6 VAN 6 N 654/3/6)«/ - 6;%/ ( ‘I’ 5C/A/ ‘I‘ 5A/B/ ) (6)
(34)
where 645 := 5465 — §508. Moreover
deAN_l) = def A e(A]YB 2
deAA]g D= deC A efﬁgc) (35)
(N N-
deABC? b= deP A eﬁch:%

Proof — Relation (34]) is a consequence of the following elementary results.
Let (va)i<a<y be a basis of V. We denote by (v4);<4<y the basis of V*
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which is dual to (v4)1<a<n. Set v~V i=vIA- - AVY = %eAl...ANVAl A A
vAY € ANV* and

N-1 ~
vi (Ni' 1)!€AA2---ANVA2 A AVAN e ANty

N—-2 ~
Vin = Nemi€ABAg- AV 2 A AVAN e ANZ2Y

N-3 ~
V%BC) = ﬁEABCA@--ANVA‘l A A VAN c AN 3V*

A key observation is that

V;N_l) =vy 2 v, VX\; 2= =vpg VE4N 1), VX\;_C?) =ve V%B_Q),
(36)
from which we can easily deduce the following
vA AV = 5ﬁ,V(N) (a)
vAA V%Bj) = 5§,VA, b_ 52‘,V%_;) (b)
vAAVETEE = sAVITY 4 eAvET P 4 eav Y (c) (37)
VAAVEAVELD = a4B, v (d)
VANV AVIe = SV H 6dh VeV Fadve (o)
where §45, = 64,05, — 64,65, To prove (a) it suffices to developp the

relation 0 = vy 10 = va 1 (v AvI™) and to use the graded Leibniz rule
for the interior product. Computing the interior product by vp to both
sides of (a) leads to (b) and computing the interior product by v to both
sides of (b) leads to (c). Then (d) follows from (a) and (b) and (e) follows
from (b) and (c). Lastly (34) follows from (B7) by taking the pull-back by

e”, since et = (e")*v4, e;N_l) = (V)" VE4N 1), 6%3_2) = (eV)*VX\;_m and
(N=3) _ (eV)* (N-3)
€apc = \€ ) Vapc -

Relations (35) are easy consequence of the graded Leibniz rule for the
exterior derivative. U

Lemma 3.2 LeteV € V@QYN) be a smooth frame over a manifold N and
let1<p<m-—1. Then

def" P = de¥ Al Y (38)
(for instance deﬁ/ = de¥ A e(m 2 and de% 2 = de¥ A e%v?’)).

Proof — This relation is a translation of (35]). O
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Lemma 3.3 Let g be a Lie algebra and w® € g @ QY(N). Then d“ satisfies
the graded Leibniz rule with respect to the contracted wedge product, which
means the following.

Let a,b € N* and let (Vi,---,V,), (Wy,--- | W,) be two lists of vec-
tor spaces which are all linear representations of g. Let ¢ € N* and
o:[l,c] — [1,a] and 7 : [1,c] — [1,0] be two one-to-one maps. Let
p,qEN. ThenVB eV ®-- @V, QWPWN),VyeW, ®--- @ W, @ QYN),

d“Cor(BA7) = Cor(d®B A7) + (=1)PCor (B A dy) (39)

Proof — 1t is a consequence of the Leibniz rule for the exterior differential
d and of elementary properties of representations (I8) and (2I]). O

For example let w9 € g ® QY(N), let V be a vector space representation
of g and consider any %y € g V* @ V* @ QP(N) and any vV, € V ®
V&g ®QIN). Then

d (B%y AYYe) = (%) Ay Y + (—1)PB%vy A (d9yVYy)
d” (Bovy A7) = (d9B%y) A + (1P B8y A (d99YY)

Lemma 3.4 Let p: g — gl(V) be a linear representation and assume it is
unimodular, i.e. tr(pf) = (p€)8 =0, V€ € g. Let eV € V @ QY(N) and
d¥:=d+ (pw)A. and let 1 <p<m —1. Then

dvel" P = d®eV Ay b (40)
. w (m=1) _ 1y . (m—2) w,(m=2) _ v .\ (m=3)
(for instance d“e;, =de-Neyy  and d¥eyy, T = det A ey ).

Proof — Let us prove, for instance, [@0) for p = 2. It amounts to prove
d“e® AP = a“el? . We use (34) and (BF) in the follow computation

d?e’ A efﬂ;’) = (de® + (pw)F AeP) A 6%9_5))
— deC A egfé—c?‘) 4 (pw)g A <5£)€%—2) . 55654%_2) 4 586%”9—2))
(m—2) (m—2) (m—2)

m—2
= dell? + (pw)§ A el = (pw)§ A et + (pw)E A el
But since p is unimodular, (pw)& = 0 and thus, by permuting indices,
e A elipe’ = deli™ — (pw)§ A el P — ()G A elier”

which is the expression for d“’e%;_m. U
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3.6.2 Gauge transformations

Lemma 3.5 Letg € C¥(N,8), R: & — GL(V) be a linear representation
map of & on a vector space V. Let eV fV € V. @ QYN) such that

Vi=R,f" (41)
then,
1. by using Notation (29)
=R,®R, [ (42)
2. if 4,0 € g® Q*(N) decompose as D9 = LP%yy XY and Q° =
%Qgﬂeﬂ, then
AAdg(I)g = <~ Adg (%9 R; (%9 R; (@gvv) = ngv (43)

3. if, furthermore, R : & — GL(V) is unimodular, then by using no-
tations (Eﬂ) e = i and

(m—3)

e V=R e = RieRAL Y, Y = " RS
44

V) is unimodular and my,p, € QV2(N) ® g* de-

(
N-2
= %Wgﬂ ‘(/_V ) and Dy = ng—eﬁ/v then

Adirg =p; <= Ad;@R;@R, (my"") =ps"" (45)

Remark — 1If fV is a frame then €" is so and decompositions ®¢ = 28, f,
Q8 = 109, Ty = %Wgﬂfﬁv_z) and p; = ngﬂeg 2 in (ii) and (iv) are
always possible.

Proof of Lemma — The proofs of (i) and (iii) are straightforward. As-

sertion (ii) follows by using (7)) from

Ad@0 = A, (90yy /1Y) = § (Ad, © R; & R; Bvy) (R, @ R, f77)
= 5 (Ad, ®R; @Ry d9yy) e

Assertion (iv) follows from py = 3 pg—eg\(, 2 and

Adyry = A4, (r L fY ) = 4 (Ad* @R, @R, 1Y) (Ry @ R; £ 7))
_ (A @ R, 9 R, mY) Y
0
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Lemma 3.6 Let g € C°(N, ) and 0%,w8 € g @ QY(N) such that
w? = Ad,0° —dgg! (46)
1. then ) )
dw® + §[w9 Aw = Ad, (deg + 5[99 A 99]) (47)
2. for any ¢% € g @ QP(N),
d“ (Adye?) = Ad, (d’¢°) (48)
3. for any Ty € g* @ (N,
4 (Adimy) = Ad;, (d'm,) . (49)
Proof — Result (i) is standard. The proof of (ii) is obtained as follows

d* (Adg¢g) = d (g ¢gg—1) + a“dgﬁggfl—dgg*1 A (g ¢gg—1)
[dgg ' Ag@®g T+ gdg® g~ 4+ g[0s A ¢®lg~" — [dgg™" A go¥g~]
= g(dg®+[0° A ¢9]) g™

We now deduce (iii). Let my € g* @ QP(N). Then for any ¢® € g ® QI(N),
by using (39) and (I7) and by applying (ii), i.e. (g]), to ¢9, we obtain

(d“Ad;wg> AAdyge = 4 (Adimg A Adgqsg) — (—1)PAd 7 A (d¥Ady60)
= A (mg A6 — (~1)PAd}m A Ad, (d60)
= d” (my A 08) = (—1)Pmy A (d'08)
= (d'm) nor = (Add’ny ) A Adyos
Since this is true for any ¢, we deduce d*Ad,m, = Ad, (deﬂ'g). O
Lemma 3.7 Let w9 e € g @ Q' (N) and g € (N, ) such that
e? =wl+dg gt (50)

Then, by setting Q9 := dw? + 1{w? A w?],

1
d¥e? = Q9 4 5[69 N e, (51)
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Proof — This is a computation which uses d (dg g7') = %[dg g ' Adg g7

d¥e? = de®+ [wIANeS =d(dg g7' +w?) + [WIA (dg ¢! + w?)]

d(dg g7b) + dw? + [w¥ Adg g7 + [wf A w?]

(2dg g Adg g7 + [w'Adg g7 + 2w Aw?]) + (dw® + $[w? A w?])
= 1llef Aef] + Q0

O
Remark — Hypothesis (B0) occurs for instance if there exists some 6% €

g ® Q' (N) such that w® := Ad,609 — dg ¢~' and e® := Ad,69.

4 Gauge theories

4.1 General framework

Assume we are given a vector space § ~ R" endowed with a nondegener-
ate symmetric bilinear form b, and a smooth oriented pseudo Riemannian
manifold (X, g) of dimension n, such that, ¥x € X, (T,X,g,) is isometric
to (s,b). In applications (s, b) will be either an Euclidean space (then X is
Riemannian) or a Minkowski space and (X, g) a curved space or space-time.
We fix a basis (Ey,- -+, E,) of s and we set by, := b(E,, E).

We are also given a compact (hence unimodular) Lie group & of dimension
r, with Lie algebra g. We assume that g is endowed with a positive Adg-
invariant metric k, i.e. such that k(Ad,&, Ad,C) = k(¢, (), Vg € &, V€, C € g.
We let (t1,---,t,) be a basis of g and (t!,---,t") its dual basis of g*. We
set

N=n+r and u:=s5dg

A basis of uis (uy, -+ ,uy) = (Ey, -+, By, t1, -+, t,).

We are going to build a generalized gauge theory on X with group struc-
ture &, starting from a smooth submersion P : F — X with connected
fibers over X', where P is a smooth manifold of dimension N (thus the di-
mension of the fibers is r).

The dynamical fields of the problem are:

1. a g-valued 1-form 69 on F such that, Vx € X', the rank of the restriction
of 69 on the fiber F, := P7'({x}) is equal to r (thus #® induces a
connection on F in the general sense of Ehresmann);



4 GAUGE THEORIES 40

2. a dual (N — 2)-form 7y on F with coefficients in g*.

We shall see that if #°% is a classical solution of our dynamical equations, it
will impose constraints on the geometry of F. Hence the geometry of F is
also a part of the dynamical variables, a similarity with General Relativity.
More precisely, assuming some generic hypotheses, any solution (69, m,) of
the dynamical equations will define a &-principal bundle structure on F and
also a solution of the Yang—Mills system of equations on X. One hypothesis
will based on the following notion.

Définition 4.1 Let u be a vector space and s,g C u be two vector subspaces
such that w = s ® g. Let ) be a manifold of such that dimN = dimu and
0" = 60°+ 0% € ux QY N) be a coframe. We say that (), 0°,09) is g-complete
if, for any continuous map v9 from [0,1] to g and for any pointy € Y, there
exists an unique C' map v : [0,1] — Y, which is a solution of (v*6°); = 0
and (v*09), = v9(t)dt, vt € [0, 1], with the initial condition v(0) =y.

4.1.1 Presentation of the model

Working locally if necessary, we assume that there exists an oriented or-
thonormal coframe ° on X', such that, in particular, (5°)*b = g. We define

the lifted forms £° := P** € Q'(F) which can be decomposed as 3° := 3*E,

and we let 3™ := B'A---AB" € Q*(F). Similarly #¢ € g@Q'(F) decomposes

as 69 = 0't; and the g*-valued (N — 2)-form 7, decomposes as 7, = m;t". We

set 0 ;= @' A--- AG". We can consider 5° and 69 as the two components of

the 1-form f* = fAuy = 3°+0° € u® Q' (F) and we have fOV) = ) A9,
The set of dynamical fields is

&= {(0%7,) € (g QF))x(g"® Q¥ 2(F)) of class €*; f™V) £ 0} (52)
Observe that the condition f™) = " AQ") £ 0 ensures that f* = B5+69 is a

coframe on T*F and that rank(6%| ) = r. We denote by ( g, 2

its dual basis. We also define flfN_l), flfﬁ\f—2)’ g gn=2) Hér_l) and 95;‘2’
by following the rules in (30). By applying the convention (32]) we can de-
compose Ty as Ty = %wg%fg“”. By splitting 7" = 74> + m4°® + my % + 7%,
this gives also

o ... 9 9
apT » 9B™ 7 9oL

0
’ 007

Ty 17r u ¢ (n=2) _ 17r 55 (n—2)/\9(r)_(_1)nﬂgsgﬁi(n—1)/\gér—l)+%ngg5(n)/\gég—2)

—gm w5
(53)

)
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The coefficient 7% = % R FE, ® By, € g* ®s ® s which is also defined
implicitely by

Tg A BEA B =1 =B AT, (54)
plays a special role. It defines the map
Q™ : & — gFR5AsRCP(F) (55)
(0%, mg) +—> g™

We set
17552 = [Qu% (6%, mg) |2 = K bg by 1,07, 7Y
or, by setting by := by B? ® E° € s* @ 5* and kgg := kijti ®t € g ®gh
|7 = %71’;5 7l where 0 := k% @ by ® by (WE@) (56)
Lastly we define

1 1
Al6%, ) == /f §|7r955|25(") R <d6’9 +516° A 99]9) . (57)

We will prove the following result.

Theorem 4.1 Let g a Lie algebra of dimension r. Let F and X be two
smooth connected manifolds of dimensions N := n + r and n, respectively

and P : F — X be a smooth submersion with connected fibers. Consider
the set € defined by (22). Assume that

1. either g = u(1) ~ R and the fibers F, :== P~ ({z}) are compact;

2. or g s the Lie algebra of a compact, simply connected Lie group ®.

Let (0%, my) € € be a critical point of the functional (57) and assume that
(F, %, 69) is g-complete. Then (6%, 7y) endows P with a &-principal bundle
structure, where & is a compact connected Lie group. In case (i) & = U(1),
in case (ii) & is a quotient onA5 by a finite subgroup.

Moreover for any point in X there exist an open neighbourhood O of
this point in X and a &-valued map g defined on O such that, if A% :=
Ady00 —dg g™, F9 := dA®+ L[AS A A and p® and py® are the coefficients
of pg 1= Adymy in the decomposition by using the coframe e® := Ad,0°, then
these fields are solutions of the system

0g’AF955 0 (Yang-Mills)
A pg® + (%pﬁg + %c9g1g2p99192> = 3|Fg™[?0," — 3F1%FY,
(58)
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Note that, in Case (i), where g = u(1), the Yang-Mills system reduces to
the Maxwell equations and the second equation in (58] reduces to 0)p° =
—1|F=|?, where p* := p,*.

The proofs of both cases follow similar key steps, although some argu-
ments differ. As a warm up we first show Case (i) by assuming for simplicity
that X is the flat Minkowski space s of dimension 4, since it allows to get
rid of unimportant details which can be fixed easily. After introducing some
extra notations, we will then address Case (ii) in full generality. The crucial
property that any compact Lie group is unimodular will used repeatedly.

4.2 Study of the Maxwell case

As announced we assume here that g = u(1) = R and X = s = R*. Since

the fibers of F 5 X are compact, connected and 1-dimensional they are
all topologically equivalent to a circle. Hence the manifold F is diffeo-
morphic to R* x S*. This allows us to choose global coordinates (z#,y) =
(20, 21, 22, 23, y), where (20, 2!, 22, 23) € R* and y € S ~ R/27Z. We can
then choose the coframe (3°, 8%, 32, 3%) to be equal to (dz°, dx!,dz?, da?).

We set dz™® := da® A dz' A dz? A da?, dxf’) = a% 1 dz™ and dxffi,) =
agy _ dxffl).

Obviously we can identify g* ~ g and the metric h with the standard
metric on R. We can also dropp the index g in 69, 7y and Q,*. The set (52)
reads here

EMaxweII = {(‘9777'), RS Ql(f>,7T S Qg(f),d$(4) A6 §£ O}
Condition dz™ A § # 0 means that, if we decompose
0 = 0yda® + O1dz’ + O,da? + G5da® + 6,dy,

where the coefficients 0, are functions of (z*,y), then 6, does not vanish.
Without loss of generality (since F is connected) we assume that 64 > 0.
The 3-form 7 decomposes a priori as

1
= 57?”"de2”) N6 — W“dxf’)

which implies (see (7)) da* A da” A7 = 7dax™ A 6. The quantity |7%|?

1., !
reads |7%°|* = %bwfb,,,/ﬁ“”ﬂ“” = 17r“”7rW, where 7, = b, b, " and

2
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the action is

1
Alf, 7] = / §|7T55|2d1'(4) NGO+ mAdo.
f

The ’curvature’ 2-form is simply © := df, which we decompose as
1
dd =06 = §@de“ Ndz” +©,dz" A 6.
Hence by using B7), 7 A df = (10,7 + ©,7") dzW A 6.

4.2.1 Study of the first variation

First variation with respect to m — We write that the action is stationary
with respect to variations (6, ) — (6, m+£dm), for € small. This means that
060 = 0 and the variations of 7 are induced by the variations o, and 07" of,
respectively, 7, and 7#. We obtain straightforwardly (note that iﬂwﬂr‘“’ is
quadratic in 7, whereas ©,, 7" is linear)

Tw + O, = 0 (a)
{6 206 )
(equivalentely 2% — gz*; = —my and % = %). Equation (b) means that

a% _1df = 0 and has the following consequence: let F,, and F,, be two fibers
over r; and x5 € R* respectively. Both are diffeomorphic to the circle S*.
Consider a path T' joining x; to my in R*. Its lift S := P7Y(T") is a surface
(having the topology of a cylinder) the boundary of which is 9§ = F,, — F,,
(choosing the orientation in an appropriate way). Thus

/9—/ e:/e:/dezo, (60)
Fay Fay oS S

a% is tangent to S and a% adf = 0.

Since R* is connected, this leads to a normalization of the fibers: Jgq €
(0, +00) such that

where we have used df|s = 0, because

q:/ 9, VreRY.
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Thus we can thus define a map f : F — R/qZ such that Vz € R?, df|z, =
0%, ie. g—g = 04, by setting e.gl f(x,y) = foy 04(x,y')dy’. Then the map

T: F — R'x(R/qZ)
(@,y) — (z,f(z,y))

is a diffeomorphism. We denote by (z*,s) coordinates on R* x (R/qZ).

Moreover of
= — — |dz* +d
6 <9u oy ) ot +df.

and hence, by setting

A, = (Qu 081{‘) o™t for0<pu<3, (61)

and A := A, da*, we have
= (A,oT)da" +df =T (A +ds). (62)

In particular A + ds is normalized (i.e. aﬁ J(A+ds)=1).
Moreover since T* (T v By dA) J4T*dA = a% 1df = 0 by (59) and
T*a% = (0,072, (B9, b) translates as

0
83J =0

Smce we have obv1ously 5: A =0 we also get that L Il A=d ( _ A)

= JdA—O ie. 853‘“ =0, V,u, i.e. A, is a function 0fI€]R4 only.
Lastly we define F := dA, so that © = df = T*F and we deduce from
the previous results the decomposition

1
F = §Fwdx“ A dz” (63)
where the coefficients F,, are functions of z € R* only. Equation (a) in (59)
translates then as F, = %‘3; — %‘:‘5 = Dy

?One may as well define f by f(z,y) = [} 04(z,0(x) +y')dy’, where o : R* — R/27Z
is any section of F.
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First variation with respect to § — Here we write the condition for the
action to be stationary with respect to variations (6, 7) — (6 4 €06, ), for
e small (hence dm = 0). We decompose

00 = 7, dx" + 70

which induces the variation §(dz® Af) = rda™® Af. Since §(dz*Adz” AT) = 0
and we must respect the constraint dz* A dz” A1 = 7daz™® A @, this forces
to have

0=4 (mdz® A0) = or*dz™ A+ 7" da™ A S0 = (o7 + 7r) da™@ A6

Hence we must impose d7* + 77" = 0. The induced variations on |7*|? is

§|m*2|?> = —27|7*|%. Hence
1 55(2 3,.(4) 1 552 (4) 1 562 (4)
4] §|7r |*dz'Y A6 :—5‘71' |“Adx /\‘9:—§|7T 2060 A dx

Moreover 6(m A df) = d(060) A m = d(60 A ) + 60 A dm, hence the vanishing
of the first variation of A leads to

1
0— / (56 A7) + 66 A (dw _ 5\7T55\2dx(4)) Y
F
i.e., if 00 has compact support,
1
dr = §|7r55|2dat(4) (64)

By using (62) we can write (see (7))

T = %W‘“’dzz,(fy) A ((Ayo T)da* +df) — W“dz,(f’)
(A, o T)dxff) + %ﬂ”“dxfﬁ,) ANdf — ﬁ”dxf?)

%W‘“’dzzfﬁ) A (T*ds) + (" (A, o T) — ) d:cff’)

thus, by defining p*” and p* such that p*”oT := 7t ptoT := 7t — () (A, 0
T) and p := %p””dx,(fy) Ads — p“dx,(f), we obtain

1
T=Tp=T" <§p‘“’datfy) Ads — p“datg’)) .
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Then dm = T*dp with

1 1
dp=d (§pwdxfg Ads — p“dxf’)) = idp’”j Adz() Ads — dp* A dal)

Thus setting dp*” = O p*da? 4+ 0,p*ds and dp* = d\pHda? + d,ptds, we get

dp = % (3>\p””dx)‘ + (%p””ds) A dxfy) Ads — (3,\]9”d:cA + 8sp“ds) A dxf?)
= 0,,p“”d:£f’) Ads — 9,ptda® — dsptds A dxff’)
= (0,p"™ + Osp") d:c,(f’) Ads — 8Hp”da:(4)

We also note that p*oT = 7 implies T* (3 |p**|*dz¥) = 1|7*|2dz™. Hence
(©d) reads T*dp = T* (4|p**[*dz™), which is equivalent to dp = 1 [p**[*dz®.
In view of the previous computations, this is equivalent to the system

aupwj - - spu (a)
65

{f%p“ = —3[p*]* (b) (65)
4.2.2 Cancellation of the sources

We deduced from (5%a) that F* := b b"’/Fu/,/ = —p”. However we also
deduced from (63) that the coefficients F** are functions of z € R* only.
Hence we deduce by averaging both sides of (65h) over a fiber F, that

Jz, OF"ds [ —0p"ds [ Owptds [ dpt

o= J7, ds J7, ds Jz, ds Jrds !
and we conclude that the Maxwell equation in vacuum holds
aait ~0 (66)
4.2.3 Gauge symimetries
We consider the transformation:
O, 7) — (04 o, m+ 1) (67)

and we look at sufficient conditions for this transformation to provide us
with a gauge symmetry of the action A[f, 7] = [, 7 A df + Has|2.dz® A
6. We have the a priori decompositions o = «,(x,y)dz" + au(z,y)dy and
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Y = %w””(x,y)dx,(fy) A dy — w”(x,y)dx,(f’). In order to keep the quantity
7|2, 1= 2b,uby, Y invariant, we assume that the coefficients i
vanish, so that ¢ = —¢#(z, y)dx,(f’).

Then the computation of A[f + a, 7 + 1] gives us

Al + a, 7 + 9] = A9, 7] +/(7r+w) Ada+ 1 Ad+ %\wﬂ@dx(‘” Aa

ba
We note that dz® A a = aydz™® Ady, thus, in order for the last term in the
r.h.s. to cancel, we need to assume ay = 0. Hence o = o, (2, y)da*. Then we
observe that we need to require that daw = 0 for (74 1) Ada to vanish and, if
s0, we need to assume that [, ¢ Adf = 0 for having Al +a, 7 +] = A[f, 7.

For that purpose we assume that ¢ has compact support or decays at
infinity so that

/f@mdeszd(ew)wAdw:/f@Aw

Then it suffices to choose ¥ so that di) = 0 for (7)) to be a symmetry of .A.
Hence, to summarize, if

1. a=a,(z,y)da" € QY(F) is closed;

2. = —wﬂ(:c,y)dxff’) € Q3(F) is closed and decays at infinity,

then A[f + o, 7 + ] = A6, 7].

However since da = (22 — gzﬁ)dx” A dz¥ — %dx” A dy and dyp =

— R 4@ 4+ %L;dxff’) Ady, the previous conditions imply that coefficients «,

Ozt
and 9" are independant of y. Hence o = o (x)da* and ¢ = —r(z)da?,
with 5 9 D
o, ay
- = d —=0.

Ozt Oz 0 an Ozt 0
The first equation is equivalent to the existence of a function V € €>(R?)
such that o = dV.

4.2.4 Invariance by fiber bundle diffeomorphisms

Let us consider a diffeomorphism 7" : F — F such that PoT = P, i.e. of

the form
T: F — F

(z,y) +— (z,f(z,y))
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and such that g—g > (. It acts on the fields by pull-back
0, 7) — (170, T")

We note that Q”[10, T*n] = Q" [T*0,T*r|E, ® E, is defined implicitely by
using (B4), i.e.

(T*7) A dat Ada” = QU [T*0, T*x] da™ A T6.
On the other hand the pull-back by T" of both sides of the relation 7= A dz#* A
dz” = Q" [0, 7]dz™ A 0 gives us

(T*m) Ada* Ada” = (Q™[0, 7] o T) daz™ A T*0
By comparing both relations we deduce that Q*[T70,T*r| = Q*[0, 7] o T

This implies that |7°|2, is transformed into |7%|2, 0 T. Thus the Lagrangian
density transforms as

1 1
T AdO + = |7r55\R4dx ANO— T <7r A df + 5\7r55\§§4dx(4) A 9)

Hence the action A[f, 7] = [, 37**[2,dz™ A6 + 7 A df is invariant by this
transformation.
This invariance by fiber bundle diffeomorphisms may be fixed as follows.

Consider some (0, 7) € Emaxwen and, for any z € R, let u(x) := zi ff 0 and
flx,y) = u(x fo 04(x,y')dy’ and define the map
T: F — 1 x (R/27Z)

(,y) — (z, f(l” y) mod [QW])
which is a diffeomorphism. Then df = af dar 4+ ¢ (@ y 2% dy and thus

of
0 =0,dz" + 0,dy = ((9“ — u@) dzt + udf.

Hence by defining ¢, := (9 — Uzl o7 ) oT ! and ¢ := ¢,dz* + uds and by
observing that v o T = u, we have

T*6 = ($, 0 T)da* + (wo T)df = 0 (68)

Thus the image of the transformation (6, 7) — ((T71)*0, (T~1)*r) is (¢, p),
so that ¢ has the form ¢ = ¢,dz" + ¢4ds, where ¢4(z, s) = u(z) is indepen-
dant on s.

This show that, by such a 'gauge transform’, which does not change the
action as seen in the previous paragraph, we can assume that the coefficient
a% _1 6 is independant of the coordinate on the fiber.
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4.3 Study of the Yang—Mills case

We now prove Theorem [4.1] in Case (ii), i.e. for g which is the Lie algebra
of a compact, simply connected structure group & and on a curved base
pseudo Riemannian manifold (X, g). Recall that, since & is compact, its Lie
algebra g is unimodular. We endow u := s @ g with the metric h such that
its restriction to s coincides with b, its restriction to g coincides with k and
s 1 g. Welet 8° be a g-orthonormal coframe and we set f* := (3°+ 6%. Note
that, by hypothesis, f* is a coframe on F.

Abusing notation we denote by Ad : & — GL(u) and ad : g —
gl(u) the representations which extends trivially, respectively, the adjoint
representations Ad : & — GL(g) and ad : ¢ — g¢l(g), i.e. such that:
Vg € 8,V¢ € g,

V(X,()esxg, Ad,(X+()=X+Ad,(, ade(X+¢)=X+[£¢] (69)

In other words, s and g are stable by Adg and ady and their restrictions to s
is trivial whereas their restrictions to g coincides with, respectively, Adg and
ady.

Letting c;'.k be the structure coefficients of g in the basis (t1,--- ,t,) and
using the notation ¢y, := c;.kti Rt @tk € g g* ®g* (see 22)), we can
write that, V&%, n? € g, [£9,1%] = c%y,&n8.

4.3.1 First variation

First variation with respect to m; — We write that the action is station-
ary with respect to variations (6%, my) — (69, 1y 4 €dmy), for € small, where
0Ty = Xg = X S -2 (by using Convention (3II)), so that o, is induced
by omg*. Similarly the curvature 2-form ©9 := d6? + %[99 A 69%] decomposes
as

1 uu 1 55 S 1
OF = SO0, f1 = SO0, 55+ O 58 4 0%, fo

Hence my A ©8 = fmg™ O, fO). By using (B3) and (34) we obtain the
condition

1 1
/F <§Xg55 (ﬂ-gfﬁ + @2575) + Xg@@ggg + 5)@@@%—9) f(N) =0, nguu



4 GAUGE THEORIES 50

which gives us the relations

7Tgss + @gss = 0
O%, = 0 (b) (70)
e, = 0

First variation with respect to #? — We now look at the first variation
of A through variations (69, m,) — (69 4+ €669, ), where §69 has a compact
support. It is useful to decompose 469 as:

00° = 79 = 79,5% + 79,02

This induces the variation f") — fN) 426 f(N) 40(g) with § fV) = ngf(N)
From (54), which implies 0 = 6(7;* f")), we deduce that the induced vari-

ation of m* is equal to 0my*™ = —787,* and thus |7,%|* — |7,%|* +
£0|my* |2 + o(e) with §|my*|? = —278 \7T955|2 Hence

1 5 (N ‘71' 5s|2 ‘ 55‘2 B
5(5‘71'955‘ f( )) — (_Tg )‘ gss| f _ QTngf(N): 92 BAfg(N 1)

Let us set d?(79) := d(’Tg) (02 AT8] and d°(7,) := dmy +adj Am,. We remark
that 609 = § (d6® + £[09 A 69]) = d’7¢ and thus by (B9)

0 (Wg A @9> =002 ATy = (dng) ATy = d’ (7‘9 A 7Tg> +7EN deﬂ'g
Lastly we observe that [, d’ <T§ A 7rg> = Jzd <T§ A 7@) since the coefficients

of 78 A my are in R, a trivial representation of g. Thus the first variation of
the action vanishes iff

5|2
/ TN (d9 ‘Wg | f(N ), V78 with compact support,
f

which give us the equation
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4.3.2 Principal bundle structure and equivariance of the connec-
tion
We first exploit Equation (c) in system (Q), i.e. do® + 5 [99 A 69 = 0.

Consider on the product manifold & x Y = {(h,y) € & x Y} the g-valued
I-form 79 := 6 — h='dh. It satisfies the identity d7® = d6® + 1[6% A 6°] —
[09 A 78] + 3[7® A 79] and its rank is clearly equal to r. However Equation
(¢) in (Z0) 1mphes that, for any fiber F,, d6® + 3[09 A 6%]|z, = 0 and thus

(7' lrx8) =0 mod[Tg] Hence, by Frobenius’ theorem for any (go,yo)

& x F., there exists a unique r-dimensional submanifold I' C F, x ® which
is a maximal solution of 78| = 0 and which contains (go, yo)-

It is clear also that, ¥(g,y) € & x F,, V(£ v) € T, & xT yvFu, the equation
g 'dg(€) = 0%(v) defines the graph of a vector space isomorphism between
TgQA5 and T, F,. This implies that, around each point (g,y) € I', I is locally
the graph of a diffeomorphism between a neighbourhood of ¢ in ® and a
neighbourhood of y in F,. But we have more: since each fiber F, is actually
a maximal solution of the system 6°|¢ = 0, we can apply the following lemma
to deduce that there exists a map from & to Fy, the graph of which is I'; and
thus this map is a universal cover of F,.

Lemma 4.1 Assume that & is simply connected and that (),0°,0%) is g-
complete. Let f be a mazximal integral solution of the system 6°|¢ = 0 of
dimension r. Then ® is a universal cover of f.

As a_corollary, f is diffeomorphic to a quotient onA5 by a finite subgroup
and, if & is furthermore compact, then f is compact.

Proof — Fix any base point y, € f and consider:

e the set TP@J@ of based paths v € €1([0,1], &) such that (0) = 15 and

e the set Pfy, of based paths u € €'([0, 1], f) such that u(0) =y,.

We define an operator T from Pz, to P, as follows: to any v € Py, we
) e
associate the unique path u = T(v) € P¢,, such that

u(0) =y, and [ v ldy = ut? = (v,u)' =0 ]

By the end point T(y)(1) of u = T(v)
depends uniquely on the end point ( ) of v, ie.,

V0.1 € Poig, (1) =n(l) = T()(1)=T(n)(1) (72)

We will show that, for any v € Px
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Since & is connected, for any g € QA5, there exists a path v € Pz, such that
]

v(1) = g, thus (72) shows the existence of a unique map T : & —» f such
that, for any v € Pg 1y T(v(1)) = T(y)(1). The graph of T" clearly coincides
with the integral leaf of 79 in ® x f passing through (1g,Yo) and thus 7" is

a smooth cover of f, which is actually the universal cover since & is simply
connected.
Let us prove (2). Let 7y and v, be in Pg, and assume that (1) =
0]

~v(1). Since & is simply connected there exists a smooth homotopy I' €
C([0, 1]?, &) such that, V¢, s € [0, 1],

F(t’ 1) = Vl(t) —F(la 1) = 70(1)

r(0,s) =14 I'(1,s) = ‘ Yo(1)
I'(0,0) = 1g ——T'(t,0) = 70(t) —— I'(1,0) = (1)

To this map we associate the unique map U € C'([0, 1]%,f) defined by

U(0,0) = Yo
0300 (Z(t,0) = (T7'L)(,0), Vtelo1]
B (Lits) = (2) (1,5),

Thus if we set F:= (I,U) € C'([0,1]?, ® x f), the previous relations read
F(0,0) = (1g,fy) and

(F*7)e0 @) 0 and  (F*7) (%):0, vt,s€[0,1]  (73)

Set 0 := fad,s —adgs|g, € End(g) ®QI(QA5 x f), so that d78|5. ;= o AT%|5.p
and set o := F*79 and 8 := 0. Then da = 8 A a and the second relation

in (73) translates as a (£) = 0. We now use Cartan’s formula

“(w) o (Fa]) -6 () -5 6G)

which simplifies to

0 0 0 0

Y
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and thus

2 (B3 (B weneon

Since by (73) we also have the initial condition o (2) (¢,0) = 0, V¢ € [0, 1],
we deduce that

a <%) (t,s) =0, V(t,s)€]0,1?

This means that, V(¢; s) € [0,1]% (F*7)ws (2) =0, ie., O 1.5) (Z(t,s)) =

(I~ 1ar) (t,s). This can also be translated by defining the maps v, € Py,

and u, € Py, such that, respectively, V(¢,s) € [0,1]%, I'(¢,s) = 7,(t) and
1

U(t,s) = uy(t), by writing u*6® = ;7 dv,, Vs € [0,1]. Since, Vs € [0,1],

us(0) = y,, we conclude that us = T(s).

But we also have, by the definition of I, I'"*% (1 s) =0, Vs € [0,1],
and hence 2%(1,s) = 0, Vs € [0,1]. This implies that us(1) = wup(1), ie.,
T(vs)(1) = T(v0)(1), ¥s € [0,1] and, in particular T(v;)(1) = T(v)(1). O

A consequence of this Lemma [41] is that, if ® is compact, all fibers
are compact. Hence by a result of Ehresmann [8] we deduce that F has a
structure of fiber bundle over X'. In particular all fibers are diffeomorphic to
a quotient & of &. (Note that the latter conclusion can also be achieved by
applying a straightforward variant of Lemma [5.1] below.)

Thus, by choosing some (possibly local) section ¥ of F, there exists a
unique map ¢ : F — & such that, for any =z,

0° — g 'dglr, =0 <= A9z =0, where A% := g#% ' —dg g~'. (74)

and such that g is equal to 1g on X. Condition (74) implies that the 1-

form A® € g ® Q'F) decomposes as A® = A%,3% It also means that

0% =g 1Agg + ¢~ 'dg is normalized and implies that df? 4 2 [99 A 09 =
g (dA? + L[AT A A%])g, i.e. by defining F® := dA® + Z[A® A Ag]

F? = Ad,0° (75)

For any function a on F, let us denote by d;a and 9y the coefficients in
the decomposition da = Jsar 52 + Jyar 62, Then through the decomposition
A% = A%,5% F? decomposes as

1
- §(a§1Ag§2 - a&zAg§1 + [Aggla Aggz])ﬁéléz — %Agf_, 55 N 6.
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Equations (70-b) and (75]) now imply J,A% = 0, which means that A?Y,
is constant on each fiber (i.e. the coefficients A% depends only on x €
X). Equivalentely 6? is equivariant. Hence the coefficients F%, in the
decomposition F? = %F9§1§2 [2122 are also independent of g.

We next introduce the frame e* := Ad, f*. This implies in particular by

([74) that

e? = Ad,0° = A’ +dgg* (76)
We also set
Py = Adymy = Ad; (%WQ““ LEuN_z)) (77)
and its decomposition by using the (N —2)-form el = Ad,®Ad, < LEL]LV_Q)):
Pe = %pgweg—m

where, according to (4], ps** := Ad; ® Ad, ® Ad, (m,").
In particular (since the action of Ad, on s is trivial) p,* = Adj ® 1, ®
1 (mg*). At this point we exploit Equation (70-a) that we translate as

T3 4+ 04" = 0, where ©,% = <kgg ®b*® bsé) ©%,,. Thus actually p,* =
—Ad] ® 1, ® 15 (04%). Hence by using (43)

" = Ad;®1,© 1, (0,5) = Ady © 1, ® 1, <<kgg ®b*® bﬁé) @%)
* <kgg 2 b*% ® bﬁg) (Ad, @ 15+ ® 14 (O%,)) = (kgg Qb%E® b5§> Fo,

where in = we used the fact that k is invariant by Ad,, i.e. Ady @ Ady (kyg) =
kgs- Hence by setting Fy* := (kgg ®b%*® b5§> Fi,, ([0-a), translates as

pg” = —F,* (78)

Lastly we translate (7I)) as follows: by (44) we have Ad, EEN_I) = ef;N_l).
Moreover by using (77) and (@) we obtain that d*p, := dp, + adiyp, =
Ad; (dmy). Hence since k is Adg-invariant (which implies |my®[* = |p;*|?)
and because of ([71]) and (78) we deduce

|7T955‘2

F 58 2
dApg — Ad;( 5 f(N—l)) — | g ‘ €(N_1) (79)

g 2 g
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4.3.3 Computation of the left hand side of ([79])

It turns out that Equation (79) implies that the connection A? is a solution of
the Yang—Mills system of equations. However the proof of that fact requires
a careful computation of the left hand side of ([9) using a decomposition of
pg in the basis efﬁ_z) obtained out of e*. (Note that an alternative method
is possible, by using the coframe (°, g~'dg) instead of e*.) This is the most
delicate part.

Let v*°®) € s0(s,b) ® Q'(X) be the connection 1-form of the Levi-Civita
connection V on (X, g) and vy := y*°) 1= P*y*°() € 50(5,b) @ Q'(F). The
orthogonal splitting u = s @ g induces an embedding of so(s,b) in so(u, h)
so that actually v € so(u,h) ® Q'(F). Similarly ada € so(g, k) ® Q'(F) C
so(u,h) ® Q'(F) and thus v + ada € so(u,h) ® Q'(X). We then define the

connection d”* acting on functions £ from F to u by

ARG = A 476 = g +dAET

with  d7€ = de + 76 and  dAET = det fadges OO0

and extend it by using the graded Leibniz rule to any exterior differential
form with coefficients in a tensor product of u and u*.
A key point is to observe that, since the action of so(s,b) on g is trivial,

dApg = d’Y’Apg. By using the decomposition p; = 2! pg—efg 2 and the Leibniz

rule (B9) we deduce dApg = %dV ‘A‘pg“’“l A eff,f 2 4 5 potd™” Aeuu 2 Moreover
if we denote by 9J4p"™ €U R gFAURUE GOO(]:) the coefficients such that
A" Ap,t = (072 pg"™)e®, then %d%Apgﬂ A 61(m = %(8“” iz ) et A egﬁgz) =

N-T
8;2’Apgﬂ2e§ ). Hence

1
A A apA, i, (N1 Ag(N-
d%py = d"py = O pg““2e§ ) 4+ 2pguud7 2) (81)
By introducing the coefficients 0,p,** such that dp,** = (9yp,*") e* and the
coefficients 7, such that v = v,e, the coefficients 974 p," rea

RApe™ = Ope™ +  (adl, @1@014+10%@1+1010 %) p™
Ripg® = Gupg™ +  (ady, ®1014+1@%®1+181®ada,) pg™
ONApe® = Opg® + (adh, ®1®@1+1®ads, @14+101Q ) pe®
AP = Opg®™ + (adhy, ®1®1+1®ads, ®1+1Q1Q ada,) ps™

3 Alternatively, for instance, the second relation in this system reads 8J’Ap959 =
8upg~'9 _ ng gAgoupgﬁﬂ + F)/Egupgég + CﬂgogAgoupggg_
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The sum 974 pg" splits as 9 Apg" = 97 Apy™ + 9P Ap™, with

(9; ’ApgsH = 8; ’ApgsE + 8; ’Apgsg and 5; ’ApggH = 8; ’Apggé + 8; ,Apggg

where the first terms on the r.h.s are

A = op + (ady, ©1814187,01+19107%)p®
DApeE = Oup + <ad;§®1®1+1®adAg®1+1®1®%)pg%

The expressions of the second terms 9] Ap® and 0g’Apggg simplify because
of the observations that A9, = A9 and v, = 7, (i.e._Aggl =7, =0):

ag,Apgﬁg - %pgsﬂ and 8;’Apggg = %pggg
Thus

(8;/1,Apgﬂ1> egv_n _ (8;/1,Apg&1 i agpgég) eéN—l)_'_(gg,Apggg i aglpg%) eéN—l)
(82)
In order to compute the second term ip Md”’Aefg—m we use , i.e.
2Py uu
d“”AefiY_m = d"%et A efﬁi—m and hence we need to compute d”Ae*. We
recall that e* = Ad, f* = Ad,(8°+60%) =+ A% +dg g7 ', ie. e* =€ +¢€f
with e = 3 and e? = A%+dg g~'. Thus since by (BI) d*e® = F?+ L[e? A ef]
we have
v,A u P A g Y5 g 1 g g
d7?et =d7e* +d%e =de* + F +§[6 A €]

where d7e® := de® + v A e2. However the latter quantity is the torsion, which
vanishes since v = v%°) corresponds to the Levi-Civita connection. Thus
the previous identity reduces to

1 1 1
d7Aet = F9 + Sle? Nt = SFsee™ + o cfgget® (83)

where we used the notation ¢, introduced in (22). Hence

A _(N=2) ¥,A u (N=3) _ (110g 5.5 1.9 g.9 (N=3)
d"en,” = dVTE A enun = ( 5F% 5,672 + 5€%,0,671%2 ) A €uung
_ (N-1) (N-1) (N-1) (N-1)
= Fluneg + clywég + ¢y, eu, + gl
(N—1) (N—1)
Fi 64 +ciy €y
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where we used the hypothesis that g is unimodular, ie. c%,4 = c%, = 0.
Thus B B

1 1 _
§pgu1u2d%Ae£ﬁL2 D= ) (ngléngéléz + nglgngglg2) eéN Y (84)
By collecting (82)) and (84]) in (&) we obtain
d*p, = (3% P + 0, pﬁ) (N-1)
1 1
+ (a’Y Apggs + 09 pgggl + QFQ o 5,0 g5152 + = 2 g o, pgg 195 €éN_1)
(85)
Note however that it follows from (83) that de® = 5¢% %1% +F?—[A9 Aef],
which implies that deéﬁzz =def A eéﬁzg’) = nglweéN 1 , thus

1 N 1 N—
d ( SPaitaeg 22>) = (&;mg% t §C99192p99192) e

Hence (83]) can be written as

. 1 . 1
dfpy = (@;Am@l + %pfg) e+ <8Z A + 3 nglsngsl%) e Hd (5 htrep 2)>
(86)

4.3.4 Cancellation of the sources

We come back to Equation ([9) (d*p, = %|F955|265N_1)) which is equivalent
to the fact that the r.h.s. of (80) is equal to %|F955\265N_1). By using (8]
(pg™ = —F*) we deduce the two following equations

OPAF ™ = Ogpy™ (87)

and

1 1
(4 Apggs) MY +d < 5P 926(N22 ) = §|F955|265N_1) - _FgéléngélézeéN_l)

2
(88)
Here comes the conclusion about (87). Let (t!,---,t") be a basis of g* and
set t) =t A AL (e9)) = (e9)"t(") and (eg)g_l) = (eg)*tér_l). A
first observation here is that, for any x € X, since the fiber F, is compact,
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the integration of both sides of (87) on F; gives us (note that degN_l) =0
because g is unimodular)

[amg @0 = [ (o) @0 = [ a(preny) =0
Fx Fx Fx -

A second observation is that the left hand side of (87) is constant on any
fiber. Thus, again since F, is compact,

J5, AT ()

f]__x (eg)(r)

And this relation exactly means that Af is a solution of the (pure) Yang—Mills
equations.

P AF,™ = = 0. (89)

4.3.5 A conservation law for the current
Let us introduce the notation
Jg = gpgsg (90)

for the right hand side of (7). As seen previously (87) implies that J,°
is constant on each fiber and hence is a function of x € AX. However it
may not vanish in the case where, in the previous model, & is not compact,
because (89) would not hold in general. However Equation (88) still implies
a conservation law on J4*, as shown by the following.

Proposition 4.1 Let (py, Fy) be a solution (88). Then
O =0 (91)

Proof — By computing the exterior differential of both sides of (88]) and by
using the facts that 9;F9; = 0 and deéN_l) = (0 one obtains that J, (8; 7Apg§5) =
0. Recall that -

VAL 85 g5 _ 0 g gs g g 9,5 s 0s
85 Py = aspg C—lgOgA—Ospgl +c gong—Ospg—z + 7 ssPg
and hence, since %, = 0 because the coefficients of v are in so(s, b),

VA 95 95 _ 0 g 9s g g 9,5
Q_’ De® = 0sDyq CflgogA*nggl +c gog2Afoépga
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Thus

0g (02 pe) = Oy (0gpe™) — P g o Aoy (Oypy, ) +5y o ASrg (9pg, %) (92)
However by using Cartan’s formula (83]) implies that
¢"((0g, 0s]) = —de*(0y, 0s5) = YNE®(Oy, Os)+[ATNE®](Oy, 0s) = —C% g, Adosef2(0y)

and hence [0;, 0s] = —cggOgAgogag, which implies

g (Ospg™) = s (agpggé) — Oy 0, A% (agp992§>
This leads to the following simplification in (92))
0y (97" pe®) = s <8gp99§> clg oA (agpg ) = g — Chg g Aoy *

The right hand side of the latter equation is equal to 8§AJ g Since we know
from the beginning that the left hand side is zero, we deduce (@I]). O

4.3.6 Standard gauge symmetries

The Yang—Mills action (7)) is invariant by several types of gauge symmetries,
which generalizes the gauge symmetries of the Maxwell model seen previously.
For any g € C>(X, ®) the action A[f°, my] = [ Umg= 20 A6 + g A
(d62 + 169 A 6°]2) is invariant by the gauge transformation
69 — Ad,0%—dgg ' =g0% ' —dgg!
Ty — Adgm,
meaning that
A[Ad,0° —dgg™!, Adymy] = A0, 7] (93)

Indeed on the one hand since the scalar product k on g is invariant by the
adjoint action of &, we have |[Ad} ® 1; ® 1,(74*)]* = |7,**[>. On the other
hand the relations

d (Ad,6° — dg g_l)—l—% [(Adg#® —dgg™") A (Adg#® —dgg™")] = Ad, (deg + %[eg A 99])

and Ad}my A Ady(df2 + 5[09 A 69]8) = mg A (62 + 3[6° A 6°]2) imply that the
integral [ my A (A6 + 3 [99 A 09]9) is invariant by thls transformation. Hence

@3)) follows.
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4.3.7 Gauge symmetries of the dual fields

Let x4 € g* ® QV2(F) and assume that we replace 7y by 74 + X, Then by
observing that ©9 := d6? + (0% A 69] = d?/269 and by using ([39)

(7r2+xg)/\@2 = ng@2+(d6/299) AXg = ng@g+da/2 (gg A Xg) +92/\d9/zxg

But since 02 A x, has real coefficients (hence in a trivial representation of g),
we have actually d%/? (92 A Xg) =d (92 A Xg>, so that

(mg + xg) A % = 7y A O+ (681 xq ) + 08 A 4”2 (94)
Assume further that
Xg A\ B% =0, (95)
i.e. x4 decomposes as x, = xgigfg(g]v_z) +%X9@fé_g]v_2) or x;*° = 0. Then |7,%+
Xo™|* = |7,*°|?. Hence if we assume that x, € g*@QY ~2(F) satisfies (95) and
decreases at infinity (or is compactly supported), so that f]_. d (99 A Xg) =0,
it follows then from (4] that

A0, 7y + x) = A[0°, ] + / 02 A d?%y,
. 8

Thus the action satisfies A[09, mg + x,4] = A[09, 7] if x4 € g* @ QV2(F) sat-
isfies (O8)), decreases at infinity and satisfies 98 N d% 2)(2 = 0. As a conclusion:

Lemma 4.2 Let x, € g* @ QV72(F). Assume that

1. xq decays at infinity or has compact support;

2. Xg> =0, t.e. xg decomposes as

_ 1 _
Xg = Xo= é(gN 2)_|_§Xg@ 9(ng 2) (96)

03Ny, =0 (97)

then we have A[0%, my + xq] = A[0?, 7y

Note that Condition (08]) is actually sufficient for x, to be an on shell gauge
symmetry. Indeed if the Euler-Lagrange equations (7)) are satisfied then
O = 309,60 and thus the action [ 3|my*|* 4 4 A O is obviously invariant
by the transformation (69, my) — (69, 14 + xg) if x4 satisfies (90]).
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4.3.8 Invariance by fiber bundle diffeomorphisms

Let T : F — F be a diffeomorphism such that P o T = P (i.e. which
preserves each fiber of the fibration P : F — X’). Then our action enjoys

the symmetry
A[T*0°, T*my| = A[6°, 7y (98)

Indeed remind that 7,** = Q,* (¢, m,) (5H) is characterized by 7% 3™ A" =
g A B% (B4)). Hence since B™ and B are invariant by T, this implies
(1% o T)B™ A T*0") = (T*my) A B%, so that 7,% o T satisfies the same
relation as Q % (7769, 1" m,y). Hence Q % (176, T"my) = Qg™ (6%, my) o T. It
follows that

L1Qg* (169, Tmg)|* B™ AT*00) + T my A (AT*62 + L1769 A T*69]2)
= 7 [11Qg (69, m)|2 ) A0 4y A (A6 + 3160 A 69]9)]

and by integration over F we deduce (98]).

5 Kaluza—Klein theories

A Kaluza—Klein action functional can be obtained by adding a quantity of
the kind [ w3 A ©2, where ©9 := df® + £[6° A 09], from the Yang-Mills action
to a higher dimensional version of the Palatini action functional as defined
in §2.2.2

Starting from the Palatini action described in §2.2.2] we replace s by a
larger space u := s @ g, where (g, [-,]) is a Lie algebra of dimension r and,
in the role of [, we replace so(s,b) by so(u, h). Hence

u:=sdg and [=so(u,h)

so that dimu = N :=n 4+ r. We extend the Lie bracket of g on u in such a
way that s is in the center of (u,[,-]). In a way similar to the Yang-Mills
theory (see §4.3]) we assume that g is the Lie algebra of a simply connected
Lie group & (but not necessarily compact in the following). We also assume
that u is endowed with a symmetric nondegenerate bilinear form h which is
invariant by the adjoint action of & (see (69)) and such that s L g. We
denote by b and k the restriction of h on, respectively, s and g.

Let Y be a smooth oriented manifold of dimension N. The dynamical

fields on Y will be a pair (6%, ¢'), where * € u® QYY) and ¢' € [®@ QL()),
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for the "Palatini’ part of the action plus an extra field m, € u* @ QN=2(Y)
which satisfies the constraint 6*° A m, = 0. Hence the space of fields is:

€:={(0" ¢\ m) €M@ (V) x (&Q2"(V) x (1" 2()) ;
(6, o', m,) are of class €% and 6° A 6° A, = 0}

We let 5" € I* @ u®u be defined as in (IG]) (this tensor is invariant by Adg
as expounded in §2.2.5) and we set ®' := dp' + %[gol A ' and, for shortness,
P = g "™®PL Then with the same conventions as before, we define on &
the action functional A by:

1
A", ¢! ml] = / Ty A O + 5935_2) AP — Ay (99)
s w

Theorem 5.1 Let & be a simply connected Lie group with Lie algebra g, of
dimension r, and s be a vector space of dimensionn. Letu=s®g, endowed
with the Lie bracket [-,-] which extends the Lie algebra structure on g in such
a way such that s belongs to the center of (u,|-,-]). Assume that u is endowed
with a symmetric bilinear form h = b @& k which is invariant by the adjoint
action of g on u and such thats L g.

Let Y be a connected, oriented manifold of dimension N := n +r. Let
(0, ", m,) € € be a critical point of A and let h := (0*)*h. Assume that the
rank of 0" is equal to N everywhere and that (), 0°,09) is g-complete (see
Definition[{.1]). Then

1. the exterior differential system 0°|¢ = 0, for r-dimensional submanifolds
t C Y, is completely integrable and Y is foliated by the integral leaves
f.

2. there exists a Lie group &, which is a quotient onA5 by a finite subgroup
such that all integral leaves f are diffeomorphic to &.

Assume the additional hypothesis that & is compact. Then the foliation
forms actually a fibration and the following holds.

(#ii) the manifold Y acquires the structure of a principal bundle over an
n-dimensional manifold X with structure group &:

6 —y-x
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(1v) g = (6°)"b = by6* ® 6 is constant on each fiber of P and induces a
pseudo metric (also denoted by) g on X;

(v) in any local trivialization Yy ~ U X & (where U C X is an open subset
and Yy = P71 (U)) we can write 0° = g~ 'A%g + g~tdg, where g € &
and A® is depends only on x € X;

(vi) g and A® are solutions of the Einstein—Yang—Mills system

R(g)%s — LRO% + AF, = LF=Fs, — 1[F|25,
VTX,Angg = 0 N
5

with a cosmological constant equal to A = Ay + i(B, k), where Byy 1=
cglgngEleg is the Killing form on g and (B, k) := %B%k@.

A straightforward corollary of Theorem [5.1]is the following.

Corollary 5.1 Assume ezactly the same Hypotheses as in Theorem[5.1] and,
in addition, that & is compact. Then Conclusions (i) to (vi) in Theorem

(5.1 hold.

Remark 5.1 One may replace ki** given by (18) by any tensor which is in-
variant by Adg, as expounded in §2.2.5, and such that the map u* ® u* >
S — K& has a non trivial kernel. Most computations still holds, how-

ever the interpretation of the resulting system of equations would be different.

Remark 5.2 The action A in (99) and the constraint m, A 0* = 0 are obvi-
ously invariant under the action (6", ', m,) — (T*0", T*', T*m,) of orienta-
tion preserving diffeomorphismsT : Y — Y. It is also invariant through the
transformation (6*, ¢, m,) — (Ady8", (Ady)@'(Ady) ™", Ad; ), where g € &
1s constant. However there is apparentely no way to extend this finite sym-
metry to a gauge group action, because the curvature form ®' = dap[+%[g0[/\<p[]
does not transform in a simple way.

The next sections are devoted to the proof of Theorem [5.11
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5.1 The Euler-Lagrange equations

In the following we assume that (6%, ', m,) € € is a critical point of A such
that rankf" = N. We denote by h = b020% + kgo0262 the induced met-
ric on Y and we assume that (), 0% 60%) is g-complete. Recall that ©" :=
do* + 164 A 6] and @' := dy' + 1[p' A ¢'] and the a priori decompositions
o — %@uﬂgw — %@u@g@ + OY,, 0% + %@u@e@ and 7, = %ﬂ'uwﬁg_ﬁ _

%ﬂuﬁ eng—2) + 2 Héév_z) + %Wu@ H&V_z). The constraint m, A #*° = 0 in the
definition of € then reads m,* = 0 or

1
Ty = T8 9;5_2) + iﬂu@ G&V_z) (100)

5.1.1 Study of the first variation

First variation with respect to coefficients of 7, — We write that the
action functional is stationary with respect to first order variations (6", ', m,) —

(0, ', T, + edm,), where dm, = Yu = X2 9%\/—2) + %Xu@ H&V—?)’ so that it re-
spects (I00). It gives us:

1
vXu5[7 Xu[[7 0= / Xu N = / (Xusg Ggﬁg + §XE@ ®ugg) G(N)
y y

This is equivalent to ©";; = O3y = 0. Hence ©" = %@“sj 022, which reads

E — los ps S
A i (101)
d99+5[99/\99] — 5@95759—/\9—
First variation with respect to ¢' — We look at first order variations

(0%, ' ) — (0%, 0" + 0!, ), for any d¢' = A' with compact support.
This induces the transformation ®* — ®" 4 d?A\** (where \** := k")
since k(" is constant and ad;-invariant. This yields the condition that, V'
with compact support,

1 1 1
0= / —deam A g2 = / —d? (A AN 2)) + A dep )

However d? ()\% A eﬁj‘” =d (A 9@‘2) , since the adjoint action of [

on this quantity is trivial. We thus obtain the condition

O:/d EH(N‘”/\)\M +1)\Mds@9(N—2)
y \2 % 2 ﬂ
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from which deduce (since u* ® u* 3 &, —> ~* € has a trivial kernel) that
d“”@ﬁiv_m = 0. Lastly since d“’@ﬁiv_m = d¥6% A (91%_3) and N > 2 we deduce
d?6* = 0 (a similar result is derived in (205])). This means that the connec-
tion on T'Y defined by ¢' is torsion free, i.e. coincides with the Levi-Civita
connection of (), h).

First variation with respect to 0" — Lastly we look at variations (6", ©', 7,) —
(0" + 60, o', 7, + edmy), for any 66" = T with compact support, where dm,

is chosen in such a way that the coefficients m,** are fixed (in particular we
preserve the constraint m, A 6*° = 0). Through these variations,

Ty > my+edm +o(e) with 0m, = 7,28 T4 A H%VH_?’) + %Wu@ TEN Hé_,évg_?’)
O P 00TY 2000 +o(e) with a6k Y = A G
Y  +— O+ 00"+ o(¢) with 60" = d’7¢
ON) I 26N 1 o(e) with  60() = 71 A gV
Hence in particular, on the one hand, by using (I01]) and (34))
_ 1 _ 1
omy N O = (7-(-25192 43 A gé(i\éjg + 57%9192 T4 A 9&22;)) A 5(95&9@

= TEA (791@@21@ HEN_1)>
On the other hand
A0t =d' i AT, =d? (PE AT F AT, = d (A AT) +TEAd T,

Thus by using the fact that 7" has a compact support, we deduce the condi-
tion

1
v, 0= / A (d%u — Oy ® N 4 N A Prate — AoegN—U)
S s u

2 ujusu

which gives us the equation

1
A’y + S0 A P — AfNTY = O, 22 oY (102)

2 =

5.2 Geometric consequences of the Euler—-Lagrange equa-
tions

5.2.1 Existence of a foliation

From the first equation in (I0I)) we deduce that d° =0 mod[#*]. Since the
rank of 6 is equal to n everywhere, we deduce from Frobenius’ theorem that
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Y is foliated by integral leaves f which are solutions of the system 6°|¢ = 0 of
dimension r. We denote by X the set of integral leaves.

5.2.2 The structure of the leaves

Consider on the product manifold & x Y = {(h,y) € & x Y} the g-valued
1-form
78 :=0° — h~dh

It satisfies the identity d7% = d6® + %[99 N G%] — [0% A TO] + %[7‘9 A 79] and its
rank is clearly equal to r. However the second equation in (I01]) implies that,
for any integral leaf f, 69 + £[0% A 6%]|¢ = 0 and thus d(7%|¢xs) = 0 mod[7°].
Hence, again by Frobenius’ theorem, for any (go,y,) € & x f, there exists a
unique 7-dimensional submanifold I' C ® x f which is a solution of =0
and which contains (go,y)-

As for the Yang-Mills theory, V(g,y) € & x f, V(¢ v) € Tg@ x Tyf, the
equation ¢g~'dg(£) = 69(v) defines the graph of a vector space isomorphism
between T, g(’Aﬁ and 7,f. This implies that, around each point (g,y) € I', I' is
locally the graph of a diffeomorphism between a neighbourhood of ¢ in &

and a neighbourhood of y in f.
But we have more: since (Y, 6°,6%) is g-complete by hypothesis, by ap-
plying Lemma [£.1] we deduce that & is a universal cover of each leaf f.

5.2.3 All integral leaves are diffeomorphic

In the following result we still assume the hypotheses of Theorem [B.1]

Lemma 5.1 Assume that (Y, 6°,6%) is g-complete and that Y is connected.
Then for any pair fy, f1 of integral leaves, fy is diffeomorphic to fi.

Proof Let f € Y be any fixed integral leaf and consider
Y= {y € V; the leaf which contains y is diffeomorphic to F}

We will show that Y is open and closed. It is clear that ) =+ () since fc ).
Thus it will prove that )) = ) since ) is connected.

(i) We first prove that ) is open. Let y, € Y and let us denote by fo the leaf
which contains y, (which is hence diffeomorphic to f).



5 KALUZA-KLEIN THEORIES 67

To any fized £ € u we associated the vector field X(£*) on ) defined by
X(&*) = €2 (in an equivalent way, 0*(X (£")) = £*). For any (y, &) € Y xu,
denote by, if it exists, eX(¢")(y) the value at time ¢ = 1 of the solution
v € C([0,1],) of the equation Z_Z = X (&%) (vy), with the initial condition
v(0) = y. We consider the open subset Ag C Y xuand the map & : Ay — Y
such that ®(y, ") = eX€(y) and Ag (life set’) is the maximal open subset
of Y x u on which ® can be defined.

For any value r > 0 we let B,(r) be the ball of radius r centered at 0
in u (for any norm on u). For r > 0 sufficiently small, we define the map
U : By(r) — Y as follows. For any " € B,(r), we use the unique splitting

& = & + €9 according to the decomposition u = s & g and we set

W(E") = 2(D(yy, €°), €%) (103)

The differential of ¥ at 0 is the inverse map of 6 and hence is invertible.
Thus, thanks to the inverse mapping theorem, by choosing r sufficiently small
we can assume that W is a diffeomorphism between B, (r) and its image O in
Y, which is a neighbourhood of y,. Let z € O be an arbitrary point and let
f be the integral leaf which contains z. We will show that f is diffeomorphic
to fy and hence to f. For that purpose we will show that the flow map eX(€")
is defined on fy and maps fy to f in a diffeomorphic way.

We remark that, since any integral leaf is invariant by y — ®(y, £9), f
contains also y; := ®(y,, &%) and hence is characterized by this property.

Let yj, € fo. There exists a path v € €*([0,1],fy) based on v(0) =y, and
with end point (1) = yj. We build the map U : [0,1]> — Y by:

{ Ul(t,0) = Dy, t&%) vt € [0,1]
(U6 (2)) (ts) = (78 (L) () ¥it,s) € [0,1] x [0,1]

A key point is that, since ~ takes value in the leaf fy, v*6° = 0, which implies
(U*6° (£)) (t,s) = 0. This has the first consequence that the existence of
U is guaranteed by the hypothesis (iii), i.e. that the manifold is g-complete.
From Equations (I0I)) we deduce

d(U"0°) = LU (©%,:05 A 02)
d(U*6%) + LU= ([0 A 00]) = LU (09,62 A 62)
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This implies, since (U*¢° (£)) (¢, s) = 0, that
0 0
dU ) | =
U 53
0 0 0 0
dU ) | =, = 00| — A =
U aras) * {U (m) v <8s)} 0
On the other hand Cartan’s formula

d(U*eu)(gt a&)jLUeu({%%D ;<U9u<§9)) ;(Uﬁu(;))

simplifies to d (U*6") (2,
forall t € [0,1], s —> U*
equations

)+O = O—— (U*Q” (—)) We hence deduce that,
(8) (t,s) is “solution of the system of differential

0 0
*95 —
O0s v ot 0

0 0 0 0
Il xpo [ 2 _ * 09 * 09
= (e (5) = [ve(5) ve(5)]

However we also have the following initial conditions at s = 0:

0 0
U*g° <§) (£,0)=¢& and U*6° <§> (£,0) =0

We thus conclude that U*6° () (¢,s) = 55 and U*09 (2) (t,s) =0, V(t,s) €
[0,1]%. This is equivalent to the relation &2 = X(¢°)(U). This shows that
the flow map of X (£°) is well defined at least for all time in [0, 1] on fy and
maps fy to f. Since the reasoning can be reversed (by exchanging fy and f)
this map is actually a diffeomorphism and, in particular, f is compact. Thus

ze .

(ii) We show that Y is closed. Let y be in the closure of Y. In a way
similar to the previous step, for r > 0 sufficiently small, we define the map
U: By(r) — Y by ¥(&") = (P(y, &), &), where, VE* € By(r), & = &£ +&°.
For r > 0 sufficiently small, we can assume that ¥ is a diffeomorphism
between B, (r) and its image O in ) and O is a neighbourhood of y.

Since y belongs to the closure of ), there exists a sequence (Yn)pen Of
points in ) which converges to y. We can fix a value of n sufficiently large
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so that y, € O. Since y, € Y, the leaf f, which contains y, is diffeomorphic
to f. We can then repeat the arguments of the previous step by replacing
Yo by vy := Dy, —&2), where £8 is such that W(&E + &%) = vy,. (Note that
D(yh, —€%) =y.) We thus obtain that f is diffeomorphic to f. O

5.2.4 Intermediate conclusion

By using Lemmas .1 and 5.1l we immediately obtain Conclusions (i) and (ii)
in Theorem @D holds, i.e. that all integral fibers are diffeomorphic to a Lie
group & := & /m(f), where m(f) is the fundamental group of any integral
leaf f.

5.2.5 Construction of a principal fiber bundle structure

In the following we exploit Lemmas (.| and B.I] by assuming furthermore
that & := &/m(f) is compact. Then all integral leaves f are compact and
we will prove that these leaves are actually the fibers of a principal bundle
with structure group &.

As in the proof of Lemma [5.1] to any £ € u we associate the vector field
X(&*) on Y such that 6*(X (&) = &*. A useful property is

V(€7 esxg,  [X(€), X(€)] =0 (104)
The proof of (I04]) follows again from Cartan’s formula d6* (X, Y)+60*([X,Y]) =
X-00Y)—-Y - -04X), with X = X(&) and ¥ = X(£9), which gives
' ([X,Y]) = —d0*(X,Y). This implies by using (I0I]) that 6*([X,Y]) =0
and hence [X,Y] = 0.
For any integral leaf f and any point y, € f we define the map

 — f
g > gG-Yo

as follows. Let ¢ EA@S be any point which is mapped to g through the
projection mapping & — & = &/m(f). We then set g -y, = T(g), where
T is the map constructed in the proof of Lemma Il Tt follows from the
definition of the action of 7 (f) on & that this value does not depend on the
choice of g.

For any r € (0,400) let Bs(r) be the open ball of radius r and of center
0 in s. We fix an arbitrary point y, € Y and we define the map

A By(r) x & —» y
(&,9) — A&, 9) =g (e (y,y))
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Note that, for g = exp &®, we have A, (&%, exp&?) = VU(E° + &) (where VU is
defined by ([I03). For r sufficiently small, it is clear that A, is well-defined
and is a local diffeomorphism. However it is not clear a priori whether A, is
a global diffeomorphism between B,(r) X & and its image since A, may not
be one-to-one in general. Indeed although, for any £° € B,(r), the restriction
of A, to {£°} x & is a diffeomorphism whose image is an integral leaf, it
may happen that there exists two different values £°,(° € B,(r) such that
A ({6} x 6) = A.({¢°} x ©).

For h € (0,400) let By(h) be the open ball of center 0 and of radius h
in g and let W, ), be the restriction of ¥ (defined by (I03))) to Bs(r) x By(h).
Since dV, , is invertible, we may choose (r,h) in such a way that ¥, is a
diffeomorphism onto its image O,.j, := W, 5 (Bs(r) X By(h)).

Let f be the integral leaf which contains y,. Since fis compact the intersec-
tion f N O, is composed of a finite number N + 1 of connected components.
We denote by fo, f1, - - -, fi these connected components, where f; is the image
of {0} x & by U, ,.

For any pair f,f’ of submanifolds of O, ;, which are open subsets of inte-
grals leaves, define

d(f ") = inf{[|¢°]| ; ¢° €5, )N # 0

It is clear that 36 € (0,400) such that d(f,f, ) >20,Vj=1,---,N. (This
means in particular that the inverse image of f by W5 is reduced to {0} x
By(h).)

Now we observe that, by the proof of Lemma 5.1l for all £ in a neigh-
bourhood of 0 in s and for any j € {0,---, N}, eX€)(f;) is well defined and
depends in a continuous way on &°. Thus in particular, 3p € (0,0) such that

Ve € By(p), Vi e{l,--- N}, d (I‘O,ex(fﬁ)({cj)) > §. Hence, if €& € B,(p), on

the one hand, eX€)(fy) = U, ,({€°} x By(h)) C W, 4(Ba(p) x By(h)) =: O,
and, on the other hand, all the other connected components e*€)(f;) (for
1 < j < N) are outside Ogy. Since p < 9, this ensures that the inverse
image by ¥, of the intersection of any integral leaf with O, is reduced to
{5} x By(h).

As a consequence the map A, is a diffeomorphism between B,(p) x & and
its image. This shows that ) has a principal bundle structure, with structure
group &, the map A, providing us with a local trivialization. Hence the set
X of integral leaves has the structure of an n-dimensional manifold. We
denote by P : )Y — X the quotient map.
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Set e* := #°. From % de* = 8%9 1 de® = 0 we deduce that there exists
a coframe e° on X such that e® = P*e®. Thus we can equipp X with the

pseudo Riemannian metric g := bge? @ eb.

5.2.6 Working in a local trivialization of the bundle

In the following we choose an n-dimensional submanifold > C ) transverse
to the fibration. Without loss of generality (replacing )} by an open subset
of YV if necessary) we can assume that 3 intersects all fibers of P (i.e. defines
a section of P : Y — X) and we define the map ¢g : Y — & which is
constant equal to 1g on X and such that

dg — g6°ls =0
for any integral leaf f. We then define
AY = Ad,0" —dg-g!

which means that A® = 6° and A® := Ad,0°—dg-g~'. Obviously A’|¢ =0 and
moreover the relation dg — g6°|f = 0 translates as A%f = 0. Thus A"[f =0
so that we have the decomposition A" = A%,0* (with A®, = §°;). Moreover
since

0" =g 'A'g + g 'dyg, (105)
we have d@* + 1[0 A 6] = g7 (dA" + L[AY A AY))g = g7 'Fg, where F* :=
dA" + LAY A AY]. From (I0I) we deduce ;2: 1 ©" = 0 which is equivalent

009

to agu JF% = 0. But since 8%9 2 A" = 0, this implies furthermore that

% JdA" = 0 and thus the coefficients AY, are constants on the fibers f.

Hence

1
F = JF (106)

where the coefficients F*,, = Ad, ® 1.+ ® 150", are constant on the fibers.

5.3 The Euler—Lagrange system in a local trivialization

We proceed similarly as for Yang-Mills in §4.31 Consider the map Ad, :
Y — End(u), where g : ) — & is the map defined previously. Actually
Ad, takes values in SO(u,h) since h is invariant by Adg. We define the
coframe e* := Ad 0" = A" +dg g~'. Note that

e = & = A°

e = Ad# = A'+dgg! (107)
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and (I06]) becomes

1
Fu = iFu&e:ﬁ’

By using (51l) we get
d%ef = F9 + %[eg A ef] (108)
We also define p, := Ad,m, and
w' = (Ady)¢'(Ady) ™" — d(Ady)(Ady) ! € T@ Q'(Y)
We note then that

1
0 = du' 5! A w!] = (Adg)BH(Ady) ™" and set 0% i= 0!

We translate Equation (I02)) by computing the images of its both sides by Ad}
in terms of these new variables. From Lemma B.6] we deduce Ad;(deuwu) —
dqAdet*—dgg~! Ad;wu = d€5+Agpu. However since s belongs to the center of
(u,[-,-]), this relation reduces to Ad;(deuwu) — d%"p,. Hence by using the
fact that k™" is invariant by Adg, we get

d®p, + Lowv=s) p qu _ ApedN ™V = Fop,® eV Y (109)

i u

We note that the second term on the L.h.s. is nothing but (minus) the Einstein
tensor E(h)," (see (25])) on (), h):

1
ieg_ﬁ;@ A Q™ = —E(h), eV (110)
Thus we obtain
E(h)ugegv_l) + Aoel(lN_l) = dApu — F*up® egN_l) (111)

The computation of d®p, follows the same steps as for the Yang-Mills case
(see (85)), by using d* given by (I08) instead of d”* given by (80) and with
the simplification that p,* = 0:

2

1
dApy = Oy el + (a;pugi + 0y 2% + —cgglggpuglgz) eN o (112)
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Hence, by using p,* = 0, we can write (I11]) as the system

5 s sg
{ E(h),* + Agdy OgPu (113)

E(h),® + A¢d? = 8?]91195 + Ogpu®® + %pu@cg‘@ — F4p®

Equivalentely by using the splitting u* = §* 4+ g* and with the simplification
F'y; =0,

E(h):® 4+ Agds® E(h),°
(P B hois )
o Ogps™ O4py™®
~\ OAp + Ogps%E + 1ps8cd s — Fiop, OApg® + Oypy™ + 1pg®cty, )
) B ) (114)
Observe here that, because of the symmetry of the Einstein tensor and since
s L g, we have h*E(h),? = h®E(h),*

Again a crucial point is to observe that the Lh.s. E(h),*+Aqd,° of the first
equation in ([I3)) is constant on any fiber of the fibration P : ) — X. By
setting (e2)™ := "I A+ AeN and (e2)7 Y = 2. et and by using the
fact that the fibers are compact we deduce from (II3]) that the cancellation
phenomenon holds:

e B EmE ) 00 fyd (e )
E(h)u + A05u NG fyx(eg)(r) = fyx (eg)(r) =0
(115)

Hence by taking into account the symmetry of the Einstein tensor we deduce
that (II4) reduces to

E(h).° + Aods®  E(h)g° _ (0 0
( E(h),® E(h)g® 4 Agdg® ) a ( 0 0ppg® + 0gpy™ + 5P 2cly )
) ) (116)
Beware that it does mean that (), h) is a solution of the Einstein equation
with a cosmological constant since E(h)?;+ Agd?; does not vanish in general.

5.4 The Einstein—Yang—Mills system

Lastly we translate equations E(h),*+A¢ds* = 0 and E(h),® = 0 as equations
on fields defined on X. We introduce a basis (uy,---,uy) of u such that
(uy, -+ ,up) is a basis of s and (u,41, -+ ,uy) is a basis of g.
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From e* we build the metric g := (6°)*b = (e°)*b on X and the associated
Levi-Civita connection V7. The connection form v*°¢) € so(s,b) @ Q' (F)
of VI can be computed by comparing ([01]), which gives us de® = $0°,e%,
with the zero torsion condition de® +7%°®) Ae® = 0: by using the notations 7%,
for the matrix coefficients of 7*°®) in the basis (uy,---,u,) and %, for its

coefficients (see (III), we have %, = % (@“bc — bbby, O, — b bcchC'aq,).

Let also (WAB)lgA,BgN be the matrix coefficients of the Levi-Civita con-
nection 1-form w'. In [II] w' is computed in function of v*°®) and of A?®
and F?. The result is the following: let w*, = w?puy ® u? and %, =
Y, @ u’ = Y41, ® u’ ® e, By setting Fy®s = (kg ® b*® ® 1)FL,, and
Foo® 1= (kgg @ 1® b*)F8,, -

5 1 5 1 5,5
< w's Wy ) B ( Vs — 5Fg%se? sFoces )
g g - 1pe s lao g _ g
Wy w9, sFose 5Ca (e — 2A8)

We deduce the curvature 2-form O, = dw",+w",Aw*, and the components of
the Ricci tensor R(h),® and of the Einstein tensor E(h),°. By setting |F|? :=
sF2FY, . and (B, k) := %c9192930929194k9394 (here Bgg := cfiy ey g is the
Killing form on g), the scalar curvature reads R(h) = R(y) — |F|* — (B, k)
and

1 1 1
E(h)’ = E(g),* — 5 (FQ@F;& — 5|F|25;) + Z(B, k)d,® (117)
1
E(h),* = 9 (aiFESE + Fo®587%5 s + 7%, Fg™ — CglgggAg%FElsé) (118)
6 _ Lo sspng L 4 g 9.9 1 g
E(h)g = ZFE_F 55 — Zc—lgggc glgzk—2—3 — §R(h)5g (119)

We note that (II8) can be written E(h),® = {VIVAF* where VT4 =
VI* +adj A. In conclusion, by setting A := }(B, k) 4+ Ao, we get a solution
of the system

{E(g)f“%s = FLF — 1 [F%° (120)

vg/\’ ,Angg =0

i.e. the Einstein—Yang-Mills system on (X, g) with the connection A? on

Y — X and the cosmological constant 1(B, k) + Ay.
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6 Gravity theory

We now turn to generalized gravity theories the formulation of which takes
place on manifolds which look locally as principal bundles. For general solu-
tions the corresponding space-time will be built as a set of leaves of a foliation
(hence non separable in general). In special circumstances this quotient space
is a true manifold and we recover usual gravity theories on this manifold.

We let £ and B be two simply connected unimodular Lie groups and we
assume that £ is a subgroup of . As a motivation we may think that £ is
the connected component of the identity of the Spin group Sping(1,3) and
that ‘,]3 is the corresponding Spin Poincaré - group Spmo(l 3) x R We let [
and p be, respectively, the Lie algebras of € and ‘B

The unknown fields will be a p-valued 1-form ¢* which is a coframe on
an oriented manifold F (where dimF = dimB =: N) and a dual field 7,
which is an (N — 2)-form with coefficients in p*. Then by looking at the
Euler-Lagrange equations of the action functional [, m, A (dgR+ 1[pP ApP])
on a class of fields satisfying a particular constraint we find dynamical equa-
tions which implies the existence of a foliation of F which, under some extra
topological hypotheses, gives rise to a principal bundle structure on F with
a structure group £, which is a quotient of £ by a finite subgroup. The
space of leaves X' has the same dimension as /£ and can be interpreted as
the space-time X'. The dynamical equations then imply that on can extract
some fields defined on X out of P, which satisfy an Einstein—Cartan system
of equations.

6.1 General setting for gravity
6.1.1 Hypotheses on the structure groups

We denote by [ and p the Lie algebras of, respectively, £ and ‘,]A3 Our hy-
potheses are:

1. p is reductive, i.e. there exists some vector subspace s C p such that
[Ds=p. (121)
and s is stable under the ajdoint action of E, ie.

Adgs Cs, le: Vge Ve e 5,Ad,¢ = g€g7' € 5. (122)
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2. ‘JA3/ Lisa symmetric space, which amounts to assume that

[s,6] C [, meaning that V¢ (€5, [, (el (123)

3. the Lie algebras p and [ are unimodular.

Note that the fact that £ is a subgroup of 93, (IZI) and (I23) imply respec-
tively that:
[Lgct |[s] Csand][ss| CL (124)

The latter property is equivalent to the fact that the linear map 7 :p — p
such that [ and s are the eigenspaces of 7 for the eigenvalues 1 and —1,
respectively, is a Lie algebra automorphism.

We define st := {a € p*;{a, &) = 0,V€ € s} and similarly [+ := {a €
p*; (o, &) = 0,V€ € [} and we will systematically use the identifications

[*:=s" and 5% := [+
We hence have p* = [* @ s*.

Note that, if a € I* = s, then V(£,¢) € (Ixs)U (s x ), [£,¢] € 5
because of (I24)), and hence (ada, () = («, [£,(]) = 0. Hence (a,§) € [* x [
implies ad;a € st =1 and (o, &) € [* x 5 implies adga € [+ =s*. A similar
reasonning shows that (a,§) € s* x [ implies adia € s* and (a,§) € 5* X 5
implies ad;a € I". To summarize:

adfl* C I*, ad/s* C s*
ad;l* C s*, ad;s* C I* (125)

6.1.2 The space of fields and action functional

We assume that ‘i? and £ satisfy Hypotheses (I2T[122][123)). We suppose that
there exists some tensor £,* € p*®A%s C p* ®s®s which is invariant by

the adjoint action of £:
Ad, © Ad, ® Ady (k) = Ky™, Vg € L. (126)

A fundamental example of a tensor k,* is presented in §2.2.51 We fix a
non vanishing volume form vol, € AVp* and we consider a N-dimensional
oriented manifold F. We then consider the class of fields

e = {(m,¥P) € (P @QV2(F)) x (p @ QY (F)) of class €2

rankgh = N,Vz € F and m, A @™ = £, (0F)"voly } (127)
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we set OF := dp? + L[pP A ] and we define on Eg the functional

Az, ) = [ w22 (128)
[ =,

Theorem 6.1 Let ‘,]A3 be a simply connected Lie group of finite dimension N
and £ C P a simply connected Lie subgroup. Let p and | be their respective
Lie algebras. Assume that p and | are unimodular, that there exists a vector
subspace s C p which is stable by Adg and such that p = s ® [ and that B/ L

is a symmetric space (123).
Let F be smooth oriented manifold of dimension N and consider the func-

tional A defined by (128) on Eg. Assume that k,* (in the definition of Eg)
satisfies the additional hypothesis:

Ky =K EF@AS  de K™ =0. (129)
Let (m,, @) € E be a smooth critical point of A. Then

1. F s foliated by smooth leaves f of dimension r := diml, which are
solutions of the exterior differential system 6°|¢ = 0.

2. for any point in F there exists an open neighbourhood O C F of

this point such we can endow the set of intersections Xo = {f N
O fis an integral leaf} with a structure of manifold Xo of dimension
n := dims.

3. there exist local charts O 3 z+— (x,g) € Xo X €, such that the projec-
tion map O Lo, Xo 1s a submersion and we have the decompositions
0 = g710%g and ' = g 'w'g + g 'dg, where #° and w' are pull-backs
by O Lo, Xo of 1-forms on Xo. Moreover g := (¢°)*b := bgp® ® ¢*
1s the pull-back by O Lo, Xo of a pseudo metric (also denoted by) g

on TXp and 0° provides us with an orthonormal coframe for g and w®
defines a connection on T'Xo which respects g.

4. 6°, W' and p, := Ad,m, are solutions of the following equations

%H9§1§ZQ[§1§2 + (8; + ®*§*>pp[§ + CEO Is p§0 e + 8l1pplll + %c[l1l2pplll2
— (»—')5055 p§0 [§ + legpilé — %Q(S[[
(130)
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and

1 1
51{ 5152@5 818y T alpps_[ = Qlﬁéf%l@l B Q(Q a8, T ct EED) ) L§1§2555 (131)

where we set O, := O%, and (:)55152 = O%,5, — 05,075, + 03, 0%, and
Q = Qhyr (= + ctyr = (132)

5. if we assume furthermore that the integral leaves f are the fibers of a

global fibration F SN X, then the previous equations make sense on
this fiber bundle

Comments on Equations (I30) and (I3I) may be welcome. By defining
the generalized Cartan tensor C S = —%/{ 2152 @55 s, (equivalent to the tor-
sion tensor ©%, in most situations), the generalized Finstein tensor Eg° =
Q8 rg®® — 5 (O 5, kg21%2)0,° (see (23) for the definition of 0,°) and by setting

Ty* := 01py*t, Equation (I3]) has the form of a generalized Einstein—Cartan

system B
Cr = T7
. : (133)
E;+Ad;° = T,°
where A := 95 515 /igs 132 Hence T'/° can be interpreted as an angular mo-

mentum tensor and T';° as a stress-energy tensor.

Equation (I30) does not look that friendly but leads however to interest-
ing open questions. We prove in Lemma that, independently of (I31),
Equation (I30) implies that 7,° is a solution of

KTy + O . T + €0 Ty ® = O% Ty " + Qo T & (134)

which expresses the conservation of the angular and the stres-energy momen-
tum tensors. We will derive in Proposition the constraint equations on
the Cartan and the Einstein tensors which derive from the Bianchi identities
and check that they are compatible with (I34]).

Corollary 6.1 Assume all the hypotheses of Theorem [6.1] and that further-
more the integral leaves f are the fibers of a principal bundle structure F SN
X with structure group £, where £ is a quotient of £ by a finite subgroup.

Assume in addition that £ is compact, or that the first derivatives of p,%
decay to zero at infinity in each fiber. Then the fields 0° and w® are solutions
of a generalized Finstein—Cartan system of equations in vacuum, i.e.

Cf=E’+A5° =0
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The next paragraphs until §6.3.5] are devoted to the proof of Theorem [6.11
Most computations will be performed without assuming Hypothesis (129)).
The latter hypothesis will be used only in the conclusion. The proof of
Corollary will be given in Section [6.5]

6.2 Study of the critical points

We let (tq)1<a<n be a basis of s and let (t;),41<i<y be a basis of [. Then
(tr)1<r<n = (ta)i<a<n U (ti)nt1<i<n 1s a basis of p. Here we make the
following implicit assumptions on the indices: 1 < I, J K,... < N, 1 <
a,byc,...<mnand n+1<4,jk,...<N. We denote by (t/);<;<n the basis
of p* which is dual of (t;);<;<n. Note that (t7);<,<, is a basis of s* := [+
and (t"),<i<y is a basis of [* := 5= C p. We denote by c¥; the structure
coefficients of p such that [t;, t;] = txcf; and adg t7 = —c/,t*. We can
thus decompose k,* = %li]bc t! @ (ty Ate) ~ %mbctl(tb Ate).

Without loss of generality we assume that vol, = t' A---AtY. Hence the

constraint m, A ¢° A ¢* = K,*p*vol, reads
T A A® = 1, ™ where o) 1= ! A AN, (135)

Since ¢f € p @ Q'(F) is a coframe on F we can decompose

1 1
B AP+ LA ] = Sy o (136)
(see @BI)) and m, € p* @ QVN72(F) as (see B2) m = @,gg 2 _
%7?,,5— @é 2 4 Tt gogjlv D4 %ﬂp” ([]\[7 D Condition (IBE) reads

Wpss - K;pss. (137)

First variation with respect to the coefficients of 77 — We look at
infinitesimal variations of the form

(P, mp) —> (P, mp + 6y)

where 0w, = X, has the form x, = x,* goglv 24 2xp—g0([]\[7 2 , so that the

constraint (I37]) is preserved. The first variation of the action vanishes under
such variations iff

N-2 1
Vi 6l / <xp“®%r + §xp”@ﬂn) ™ =0
F
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which leads to the equations
PPy =Py =0 (138)

First variation with respect to ¢* — We compute the first variation of
the action under an infinitesimal variation of (¢, m,) of the form

(P, ) —> (P + 0P, my + by + 0(€)),

where dpF = A = AP, has a compact support and by keeping the co-

. N-3
efficients m," constant, so that dm, = %Wpﬂlgz)\gs A 901(31132133) (we hence pre-

serve the constraint (I3H)). The first order variation of m, A ®F splits as
o(my A D) = dmy A PE + 7, A PP, On the one hand:

_ (1 , (N-3) 1 .

57TE A PP = (57-(23132 A A SOE1E2E3> A (5(1)82425(‘0&2))
= lob PPN A VT o Rk AR A VT e b R, (N_l))
— 2®_E4E5 ﬂ-E 1 4)\ /\ SOEI + ﬂ-E 2)\ 4 /\ SOEQ + ’7TE 4 )\ 3 /\ SOES

— 1®mp P.p, P Pb,\P p,po\P N
— §¢7E4E5 7r£7174)\75E1 + Tp'oP2 )\7432 + Ty 4bs )\7323) 90( )

It is then convenient to introduce the following notations

PP p pp
P pp P pp
Up = \I/pE P = <I>—pE27rE e (139)
— p — PP p.p
v = \Ifgf = (I)’Elbﬂfu

so that we obtain ém, AP = : (—\Ifgsﬂl )\Esgl — \112432 >‘E4E2 + \If)\3323> M) e

1 1 _
Oy A DE = — (xyplﬂzm% - 5\11»3,,) oM = — <\11,,1PA£1 - 5@!’) N
On the other hand 00 = dAP + [P A A¥] = d? AP and thus, by (39),
Ty A OOE = (dPAE) Ay = dP(MEA,) + AEA AP,

where actually, since the coefficients of \2A p are in a trivial represent of p,
d?(ANEAT) = d(AEA ).

In conclusion §(mp A®E) = d(AEAT, ) +ARA (d“”ﬁE — UM @éjlv_l) + %\IfgpéN_l))
Thus since AP has a compact support the action is stationary with respect to
these variations iff

1 e
VAP, / AL A <d%r£— T+ 5%9 ”) —0
F
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which leads to the equation (see (23]) for the definition of 6,")

N-1) Lo (va 1 N-1
dm, = ‘I’pE<P£ ) - 5‘1’80;(3 )= WP — 5‘1’5132 ‘Pé : (140)

We observe that direct consequences of (I38)) and (I39) are WP = Uy =0
and hence

TP =0, WP =0 = r U=0° =D, 1%
This implies that (I40) can be written

d@ﬂ‘s = \IISEQQEN_D — %\I’ gOéN_l)
d¢m = —%\If QOEN_l)

or d?m, = ¥, — %\If @éN_l), where W, := W,* gp,(,N_l). In conclusion the Euler—
Lagrange system is -

PPy = PPy =0
1 N_1 (141)
dfm, = U, — 5‘1’ 601(3 :
or, by splitting p = [ & s and by using the relation ¥# = 0,
y 2 &(N—l) (N—1) (N—1) (142)
d*my = Uty T4 T2 3V oy

6.2.1 Spontaneous foliation

We first exploit the Euler-Lagrange equation d¢? 4 % [P ApP] = %@p 55>, For
that purpose we split ¢F = p'+¢° and similarly [P ApP] = [P A@P]'+[0P ALP]?,
according to the decomposition. p = [ & s We have

[P AT = (0" + &) A (' + @) = ' A @] + 2l A ] + [0 A ).
Thus by using the hypotheses [[,[] C [, [s,s] C ['and [[,s] C s, we deduce

N R N + [¢* A ¢f]
(N 2[p" A ¢°]
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Hence the relation dgP + 2[@P A @F] = 10P,0° A ¢® is equivalent to

dp'+ 3" AT + 3" A ] = 50t At (143)
de® + ' A 7] = 3 Pupt Ayt

In order to apply these relations let us look for r-dimensional submanifolds
f of F which are solutions of the Pfaffian system

©lg=0 (144)

By using the second equation in ([[43) (d¢® + [¢' A ¢°] = 10°¢™, which

implies dp® = 0 mod [¢°]) we deduce from Frobenius’ theorem that, for any

point z € F, there exists a neighbourhood of z in F such that there exists

an unique solution f to (I44]) that passes through z. We hence deduce the

existence of a foliation of F by leaves f of dimension r and codimension n.

For any z € F, we denote by f, the unique integral leaf which contains z.
We denote by X' := {f,;;z € F} the set of leaves and

x: F — X

z +—— x(z) such that z € f,, (145)

the quotient map. Note that in general X is just a topological space and
may not be a manifold, unless it is a separated (Hausdorff) space.

In the following we restrict ourself to some open subset O of F such that
there exists an n-dimensional submanifold ¥ which crosses transversally each
leaf in O at one and only one point. Then the image of the restriction x|o
has the structure of an n-dimensional manifold, which may be identified with
an open subset of .

6.2.2 Local principal bundle structure and trivialization

Consider the product manifold O x £ = {(z,h); z € O,h € E} and the
[-valued 1-form ¢' € [® QO x £) defined by ' := dh — hy'. Observe that

1
dy' = ~h (dsD‘ +5let A w‘]) — YAy
However the first equation in (I43)) implies that the restriction of dy' +
2[¢" A ¢'] on any leaf f vanishes: do' + L{p' A @] = 0. Thus, for any leaf f,
dy'|,, s = 0 mod [¢'], which implies by Frobenius’ theorem that the Pfaffian
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system ¢'[ s = 0 is integrable on each fiber and thus there exists a map
g: O —s £ such that (Id x g)*¢'|f = 0, i.e.

dgle = g¢'ly <= ¢'lf=g7'dyls. (146)

Moreover by requiring that g is equal to 15 on X, g is unique.

Note that since the rank of ¢' is equal to the dimension of the leaves,
each restriction map gl¢ is a local diffeomorphism between f and an open
neighbourhood of 15 in g. Thus, by replacing O by another open subset if

necessary, we deduce that there exists a neighbourhood Vi of 15 in € such
that the map
O — ExVaCXx [y
z — (x(2),9)
is a diffeomorphism.
Let us define the p-valued 1-forms

e’ = Adye® and AP :=Adp" —dgg ' =€’ —dgg! (147)
or equivalentely
e’ = Adyy’ d A® = Adyy° = ¢
el = Adyp' ol A' = Adyp'—dggt = € —dgg?
(148)
and the p-valued 2-form
FP .= dAP + %[Ap A AP (149)

A direct computation of F? gives the following. We denote by AP, the coef-
ficients in the decomposition AP = ApEeE and by 0,AP, the coefficients such
that dA®, = §,AP,el. We obtain

1
F = (0, A%, — 0, A%, + (A7, AP, ]) et (150)

By ([48) Equation (I44)) translates as e*|¢ = 0. Still by (I48) we get ¢' =
Ad,1A'+ g~'dg, so that Relation (I46) reads A'[¢ = 0. The latter relation

is thus equivalent to A' = A'ye® (i.e. A = 0). But we also have A°® = ¢* and
thus we conclude that A? = AP.e® (i.e. AP =0). Hence (I50) reduces to

1
Fr = 5 (aélApb o aizAp§1 + [Apgla Apgl]) ez 4 0LA"§65 (151)
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A consequence of (I49) and (I47) is

FP = Ad, (dcpp + %[g@p A @p]) = Ad, PP (152)

Thus by letting F?y, = Ad, ® Ad, ® Ady ®F, (see (I36)) we have FP =
5FP e by Lemma However (I38)) translates as

Frg=F,=F; ;=0 (153)

and thus FP = JF¥e®. By comparing with (I51)) we deduce that 9,A%, = 0.
As a consequence:

The coefficients AP, and F?,, are constant on each fiber f (154)

The next step is to look at the image by Ady of both sides of the relation
d*m, = U, — 1V cpéN_l) in (I4I)) (recall that WU, := \prﬂcpgN_l)), ie. to
compute both sides of -

1 _
Ad: (d#m,) = Ad? <\1/,, -5 o 1’) (155)

6.2.3 Translation of Equation (I55])
We recall that ef := Ad . We also introduce
pp = Adym,. (156)

and we set p,** := Ad; ® Ad, ® Ad, m,"". Since p is unimodular we have the

decomposition p, = 1p,™ eéf_2), by ([@4) and (43]).
Let us define B

Qu™ = Foo 1™
Q = QEE = FE& pgﬁ

It follows from these definitions that

Qp? = ( Ad, ® Ad} ® Ad; qﬁpp) (Ad; ® Ad, ® Ady WEPP)
= Adj ® Ad; ® Ad, ® Ady (PPy,,™)
= Ad; X Ad; X Adg (%9 Adg \I’pppp-
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(see (I39)) and hence
o =Ad; ®Ad, V) and Q=V (158)
Thus
N-1 " « (N—1 " N-1 ¥
Qpi= Qe = (Ady @ Ady W,2) (Adgl) = Ay (9,207 V) = Ay,

Hence
1

_ 1 _
Ad; (\pr —30e" ”) =Qy—5Qq" " (159)

Thus Equation (I53) is equivalent to Ady (d*m,) = Q, — %Qe,(,N_l). We can
conclude by using (49) which says that Adj (d”m,) = dApp that Equation
(I55)) is equivalent to the fundamental equation

‘ dAPp =@y — %QegN_l) ‘ (160)

6.3 The dynamical equation (I60) in a local trivializa-
tion

6.3.1 Remarks on the dual fields and computation of the right
hand side

First the facts that p,”* = (Ad; ® Ad; ® Ad,y)m,”* and that the adjoint
(respectively coadjoint) action of €onp (respectively p*) leaves the decom-
position p = [ & s (respectively p* = [* @ §*) invariant imply in particular
that p,** = (Ad; ® Ady, ® Ady)m,*. Hence since 7,% = £,* is £-invariant, we
deduce that

ppss = /{jpss‘ (161)

Second (I41)) and (I53) imply FPy = F?;; = 0. Hence Q4" = Q"™ = Q" =
0 and thus

Qpppp = stpp + Qs[pp + Q[spp + Q[[pp - stpp- (162>

This implies also that Qf = Q™ = Q™ + Q"L = 0 and QF = Q' =
Qss™ + Qs ™t = Q™. To summarize

Q[[ Qs[ 0 FEsgpplg
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Thus by setting 6,' := 5§tj ®t; and 0,° = 0t ® t,,

1 _ 1 _ 1
Q- 50" = (P = 308 ) V4 (P - 5002 ) o)
(163)
6.3.2 Introducing a solder form and a connection form
Recall that by (T4S)
ef =dggt+A? (164)

and, by decomposing A? = A* + A' that e* = A® and ' = dgg~ '+ A". For
later interpretation, we give special names to these two forms:

[F:=A"=¢] and |wW'i=A'=e—dgg !,

(165)

so that
AP =6 4+ W (166)

We will see later that w' plays the role of a connection 1-form and €° the role
of a soldering 1-form (meaning that the components §* = e* forms a coframe
over the space-time). We also define

1
Q= dw' + §[w[ AW €1 O (F) (167)
which can be interpreted as a curvature form, and
O° :=d¥e* = d¥¢° = df° + [W' A 6] € 5 @ Q*(F) (168)

which can be interpreted as a torsion form. It follows from (I49) that

1

1
FP = dAP + C[AP A AP = ©° 4+ O+ S[0° A 0 (169)

6.3.3 Computation of the left hand side of (I60])

Since s, [ and k,* are not stable by Aqu3 but are stable by Adg it will be
convenient to define

d“py = dpy, + ad;, A py, (170)
to split

d%p, = d“p, + ad}; A p,. (171)
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and to compute separately d“p, and ady A p,. Using (B9) with d* and
2) (N 2)
_l_

Ip? dve (N_Z). Summarizing with (I7I) we see that we need to compute
each term in the r.h.s. of

the decomposition p, := 2pppp e(N , we get d¥p, = 1d“’pp@ N epp

d*p, = 2d“p,22 A e(N D4 Pt dweé{]\/ Y + ad; A Py (172)

Computation of dwpp@/\e(N 2)

and 0;'p,** such that dp,* = <8Epppp) e? and d“p,? = (0;’ pppp> e?. They are
related by

— Let us introduce the coefficients d,p,"

& = 0p™ + (ad, ®1®1+1®ad,, ® 1+ 1@ 1®ad,,) p,"™ (173)
which, through the decomposition (see ([22)) for the notation)
o=t @t7 @5 =y + ¢ + o + e (174)
means:
0 Dpo?? = ByppoPP? — €y b PP A P 1wl PP €2 by P

Then

1 (v-2) Lo (N=2) _ o (N-1)
SADE A = = (Gmhie) R A ey = it ef (175)

We have J;/p,™ = PP+ 07 P, but, since w' = w'ye® (i.e. w' = 0), actually
KpyPt = 8 p,"L. Hence O™ = 05y + DippPt, Le.

8gppsg = 8; pp™ + aLpps_[
oy = Op + upy't

Moreover p,* = /{pss as observed in (I6I)). Thus since k,* is constant and
ad-invariant, 0¥p,* = 02k,* = 0. Hence 8“’ ™ = 0+ dip,*t. In conclusion

(I7H) gives us

d P A ex(aN Y = 01 pp™t eéN_l) + (aiuppE + a_llppgl) e(LN_l) (176)
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Computation of Ip,2 d“epp — By applying ({#0) we get dwepp 2 =
d“ek A wéN 2. We thus need to compute d“e?. For that purpose we split

e’ = ¢ + €' and we use (BI), i.e. d¥e' = Q'+ $[e' A€']. Hence
1
deP = d¥e* + d¥e' = ©° + Q' + 5[6‘ Ael] (177)
or by using the notation ([I74]), d“e? = 1@555655 + 19[55655 + c et Thus

_ 1 _
(N 2)+—ci[ [ ei1i2/\e(N 2)

(N—2) 1 -2 Lo
dwepp — §@§§1§2 651&2 /\ eppé _'_ 597§1§2 651&2 /\ eppl 2 —1-=2 Ppi

We compute the r.h.s. by using (34]) (e). The first term is (recall (I54]) and
(I63)

1
59215265152 A 61(3]1\;252 Oy’ Cs D+ @spzs € Y @55]31 Cpa AN )

(we use here the fact that ©°,, = ©°,, because of @EI) and ([I65)) the

second term is $OL, 212 /\eff\;j Q[mpz +Q[p2[ ep, DL [ple,(,év v,

which is equal to QY p,e (N ) because Q! ot = 'y, = 0. The last term is
N-2 N- N- N=1) qo 0 oo

lety eht /\ef31132 2 — cfplpze([ Diel, e el el which simplifies

N-1 o :
to ¢ty pelN Y, because ¢ty = by, = 0 since [ is unimodular. In conclusion

by setting
O 1= 0%, (179)

we get

w 5 (N-1) * (N—-1) * (N [ —1) (N 1)
d“e P1P2 =0 p1p2© s +® p2*€P1 -0 Pl*epz _'_Q p1p2©€ _'_Cfplpz

This implies by using the fact that 0%, = 0%, Q[pp = Q[55 and chp =cYy,
that
(N—2 N— . N—
2™ dwepp = e Y - poihe 51*‘31(3 !
+ % (ppéﬁ QL§1§2 _|_ppl1_[2CLL1L2) ey

By splitting p,*%20" . 6§N Vo= ppener, eV 4 pakor, ey, ~ and
by grouping together we obtain

N 2 . N—-1
1P d“’ ) _ (Ipp1220%, 5, — pp*1°0* ) eé )

1 I [ 1.1 [ (N-1)
+ (§pp§1§29*§1§2 o pp§1f@*§1* + §ppil 2C, L ) el

2
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6.3.4 Introducing the generalized Cartan and Einstein tensors

For further use we introduce the notations
\s ey 5 )k 5 Ok ey 5 5 5 S
S 5152+ © 5159 T 551@ so% 552@ S1% © 5152 551 @7552 - 552@75@

and
oL 5 ._ (O9 5 g S5 g 5
Vs 1ans5° =2 5152553 +Q 5253551 +Q 5351552

We observe (through a computation similar to (I78])) that the first coefficient
in the right hand side of ([I80) can be written
5189

1 1 o
§pp§1§2@5§1§2 — D0 = §pp§1§2 ©%

so that (I80) reads

1 (N=2) _ 1 . (N=-T) 1 [ [ 1, [0, 1 (N=-1)
s d¥epy T = P20 5 05 + (505" Q'%s — 1™ 0% + 5pyitzcty 1) €

(181)
Actually ©°; and 9,,,° are defined implicitely by
O%s eéN_l) =0O%A egg_?’) (182)
and )
Q% 006" eéN_l) = Q9 A egﬁ;j) (183)

We note that these relations imply that (:)555 = Qgsgss = 0 whenever N < 2.
We further define

~ 1 o
C,” = _5,%&152@5&122 (184)
and ]
B’ = —§mg§1§2629§1§255 (185)
which can also be defined implicitely by
- 1
Gyt el = — 5 10 A el (186)

and )
E;* NV .= —5,%9515299 A eN=3) (187)

51555
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We shall see that, in standard situations, Cgs (or equivalentely ésss) corre-
sponds to the Cartan tensor and E,* to the Einstein tensor. Indeed

B = (Qgslszagm%zséﬁ 08, 0 ) g
= _E(Qggléz ’%5152)55 — 50,0y — _Qgﬁﬁl g (188)
= Qgéls/’ffls - (Qg 152'%95152)6?
c., by denoting R, := Q9 skg"° and R = f{f_ﬁ (generalized versions of,

respectively, the Ricci tensor and the scalar curvature), we have E;° =

R, — IR

Computation of ad, A p; — Our last task consists in computing ady A
Py, Le., since 6 = e°, ady A p, = —clye* A p,. Since p, = 2pp§ eﬁff 2 4+
pp“eg][\[ 24 %pp—e([]\{ 2 this quantity is the sum of three terms. The first

1 515 (N-2) 3 55 __ 55 343
one is —5¢ly, Py*1%2 €2 A €55, . Since by ([I61]), p,* = K, it is equal to

1
_ b 518, 8 (N-2)
2C—§p Kp 122 = A\ €s.s,

AP 185 (N 1)
= C,p /{p =2 €y

The second term is

s,y 5 (N=2) _ ( -1)
—cPy ppT 2 e A €, 1, =cPy pp el

2)

Lastly since 6° A e[[N = 0, the last term in the r.h.s. vanishes. Hence we

get

5150 ( ) + C—sp pp_ 6([N_1) (189)

ady A py = s pky

6.3.5 Conclusion

We go back to (IT2), by collecting (I76), (I81) and (I89):

+ (%ppélézééglgg + 0yt + e p“p515> eéN_l)

d?py = (%ppélézQiéléz + (08 + % )Py’ — g pp'® + 01,y + %ciilhppllb) €r

(N-1)

(190)




6 GRAVITY THEORY 91

Summarizing with (I63)) and taking into account that p,* = k,**, the funda-
mental equation dApp =Qy — %QeéN_l) (I60)) is equivalent to the system

1 [
SRy 22 QY o+ (O + 0% )" — gy 2 4 01yt + 3! [1[2pp[ 1
[
= Fpsgl ppot — 5Q0
1 - L 5 1
3hpf20% o) + 0ipy™ + ™ = Fhg k™1 — 50Q0,°

(191)
where Q = F2, r,*. Note that, by ([I69), F¥s = 0%, + Q' + c's. Hence
the first equation of (I91) reads

312 Ql o, (0% + O%5)py" — by P + 01, pp' + 5c! L 1Pt

= @sosgpgo (Q[sg + ¢~ 5§)pL - %Qél[

However we observe that the term —cb, p,' on the left hand side is equal
to cBys pp[5 = 04 Pe,® + s D1 = €0y Py + ¢ p(", Whereas the term

ctys pi" appears also on the right hand side. Hence the first equation in

(I97)) simplifies to

%Kp§1§29[§1§2 + (ag’ + ®*§*>pp[§ + Cgolg ps S 4 a[ pp“1 + C LD ISP
- @505§ Ps, [5 +Q [sgpL %Qéll
(192)

with
Q = @§§1§2 /{§§1§2 + (QL&EQ + CL§1§2)K'L§1§2 (193)
We call Equation (I92)) the (dynamical) equation on hidden fields.

The second equation reads
1, 55,05 5[ S 55 [ [ 55 1 5
320 s, + 01y + CPaphy™ = O%0gg g 1 + (g, + Cgg) )™ — 5Q0s

Similarly the left hand side contains the term c&, R Bpelyr ™ =

C20 4 kg, +CLoei (2, whereas the right hand side contains cle /%21 = clyor (%

This leads to the sunphﬁcatlon of the second equation in @91])

%“Pglgz %, + dipp™ + C0g1kg) = O0g5 Kg ™1 + Qisél K™ — %sts ‘
(194)
We call Equation (I94]) the (dynamical) equation on physical fields. O

This completes the proof of Theorem It is important to keep in mind
that, in all Equations (I92) and (194)),
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e quantities x,* and c*, are constant,

e quantities w', F*,, and hence 6%, ©°,, Q' and Q are constant along
the integral leaves.

6.4 Analysis of the dynamical equations
6.4.1 The equation on hidden fields (192)

This equation can be written as:

(5Rp222 QY o) + (87 4 O% 5 )pp'® 4 20y P + 01, ppt b + 5641 1Py 2) e(tN )
— (@s o5, pgols1 4 OLo 5§1plo [51) (N-1) _ 2 EN
(195)

We observe that the quantity 9y p," + %c[ 1, L ,Pyt142 in the left hand side rep-

. N-2) N-2
resents an exact term. Indeed, since w' = w 56* one has def[ = d“ef[ ),

which implies because of (I'T7) that de[N 2 = dve (N D=t e([N Y. Hence

1 N—2 1 N2y 1 N-2 1 N-
d (—p Le(L[ )) dpp”/\e( )_‘_§ppud€([7[ ) _ allppﬁl + §pp_[112CLL1—[2 6(L

Thus (192) or (I93) is equivalent to
(N-1)

(%Kp§1§2QL§1§2 + (0% + O )ppt® 4 €y pgoﬁ) MY a e[ [

3Dp
= (0%, pg, ™ + Qlosélplo te1) ([ —3Qe f
(196 )

Hence p," enters into play in the system only through an exact term.

6.4.2 A conservation law

By applying the exterior derivative to both sides of (I9€]) and by using the
facts that 9% = 00% = 9, = 0 and that de[(N_l) = 0 because [ is

unimodular, we obtain

8L(a: ppﬁ)"‘@*g*&ﬂ)pﬁ*‘céo s aﬂ’goﬁ = 9505& 8Lpgoﬁl+9losglﬁipioﬁl (197)

1)

1)
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Lemma 6.1 Let us define
T,® = 0ipy,™t (198)

and set 0FTy* = 0,T,° — 2wty Ty® + ¢ swhts TyE. Then
0L(0;ppﬂ) =0, T*

A consequence of Lemma is that Equation (I97) is equivalent to

| Ty + 0. T + ¢y Ty f = 0%, Ty ™ + Qb T ™ | (199)

Equation (I99)) can be splitted into the system

8;T[“i + @*g*T[E—’ + Céo[g Tgo“i = 0
8;JT5~’_’ + 0% T = @&)551 Tﬁoé1 + QL05§1 Tloél

(200)

We will see later on that 7'* and T',° can be interpreted as, respectively, an
angular momentum tensor and a stress-energy tensor. Hence Relations (200])
express the conservation of these tensors. The proof of Lemma rests on
the following result.

Lemma 6.2 The vector fields 0, satisfy the following commutation relation:

[0a),05,] = — O%s, 05 — QL5152 O + (Ciisz Wle — Cig WLsz)ﬁg
[0:,0] = ¢ty whis g (201)
04, 0,] = — ¢ty O

Proof of Lemmal6.2— We first deduce from (I7T), which reads deP+[w'Aef] =
©° + Q' + 1[e' A €Y, that

de? =©° + Q' + %[e[ Ael] — [w' A €] (202)

By using Cartan’s formula de? (0y, , Op, )+€”([0py , Opy]) = Opy (€7 (0, ))— 0, (€7 (0y, ) =
0 we get € ([0, , Op,]) = —deP(0y,, 0y, ) and hence, by (202) we get that

1) “P1

1
ep([apl ) am]) = _@5(8131 ) am)_Q[(aPlv 8P2)_§ [6[/\6[] (8131 ’ 8p2)+[w[/\6p](8p1 ) apQ)

Hence we deduce (201)). O
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Proof of Lemma 61— From
P = 0ypy™ — s py™ + €' ,wts Pt + €, w s P!

we get first

() = O <8éppﬂ_cgf pwl ety s pptte 02w llspp )
= 0 (8§pp5[) e pwh T 5+c— Wi Ot + ey g wh T2

15,W

On the other hand we deduce from (201]) that
O (85pp5[) = 0s (a[ppsl) + [0, as]ppS[ = 0s (8lpp5[) - CllllwllsaLppsl
hence
Ot (Fspp™) = 0s (Oupp™) — €'1, 1w e0ipp™2 = BT — ety ,w s Dipy™'

We thus deduce by replacing this expression for J¢ (Q_,pps—[) in the formula
giving 0 (9¢'py** L) that

OL(05'py™) = OsTy* — Py ety Ty + €2, it T
The equivalence between (I97)) and (I99)) is then straightforward. O
6.4.3 The equation on physical fields (194))
We can split (I94)) into the system
{ —3hO, = Oupt + €0 g™ (203)
Qisgl K™ — %Q(Sss = 8Lp55l (@5 55, ’%0551 - l@55152 '%55152)

It can be rephrased by using the notations C;° and E,* given in (I84) (IZ3)
and (I88) and the relation (I93]) for @ for the left hand sides and by using
the notation 7,° (I98) for the right hand sides:

{ Cr = T¢+ Csos[ Kgy ™
M s 5 __ 5 5 515 YaY:; 55 1As 5.8
ES+A6° = T+ = (@ 2y 8, HsT12) 0,7 0% o g L 4 5O o KgT1%2

where A := —1ct o k(7%



6 GRAVITY THEORY 95

In the following we will assume the additional Hypothesis x> = 0
(I29), which is satisfied in all usual gravity theories. The previous system

simplifies to .
Cr = 717
{ Ess + A(Sss = T3 (204)

The first equation can be interpreted as a generalization of the Cartan equa-
tion involving the torsion of the connection w', whereas in the second equation
the left hand side can be interpreted as the Finstein tensor with a cosmo-
logical constant A.

Indeed recall that C,° := —%/{95152(:)2 s, (I84) and assume for simplicity
that T° = 0. Then, by assuming that the tensor x,* is non degenerate (i.e.
the map A%s* 5 & — ek € [* is invertible), which is true in all standard
situations, then the equatlon C,* = 0 is equivalent to (:)555 = 0. Since
O, = O°,t. @ t* @ t°, with @cab = O°,;, — 0509,y — 650y, we have O°,, =
(2 — n)©9,4, from which we deduce that, if n # 2, ©%,, = %@Cabtc ®t° ® tP,
with

@Cab = éc ab — L <6b@dad + 5c@ddb) (205)

and thus, if n > 2, ©%, = 0 if and only if @555 = 0. Alternatively this
conclusion can also be deduced from (I82). Similarly the second equation in
(204) relates the sum of the generalized Einstein tensor and a cosmological
constant on the left hand side to T'* = —0p,** which plays here the role of
a stress-energy tensor.

We see that the only way coupling between the fields (6°, w') and the fields
p,** in the generalized Einstein-Cartan system is operated by T* = 9p,**
Moreover System (204]) tells us that T',° is constant on each leaf of the integral
foliation, since the left hand side of this system is so.

6.4.4 Constraints on the generalized Einstein and Cartan tensors

It is well-known in General Relativity that, for any connection without tor-
sion, the Einstein tensor E° satisfies the constraint 0YE;* = 0. Thus a
necessary condition for the Einstein equation E,* = T¢ to admit solutions is
that the stress-energy tensor 7's° satisfies the similar relation 027,* = 0. The
latter constraint expresses the conservation of the energy—mom_entum tensor.

Similarly the left hand side of the Einstein—Cartan system (204]) satisfies
constraints which match with the conservation laws (200). Indeed if the
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generalized Einstein-Cartan system (204) and the conservation law (I99)
are satisfied, then, by replacing T\, in (I99) by its expression in function of
Cr and E,* given by (204), one obtains

02 Ce + 0%,.C¢ + ¢y (Eéoé + Aagoé) - 0
0 (B +002) + 07 (B + A02) = O, (B, + A0y ) + Do, G
This system can easily be simplified by observing that ¢k — cty=0-0=0

(because p are [ unimodular), c®, Ad,* = Ac*, = 0, & (Ad*) = 0 and
O%5, (A62) = %, (Ady, 1) = AO™,,, leading to the following

{ 8;(3[“5 + @*g*é[i + Céo[g Ego“i = 0

awEsé + @*s*Esé = @50551]3& 514 Qioss C[ 51 (206>

In Proposition [6.1] (see the Appendix) we prove that (206) is actually a
consequence of the very definition of Cf and E.®, confirming that (I92)
is a necessary condition for (204) to have solutions.

6.5 Exploitation of the equations
In the following we prove Corollary [6.1. We start by assuming the following

Fibration hypothesis :
The integral leaves of the exterior differential system (144) (207)
form a fibration of F.

Hence the manifold F is the total space of a principal bundle over some
manifold X', the structure group of which is ® or a quotient of ® by a finite
subgroup. Note that, even if the group is compact and F is [-complete (see
Definition [4.1]), so that one can prove that each leaf is compact, there may be
some obstructions for the Fibration hypothesis to be true since the topology
of the leaves may vary (see [7]).

A consequence of (207)) is that we can interpret 6° and w' as respectively a
soldering and a connection form on this bundle defining a geometric structure
on X.

The key point in the Einstein-Cartan equations (203)) or (204) is that the
left hand sides are constant along the fibers. Thus these Einstein—Cartan
equations imply that the restrictions on any fiber of T'® = 9;p/** and T* =
O1ps® are also constant. Hence if we assume that one of the two following
hypotheses holds, we will deduce that these right hand sides vanish.
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1. (non compactness) the fibers are non compact (which occurs if, for
instance, £ is isomorphic to Spin(1,n)) and the first derivatives of the
field p,* decay at infinity in each fiber.

2. (compactness) each fiber f is compact. This case occurs if, for instance,
£ is isomorphic to Spin(n) (or its spin group).

Indeed if we assume (i), then we deduce that each 9;p,™* decays at infinity
on each fiber, but on the other hand such a quantity is constant along the
fibers, hence it vanishes.

If we assume (ii) then the value of d;p,™* at any point is equal to its
average on the fiber f which contains this point, hence, by setting (")) :=

A A and ()Y = 2 1 (eH!,

O o
Jeer Jeer

and we achieve the same conclusion. Hence assuming either (i) or (ii) and
assuming also ks*° = 0 for simplicity we deduce from (204) that our fields are
solutions of the system

5

=0 (208)

lli 515, 955152 — O
oy 2
{ ngls lﬁlils _ %(QL§1§2KL§1§2)655 +ASS = 0 ( 09)

The first equation will imply that the generahzed torsion © vanishes, provided
that the kernel of the linear map O, — mss ®ss 1s {0}, which will be the
case in the following examples. The second equation is a generalization of
the Einstein equation in vacuum with a cosmological constant (and it will be
so in basic examples).

6.6 Gauge symmetries
6.6.1 Invariance by diffeomorphisms

A is invariant under the transformation (m,, ¢*) — (T"m,, T*¢"), where T :
F — F is adiffeomorphism which preserves the orientation A[T*m,, T*p¥| =
Almy, ¢P]. Moreover the constraint m, A ¢° A ¢° = /{pssgp(N ) is invariant by
such transformations.
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6.6.2 Adjoint action of the gauge group

For any g € C*(F, LA)) the action is clearly invariant by the gauge transfor-

mation

1 1

p p__ -1 — p -1 __ -
{@ — Adge? —dggt = g¢Pgt —dgyg (210)

m > Adjm,
Moreover, since Adyk,® = k,*, the constraint m, A ©° A ¢° = k,*¢™) is also
invariant by this action.
6.6.3 Gauge symmetries of the dual gauge fields
Using exactly the same arguments as in §4.3.7 for Yang-Mills theory we may
write, for any x, € p* @ QN 2(F),

Almy + X, %] = Almp, %] + / d (‘PE/\ XE) + o8 A d? 2y,

F
Thus if x, € p* @ QV72(F) decays rapidly at infinity and is a solution of

then
ATy + Xp, 7] = Almp, ¢F].

If furthermore x, satisfies
Xp N Ag® =0, (212)

then (7, + xp, ¢*) satisfies the constraint (I35]). Hence these three conditions
are sufficient for having a gauge symmetry of the variational problem.

Moreover as for the Yang-Mills model (see §4.3.7))) any field x, which
satisfies (212) provides us with an on shell symmetry of the action.

6.7 Appendix: proof of the generalized Bianchi identi-
ties
We prove here that identities ([200), i.e.

agié[ii + Ea*é*é[é + E:éo (s Eioé = B 0 ~
a;Esé + @*E*Esf_’ = @§05§1 Eéoél + Q_losél Cloél

are structure equations, hence automatically satisfied.
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Proposition 6.1 Let CF and E.® be defined by, respectively, (184)) and (183)
(or, equivalentely, (I86) and (187)). Assume that the tensor k,™ is invariant
by the adjoint action of [. Then the relations (2008) hold.

Proof of Proposition[6.1— Step 1: preliminary results — We first prove the
Bianchi relations

e+ [enQ] = 0
These relations follows from the relation
dF? + [APAF?] =0 (214)

where we recall that AP = 95 +w? =¢* +w? and FP := dAP 4 L[AP A A¥] =

©° + Q'+ ¢!, where we set ¢’ := 1c'sef A €. Identity (214) thus reads

d(O°+Q+c)+[(F+w)A(O°+Q +c)] =0
which, through the decomposition p = s & [, splits into :

{ de® + [6° A (@' + )] + [w? A ©F] =0
d(Q+c) + [N+ [wA (A +c)] = 0

or

{ 4O + [6° A (' + )] 0 (215)

d“ (' +c)+[Pre] = 0

However, a consequence of the Jacobi identity is that

1 1
[° A= Ac] = g™ A <§c9§1§2651 A 6§2> = icségcﬂé152 eF1%2 = ()

and on the other hand

d¥c! = d“( Cly 5,0 Ne22) = 2cl o (d¥e2 N e — 2t A d¥e2)
= 1cl,, (B Ne2 — e NO%) = [0° A e’

Hence (2I5) implies (213).

We also need the two following lemmas.

Lemma 6.3 By using Notation (I79) for ©*., we have

dvelV-1 = %, ™) (216)
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Proof — dweg = d%e2 A e(N 2D _@s A eg_z) = 0%, eN) = o, e™). O

Lemma 6.4

w (N=3) — * (N * * (N=2)
d 6515253 - @ 53*65152 _l_ @ 51*65253 _l_ @ 52*65351

(217)
+ @ 53526551 _'_ @551536g:‘]§\£ 2 _'_ @5525165?3/: 2)

Proof — A computation gives

545 (N-4)  _ 5455 (N —2) 545 5455 (VN —2)
A 65152535 - 55;155651(52 + 55;15565253 + 55355653(51 )
N-2) N—-2
545 545 545
+ 5535; Css1 _'_ 5515::: 6552 + 5525; Css3

and we deduce (2I7) by developping d“’6515253 = d%* /\6515253)5 = %@5545565455/\
(N—-4) ]

65152535'

Step 2: the proof of the first relation in (20d) — We first compute the term
07 Ce + 075, C2. We start by observing that, by Lemma [6.3]

(02CE+07.C8) e = a°C A e + G @™ = @ (& o)
This implies by using first (I80]), then (2I3)), that
(Ce+07.Ce) e = —Liend” (€2 gji;”))
= —iwee (@00 A D + 00 A el ))
= —lgge (=6 A Qf] ef + 00 dely))
However we get from (2I7) that

0% A dvell,y) = ©%,.0% smew 5 0%, 0%, e<N s 0%, 0% 5, e
+ @55 352 @5 551 + @55153@53552 ‘l' @55251 @5355 e(N
= @*5*@55152 + @*s *@* 2*6(N @*s *@* 1*6(N)
+ @55 352 @53551 + @5 @53552 ‘l' @55251 @*5*6(N
=0

(indeed the first term and the last term cancel together, the second and the
third ones also, the fourth and the fifth ones also). It follows that

(8“(3[ —+ ("‘)*5*0[ ) e(N = 5/'{5152 [‘95 A Q[:| A 5ﬁ253)
= LRE%2c%, e A QLA 6515250)

_ [ (N-2) (N-2) (N-2)
= 5’1[5152 Q=N <C_5[ €55, T co 5, 1€5,5, T co 5, 1€505,
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But since ¢ = 0 this gives us

N-2 N-2
Lggiszcso, (QUA N7 4 Le@imes, (LA L2

_ 1 [ [ (N
— 5 (céoglll‘i[_ 2 Q S, 50 + CEO l‘ﬁ}[_15 Q ) )

(awc[ + o, C[>6(N

By exchanging indices s, <+ s, in the first term and indices s, <+ s, in the
second term, we obtain that the two first terms in the left hand side of the
first equation in (206) are equal to

ECE+ 07, Cf = - (e, (k02 QY 5, + €2 (K00, ) (218)

N~

We now compute the term c®,E, 2. For that purpose we use (I87):

e By 2e™) = ¢y et A E, —eg )

_ 5 515 [ (N-3)

= c& 0[56 A <—§/<J #1200 A €5, 5,5,

_ 1 5,8 [ S (N-2) s (N-2) s (N-2)
- _§/€L_1_2 Q_ A (C_O [50 65152 + c=0 Is; 65250 + ¢ Is, 65051

and thus since ¢ =0

" N —
Cé() [§E§0 ie( ) fry

l\DI)—l [\3|>—A

515 [ (N-2) (N-2)

_1_29_ (C_ [5165250 + ¢ ls5 €508,
5155 ()f cs 5159 ()1 N

(C’Ol K== 200 5250 ’0[5 1o Qfgogl) 6( )

By exchanging indices s, <+ s, in the first term and s, <> s, in the second
term, this gives us

50 T S 5 505 [ 5 5.5 [
e D) (c_l o K170 0 g 5, + €245 K710 Q_Ezél) (219)

Now by gathering (2I8) and (2I9) we obtain

8;}0 £+ @*5*0[2 + ¢ By OE_’
T
=3 (C‘l s, 17072 + €2 ’{éléo) Qbys, +3 (c_l ls, 107072+ €2 ’{[51_0) Oty s,

(220)
To conclude we use the fact that x* is invariant by the adjoint action of [,
i.e. ad, k™ = 0. Since ad;, Ky, ™ = =¥,k (172 + €™y K1, 20% + %2 g K1, TR0,

this implies
51 52 5150 _ L 5152
c [1501‘% +c Thggh 0 = €K (221)
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By applying this relation for ([1, ) = (I, [) in the first term of the right hand
side of (220)) and for (Iy, ) = (I, I) in the second term of the right hand side,

this gives us
~ ~ - 1
8;0[5 + @*E*C[E—’ + CEO[EEEOE—’ = 2 (C—[O Lk, 2182 4 ct ,{105152) QL§1§2 =0
Step 3: the proof of the second relation in (206) — It amounts to show that
EES + 0B = 0%,E, * + 0'C,° (222)
On the one hand by using first (2I6), then (I87) we get
(3;]:3; n @*g*Essi) ) = v <E "’—’e(N_l)> — v (—lﬁ s120L A eﬁﬁj”)
= i (@9QL AN 4 Qb naelL )
and since d*Q' = 0 by (213)) we deduce by using (2I7) that

KESE+ 0", E2 = —1k22 (07,04, +0% .0k, + 0%, .0k,
+ @§5§2 QL§1 + 65215QL§2 + @§§2§1 QL§5)
(223)
On the other hand

(6% aBs® + 0 Ci2) o) = O 2 N By 2e(NV1) 4 Qg e A G 2™

and thus by using (I86) and (I87)

(@éongéoé + Qisééf) et

= @5055 e N <—l/$[§1§29[ A €§ 5250> + leg e N\ <__’% 21220 A egi\gz_ﬁ?)))
N (N—

(2 529[ (@5 55065152 + @5055265(,051 Y + ©% 55165250 2))

L0 A (2 el Qe 4 2, )
g —% 31 (@505509:5152 + @5 5529[[5051 _'_ @5 5519[[5250 N

+ O, 52§2 55y T ©% 5051Q 55, ()505250(2 551) et

1.
P

Hence

% B, + leéé g o= _% i (5192 (@*s*QLglgg + O%, leﬁl + 0%, QLM
+ 652122 QL5§ + @**21 QL§25 + @*§2*9L5§1>
(224)
By comparing (223)) and (224]) we conclude that (222) is satisfied (in the right
hand side of (224)) the term ranked 1, 2, 3, 4, 5, 6 coincides with, respectively,
the term ranked 1, 4, 5, 6, 2, 3 in the right hand side of (223))). O
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7 Applications

7.1 Gravity with a cosmological constant

The most natural theory is obtained by choosing ‘i? to be the universal cover
of the Poincaré group Sping(1,n—1) x R for n > 2. However it is also inter-
esting to consider their deformations Sping(2,n — 1) and Sping(1,n). Since
our description is local it can be given by using their quotients SOg(1,n —
1) x R, SOp(2,n — 1) and SOq(1,n), respectively. These Lie groups can
be represented as subgroups of the matrix group GL(n + 1,R) as follows.

hyy -+ hy, Rt ... Rl
We define h := : : and h = (h)~! = : : (a
hyy -+ hy, hnt ... p™
Minkowski metric on R") and H := B 2 ), where £ € R (a metric on

R™1). We let
Bi(n) :== {G € GL(n+1,R); GHG" = H,detG = 1}. (225)

Assuming that the signature of h is (—,+,---,4), we have the following
identifications

e if £ <0, Py(n) is isomorphic to SO(1, n);

e if k=0, Po(n) is isomorphic to the Poincaré group P(n) = SO(1,n —
1) x R™;
e if k>0, Px(n) is isomorphic to SO(2,n — 1).
In each case we get a theory of gravitation with a cosmological constant A =
'"("%)k. The representation of the Lorentz subgroup £4(n) (~ SO(1,n— 1))
is

Lr(n) = {G = ( g (1] ) : g € GL(n,R), ghg' = h, detg = 1}.

For ( ‘g (1) ) € £x(n), we deduce from ghg' = h the following useful rela-

tions: o
gh="h(g™)" and hg™' =g'h (226)
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7.1.1 Lie algebras

The Lie algebra of By, (n) is py(n) := {{ € M(n+1,R); EH+HE =0}, Any
element £ € pr(n) can be written

gy & hy o &Ry, &

5 - n n n: - nb: nb: :n
S TR S S E% o %y €

gty gt 0 —k&hyy o —kEbhy, 0

where (£%)1<4p<n and (£%)1<qa<n are real coefficients such that €2 + £ = 0,

Clearly there exists a unique family of matrices (tA)1§A§n(n+1)/2 = ((ta)1<a<n, (tap)1<a<b<n)

in pi(n) such that, V& € pr(n), & = 32 uopen babl™ + 2 1cqen tal®. Obvi-
ously this family forms a base of pi(n). It is convenient to define ty, := —tu,
for 1 <a <b<n, and to write

1 ab a 1 ab a
E=5 D twt™+ D taf" = St + taf

1<a,b<n 1<a<n

The Lie algebra of £5,(n) is simply [y(n) := {£ = 2t £ € R, &% 4 & = 0}.

|

and we have pi(n) = l(n) ® si(n), with s,(n) = { = t,£% £* € R}. The
Lie bracket in this basis reads

[tab> tcd] [taba tc] . hbctad - hbdtac - hactbd + hadtbc hbcta - hactb
[tau tcd] [tm tc] N hactd - hadtc _ktac

Equivalentely the structure coefficients ¢4 = (¢!, [tp, tx]) of the Lie algebra
pr(n) in the chosen basis are given by

il | _ ( Schhe = 00 hyg — 0y hae + 637 haa ) i\ _ ( 0
Clatlfed 0 Cpje Ochbe — Ofhac

)

Cc[ff[}cd] _ 0 C[gﬂ c
cZ[cd] 52 hac o 506 had ctezc

(

—ko
0

)

where 0% := 8¢5 — 607

The adjoint action of an element g € £4(n) on ¢ € py(n) reads Ad, (46" + ta&?)

Ltab92 gh 7Y +6,9% € and the coadjoint action of g € £4(n) on a = 2, t?+

agt® € pj(n) expresses as Ad) (Saawt™ + agt®) = oy (972 (971 t% +

o7 (g_l)glta'
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7.1.2 Checking the hypotheses

Hypothesis (i), that 9Bx(n) is unimodular, can be checked by a direct com-
putation: on the one hand, for any a, b,

Lo T e (8% — 05Ny — 053hae + 65%haa) + 0chpe — G5hae
% ((n - l)hba - (1 - n)hba - (TL - l)hab + (1 - n)hab) + hba - hab =0

and, on the other hand, for any a, we have obviously %c{f[i}d] +c,.=0+0=0.

Hypothesis (ii), that Ades C s and [s,5] C [, is straightforward. We
choose

( Kled)™ K™ ) = ( 5% 0 ) = Ry = %t“b ®ty Aty

We can check easily that Adgk,*” = k,*, Vg € £4(n), i.e. that Hypothesis
(ili) is satisfied. Lastly r,* satisfies obviously Hypothesis (I129)), i.e. that
kp® € I* @ A%s. Hence Theorem [G.1] can be applied: any smooth critical
point (P, m,) € Eg of A (given by (I28)) gives rise locally to a solution of the

system (204)).

7.1.3 The equations of dynamics

Assume n > 2. Let (m,, ¢") € &g be a critical point of the action (I28) [, m, A
¢ and assume that it satisfies the Fibration hypothesis (207). Then the
manifold F is fibered over an n-dimensional manifold X and X is equipped
with a metric g the pull-back by F — X of which is hye® ® e® and TX is
endowed with a metric connection V defined by w.

Let us assume furthermore that either (i) or (ii) in 6.5l holds. Then
the fields (7, ¢P) give rise to a solution of the generalized Einstein-Cartan
system in vacuum with a cosmological constant A := —%cggmgﬁ i.e. System
2m).

Since k™ is given by k™ = 6% the first equation in System (209) is
obviously equivalent to é555 = 0, which, since n > 2, is itself equivalent to
O°%, = 0 as seen in §6.4.31 This means that the connection V is torsion free,
i.e. that it is the Levi-Civita connection for the metric g.

The second equation in System (209) reads Q8r,% — % (Qg§5/€955> 0s° +
Ao = 0. The computation in terms of the standard Riemann and Ricci
tensors R*,;, and R*; is straightforward:

Qgga/{ggb — %Q[cd} ae/{[cd]be _ %Q[cd} aeéscel _ Q[be]ae _ Rbeae _ Rba _ Rab
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we use the symmetry of the Ricci tensor). Hence €9,,x,* = R*, = R is the
Yy Yy ssivg

scalar curvature. We also have

1 (n-1)

c a n
A= -5l g™ = 1 (—l{;éag) 5% = 5

k
2

Thus we obtain that E,° = E,®, so that the second equation in (209) is
exactly the Einstein equation

E,’ + Aé,’ =0, (227)

with E,* := R,? — %Réab and the cosmological constant A = "("2_1)k.

7.2 Gravity with a Barbero—Immirzi parameter

This example is a variant of the previous case for n = 4. We use the groups
Pr(4) and £,(4). Hence Hypotheses (i), (ii) and (iii) have been already
checked. However the tensor  is now

(g™ e ) = (06— 3¢ 0) (228)

b ’ahb’b

where €?.; := €1 cqh” and €gpeq 18 the completely antisymmetric tensor
such that €934 = 1 and where v € C* is a constant (the Barbero—Immirzi
parameter). Alternatively

1 1 ’ ’ 1 1
Ry = S @t Ay - el W et © to Aty = 67 @ to Aty U

where 7,* = ih“alhbb/ea/b/cdt[c‘ﬂ ® tq A ty.

Hypothesis (129) is obviously satisfied. In order to check that x,* defined
by ([228)) is invariant by the adjoint action of £4(4), it suffices to check that
7% = ih““lhbblearb%dtkd} ® t, Aty is so. Using (226]) we get

Ad, ® Ad, ® Adgn,® = Adl ® Ad, ® Ad, (ih““”hbb" eomyrogbled & b, A tb)
igg/ha “ gll;/hb b €'y ! d! (g_l>gl (g_1>§,t[0d} X ta N tb

/!

= 1h W (gD (g7 eamprera (g7 (g )TN @ t, Aty

ihaa/hbb/det(g_l)ea/b/cdt[“l] X ta A tb
= 2 gtld @ t, Aty =1,

where we have used det(g™') = 1.
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Although the action takes complex values, this does not change the deriva-
tion of the Euler-Lagrange equations and, in particular, our conclusion about
the local fibration of F over some 4-dimensional manifold A'. Thus if assume
the Fibration hypothesis (207) and one of the two hypotheses (i) and (ii) in
§6.50 we get Equations (209).

Let us prove that the first equation (c), i.e. %/@[@ésg = 0, implies that
é555 = 0 (which is equivalent to the fact that the connection V is torsion
free). The proof relies on two different arguments, according to the value of

y:

Léc Ea’b’
2 a't! ab
which implies straightforwardly that ©%, = 0 since this quantity is real

(this case corresponds to the Ashtekar action).

e if v = 44 the condition m” s ss = 0 reads also @Cab =

e in general, if h is a Minkowski metric which is suitably normalized, the

condition %/{ﬁ—sésg = 0 is equivalent to <1 + %2) (:)555 =0 (see Lemma

[71 below). This implies ©% = 0 if  # +i.

Lemma 7.1 Assume that the metric h is Mmkowskﬂ and that deth = —
Then the condition %f@ﬁ@sﬁ = 0 tmplies ( @Cab =

Proof — Condition %/@[ﬁ@sﬁ = 0 is equivalent to ©°,; = %@ € . By
. . . . . 2 ° 1"y Iy
iterating this relation we obtain ©¢,, = M%@Canbue“ v et b, But since

/H /1

I b 1 11 ’ urh
oreea = N eayoah” W e = (DD D €y ) e

— Z (det h)eabc”d” Ec'ded = 2(det F)(Sgs

1<e, d"<4
we deduce
. / d t h .
@Cab = (det h)(;a v @c a'b — © @ ab
272
Thus if we normalize h such that deth = —1 (which is always possible if h is
a Minkowski metric), we deduce the result. U

4In an Euclidean theory where we would assume that the metric h has the signa-
ture (+,---,+), the natural normalization would be deth = 1, leading to the relation

(1— —) @Cab_o
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Recall that the fact that ©° = 0 implies through the Bianchi identity that
Q'A 6" = dO° + [w' A ©°] = 0, which reads Rapeq + Racay + Raave = 0. This
implies in particular Rapcq = Redap-

Let us look at the second equation in System (209). By using the com-
putation of (8r,* in the previous paragraph we obtain

1 1 1
Qgsa"{'géb - 29 Cd] (5 - —€ cd) =R, b 2_6 cd RCdae
T Y Y

However

1 1 1 1
-~ € cd RCdae = 5 acefRe c ™ o acefR cef — acef R ce R efc R ce) — 0
276 2 oo = 5 € Rocey = e (Reces + Roese + Rogee)

b

Hence Q8 k> = R,’, which implies Meskg® = R. Similarly,

1 o 1 . 1, n(n—1) k.,
A= 2C955K'9 = _Z (_kdag) <5cd - ;E bcd) = Tk - BE bab = 6k

Hence the equation (4r* — % (Qgggfifs) 0s° + Aos° = 0 gives us again the
Einstein equation with a cosmological constant E,® + 6kd,* = 0.
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