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ANALOGICAL PROPORTIONS II
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Vienna University of Technology

Vienna, Austria

Abstract. The purpose of this paper is to further develop the theory of analogical proportions within
a recently introduced algebro-logical framework. Specifically, we show that analogical proportions
are compatible with homomorphisms and related to semantic anti-unification; we initiate the study of
fragments consisting of justifications of a restricted form; and we show how analogical proportions can
be computed in finite algebras using tree automata.

1. Introduction

Analogical proportions are expressions of the form

“a is to b what c is to d”

written

a : b :: c : d

at the core of analogical reasoning, which itself is at the core of artificial general intelligence (e.g.
Boden, 1998; Gentner, 1983; Gust et al., 2008; Hesse, 1966; Hofstadter, 2001; Hofstadter & Sander,
2013; Krieger, 2003; Pólya, 1954; Winston, 1980). They have numerous applications in AI such as

• computational linguistics (e.g. Lepage, 1998, 2001, 2003),
• image processing (e.g. Lepage, 2014),
• recommender systems (e.g. Hug et al., 2019),
• program synthesis (Antić, 2023e),

just to name a few (cf. Prade & Richard, 2021).
Formal models of analogical proportions started to appear only recently, most notably
• Lepage’s (2001) axiomatic approach in the linguistic setting,
• Miclet and Prade’s (2009) logical approach (cf. Prade & Richard, 2013; Prade et al., 2018),
• Stroppa and Yvon’s (2006) and Gust et al.’s (2006) algebraic approaches.

See Prade and Richard (2014) for a (somewhat outdated) short introduction to analogical reasoning,
and Hall (1989) for a historic overview of approaches to analogical reasoning.

In a series of papers (some of which are under review), Antić (2022, 2023b, 2023d, 2023f) has
recently introduced an abstract algebro-logical framework of analogical proportions in the general
setting of universal algebra. It is a promising novel model of analogical proportions with appealing
mathematical properties (cf. Antić, 2023c, 2023i, 2023h).

The purpose of this paper is to further develop the algebraic theory of the framework in Antić
(2022):
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2 ANALOGICAL PROPORTIONS II

In §2, we briefly recall the framework in Antić (2022), where we assume that the reader is fluent
in basic universal algebra as it is presented for example in Burris and Sankappanavar (2000, §II) and
Baader and Nipkow (1998, §3).

In §3, we observe that sets of justifications are principal filters, which motivates a change of no-
tation. We then introduce some terminology which make the Uniqueness Lemma and Functional
Proportion Theorem in Antić (2022) easier to state.

In §4, we prove a Homomorphism Theorem as an analogue to the First Isomorphism Theorem in
Antić (2022) showing that arrow proportions — which are expressions of the form a → b : · c → d
expressing that “a transforms into b as c transforms into d” (see §2) — are compatible with homo-
morphisms in the sense that in case H satisfies a mild condition, we have a→ b : ·Ha→ Hb.

In §5, we show that semantic anti-unification — as recently introduced in Antić (2023g) — is
related to analogical proportions by giving an illustrative Example 9. Other authors have noted the
connection between analogical proportions and anti-unification in other frameworks before: Krum-
nack et al. (2007) is a paper dealing with restricted higher-order anti-unification and analogy making,
and Weller and Schmid (2007) use anti-unification for computing analogical proportions using regular
tree grammars.

In §6, we initiate the study of fragments of the framework where the form of justifications is syn-
tactically restricted. Particularly, in §6.1–6.2, we show that we can capture difference and geometric
proportions already in the simplest monolinear fragment consisting only of justifications with at most
one occurrence of a single variable. Moreover, in §6.3, we study monolinear word proportions.

Finally, in §7, we show that analogical proportions can be computed in finite algebras using tree
automata where we provide algorithms for the most important computational tasks.

2. Preliminaries

This section recalls the abstract algebraic framework of analogical proportions in Antić (2022). We
assume the reader to be fluent in basic universal algebra as it is presented for example in Burris and
Sankappanavar (2000, §II) and Baader and Nipkow (1998, §3).

A language L of algebras is a set of function symbols1 together with a rank function r : L→ N, and
a denumerable set Z = {z, z1, z2, . . .} of Z-variables distinct from L. Terms are formed as usual from
variables and function symbols.

An L-algebra A consists of a non-empty set A, the universe of A, and for each function symbol
f ∈ L, a function f A : Ar( f ) → A, the functions of A (the distinguished elements of A are the 0-ary
functions). Every term s induces a function sA on A in the usual way. We call a term t injective in A
iff tA is an injective function.

We will always write s(z) → t(z) or s → t instead of (s, t), for any pair of L-terms s and t con-
taining variables among z such that every variable in t occurs in s, that is, Z(t) ⊆ Z(s). We call such
expressions L-rewrite rules or L-justifications where we often omit the reference to L. We denote the
set of all L-justifications with variables among Z by JL(Z). We make the convention that → binds
weaker than every other algebraic operation.

We define the analogical proportion entailment relation in two steps:

(1) Define the set of justifications of an arrow a→ b in A by2

JusA(a→ b) :=
{
s→ t ∈ JL(Z)

∣∣∣ a→ b = sA(o)→ tA(o), for some o ∈ A|z|
}
,

1We omit constant symbols as we identify constants with 0-ary functions.
2For a sequence of objects o = o1 . . . on define |o| := n.
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extended to an arrow proportion a→ b : · c→ d3 in (A,B) by

Jus(A,B)(a→ b : · c→ d) := JusA(a→ b) ∩ JusB(c→ d).

A justification is trivial in (A,B) iff it justifies every arrow proportion in (A,B), and we say
that J is a trivial set of justifications in (A,B) iff every justification in J is trivial.

Now we say that a→ b : · c→ d holds in (A,B) — in symbols,

(A,B) |= a→ b : · c→ d

iff
(a) either JusA(a → b) ∪ JusB(c → d) consists only of trivial justifications, in which case

there is neither a non-trivial relation from a to b in A nor from c to d in B; or
(b) Jus(A,B)(a → b : · c → d) is maximal with respect to subset inclusion among the sets

Jus(A,B)(a→ b : · c→ d′), d′ ∈ B, containing at least one non-trivial justification, that is,
for any element d′ ∈ B,4

∅ ⊊ Jus(A,B)(a→ b : · c→ d) ⊆ Jus(A,B)(a→ b : · c→ d′)

implies

∅ ⊊ Jus(A,B)(a→ b : · c→ d′) ⊆ Jus(A,B)(a→ b : · c→ d).

We abbreviate the above definition by simply saying that Jus(A,B)(a → b : · c → d) is
d-maximal.

(2) Finally, the analogical proportion entailment relation is most succinctly defined by

a : b :: c : d :⇔ a→ b : · c→ d and b→ a : · d → c
c→ d : · a→ b and d → c : · b→ a.

This means that in order to prove (A,B) |= a : b :: c : d, we need to check the first two
relations in the first line with respect to |= in (A,B), and the last two relations in the same line
in (B,A).

We will always write A instead of (A,A).

Example 1 (Antić (2022), Example 11). First consider the algebra A1 := ({a, b, c, d}), consisting of
four distinct elements with no functions and no constants:

a

b

c

d

Since JusA1(a′, b′)∪JusA1(c′, d′) contains only trivial justifications for any distinct elements a′, b′, c′, d′ ∈
A′, we have, for example:

A1 |= a : b :: c : d and A1 |= a : c :: b : d.

On the other hand, since

JusA1(a, a) ∪ JusA1(a, d) = {z→ z} , ∅

and

∅ = JusA1(a→ a : · a→ d) ⊊ JusA1(a→ a : · a→ a) = {z→ z},

3Read as “a transforms into b as c transforms into d”.
4We ignore trivial justifications and write “∅ ⊊ . . .” instead of “{trivial justifications} ⊊ . . .” et cetera.
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we have

A1 ̸|= a→ a : · a→ d,

which implies

A1 ̸|= a : a :: a : d.

Now consider the slightly different algebra A2 := ({a, b, c, d}, f ), where f is the unary function
defined by

a

b

c

d

f

f

f

f

We expect a : b :: c : d to fail in A2 as it has no non-trivial justification. In fact,

JusA2(a, b) ∪ JusA2(c, d) =
{
z→ f ℓ(z)

∣∣∣ ℓ ≥ 1
}
, ∅

and

JusA2(a→ b : · c→ d) = ∅

show

A2 ̸|= a : b :: c : d.

In the algebra A3 given by

a

b

c

f

g

f , g

f , g

we have

A3 ̸|= a : b :: a : c.

The intuitive reason is that a : b :: a : b is a more plausible proportion than a : b :: a : c, which is
reflected in the computation

∅ = JusA3(a→ b : · a→ c) ⊊ JusA3(a→ b : · a→ b) = {z→ f (z), . . .}.

Computing all justifications of an arrow proportion is difficult in general, which fortunately can
be omitted in many cases. We call a set J of justifications a characteristic set of justifications of
a→ b : · c→ d in (A,B) iff J is a sufficient set of justifications in the sense that

(1) J ⊆ Jus(A,B)(a→ b : · c→ d), and
(2) J ⊆ Jus(A,B)(a→ b : · c→ d′) implies d′ = d, for each d′ ∈ B.
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In case J = {s → t} is a singleton set satisfying both conditions, we call s → t a characteristic
justification of a→ b : · c→ d in (A,B).

Lepage (2003) (cf. Miclet et al., 2008, pp. 796-797) introduces the following axioms in the linguis-
tic context as a guideline for formal models of analogical proportions (over a single universe), adapted
here to our framework formulated above:5

(A,B) |= a : b :: c : d ⇔ (B,A) |= c : d :: a : b (p-symmetry),(1)
A |= a : b :: c : d ⇔ A |= a : c :: b : d (central permutation),(2)
A |= a : a :: c : d ⇒ d = c (strong inner p-reflexivity),(3)
A |= a : b :: a : d ⇒ d = b (strong p-reflexivity).(4)

Antić (2022, §4.3) argues why Lepage’s original list of axioms is inadequate in the general setting
justified by simple counterexamples and he replaces the above list by the following list of axioms
(which have been considered by other authors as well):

(A,B) |= a : b :: c : d ⇔ (B,A) |= c : d :: a : b (p-symmetry),(5)
(A,B) |= a : b :: c : d ⇔ (A,B) |= b : a :: d : c (inner p-symmetry),(6)
(A,B) |= a : a :: c : c (inner p-reflexivity),(7)
A |= a : b :: a : b (p-reflexivity),(8)
A |= a : a :: a : d ⇔ d = a (p-determinism).(9)

Furthermore, the following properties are considered, for L-algebras A,B,C and elements a, b ∈ A,
c, d ∈ B, e, f ∈ C:

(A,B) |= a : b :: c : d (B,C) |= c : d :: e : f
(p-transitivity),

(A,C) |= a : b :: e : f
and, for elements a, b, e ∈ A and c, d, f ∈ B, the property

(A,B) |= a : b :: c : d (A,B) |= b : e :: d : f
(inner p-transitivity),

(A,B) |= a : e :: c : f
and, for elements a ∈ A, b ∈ A ∩ B, c ∈ B and C, and d ∈ C, the property

(A,B) |= a : b :: b : c (B,C) |= b : c :: c : d
(central p-transitivity).

(A,C) |= a : b :: c : d
Notice that central transitivity follows from transitivity.

3. Justifications

In this section, we observe that sets of justifications are principal filters, which will motivate a
change of notation by replacing Jus by ↑ thus expressing syntactically the close connection to gen-
eralizations more adequately (this has already been observed in Antić (2023h) in the context of tree
proportions).

Recall that a filter F on a pre-ordered set (P,≤) is a subset of P satisfying:
(1) F is non-empty.
(2) F is downward directed, that is, for every a, b ∈ F, there is some c ∈ F such that c ≤ a, b.
(3) F is an upper set or upward closed, that is, for every a ∈ F and b ∈ P, if a ≤ b then b ∈ F.

5Lepage (2003) formulates his axioms to hold in a single domain without any reference to an underlying structure A.
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The smallest filter containing an element a is a principal filter and a is a principal element — it is
given by

↑(P,≤) a := {b ∈ P | a ≤ b}.

We extend the generalization pre-ordering from terms to justification via

s→ t ≲ s′ → t′ ⇔ s ≲ s′ and t ≲ t′.

Fact 2. The set of all generalizations of a term forms a principal filter with respect to the generaliza-
tion pre-ordering generated by that term. Moreover, the set of all justifications of an arrow forms a
principal filter with respect to the generalization pre-ordering generated by that justification.

Notation 3. Fact 2 motivates the following notation which we will use in the rest of the paper:

↑A (a→ b) := JusA(a→ b),

extended to an arrow proportion by

↑(A,B) (a→ b : · c→ d) := Jus(A,B)(a→ b : · c→ d).

We shall now reformulate some key results in Antić (2022) using a different — hopefully more
intuitive — terminology. For this, we first define, for a term s ∈ TL(Z) and element a ∈ A, the set

⟨s, a⟩A :=
{
o ∈ Ar(s)

∣∣∣ a = sA(o)
}
,

consisting of all solutions to the polynomial equation a = s(z) in A. We can now depict every justifi-
cation s→ t of a→ b : · c→ d as follows (see Antić, 2022, Convention 15):

a → b : · c → d.

s

t

⟨s, a⟩ ⟨s, c⟩

⟨t, b⟩ ⟨t, d⟩

Moreover, we have

s→ t ∈ ↑ (a→ b : · c→ d) ⇔ ⟨s, a⟩ ∩ ⟨t, b⟩ , ∅ und ⟨s, c⟩ ∩ ⟨t, d⟩ , ∅.(10)

Define

1A(s) := {a ∈ A | |⟨s, a⟩A| = 1}.

We can now reformulate the rather opaque Uniqueness Lemma and Functional Proportion Theorem
in Antić (2022) more cleanly using the above notions:

Lemma 4 (Uniqueness Lemma). We have the following implications:

s→ t ∈ ↑(A,B) (a→ b : · c→ d) c ∈ 1B(s)
(A,B) |= a→ b : · c→ d

and
s→ t ∈ ↑(A,B) (a→ b : · c→ d) a ∈ 1A(s) b ∈ 1A(t) c ∈ 1B(s) d ∈ 1B(t) .

(A,B) |= a : b :: c : d

Theorem 5 (Functional Proportion Theorem). For any L-term t(z), we have the following implication:
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a ∈ 1A(t) c ∈ 1B(t) .
(A,B) |= a : tA(a) :: c : tB(c)

In this case, we call tB(c) a functional solution of a : b :: c : x in (A,B) characteristically justified by
z→ t(z). This holds in particularly if t is injective in A and B.

4. Homomorphism Theorem

In Antić (2022), the First Isomorphism Theorems is shown saying that for any isomorphism H :
A→ B,

(A,B) |= a : b :: Ha : Hb, for all a, b ∈ A,

and it was argued, by giving a counterexample, that homomorphisms are in general not compatible
with analogical proportions in the same way.

In this section, we shall recover a part of the result by showing that homomorphisms are compatible
with arrow proportions. We first show an auxiliary lemma (analogous to the Isomorphism Lemma in
Antić (2022)):

Lemma 6 (Homomorphism Lemma). For any homomorphism H : A→ B and a, b ∈ A,

↑A (a→ b) ⊆ ↑B (Ha→ Hb).(11)

Proof. We have

s→ t ∈ ↑A (a→ b) ⇔ a→ b = sA(o)→ tA(o), for some o ∈ Ar(s)

⇒ Ha→ Hb = H(sA(o))→ H(tA(o)) = sB(Ho)→ tB(Ho)
⇒ s→ t ∈ ↑B (Ha→ Hb).

□

Theorem 7 (Homomorphism Theorem). For any homomorphism H : A→ B and elements a, b ∈ A,
we have the following implication:

↑A (a→ b) = ∅ ⇒ ↑B (Ha→ Hb) = ∅ .
(A,B) |= a→ b : ·Ha→ Hb

Proof. By the Homomorphism Lemma 6, we have

↑(A,B) (a→ b : ·Ha→ Hb) = ↑A (a→ b) ∩ ↑B (Ha→ Hb) = ↑A (a→ b),

which shows the Hb-maximality of ↑(A,B) (a→ b : ·Ha→ Hb).
It remains to show that we cannot have

↑A (a→ b) ∪ ↑B (Ha→ Hb) , ∅ whereas ↑(A,B) (a→ b : ·Ha→ Hb) = ∅.

This is a direct consequence of (11) and the assumption that ↑A (a → b) = ∅ implies ↑B (Ha →
Hb) = ∅. □

Example 8. Let us now analyze the counterexample in Antić (2022, Example 39). LetA := ({a, b, c, d}, g)
and B := ({e, f }, g) and H : A→ B be given by
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d

c

b

a

f

e

g

g

g

H

H

g

g

g

In Antić (2022, Example 39) it is shown that

a→ d ̸: ·Ha→ Hd.

This is not a contradiction to the Homomorphism Theorem 7, since

↑ (a→ d) = ∅ ⇏ ↑ (Ha→ Hd) = ∅,

shows that we cannot apply the theorem. What we do have is

a→ b : ·Ha→ Hb and c→ d : ·Hc→ Hd.

In fact, we even have

a : b :: Ha : Hb and c : d :: Hc : Hd.

5. Anti-unification

Antić (2023g) has recently introduced semantic anti-unification as a generalization of classical
syntactic anti-unification, which we shall now repeat here briefly.

Define the set of minimally general generalizations (or mggs) of two elements a, b ∈ A in (A,B) by

a ⊓(A,B) b := min
⊑(A,B)

(a ↑(A,B) b),

where

a ↑(A,B) b := (↑A a) ∩ (↑B b)

and

↑A a :=
{
s ∈ TL(Z)

∣∣∣ a = sA(o), for some o ∈ Ar(s)
}
.

In case a ⊓(A,B) b = {s} contains a single generalization, we call s the least general generalization of
a and b in (A,B).
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We now wish to initiate the study of connections between semantic anti-unification and analogical
proportions with an illustrative example:

Example 9. In Antić (2022, Example 66), the author has computed the solutions of 20 : 4 :: 30 : x in
the multiplicative algebraM := (N2, ·,N2), where N2 := {2, 3, . . .}, given by

S olM(20 : 4 :: 30 : x) = {6, 9}.

The two solutions are characteristically justified respectively by

10z→ 2z and 10z→ z2.

We see that in both cases, the generalization 10z occurs on the left-hand side of the respective justifi-
cations — this seems not to be an accident as we have

20 ⊓ 30 = {10z}

as we are now going to show; in other words, 10z is the least general generalization of 20 and 30 in
M.

Recall from Antić (2022, Example 66) that we have (we omit the subscriptM)

↑ 4 = {4, 2z, z1z2, z2, z},

↑ 20 =


20 10z 5z2

4z 5z1z2
2z1z2 z1z2z3
2z 5z z1z2
z2

1z2 z


,

↑ 30 =


30 15z
10z 6z 5z1z2
2z1z2 3z1z3 z1z2z3
2z 5z z1z2

3z z


.

Hence, we have

20 ↑ 30 = {10z, 2z1z2, 5z1z2, z1z2z3, 2z, 5z, z1z2, z}.

We now want to find the ⊑-minimal generalizations in 20 ⊓ 30. The generalization z is, of course, not
minimal. We have

↓ 2z1z2 = {8, 12, 18, . . .} ⊏ {4, 6, 8, 10, 12, . . .} = ↓ 2z

which shows

2z ⊏ 2z1z2.

Hence, we can exclude 2z1z2. Analogously,

5z ⊏ 5z1z2.

shows that we can exclude 5z1z2. Moreover, we clearly have

10z ⊏ 2z und 10z ⊏ 5z,

which means that we can exclude 2z and 5z. We are thus left with the generalizations

10z and z1z2 and z1z2z3.
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We clearly have

10z ⊏ z1z2 und 10z ⊏ z1z2z3,

which means that we are left with

20 ⊓ 30 = min
⊑

(20 ↑ 30) = {10z}.

Of course, a single example is not enough to establish a strong connection between two concepts
— this brief section is to be understood only as an inspiration for a deeper investigation of the relation
between semantic anti-unification (Antić, 2023g) and analogical proportions.6

6. The (k, ℓ)-fragments

Since computing the set of all justifications is rather difficult in general, it is reasonable to study
fragments of the framework. For this, we introduce in this section the (k, ℓ)-fragments. Formally, let
Zk := {Z1, . . . , zk}, for some k, ℓ ∈ N ∪ {∞} so that Z∞ = Z. Define

↑
(k,ℓ)
A

a := (↑A a) ∩ {s(z1, . . . , zk) ∈ TL(Zk) | each of the k variables in Zk occurs at most ℓ times in s}.

We write k instead of (k,∞) so that

↑k
A

a = (↑A a) ∩ TL(Zk).

We extend the above notions from elements to justifications by

↑
(k,ℓ)
A

(a→ b) :=
{
s→ t ∈ ↑A (a→ b)

∣∣∣∣ s ∈ ↑(k,ℓ)
A

a and t ∈ ↑(k,ℓ)
A

b
}
,

extended to arrow proportions by

↑
(k,ℓ)
(A,B) (a→ b : · c→ d) := ↑(k,ℓ)

A
(a→ b) ∩ ↑(k,ℓ)

B
(c→ d).

The entailment relation |=(k,ℓ) is defined in the same way as |= with ↑ replaced by ↑(k,ℓ). In case the
underlying algebras are clear from the context, we will often write

a : b ::(k,ℓ) c : d

to denote the analogical proportion relation in the (k, ℓ)-fragment.
A fragment which we will study in the next subsections in the arithmetical and word domain is the

so-called monolinear fragment (1, 1) consisting only of justifications with at most one occurrence of
a single variable on each side, which we will denote by m.

6.1. Difference proportions. This section studies additive monolinear number proportions. We be-
gin by noting that the set of monolinear justifications of a→ b in (Z,+,Z) is given by

↑m (a→ b) = {k + z→ ℓ + z | a→ b = k + o→ ℓ + o, for some o ∈ Z}
∪{k + z→ b | a→ b = k + o→ b, for some o ∈ Z} ∪ {a→ b}.

Remark 10. In (Z,+) containing no constants, the only monolinear rewrite rule is z → z which
justifies only inner reflexive proportions of the form a : a ::m c : c. This explains why we instead
consider the algebra (Z,+,Z) in which every integer is a distinguished element.

Interestingly, it turns out that monolinear additive number proportions are characterized by differ-
ence proportions.

6Similar connections have been observed in other frameworks of analogical proportions by Krumnack et al. (2007) and
Weller and Schmid (2007).
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Theorem 11 (Difference Proportion Theorem).
(Z,+,Z) |=m a : b :: c : d ⇔ a = k + o, b = ℓ + o, c = k + u, d = ℓ + u, k, ℓ, o, u ∈ N

⇔ a − b = c − d (difference proportion).

Proof. We first show

a = k + o, b = ℓ + o, c = k + u, d = ℓ + u ⇔ a − b = c − d,(12)

for some integers k, ℓ, o, u ∈ Z. The direction from left to right holds trivially. For the other direction,
we proceed as follows. We can always write a = k + o and b = ℓ + o, for some k, ℓ, o ∈ Z. We then
have a − b = k − ℓ. Analogously, we can always write c = k + u and d = ℓ′ + u, for some ℓ′, u ∈ Z.
We then have c − d = k − ℓ′. By assumption, we have a − b = c − d which implies k − ℓ = k − ℓ′ and
therefore ℓ = ℓ′ and finally d = ℓ + u.

We now proceed to show the first equivalence in the statement of the theorem.
(⇒) By assumption, we have (Z,+,Z) |=m a→ b : · c→ d which holds iff either

↑m (a→ b) ∪ ↑m (c→ d) = ∅

or ↑m (a → b : · c → d) is non-empty and subset maximal with respect to d. In the first case, notice
that neither ↑m (a→ b) nor ↑m (c→ d) can be empty as we always have

a→ b ∈ ↑m (a→ b) and c→ d ∈ ↑m (c→ d).

In the second case, by assumption we must have some monolinear justification s(z)→ t(z) of a→ b :
· c→ d in (Z,+,Z). We distinguish the following cases:

(1) If s(z)→ t(z) equals a→ b or c→ d, we must have a = c and b = d.
(2) Else if s(z) → t(z) equals k + z → ℓ + z, we must have a = k + o, b = ℓ + o, c = k + u, and

d = ℓ + u, for some integers o, u ∈ Z, which is equivalent to a − b = c − d by (12).
(3) Else if s(z)→ t(z) equals k + z→ b, we must have b = d. Then, by assumption, we must also

have

a→ b : · mc→ b and b→ a : · mb→ c.

So, either we have

↑m (b→ a) ∪ ↑m (b→ c) = ∅

or ↑m (b → a : · b → c) is non-empty and subset maximal with respect to c. Again, the sets
↑m (b → a) and ↑m (b → c) cannot be empty as they certainly contain b → a and b → c,
respectively. Hence, ↑m (b → a : · b → c) must contain at least one non-trivial monolinear
justification s′(z)→ t′(z). We distinguish the following cases:
(a) If s′(z)→ t′(z) equals b→ a or b→ c, we must have c = a.
(b) Else if s′(z)→ t′(z) equals k′+ z→ ℓ′+ z, we must have b = k′+o, a = ℓ′+o, b = k′+u,

and c = ℓ′ + u, for some o, u ∈ Z, which implies b = k′ + o = k′ + u and therefore o = u
and hence a = ℓ′ + o = ℓ′ + u = c.

(c) Finally, if s′(z)→ t′(z) equals k′ + z→ a, we must have a = c.
(⇐) Every justification of the form k + z→ ℓ + z is a characteristic justification by the Uniqueness

Lemma 4 since k + z and ℓ + z are injective in (Z,+,Z). Since a − b = c − d holds by assumption,
z→ z + b − a is a characteristic justification of a : b :: c : d in (Z,+,Z). □

Interestingly, additive monolinear number proportions are equivalent to number proportions in the
domain of natural numbers (N, S ) with the successor function S (a) := a + 1.

Corollary 12. (Z,+,Z) |=m a : b :: c : d ⇔ (N, S ) |= a : b :: c : d.
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Proof. A direct consequence of the Difference Proportion Theorem in Antić (2023a). □

Theorem 13. All the proportional axioms hold in (Z,+,Z) with respect to |=m except for p-commutativity.

Proof. We have the following proofs:
• The proofs for p-symmetry, inner p-symmetry, inner p-reflexivity, p-reflexivity, and p-determinism

are analogous to the original proofs in the proof of Theorem 28 in Antić (2022).
• p-Commutativity fails since a − b , b − a whenever a , b.
• Central permutation follows from the fact that a − b = c − d iff a − c = b − d.
• Strong inner p-reflexivity follows from the fact that a − a = c − d implies d = c
• Strong p-reflexivity follows from the fact that a − b = a − d implies d = b.
• p-Determinism follows from the fact that a − a = a − d iff d = a.
• p-Transitivity follows from

a − b = c − d and c − d = e − f ⇒ a − b = e − f .

• Inner p-transitivity follows from
a − b = c − d b − e = d − f

a − b + b − e = c − d + d − f
a − e = c − f .

• Central p-transitivity is a direct consequence of p-transitivity. Explicitly, we have

a − b = b − c and b − c = c − d ⇒ a − b = c − d.

□

Theorem 14. a : b ::m c : d a′ : b′ ::m c′ : d′ .
a + a′ : b + b′ ::m c + c′ : d + d′

Proof.

a : b ::m c : d
11a − b = c − d

a′ : b′ ::m c′ : d′
11a′ − b′ = c′ − d′

(a + a′) − (b + b′) = a − b + a′ − b′ = c − d + c′ − d′ = (c + c′) − (d + d′)
a + a′ : b + b′ ::m c + c′ : d + d′.

□

Theorem 14 shows that we can decompose number proportions; for example,

4 : 5 :: 0 : 1 = (2 : 3 :: 0 : 1) + (2 : 2 :: 0 : 0).

The following notion of an number proportion is an instance of the more general definition due to
Stroppa and Yvon (2006, Proposition 2) given for abelian semigroups adapted to the additive setting
of this paper (cf. Antić, 2022, §5.3):

Definition 15. For any integers a, b, c, d ∈ Z, define

(Z,+,Z) |=S Y a : b :: c : d :⇔ a = k + o, b = ℓ + o, c = k + u, d = ℓ + u

for some k, ℓ, o, u ∈ Z.

By the Difference Proportion Theorem 11, we have

(Z,+,Z) |=S Y a : b :: c : d ⇔ (Z,+,Z) |=m a : b :: c : d.(13)

This shows that Stroppa and Yvon’s (2006) notion of an additive number proportion coincides with
the restrictive monolinear fragment of our framework and should therefore not be used as a general
definition of an additive number proportion — this is demonstrated in the next example:
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Example 16. The number proportion

(Z,+,Z) |= 0 : 0 :: 1 : 2,

is characteristically justified by z → z + z, which is non-monolinear since z occurs more than once
on the right-hand side; on the other hand, this simple proportion is not captured within Stroppa and
Yvon’s (2006) framework:

(Z,+,Z) ̸|=S Y 0 : 0 :: 1 : 2.(14)

6.2. Geometric proportions. This section studies multiplicative monolinear number proportions in
(Q, ·,Q) where Q denotes the rational numbers. We begin by noting that the set of justifications of
a→ b in (Q, ·,Q) is given by

↑m (a→ b) = {kz→ ℓz | a→ b = ko→ ℓo, for some k, ℓ, o ∈ Q}
∪ {kz→ b | a→ b = ko→ b, for some k, o ∈ Q} ∪ {a→ b}.

This leads to the following characterization of the monolinear entailment relation with respect to
multiplication:

Theorem 17 (Geometric Proportion Theorem). For any a, b, c, d ∈ Q,

(Q, ·,Q) |=m a : b :: c : d ⇔ a = ko, b = ℓo, c = ku, d = ℓu, k, ℓ, o, u ∈ Q

⇔
a
b
=

c
d

(geometric proportion).

The first equivalence holds in (N, ·,N) as well.7

Proof. We first show the second equivalence

a = ko, b = ℓo, c = ku, d = ℓu ⇔
a
b
=

c
d
,

for some k, ℓ, o, u ∈ Q. The direction from left to right holds trivially. For the other direction, notice
that a

b =
c
d implies

a =
( c
d

)
b, b = 1b, c =

( c
d

)
d, d = 1d.

The rest of the proof is similar to the proof of Theorem 11. □

The Geometric Proportion Theorem 17 shows that monolinear multiplicative number proportions
can be geometrically interpreted as analogical proportions between rectangles. Moreover, the sim-
ple characterization of the monolinear relation in Theorem 17 allows us to analyze the proportional
axioms within the monolinear setting:

Theorem 18. All the proportional axioms hold in (Q, ·,Q) with respect to |=m.

Proof. We have the following proofs:
• The proofs for p-symmetry, inner p-symmetry, inner p-reflexivity, p-reflexivity, and p-determinism

are analogous to the original proofs in the proof of Theorem 28 in Antić (2022).
• p-Commutativity follows from Theorem 17 together with

ko : ℓo ::m ℓo : ko, for all k, ℓ, o ∈ Q.

• Central permutation follows from Theorem 17 together with

ko : ℓo ::m ku : ℓu ⇔ ok : uk ::m oℓ : uℓ.

7This will be essential in §6.2.1 when we study primes.
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• Strong inner p-reflexivity follows from Theorem 17 together with

ko : ko ::m ku : d ⇔ d = ku.

• Strong p-reflexivity follows from Theorem 17 together with

ko : ℓo ::m ko : d ⇔ d = ℓo.

• p-Determinism follows from a
a =

a
d iff d = a.

• p-Transitivity follows from Theorem 17 together with
a
b
=

c
d

and
c
d
=

e
f
⇒

a
b
=

e
f
.

• Inner p-transitivity follows from the following derivation:

a : b ::m c : d
Theorem 17a

b =
c
d

a = bc
d

b : e ::m d : f
Theorem 17b

e =
d
f

e = b f
d

a
e =

bc
d

b f
d
= bcd

b f d =
c
f

a : e ::m c : f .
• Central p-transitivity is an immediate consequence of transitivity.

□

Theorem 19. a : b ::m c : d a′ : b′ ::m c′ : d′ .
aa′ : bb′ ::m cc′ : dd′

Proof. We have the following derivation:

a : b ::m c : d
Theorem 17ko : ℓo ::m ku : ℓu

a′ : b′ ::m c′ : d′
Theorem 17k′o′ : ℓ′o′ ::m k′u′ : ℓ′u′

(ko)(k′o′) : (ℓo)(ℓ′o′) ::m (ku)(k′u′) : (ℓu)(ℓ′u′)
(kk′)(oo′) : (ℓℓ′)(oo′) ::m (kk′)(uu′) : (ℓℓ′)(uu′)

aa′ : bb′ ::m cc′ : dd′.
□

6.2.1. Primes. We shall now prove some properties of the monolinear entailment relation with respect
to primes. In this subsection, the underlying algebra is (N, ·,N) where N denotes the natural numbers.

Proposition 20. Let p, q, p′, q′ be primes. We have

p : q ::m p′ : q′ ⇔ (p = q and p′ = q′) or (p = p′ and q = q′).

Proof. By Theorem 17, we have

p : q ::m p′ : q′ ⇔ p = ko, q = ℓo, c = ko′, d = ℓo′, for some k, ℓ, o, o′ ∈ N.

We distinguish two cases. First, if k = 1 and o = p, then q = ℓp which implies ℓ = 1 and therefore
q′ = o′ and p′ = o′. Second, if o = p and o = 1, then q = ℓ and p′ = po′ which implies o′ = 1 and
therefore q′ = ℓ = q. □

Proposition 21. Let p, q be primes, and let c, d ∈ N. We have

p : q ::m c : d ⇔ (p = q and c = d) or
(p , q and c = pu and d = qu, for some u ∈ ).
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Proof. By Theorem 17, we have

p : q ::m c : d ⇔ p = ko, q = ℓo, c = ku, d = ℓu, for some k, ℓ, o, u ∈ N.

We distinguish two cases. First, if k = 1 and o = p, then q = ℓp and thus ℓ = 1 and q = p and
c = d = u. Second, if k = p and o = 1, then q = ℓ, c = pu, and d = qu, for some u ∈ N. □

6.3. Monolinear word proportions. In the rest of this section, A denotes a finite non-empty alphabet
and · denotes concatenation of words. We denote the empty word by ε. As usual, we denote the set of
all words over A by A∗ and define A∗ := A∗ ∪ {ε}.

In the monolinear word domain, the set of monolinear justifications of a→ b in (A∗, ·, A∗) is given
by

↑m (a→ b) =
{
a1za3 → b1zb3

∣∣∣ a = a1a2a3 → b1b2b3; a1, a2, a3,b1,b3 ∈ A∗
}

∪{a1za3 → b | a = a1a2a3 → b; a1, a2, a3 ∈ A∗} ∪ {a→ b}.

This implies

↑m (a→ b : · c→ d) =

a1za3 → b1zb3

∣∣∣∣∣∣∣∣
a→ b = a1a2a3 → b1a2b3
c→ d = a1c2a3 → b1c2b3
a1, a2, a3,b1,b3, c2 ∈ A∗


∪

a1za3 → b

∣∣∣∣∣∣∣∣∣∣∣
b = d
a→ b = a1a2a3 → b
c→ d = a1c2a3 → b
a1, a2, a3, c2 ∈ A∗

 ∪ {a→ b | a = c,b = d}.

This leads to the following characterization of the monolinear entailment relation:

Theorem 22.

a : b ::m c : d ⇔ a = a1a2a3, b = b1a2b3, c = a1b2a3, d = b1b2b3,

for some a1, a2, a3,b1,b2,b3.

Proof. (⇒) By assumption, we have (A∗, ·, A∗) |=m a→ b : · c→ d which holds iff either

↑m (a→ b) ∪ ↑m (c→ d) = ∅,

or ↑m (a→ b : · c→ d) is non-empty and subset maximal with respect to d. In the first case, notice
that neither ↑m (a→ b) nor ↑m (c→ d) can be empty since we always have

a→ b ∈ ↑m (a→ b) and c→ d ∈ ↑m (c→ d).

In the second case, by assumption we must have some monolinear justification s(z)→ t(z) of a→ b : · c→ d
in (A∗, ·, A∗). We distinguish the following cases:

(1) If s(z)→ t(z) equals a→ b or c→ d, we must have

a = c and b = d.

(2) Else if s(z)→ t(z) equals a1za3 → b1zb3, we must have

a = a1a2a3 and b = b1a2b3 and c = a1b2a3 and d = b1b2b3

for some a1, a2, a3,b1,b2,b3 ∈ A∗.
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(3) Else if s(z) → t(z) equals a1za3 → b, we must have a = a1a2a3, c = a1b2a3, and d = b,
for some a1, a2, a3,b2 ∈ A∗. Then, by assumption, we must also have a : b ::m c : b and,
by inner symmetry, b : a ::m b : c and therefore b → a : · mb → c. So, either we have
↑m (b→ a) ∪ ↑m (b→ c) = ∅ or ↑m (b→ a : ·b→ c) is non-empty and subset maximal with
respect to c. Again, the sets ↑m (b→ a) and ↑m (b→ c) cannot be empty as they contain
b→ a and b→ c, respectively. Hence, ↑m (b→ a : ·b→ c) contains at least one non-trivial
monolinear justification s′(z)→ t′(z). We distinguish the following cases:
(a) If s′(z)→ t′(z) equals b→ a or b→ c, we must have a = c.
(b) Else if s′(z) → t′(z) equals b′1zb′3 → a′1za′3, for some b′1,b

′
3, a
′
1, a
′
3 ∈ A∗, we must have

b = b′1b′2b′3 = b′1c′2b′3 and a = a′1b′2a′3 and c = a′1c′2a′3, for some b′2, c
′
2 ∈ A∗. The identity

b′1b′2b′3 = b′1c′2b′3 implies b′2 = c′2 and again a = c.
(c) Finally, if s′(z)→ t′(z) equals b′1zb′3 → a, we must also have a = c.

(⇐) The monolinear justification a1za3 → b1zb3 is a characteristic justification of

a1a2a3 → b1a2b3 : · a1c2a3 → b1c2b3 and a1c2a3 → b1c2b3 : · a1a2a3 → b1a2b3

in (A∗, ·, A∗) by the Uniqueness Lemma 4 since a1za3 and b1zb3 both induce injective word functions.
Analogously, b1zb3 → a1za3 is a characteristic justification of

a1c2a3 → b1c2b3 : · a1a2a3 → b1a2b3 and a1a2a3 → b1a2b3 : · a1c2a3 → b1c2b3.

Hence, we have shown the theorem. □

Corollary 23. a : eaf ::m c : ecf.

Corollary 24. ab = cd ⇏ a : b ::m c : d.

Proof. For example, by Theorem 22 we have a : b ̸::m ε : ab. □

Definition 25. We define the reverse of a word a = a1 . . . an, n ≥ 1, as usual by aR := an . . . a1.

Corollary 26. There are words such that a : aR ̸::m c : cR.

Proof. For example, by Theorem 22 we have ab : ba ̸::m ba : ab. □

The simple characterization of the monolinear proportion relation in Theorem 22 allows us to
analyze the proportional axioms within the monolinear word setting:

Theorem 27. The monolinear word proportion relation satisfies
• symmetry,
• inner symmetry,
• reflexivity,
• determinism,
• strong inner reflexivity,
• strong reflexivity,
• transitivity,
• central transitivity,

and, in general, it dissatisfies
• central permutation,
• commutativity,
• inner transitivity.

Proof. We have the following proofs:
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• The proofs for p-symmetry, inner p-symmetry, inner p-reflexivity, p-reflexivity, and p-determinism
are analogous to the original proofs in the proof of Theorem 28 in Antić (2022).
• p-Determinism is by Theorem 22 equivalent to

a1a2a3 : b1a2b3 ::m a1b2a3 : b1b2b3 ⇔ b1b2b3 = a1a2a3

where

a = a1a2a3 = b1a2b3 = a1b2a3 and d = b1b2b3.

This follows from

a1a2a3 = a1b2a3 ⇔ b2 = a2 ⇔ b1b2b3 = a ⇔ d = a.

• Central permutation fails8, for example, given the alphabet A := {a1, a2, a3, b1, b3, c2} since as
a consequence of Theorem 22, we have

a1a2a3 : b1a2b3 ::m a1c2a3 : b1c2b3

whereas

a1a2a3 : a1c2a3 ::m b1a2b3 : b1c2b3.

• Strong inner p-reflexivity and strong reflexivity are immediate consequences of Theorem 22.
• p-Commutativity fails, for example, in A := {a, b} since as a consequence of Theorem 22, we

have

a : b ::m b : a.

• p-Transitivity is an immediate consequence of Theorem 22.
• Inner p-transitivity fails, for example, in A := {a1, a2, a3, b1, b3, c2, d2, e1, e3} since as a conse-

quence of Theorem 22, we have

a1a2a3 : b1a2b3 ::m a1c2a3 : b1c2a3

and

b1a2b3 : e1a2e3 ::m b1d2b3 : e1d2e3

whereas

a1a2a3 : e1a2e3 ::m a1c2a3 : e1d2e3.

• Finally, central p-transitivity is an immediate consequence of transitivity already shown above.

□

Remark 28. The fact that central permutation fails gives a negative answer to Problem 30 in Antić
(2022) in the monolinear setting.

Remark 29. Notice that we cannot prove an analogue of Theorems 14 and 19 in the word domain
since by Theorem 22, we in general have

a : b ::m c : d and a′ : b′ ::m c′ : d′ ⇏ aa′ : bb′ ::m cc′ : dd′.

8See Remark 28



18 ANALOGICAL PROPORTIONS II

7. Finite algebras

In this section, we provide an algorithm for the computation of the analogical proportion relation
in finite algebras via tree automata and we therefore expect the reader to be familiar with the basics of
tree automata as they are presented for example in Gécseg and Steinby (2015).

Recall that a (frontier-to-root) tree automaton

Tk,α,A′(A) := (A, L,Zk, α, A′)

consists of
• a finite L-algebra A,
• an initial assignment α : Zk → A, and
• a set A′ ⊆ A of final states.

The forest recognized by Tk,α,A′(A) is given by

||Tk,α,A′(A)|| :=
{
s ∈ TL(Zk)

∣∣∣ sA(α) ∈ A′
}
.

We can thus rewrite the set of k-generalizations of a in A (see §5),

↑k
A

a := (↑A a) ∩ TL(Zk),

by

↑k
A

a =
⋃
α∈AZk

||Tk,α,{a}(A)||,

and the set of k-justifications of an arrow a→ b in A in terms of tree automata as

↑k
A

(a→ b) =
⋃
α∈AZk

[
(||Tk,α,{a}(A)|| → ||Tk,α,{b}(A)||) ∩ {s→ t | Z(t) ⊆ Z(s)}

]
,

where for two forests S and T ,

S → T := {s→ t | s ∈ S , t ∈ T }.

Notice that the set AZk of all initial assignments Zk → A is finite by our assumption that Zk is a finite
set of variables. Since it is well-known that tree automata are closed under finite unions, there is a tree
automaton Tk,a→b(A), for every arrow a→ b, such that

↑k
A

(a→ b) = ||Tk,a→b(A)|| ∩ {s→ t | Z(t) ⊆ Z(s)}.

Now since tree automata are closed under intersection as well, there is a tree automaton Tk,a→b:· c→d(A,B),
for every arrow proportion a→ b : · c→ d, such that

↑k
(A,B) (a→ b : · c→ d) = ||Tk,a→b:· c→d(A,B)|| ∩ {s→ t | Z(t) ⊆ Z(s)}.

Since B is finite by assumption, checking the d-maximality of ↑k
(A,B) (a → b : · c → d) can thus

be easily achieved with a search linear in the size of B; checking the emptiness of ↑k
A

(a → b) and
↑k
B

(c → d) is well-known to be decidable as well (cf. Comon et al., 2008, p. 40); and checking
Z(t) ⊆ Z(s) is a simple syntactic comparison, which in total gives us an algorithm for deciding

(A,B) |=k a→ b : · c→ d

and thus for deciding

(A,B) |=k a : b :: c : d.
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7.1. Algorithms. This section lists algorithms for the most imporant problems on analogical propor-
tions in finite algebras.

Pseudocode 30 (Decision algorithm). Given k ≥ 1, a, b ∈ A, c, d ∈ B, and (A,B), we design an
algorithm for deciding whether

(A,B)
?
|=k a : b :: c : d.

We first provide an algorithm for deciding whether

(A,B)
?
|=k a→ b : · c→ d.(15)

(1) Construct the tree automata Tk,a→b(A) and Tk,c→d(B) as described above. If

(||Tk,a→b(A)|| ∪ ||Tk,c→d(B)||) ∩ {s→ t | Z(t) ⊆ Z(s)} = ∅

then stop with answer “yes”.
(2) Otherwise, construct the tree automaton Tk,a→b:· c→d(A,B) as described above and compute

the forest
T := ||Tk,a→b:· c→d(A,B)||.

(3) Compute the set of k-justifications

J := T − {s→ t | Z(t) ⊈ Z(s)}

applying a simple syntactic check on each rule in T .
(4) We now want to check whether J is d-maximal:

(a) For each d′ , d ∈ B:
(i) Construct the set of k-justifications

J′ := ||Tk,a→b:· c→d′(A,B)|| − {s→ t | Z(t) ⊈ Z(s)}

as above.
(ii) If J ⊊ J′ then stop with answer “no”.

(b) Return the answer “yes”.
(5) At this point, we have decided (15). Now repeat the above steps for the remaining arrow

proportions

b→ a : · d → c and c→ d : · a→ b and d → c : · b→ a

and return “yes” iff the answer is “yes” in each case.

Pseudocode 31. Given (A,B) and k, computing the set

{a : b :: c : d | (A,B) |=k a : b :: c : d}

can be done using Pseudocode 30 to decide (A,B)
?
|=k a : b :: c : d on each of the finitely many

proportions a : b :: c : d.

Pseudocode 32 (Solving proportional equations). Given a proportional equation

a : b :: c : x,

finding some/all d ∈ B such that (A,B) |=k a : b :: c : d can be achieved using Pseudocode 31.
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