





# Dosimetric environment of preclinical FLASH hadrontherapy studies at the ARRONAX cyclotron

Manon Evin, <u>Charbel Koumeir</u>, Quentin Mouchard, Gregory Delpon, Ferid Haddad, Vincent Potiron, Gaëlle Saade, Mathieu Chocry, Noël Servagent, Stéphane Supiot, Vincent Métivier, Sophie Chiavassa



Context

## FLASHMOD project



Multidisciplinary team around the ARRONAX cyclotron

Accélérateur pour la Recherche en Radiochimie et Oncologie à Nantes-Atlantique



| Extracted                                 | Maximal      | Range in       | LET at plateau    |  |
|-------------------------------------------|--------------|----------------|-------------------|--|
| particles                                 | energy (MeV) | water (cm)     | entrance (keV/µm) |  |
| $\frac{\mathrm{H}^{+}}{\mathrm{He}^{2+}}$ | 70<br>70     | $4,08 \\ 0,34$ | 1 11              |  |



• UHDR : Up to several hundred of **kGy/s** 





• Mouchard Q., et al.. Upgrade of the flash beam monitoring system at ARRONAX cyclotron. (FRPT 2022). (hal-03885576)





Context **Beam control** 

**Delta Antero-Posterior** 

## Irradiation field sizes and margins

Optimal homogeneous field size (cohort) = Organ size (cohort) + Margins Targeting (Margins  $_{\rm Respiratory}$ 

#### Fluoroscopy mode XRAD225Cx (8 images/s)





 Heyden, Brent van der, et al.. « The Influence of Respiratory Motion on Dose Delivery in a Mouse Lung Tumour Irradiation Using the 4D MOBY Phantom ». The British Journal of Radiology 90, nº 1069 (janvier 2017): 20160419. Context

Beam control

Set-up & methodology for preclinical irradiations

## Impact of the respiratory cycle under FLASH-RT

Full inspiration (Inflate)

Lateral irradiation

*In vivo* dosimetry



< 1 % for entrance lung -</li>

the one to be considered for biological analyses

130

120

110

[1-3] % for exit lung and both lungs •



**Full expiration (Deflate)** 

(d=0,45 g/cm<sup>3</sup>, volume 0,56 cm<sup>3</sup>)







## In vivo dosimetry with radiochromic films

#### LET (Linear Energy Transfert) dependency







Gate simulation

→ Determination of the correction factor **f(LET)** 

- 12 %

## *In vivo* dosimetry with radiochromic films

#### **Mouse whole brain irradiation:** GATE simulation from XRAD225Cx µCBCT and targeting without image guidance at ARRONAX

Simulation

Measure DD

Dose



Beam control

#### mm 100 % = 15.527 G 20 100 % 10 - 80 % 0 - 60 % -10 -40 % -20 % -20 -20 -10 0 10 20 mm

Distance

1D illustration of the gamma index metric

**Experimental** 

#### Simulated



Local gamma index 2D (DD 1% - DTA 1 mm): pass rate 98,2 %



10 Verisoft software

### Conclusion and perspectives

Beam control



Ready for irradiation of small animals (tumors and healthy tissues)

#### **Other main perspective:**

Design of a ridge filter for Spread Out Bragg Peak irradiations (SOPB) as for clinical irradiation



 Patriarca A, et al. « Experimental Set-up for FLASH Proton Irradiation of Small Animals Using a Clinical System », International Journal of Radiation Oncology\*Biology\*Physics, DOI: 10.1016/j.ijrobp.2018.06.403.

