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Improving adaptation/learning transients using a dynamic adaptation
gain/learning rate – Theoretical and experimental results*

Ioan Doré Landaua, Tudor-Bogdan Airimitoaieb, Bernard Vauc and Gabriel Buchea

Abstract— The paper explores in detail the use of dynamic
adaptation gain/learning rate (DAG) for improving the per-
formance of gradient type adaptation/learning algorithms. The
DAG is an ARMA (poles-zeros) filter embedded in the gradient
type adaptation/learning algorithms and generalizes the various
improved gradient algorithms available in the literature. After
presenting the DAG algorithm and its relation with other
algorithms, its design is developed. Strictly Positive Real (SPR)
conditions play an important role in the design of the DAG.
Then the stability issues for adaptive/learning systems using a
DAG are discussed for large and low values of the adaptation
gains/learning rate. The potential of the DAG is then illustrated
by experimental results obtained on a relevant adaptive active
noise control system (ANC).

I. INTRODUCTION

In using adaptive/learning recursive algorithms there are
two important problems to be addressed. The first prob-
lem is related to the compromise between alertness (with
respect to environment changes—like plant or disturbance
characteristics) and stationary performances when using a
constant value for the adaptation gain/learning rate. The
second problem is to find conditions assuring the asymptotic
stability of the adaptive/learning system for any values of
the adaptation gain/learning rate and for any initial values of
the estimated parameters. While nobody will use an infinite
adaptation gain/learning rate, addressing these stability issues
will guarantee the safe operation of the adaptive/learning
system for a large range of possible values of the adaptation
gain/learning rate.

In order to assure a compromise between alertness of
the adaptive/learning system and steady state performance1

one uses in general low constant values for the adaptation
gain/learning rate. This penalizes the adaptation transients.
Many algorithms have been proposed with the aim to im-
prove the adaptation/learning transients provided by “gra-
dient rule” based algorithms. See [6], [14], [15], [4], [1],
[5], [13]. In [9] it was shown that all these algorithms
can be cast on an unified general form and the concept
of “dynamic adaptation gain/learning rate” (DAG) has been
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1The measurement noise affects the performance. The measurement noise
has in general a spectrum in the high frequencies within the range 0.25 to
0.5fs, where fs is the sampling frequency.

coined. The various “gradient rule” modifications can be
interpreted as using the “gradient rule” on a filtered gradient.
The potential of using a dynamic adaptation/learning rate has
been illustrated in [9] by means of a simulated example. The
analysis of the dynamic adaptation/learning rate provided in
[9] is incomplete. One of the objectives of this paper is to
fill this gap and to provide in addition more insight into the
design of dynamic adaptation gain/learning rate.

While a general stability result for adaptive/learning sys-
tems using a dynamic adaptation gain/learning rate is given
in [9], we explore in this paper the interaction between
the design of dynamic adaptation gain/learning rate for
performance and the stability of the system and we will
provide tools for a joint design (performance and stability).
The potential of the dynamic adaptation gain/learning rate
and the use of the analysis and design tool proposed in the
paper will be illustrated by experimental results obtained on
a relevant adaptive active noise attenuation system.

The contributions of the paper can be summarized as
follows:

• The concept of dynamic (frequency dependent) adap-
tation gain/learning rate is explored and its design is
discussed in detail.

• Stability issues are discussed.
• A comprehensive illustration of the effect of the dy-

namic adaptation gain/learning rate is provided by
application to an adaptive active noise control system.

II. INTRODUCING THE DYNAMIC ADAPTATION/LEARNING
RATE

The gradient algorithm will be reviewed in order to
present the dynamic adaptation gain/learning rate introduced
in [9]. The aim of the gradient parameter adaptation/learning
algorithm (PALA) is to drive the parameters of an adjustable
model in order to minimize a quadratic criterion in terms of
the prediction error (difference between real data and the
output of the model used for prediction). To formalize the
problem, consider the discrete-time model described by:

y(t+ 1) = −a1y(t)− . . .− anA
y(t− nA + 1)

+ b1u(t) + . . .+ bnB
u(t− nB + 1) = θTϕ(t) (1)

where the unknown parameters ai and bi form the compo-
nents of the parameter vector θ:

θT = [a1, a2, . . . , anA
, b1, b2, . . . , bnB

] (2)



and

ϕT (t) = [−y(t), . . . ,−y(t−nA+1), u(t), . . . , u(t−nB+1)]
(3)

is the measurement vector.2 The adjustable prediction model
will be described in this case by:

ŷ0(t+ 1) = ŷ[(t+ 1)|θ̂(t)] = θ̂T (t)ϕ(t) (4)

where ŷ0(t + 1) is termed the a priori predicted output
depending upon the values of the estimated parameter vector
θ at instant t:

θ̂T (t) = [â1(t), â2(t), . . . ânA
(t), b̂1(t), b̂2(t), . . . b̂nB(t)]

(5)
It is very useful to consider also the a posteriori predicted
output computed on the basis of the new estimated parameter
vector at t+1, θ̂(t+1), which will be available somewhere
between t + 1 and t + 2. The a posteriori predicted output
will be given by:

ŷ(t+ 1) = ŷ[(t+ 1)|θ̂(t+ 1)] = θ̂T (t+ 1)ϕ(t) (6)

One defines an a priori prediction error as:

ϵ0(t+ 1) = y(t+ 1)− ŷ0(t+ 1) (7)

and an a posteriori prediction error as:

ϵ(t+ 1) = y(t+ 1)− ŷ(t+ 1) = [θ − θ̂(t+ 1)]Tϕ(t) (8)

The objective is to find a recursive PALA with memory. The
structure of such an algorithm is:

θ̂(t+1) = θ̂(t)+∆θ̂(t+1) = θ̂(t)+ f [θ̂(t), ϕ(t), ϵ0(t+1)]
(9)

To be specific, the correction term must enable to minimize
the following criterion at each step3:

min
θ̂(t+1)

J(t+ 1) = [ϵ(t+ 1)]2 (10)

A solution can be provided by the gradient rule. The
corresponding PALA will have the form:

θ̂(t+1) = θ̂(t)−F ▽θ J(t+1) = θ̂(t)−F
∂J(t+ 1)

∂θ̂(t)
(11)

where F is the matrix adaptation gain/learning rate and
∂J(t+1)

∂θ̂(t)
is the partial gradient of the criterion given in (10)

with respect to θ̂(t).
The estimated parameter vector θ̂ can be viewed as the

output of a discrete time integrator filter whose input is
the gradient (or in general a correcting term related to the
gradient) with the minus sign.

From (10), (11) and (8) one obtains (for details see [8]):

θ̂(t+ 1) = θ̂(t) + Fϕ(t)ϵ(t+ 1), (12)

2u(t), y(t) ∈ R, θ, ϕ ∈ Rn, n = na+nb, Rn is the real n-dimensional
Euclidean space.

3Using the criterion minθ̂(t) J(t+ 1) = [ϵ0(t+ 1)]2, will not allow to
guarantee stability of the PALA for any value of the adaptation gain/learning
rate. See [8] for details. But other criteria can be considered.

where F is the matrix adaptation gain. The algorithm has
memory (for ε(t + 1) = 0, θ̂(t + 1) = θ̂(t)). There are two
possible choices for the matrix adaptation gain/learning rate:
(i) F > 0 (positive definite matrix) ; (ii )F = αI; α > 0.
The term adaptation gain or learning rate is used for α.

When using a dynamic adaptation gain/learning rate
(DAG) the above equation becomes:

θ̂(t+ 1) = θ̂(t) +
C(q−1)

D′(q−1)
[F (−▽θ J(t+ 1))] (13)

where4 C(q−1)
D′(q−1) is termed the “dynamic adaptation

gain/learning rate” (DAG) and has the form:

C(q−1)

D′(q−1)
=

1 + c1q
−1 + c2q

−2 + ..+ cnC
q−nC

1− d′1q
−1 − d′2q

−2 − ..d′nD′ q
−nD′

(14)

Then (12) becomes:

θ̂(t+ 1) = θ̂(t) +
C(q−1)

D′(q−1)
[Fϕ(t)ϵ(t+ 1)] (15)

The effective implementation of the algorithm given in (15)
leads to:

θ̂(t+ 1) = d1θ̂(t) + d2θ̂(t− 1) + . . .+ dnD
θ̂(t− nD)

+ F [ϕ(t)ϵ(t+ 1) + c1ϕ(t− 1)ϵ(t) + c2ϕ(t− 2)ϵ(t− 1)

+ . . .+ cnC
ϕ(t− nC)ϵ(t− nC + 1)] (16)

where (nD = nD′ + 1):

di = (d′i − d′i−1) ; i = 1, ...nD; d′0 = −1, d′nD
= 0 (17)

To implement the algorithm, one needs a computable expres-
sion for ϵ(t+ 1). One defines:

ŷ0(t+ 1) = θ̂T0 (t)ϕ(t), (18)

where

θ̂0(t) = d1θ̂(t) + d2θ̂(t− 1) + . . .

+ F [c1ϕ(t− 1)ϵ(t) + c2ϕ(t− 2)ϵ(t− 1) + . . .] (19)

θ̂0(t) is the best prediction of θ̂(t + 1) based on the
information available at instant t (can be denoted also as
θ̂0(t) = θ̂(t + 1|t)). The a posteriori adaptation/prediction
error can be written:

ϵ(t+ 1) = y(t+ 1)± θ̂T0 (t)ϕ(t)− θ̂T (t+ 1)ϕ(t)

= ϵ0(t+ 1)− [θ̂(t+ 1)− θ̂0(t)]
Tϕ(t)

= ϵ0(t+ 1)− ϕ(t)TFϕ(t)ϵ(t+ 1) (20)

which leads to:

ϵ(t+ 1) =
ϵ0(t+ 1)

1 + ϕT (t)Fϕ(t)
(21)

4The complex variable z−1 will be used for characterizing the system’s
behaviour in the frequency domain and the delay operator q−1 will be used
for describing the system’s behaviour in the time domain.



Relations with other algorithms

The algorithm of (13) is termed ARIMA (Autoregressive
with Integrator Moving Average algorithm) algorithm [9].
The various algorithms described in the literature are of
MAI form or ARI form. The MAI form includes “Integral+
Proportional” algorithm [8], [1] (c1 ̸= 0, ci = 0,∀ i > 1,
d′i = 0,∀ i > 0), “Averaged gradient” (ci, i = 1, 2, ..., d′i =
0,∀ i > 0) [17], [16]. The ARI form includes “Conjugate
gradient” and “Nesterov” algorithms [13], [5] (ci = 0, i =
1, 2, .., d′1 ̸= 0, d′i = 0, i > 1) as well as the “Momentum
back propagation” algorithm [7] which corresponds to the
conjugate gradient plus a normalization of α by (1−d′1)

5. A
particular form of the ARIMA algorithms termed “ARIMA2”
(c1, c2, ci = 0,∀ i > 2, d′1 ̸= 0, d′i = 0,∀ i > 1) will be
studied subsequently and evaluated experimentally.6

III. DESIGN OF THE DYNAMIC ADAPTATION
GAIN/LEARNING RATE

The dynamic adaptation gain/learning rate will introduce
a phase distortion on the gradient depending on the fre-
quency. Assume that the algorithms should operate for all
frequencies in the range: 0 to 0.5fs (fs is the sampling
frequency). Assume that the gradient of the criterion to be
minimized contains a single frequency. In order to minimize
the criterion, the phase distortion introduced by the dynamic
adaptation gain/learning rate should be less than 90◦ at all
the frequencies. In other terms, the transfer function C(z−1)

D′(z−1)
should be strictly positive real (SPR). In order that a transfer
function be strictly positive real, it must first have its zeros
and poles inside the unit circle. One has the following
property:

Lemma 3.1: Assume that the polynomials C(z−1) and
D′(z−1) have all their zeros inside the unit circle, then:

I =

∫ π

0

log

(∣∣∣∣ C(e−iω)

D′(e−iω)

∣∣∣∣)dω = 0. (22)

The proof relies on the Cauchy Integral formula.
This result allows to conclude that the average gain over

the frequency range 0 to 0.5fs is 0 dB, i.e. on the average this
filter will not modify the adaptation gain/learning rate. It is
just a frequency weighting of the adaptation gain/learning
rate. To be more specific, Figure 1 shows the frequency
characteristics of two DAGs which will be subsequently
used in the experimental section (the gradient algorithm
corresponds to the axis 0 dB)7. It can be observed first
that the phase is within the range ±90◦, i.e. they are SPR.
Then one can observe that effectively the average gain over
the frequency range 0 to 0.5fs (fs = 2500 Hz) is 0 dB.
Now examining the magnitude, one observes that both are
low pass filters amplifying low frequencies. This means
that if the frequency content of the gradient is in the low
frequency range, the effective adaptation gain/learning rate

5There are very few indications how to choose the various weights in the
above mentioned algorithms.

6The algorithms mentioned above can be viewed as particular cases of
the ARIMA2 algorithm.

7ARIMA2 filter with c1 = −0.4, c2 = 0.5, d′1 = 0.7 and I+P filter with
c1 = 0.667, c2 = 0, d′1 = 0.

will be larger than α which should have a positive effect
upon the adaptation/learning transient. In particular, the DAG
which has a larger gain in low frequencies (ARIMA2) should
provide better performance than the (I+P) DAG (which is
indeed the case—see section V). Since we need to have a

Fig. 1: Frequency characteristics of two DAGs (used in the
experiments).

DAG which is SPR, we will provide subsequently the tools
for design of a SPR DAG. We will consider the case of the
ARIMA2 algorithm introduced in [9]. The DAG in this case
will have the form:

HDAG =
C(q−1)

D′(q−1)
=

1 + c1q
−1 + c2q

−2

1− d′1q
−1

(23)

A criterion for the selection of c1, c2 and d′1 in order that
the DAG be SPR is given below.

Lemma 3.2: The conditions assuring that HDAG(z) =
1+c1z

−1+c2z
−2

1−d
′
1z

−1
is strictly positive real (SPR) are:

• for c2 ≤ 0, c1 must be such that

−1− c2 < c1 < 1 + c2

• for c2 ≥ 0

– if the following condition is satisfied

2(d
′

1 − c2) <
√

2(c2 − c22)(1− d
′2
1 ) < 2(d

′

1 + c2)

the maximum bound on c1 is given by

c1 < d
′

1 − 3d
′

1c2 + 2
√
2(c2 − c22)(1− d

′2
1 )

otherwise the maximum bound on c1 is given by

c1 < 1 + c2

– if the following condition is satisfied

2(d
′

1−c2) < −
√

2(c2 − c22)(1− d
′2
1 ) < 2(d

′

1+c2)

the minimum bound on c1 is given by

c1 > d
′

1 − 3d
′

1c2 −
√
2(c2 − c22)(1− d

′2
1 )



otherwise the minimum bound on c1 is given by

c1 > −1− c2
The proof of this result is given in the Appendix.

From the conditions of Lemma 3.2, closed contours in the
plane c2 − c1 can be defined for the different values of d′1
allowing to select c1 and c2 for a given value of d′1 such that
the DAG be SPR.

IV. STABILITY ANALYSIS

Eq. (15) can be expressed also as

θ̂(t+ 1) = HPAA(q
−1)[Fϕ(t)ϵ(t+ 1)] (24)

where HPAA is a MIMO diagonal transfer operator having
identical terms. All the diagonal terms are described by:

Hii
PAA(q

−1) =
1 + c1q

−1 + c2q
−2 + ..+ cnC

q−nC

(1− q−1)(1− d′1q
−1 − d′2q

−2 − ..d′nD′ q
−n′

D )

=
C(q−1)

(1− q−1)D′(q−1)
=

C(q−1)

D(q−1)
(25)

The relation between the coefficients of polynomials D and
D′ is given in (17).

One has the following result:
Theorem 4.1: For the system described by Eqs (1) through

(8) using the PALA of (16) and (21) one has limt→∞ ϵ(t+
1) = 0 for any positive definite adaptation gain matrix F
and any initial conditions θ(0), ϵ(0) if Hii

PAA(z
−1) given in

(25) is a PR transfer function with a pole at z = 1.
The proof is given in the Appendix.
For the particular case of the ARIMA2 algorithm, the

coefficients c1, c2 and d′1 should be chosen such that the
DAG is SPR and the HPAA is positive real (PR), i.e.

Hii =
1 + c1q

−1 + c2q
−2

1− d1q−1 − d2q−2
=

1 + c1q
−1 + c2q

−2

(1− q−1)(1− d′1q
−1)

(26)

should be PR.
The adaptive/learning system considered in the Theo-

rem 4.1, leads to an equivalent feedback representation where
the equivalent feedforward path is a constant positive gain
and the equivalent feedback path features the HPAA (see
[9]). However, in many cases the equivalent feedforward path
will be a transfer operator. In such situations in addition to
the PR condition upon the HPAA, there will be an additional
SPR condition upon the transfer operator characterizing the
equivalent feedforward path.

For small values of the adaptation gains/learning rates the
passivity/stability condition can be relaxed using averaging
[3]. Using the results of [12], under the hypothesis of an
input signal spanning all the frequencies up to half of the
sampling frequency, passivity in the average will be assured
if the frequency interval where Hii is not positive real is
smaller than the frequency interval where Hii is positive
real. In fact, the most important is that the Hii is PR in
the frequency region of operation (mainly defined by the
spectrum of the input signals to the systems).

It is interesting to see intersections of the contours assuring
the SPR of the Hii

DAG with the contours assuring that Hii
PAA

is PR. Such an intersection is shown in Fig.2. From this fig-
ure one can conclude that not all the SPR HDAG will lead to
a PR HPAA. In such cases, the performance is improved for
low adaptation gains, but one can not guarantee asymptotic
stability for large values of the adaptation gain. Fig. 2 shows
also that there is a region where despite that HPAA is PR,
HDAG is not SPR. For such configurations, large adaptation
gains can be used but the adaptation transient is slower than
for the basic gradient algorithm.
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Fig. 2: Intersection in the plane c1 − c2 of the contour
HPAA = PR with the contour HDAG = SPR for d′1 = 0.5.

V. EXPERIMENTAL RESULTS

The improvement of the adaptation transients using the
ARIMA2 algorithm and its particular cases (corresponding
to various algorithms mentioned at the end of Section II) have
been evaluated experimentally on an active noise control
test-bench. Figure 3 shows the view of the test-bench used
for experiments (top) and the detailed block diagram used
for control (bottom). The speaker used as the source of
disturbances is labelled as 1, while the control speaker
is marked as 2. At pipe’s open end, the microphone that
measures the system’s output (residual noise e(t)) is denoted
as 3. s(t) is the disturbance. Inside the pipe, close to the
source of disturbances, the second microphone, labelled as
4, measures the perturbation’s image, denoted as y(t). u(t) is
the control signal. The transfer function between the distur-
bance’s speaker and the microphone (1→3) is called Global
Primary Path, while the transfer function between the control
speaker and the microphone (2→3) is denoted Secondary
Path. The transfer function between microphones (4→3) is
called Primary Path. The internal coupling found between
(2→4) is denoted Reverse Path. Speakers and microphones
are connected to a target computer with Simulink Real-
Time®. A second computer is used for development and
operation with Matlab/Simulink. The sampling frequency is
fs = 2500 Hz.



Fig. 3: Duct active noise control test-bench photo (top) and
block diagram (bottom).

The various paths are described by models of the form:

X(q−1) = q−dx BX(q−1)
AX(q−1) = q−dx

bX1 q−1+...+bXnBX
q
−nBX

1+aX
1 q−1+...+aX

nAX
q
−nAX

,

with BX = q−1B∗
X for any X ∈ {G,M,D}. Ĝ =

q−dG B̂G

AG
, M̂ = q−dM B̂M

AM
, and D̂ = q−dD B̂D

AD
denote the

identified (estimated) models of the secondary (G), reverse
(M ), and primary (D) paths. The system’s order is defined
as (the indexes G, M , and D have been omitted): n =
max(nA, nB + d).

The models of the various paths are characterized by
the presence of many pairs of very low damped poles and
zeros. These models have been identified experimentally.
The orders of the various identified models are: nG = 33,
nM = 27 and nD = 27.

The objective is to attenuate an incoming unknown broad-
band noise disturbance. The corresponding block diagram
for the adaptive feedforward noise compensation using FIR
Youla-Kucera (FIR-YK) parametrization of the feedforward
compensator (introduced in [10] for active vibration control
and in [2] for active noise control) is shown in Figure 4.

The adjustable filter Q̂ has the structure:

Q̂(q−1) = q̂0 + q̂1q
−1 + ...+ q̂nQ

q−nQ (27)

and the parameters qi will be adapted in order to minimize
the residual error.

The algorithm which will be used (introduced in [11]) can
be summarized as follows. One defines:

θT = [q0, q1, q2, . . . , qnQ
] (28)

θ̂T = [q̂0, q̂1, q̂2, . . . , q̂nQ
] (29)

ϕT (t) = [v(t+ 1), v(t), . . . , v(t− nQ + 1)] (30)

Global primary path

Positive feedback coupling 

Measurement of the

image of the disturbance

Secondary

path

    Residual

 noise

measurement

PAA

Primary path

Parameter adaptation algorithm

-1

Feedforward compensator

Fig. 4: Feedforward AVC with FIR-YK adaptive feedforward
compensator.

where:

v(t+1) = BM ŷ(t+1)−AM û(t+1) = B∗
M ŷ(t)−AM û(t+1)

(31)
One defines also the regressor vector (a filtered observation
vector) as:

ϕf (t) = L(q−1)ϕ(t) = [vf (t+1), vf (t), . . . , vf (t−nQ+1)]
(32)

where
vf (t+ 1) = L(q−1)v(t+ 1) (33)

Using R0 = 0 and S0 = 1, the poles of the internal positive
closed loop will be defined by AM and they will remain
unchanged. The filter used in (33) becomes L = Ĝ and the
associated linear transfer operator appearing in the equivalent
feedforward path is

H(q−1) =
G(q−1)

Ĝ(q−1)
(34)

(the algorithm uses an approximate gradient). The transfer
function associated to H(q−1) should be SPR in order to
assure asymptotic stability in the case of perfect matching.
This is a very mild condition as long as a good experimental
identification of the models is done.

The PALA which will be used is the one of (15), where θ̂
is given by (29) and ϕ is replaced by ϕf given in (32). The
adjustable filter Q̂ has 60 parameters.

TABLE I: Parameters of ARIMA2 algorithms.

Algorithm HPAA − PR DAG-SPR c1 c2 d′1
Integral (gradient) Y Y 0 0 0

Conj.Gr/Nest.. N Y 0 0 0.5
I+P+D (αP = −2αD) N Y 0 0.99 0

I+P Y Y 0.667 0 0
ARIMA 2 N Y −0.5 0.4 0.7

A broad-band disturbance 70–170 Hz is used as an un-
known disturbance acting on the system. The steady state and
transient attenuation8 will be evaluated for the various values

8The attenuation is defined as the ratio between the variance of the
residual noise in the absence of the control and the variance of the
residual noise in the presence of the adaptive feedforward compensation.
The variance is evaluated over an horizon of 3 seconds.



of the parameters c1, c2 and d′1 given in Table I. The system
will operate in open-loop during the first 15 s. Figure 5 shows
the time response of the system as well as the evolution
of the global attenuation when using the gradient (integral)
algorithm (top) and the ARIMA2 algorithm (bottom) with
c1 = −0.5, c2 = 0.4, d′1 = 0.7 (last row of Table I).

Figure 6 shows a comparative time evolution of the global
attenuation for the algorithms considered in Table I. As
it can be observed, there is a clear improvement in the
adaptation transient using ARIMA2 (last row of Table I) with
respect to the gradient algorithm (first row of Table I). The
adaptation/learning transient is reduced by a factor of two
and a half. One observes also an improvement of the steady
state attenuation with respect to gradient adaptation. The
other algorithms (from Table I) provide also an improvement
with respect to the gradient algorithms. Their performance
are close to each other.

Fig. 5: Time evolution of the residual noise using the gradient
(integral) algorithm (top) and using the ARIMA2 algorithm
(bottom).

VI. CONCLUSION

The paper has emphasized the potential of a dynamic
adaptation/learning rate for improving the performance of
gradient type adaptation/learning algorithms. The design of
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Fig. 6: Time evolution of the global attenuation for the
algorithms of Table I.

DAG has been addressed. The main point is that the DAG
should be characterized by an SPR transfer function if we
would like to operate correctly for any frequencies in the
range 0 to 0.5 of the sampling frequencies. This condition
can be relaxed if one operates on a reduced frequency
range. Experimental results on a relevant adaptive active
noise control system have illustrated the feasibility and the
performance improvement achieved using a DAG.

APPENDIX

PROOF OF LEMMA 3.2

In order to assess the strict real positivity of H ′(z) on must
check the condition

Re
(
(1− d

′

1z)(1 + c1z
−1 + c2z

−2)
)
> 0 (35)

Set z = eiω = cos(ω) + i sin(ω), and the condition (35)
becomes

(1− c2−d′1c1)+ (c1−d′1c2−d′1) cos(ω)+2c2 cos
2(ω) > 0

(36)
Set X = cos(ω), x ∈ [−1, 1] and f(X) = 2c2X

2 + (c1 −
d′1c2 − d′1)X + (1− c2 − d′1c1).

• case c2 ≤ 0
f has a finite maximum, and it is located at Xmax =
−c1+d′

1c2+d′
1

4c2
.

If Xmax > 1 one must verify f(−1) > 0, moreover
one has f(1) > f(−1).
If Xmax < −1 one must verify f(1) > 0, moreover
one has f(−1) > f(1).
If −1 < Xmax < 1 one must verify at the same time
f(−1) > 0 and f(1) > 0.
In any case one must check that min(f(−1), f(1)) > 0.
But f(1) > 0 implies that c1 > −c2−1, and f(−1) > 0
implies that c1 < c2 + 1. Thus for c2 < 0 the passivity
condition is equivalent to −1− c2 < c1 < 1 + c2.

• case c2 = 0
In this case f is represented by a line, and one must
again verify that f(−1) > 0 and f(1) > 0 that leads to
the passivity condition −1 < c1 < 1

• case c2 > 0
In this case f has a finite minimum at Xmin =



−c1+d
′
1c2+d

′
1

4c2
. A sufficient condition for f(X) ≥ 0 ∀X

is that f(X) = 0 has a unique solution. In such a
situation the discriminant of f denoted ∆ is given by
∆ = (c1 − d

′

1c2 − d
′

1)
2 − 8c2(1− c2 − d

′

1c1), and one
must have ∆ = 0, which is equivalent to

c21+c1(−2d
′

1+6d
′

1c2)+d
′2
1 (c2+1)2+8c2(c2−1) = 0

(37)
Thus, one looks for the solutions of (37). The discrim-
inant ∆′ of (37) is ∆′ = 32(c2 − c22)(1− d

′2
1 ), and the

two solutions of (37) are:

c∗1+ = d
′

1 − 3d
′

1c2 + 2
√
2(c2 − c22)(1− d

′2
1 )

c∗1− = d
′

1 − 3d
′

1c2 − 2
√
2(c2 − c22)(1− d

′2
1 )

On the other hand if −1 ≤ Xmin ≤ 1 one must have
(owing to the expression of Xmin):

−4c2 + d
′

1c2 + d
′

1 < c1 < 4c2 + d
′

1c2 + d
′

1 (38)

Now if c∗1+ meets (38), the upper bound on c1 is

d
′

1 − 3d
′

1c2 + 2
√
2(c2 − c22)(1− d

′2
1 ), otherwise this

upper bound is given by c1 < 1 + c2, and similarly if
c∗1− meets (38) the lower bound on c1 is d

′

1 − 3d
′

1c2 −
2
√
2(c2 − c22)(1− d

′2
1 ), otherwise this lower bound is

given by c1 > −c2 − 1. This ends the proof.

PROOF OF THEOREM 4.1
Consider Eq. (8):

ϵ(t+ 1) = y(t+ 1)− ŷ(t+ 1) = y(t+ 1)− θ̂T (t+ 1)ϕ(t)

= −θ̃T (t+ 1)ϕ(t) (39)

where θ̃(t) = θ̂(t)− θ. Eq. (24) can be rewritten as Eq. (15)
and this leads to:

θ̃(t+ 1) = θ̃(t) +HDAG(q
−1)[Fϕ(t)ϵ(t+ 1)] (40)

and respectively:

θ̃(t+ 1) = HPAA(q
−1)ϕ(t)ϵ(t+ 1) (41)

Using the [A,B,C,D] state space representation associated
to HPAA(z) one gets:

x(t+ 1) = Ax(t) +Bϕ(t)ϵ(t+ 1) (42)

θ̃(t+ 1) = Cx(t) +Dϕ(t)ϵ(t+ 1) (43)

and respectively:

ϕT (t)θ̃(t+ 1) = ϕT (t)Cx(t) + ϕT (t)Dϕ(t)ϵ(t+ 1) (44)

Eqs (39), (42), and (44) define an equivalent feedback
system, the equivalent feedback path being defined by (42)
and (44). Then one can use [8, Theorem 3.3.1]:

Theorem 1.1: For a PAA having the form of (42) and (43),
the equivalent feedback path described by (42) and (44) is
passive, i.e.,

η(0, t1) =

t1∑
t=0

ϵ(t+ 1)ϕT (t)θ̃(t+ 1) ≥ −γ2 ;

γ2 < ∞, ∀t ≥ 0 (45)

if the associated linear system [A,B,C,D] described by (42)
and (43) is passive, or equivalently, if HPAA(z) given in (25)
is a PR transfer matrix.
Since HPAA(z) is a PR transfer matrix by hypothesis, it
results from (39) (after multiplication of the left hand side
by ϵ(t + 1)) and (45) that

∑∞
t=0 ϵ

2(t + 1) ≤ γ2 and one
concludes that limt→∞ ϵ(t+ 1) = 0.
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