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Abstract

This paper proposes a method for hiding the least-important samples during the
training of deep neural networks to increase efficiency, i.e., to reduce the cost of
training. Using information about the loss and prediction confidence during training,
we adaptively find samples to exclude in a given epoch based on their contribution
to the overall learning process, without significantly degrading accuracy. We
explore the converge properties when accounting for the reduction in the number
of SGD updates. Empirical results on various large-scale datasets and models
used directly in image classification and segmentation show that while the with-
replacement importance sampling algorithm performs poorly on large datasets, our
method can reduce total training time by up to 22% impacting accuracy only by
0.4% compared to the baseline. Code available at https://github.com/
TruongThaoNguyen/kakurenbo

1 Introduction

Empirical evidence shows the performance benefits of using larger datasets when training deep
neural networks (DNN) for computer vision, as well as in other domains such as language models or
graphs [1]. More so, attention-based models are increasingly employed as pre-trained models using
unprecedented dataset sizes, e.g. the JFT-3B dataset consists of nearly three billion images, annotated
with a class-hierarchy of around 30K labels [2], LIAON-5B provides 5,85 billion CLIP-filtered image-
text pairs that constitute over 240TB [3]. A similar trend is also observed in scientific computing,
e.g., DeepCAM, a climate simulation dataset, is over 8.8TB in size [4]. Furthermore, the trend of
larger datasets prompted efforts that create synthetic datasets using GANS [5] or fractals [6]. The
downside of using large datasets is, however, the ballooning cost of training. For example, it has been
reported that training models such as T5 and AlphaGo cost $1.3M [7] and $35M [8], respectively.
Additionally, large datasets can also stress non-compute parts of supercomputers and clusters used
for DNN training (e.g., stressing the storage system due to excessive I/O requirements [9, 10]).

In this paper, we are focusing on accelerating DNN training over large datasets and models. We
build our hypothesis on the following observations on the effect of sample quality on training: a)
biased with-replacement sampling postulates that not all samples are of the same importance and a
biased, with-replacement sampling method can lead to faster convergence [11, 12], b) data pruning
methods show that when select samples are pruned away from a dataset, the predication accuracy
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Table 1: Summary of related works. Complexity on the number of samples N , number of Epochs M .
and ensemble size E.

Approach Method Merits (+)
Demerits (-)

Online/
Offline

Practical Overhead
(Bottleneck)

Complexity
(Cost)

Biased w/
Replacement

Sampling

Importance
Sampling [11]

+ Theoretically faster convergence
- No demonstrated speedup on large datasets (Section 4)
- Nondeterministic Online Sorting samples O(N.log(N))

RHO-LOSS [12]
+ Theoretically faster convergence
- No demonstrated speedup
- Nondeterministic

Hold-out approx. O(N2)

Data
Pruning

(prune dataset
offline to save cost in

future training)

Forgiveness
Scores [13]

+ Robust
- Full training needed to identify samples to prune

Offline

Tracking change in
prediction O(N ·M2)

EL2N [15]
+ Demonstrated speedup
- Full training needed to identify samples to prune
- Limited scalability

Sorting samples O(N2)

Memorization [14]
+ Demonstrated speedup
- Full training needed to identify samples to prune
- Limited scalability

Tracking cross-sample
prediction O(N2)

Ensemble Active
Learning [16]

+ Demonstrated speedup
- Full training needed to identify samples to prune
- Limited scalability

Model uncertainty
approximation O(N2)

Diverse Ensembles
(DDD) [20]

+ Demonstrated speedup
- Full training needed to identify samples to prune
- Limited scalability

Tracking cross-ensemble
prediction O(N2 · E)

Hiding Samples
Selective
Backprop [17]

- Arbitrary hiding samples
- No convergence guarantee
- No demonstrated speedup while maintaining accuracy Online Sorting samples O(N · log(N))

GRAD-MATCH
[21]

+ Adpative
- Limited to single GPU (distributed training impractical)
- No convergence guarantee for skipping selection

Matching samples to
gradients O(N.M )

This Work

+ Scalable
+ Efficiently hiding samples
+ Theoretically convergence guarantee
+ Demonstrated speedup while maintaining accuracy

Sorting samples O(N · log(N))

that can be achieved by training from scratch using the pruned dataset is similar to that of the original
dataset [13, 14, 15, 16]. Our hypothesis is that if samples have a varying impact on the learning
process and their impact decreases as the training progresses, then we can in real-time, adaptively,
exclude samples with the least impact from the dataset during neural network training.

In this paper, we dynamically hide samples in a dataset to reduce the total amount of computing and
the training time, while maintaining the accuracy level. Our proposal, named KAKURENBO, is
built upon two pillars. First, using combined information about the loss and online estimation of the
historical prediction confidence (see Section 3.1) of input samples, we adaptively exclude samples
that contribute the least to the overall learning process on a per-epoch basis. Second, in compensation
for the decrease in the number of SGD steps, we derive a method to dynamically adjust the learning
rate and the upper limit on the number of samples to hide in order to recover convergence rate and
accuracy.

We evaluate performance both in terms of reduction in wall-clock time and degradation in accuracy.
Our main results are twofold: first, we show that decaying datasets by eliminating the samples with
the least contribution to learning has no notable negative impact on the accuracy and convergence and
that the overhead of identifying and eliminating the least important samples is negligible. Second, we
show that decaying the dataset can significantly reduce the total amount of computation needed for
DNN training. We also find that state-of-the-art methods such as importance sampling algorithm [11],
pruning [13], or sample hiding techniques [17, 18] performs poorly on large-scale datasets. To
the contrary, our method can reduce training time by 10.4% and 22.4% on ImageNet-1K [19] and
DeepCAM [4], respectively, impacting Top-1 accuracy only by 0.4%.

2 Background and Related Work

As the size of training datasets and the complexity of deep-learning models increase, the cost of
training neural networks becomes prohibitive. Several approaches have been proposed to reduce this
training cost without degrading accuracy significantly. Table 1 summarizes related work against this
proposal. This section presents the main state-of-the-art techniques. Related works are detailed in the
Appendix-E.

Biased with-Replacement Sampling has been proposed as a method to improve the convergence rate
in SGD training [11, 12]. Importance sampling is based on the observation that not all samples are of
equal importance for training, and accordingly replaces the regular uniform sampling used to draw
samples from datasets with a biased sampling function that assigns a likelihood to a sample being
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Figure 1: Overview of KAKURENBO. At each epoch, samples are filtered into two different subsets, the
training list and the hidden list, based on their loss, prediction accuracy (PA), and prediction confidence (PC),
with a maximum hidden fraction of F . PA and PC are used to drive sample move back decisions. Samples in the
training list are processed using uniform sampling without replacement. The loss and the prediction accuracy,
calculated from the training process, are reused to filter samples in the next epoch. For samples on the hidden
list, KAKURENBO only calculates the loss and PA by performing the forward pass at the end of each epoch.

drawn proportional to its importance; the more important the sample is, the higher the likelihood
it would be selected. The with-replacement strategy of importance sampling maintains the total
number of samples the network trains on. Several improvements over importance sampling have been
proposed for distributed training [22], or for estimating the importance of samples [12, 23, 24, 25, 26].

Overall, biased with-replacement sampling aims at increasing the convergence speed of SGD by
focusing on samples that induce a measurable change in the model parameters, which would allow a
reduction in the number of epochs. While these techniques promise to converge in fewer epochs on the
whole dataset, each epoch requires computing the importance of samples which is time-consuming.

Data Pruning techniques are used to reduce the size of the dataset by removing less important
samples. Pruning the dataset requires training on the full dataset and adds significant overheads for
quantifying individual differences between data points [27]. However, the assumption is that the
advantage would be a reduced dataset that replaces the original datasets when used by others to train.
Several studies investigate the selection of the samples to discard from a dataset[13, 15, 14, 16] [28].

Pruning the dataset does reduce the training time without significantly degrading the accuracy [13, 14].
However, these techniques require fully training the model on the whole dataset to identify the samples
to be removed, which is compute intensive.

Selective-Backprop [17] combines importance sampling and online data pruning. It reduces the
number of samples to train on by using the output of each sample’s forward pass to estimate the
sample’s importance and cuts a fixed fraction of the dataset at each epoch. While this method shows
notable speedups, it has been evaluated only on tiny datasets without providing any measurements on
how accuracy is impacted. In addition, the authors allow up to 10% reduction in test error in their
experiments.

Grad-Match [18] is an online method that selects a subset of the samples that would minimize the
gradient matching error. The authors approximate the gradients by only using the gradients of the
last layer, use a per-class approximation, and run data selection every R epochs, in which case, the
same subsets and weights will be used between epochs. Due to the infrequent selection of samples,
Grad-Match often needs a larger number of epochs to converge to the same validation accuracy that
can be achieved by the baseline [29]. Moreover, Grad-Match is impractical in distributed training,
which is a de facto requirement in large dataset and models. Distributed Grad-Match would require
very costly collective communication to collect the class approximations and to do the matching
optimization. This is practically a very high cost for communication per epoch that could even exceed
the average time per epoch.

3



3 KAKURENBO: Adaptively Hiding Samples

In this work, we reduce the amount of work in training by adaptively choosing samples to hide in
each epoch. We consider a model with a loss function ℓ(w,xn,yn) where {xn,yn}Nn=1 is a dataset
of N sample-label pairs (xn ∈ X), and G : X → X is a function that is applied to hide certain
samples during training, e.g., by ranking and cut-off some samples. Using SGD with a learning-rate
η and batch size of B, the update rule for each batch when training with original full dataset is

wt+1 = wt − η
1

B

∑
n∈B(k(t))

∇wℓ (wt,xn,yn) (1)

where k (t) is sampled from [N/B] ≜ {1, . . . , N/B}, B (k) is the set of samples in batch k (to
simplify, B is divisible by N ). We propose to hide M examples by applying the a hiding function G.
We modify the learning rule to be

wt+1 = wt − η
1

B

∑
n∈B(k(t))

∇wℓ (wt, G(xn),yn) (2)

using B batch at each step, which is composed of N/B steps. Since we exclude M samples, the
aggregate number of steps is reduced from N/B to become (N −M)/B, i.e., fixing the batch size
and reducing the number of samples reduces the number of SGD iterations that are performed for
each epoch.

Sample hiding happens before presenting the input to each epoch. The training set that excludes the
hidden samples (N −M ) is then shuffled for the training to process with the typical w/o replacement
uniform sampling method.

Based on the above training strategy, we propose KAKURENBO, a mechanism to dynamically reduce
the dataset during model training by selecting important samples. The workflow of our scheme is
summarized in Figure 1. First, (B.1) we sort the samples of a dataset according to their loss. We
then (B.2) select a subset of the dataset by hiding a fixed fraction F of the data: the samples with the
lowest loss are removed from the training set. Next, (B.3) hidden samples that maintain a correct
prediction with high confidence (see Section 3.1) are moved back to the epoch training set. The
training process (C) uses uniform sampling without replacement to pick samples from the training
list. KAKURENBO adapts the learning rate (C.2) to maintain the pace of the SGD. At the end of the
epoch, we perform the forward pass on samples to compute their loss and the prediction information
on the up-to-date model (D). However, because calculating the loss for all samples in the dataset
is prohibitively compute intensive [11], we propose to reuse the loss computed during the training
process, which we call lagging loss (D.2). We only recompute the loss of samples from the hidden
list (D.1). In the following, we detail the steps of KAKURENBO.

3.1 Hidden Samples Selection

We first present our proposed algorithm to select samples to hide in each epoch. We follow the
observation in [11] that not all the samples are equal so that not-too-important samples can be hidden
during training. An important sample is defined as the one that highly contributes to the model update,
e.g., the gradient norm ∇wℓ (wt,xn,yn) in Equation 1. Removing the fraction F of samples with
the least impact on the training model from the training list could reduce the training time, i.e., the
required computing resource, without affecting the convergence of the training process. Selecting the
fraction F is arbitrary and driven by the dataset/model. If the fraction F is too high, the accuracy
could drop. In contrast, the performance gained from hiding samples will be limited if F is small,
or potentially less than the overhead to compute the importance of samples. In this work, we aim
to design an adaptive method to select the fraction F ∗ in each epoch. We start from a tentative
maximum fraction F at the beginning of the training process. We then carefully select the hidden
samples from F based on their importance and then move the remaining samples back to the training
set. That is, at each epoch a dynamic hiding fraction F ∗ is applied.

It is worth noting that the maximum fraction number F does not need to be strictly accurate in our
design; it is a maximum ceiling and not the exact amount of samples that will be hidden. However,

if the negative impact of hiding samples, i.e.
∑F∗×N

n∈1 ∥∇wℓ(wt,xn,yn)∥∑N
n∈1 ∥∇wℓ(wt,xn,yn)∥

, becomes too high, it could
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significantly affect the accuracy. For example, when a high maximum fraction F is set and/or when
most of the samples have nearly the same absolute contribution to the update, e.g., at the latter epoch
of the training process. We investigate how to choose the maximum hiding fraction in each epoch in
Section 3.3.

Moving Samples Back: since the loss is computed in the forward pass, it is frequently used as the
metric for the importance of the sample, i.e. samples with high loss contribute more to the update
and are thus important [11, 22]. However, the samples with the smallest loss do not necessarily have
the least impact (i.e., gradient norm) on the model, which is particularly true at the beginning of the
training, and removing such high-impact samples may hurt accuracy. To mitigate the misselection of
important samples as unimportant ones, we propose an additional rule to filter the low-loss samples
based on the observation of historical prediction confidence [13]. The authors in [13] observed that
some samples have a low frequency of toggling back from being classified correctly to incorrectly
over the training process. Such samples can be pruned from the training set eternally. Because
estimating the per-sample prediction confidence before training (i.e., offline) is compute-intensive,
in this work, we perform an online estimation to decide whether an individual sample has a history
of correct prediction with high confidence or not in a given epoch. Only samples that have low loss
and sustain correct prediction with high confidence in the current epoch are hidden in the following
epoch.

A sample is correctly predicted with high confidence at an epoch e if it is predicted correctly (PA) and
the prediction confidence (PC) is no less than a threshold τ , which we call the prediction confidence
threshold, at the previous epoch. In addition to the prediction confidence of a given sample (x, y) is
the probability that the model predicts this sample to map to label y:

out = model(we, x, y)

PC = max
k

(σ(outk))
(3)

where σ is a sigmod (softmax) activation function. In this work, unless otherwise mentioned, we set
the prediction confidence threshold to τ = 0.7 as investigated in Section 4.3.

3.2 Reducing the Number of Iterations in Batch Training: Learning Rate Adjustment

After hiding samples, KAKURENBO uses uniform without replacement sampling to train on the
remaining samples from the training set. In this section, we examine issues related to convergence
when reducing the number of samples and we provide insight into the desirable convergence properties
of adaptively hiding examples.

Implicit bias in the SGD training process may lead to convergence problems [30]: when reducing the
total number of iterations at fixed batch sizes, SGD selects minima with worse generalization. We
examine the selection mechanism in SGD when reducing the number of iterations at a fixed batch
size. For optimizations of the original datasets, i.e., without example hiding, we use loss functions of
the form

f (w) =
1

N

N∑
n=1

ℓ (w,xn,yn) , (4)

where {xn,yn}Nn=1 is a dataset of N data example-label pairs and ℓ is the loss function. We use
SGD with batch of size B and learning-rate η with the update rule

wt+1 = wt − η
1

B

∑
n∈B(k(t))

∇wℓ (wt,xn,yn) . (5)

for without replacement sampling, B divisible by N (to simplify), and k (t) sampled uniformly
from {1, . . . , N/B}. When using an over-parameterized model as is the case with deep neural
networks, we typically converge to a minimum w∗ that is a global minimum on all data points N
in the training set [31, 14]. Following Hoffer et al. [32], linearizing the dynamics of Eq. 5 near w∗

(∀n : ∇wℓ (w∗,xn,yn) = 0) gives

wt+1 = wt − η
1

B

∑
n∈B(k(t))

Hnwt , (6)
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where we assume w∗ = 0 since the models we target are over-parameterized (i.e., deep networks)
leading to converge to a minimum w∗. We also assume Hn ≜ ∇2

wℓ (w,xn,yn) represents the
per-example loss Hessian. SGD can select only certain minima from the many potential different
global minima for the loss function of a given the full training set N (and without loss of generality,
for the training dataset after hiding samples N −M ). The selection of minima by SGD depends on
the batch sizes and learning rate through the averaged Hessian over batch k

⟨H⟩k ≜
1

B

∑
n∈B(k)

Hn

and the maximum over the maximal eigenvalues of {⟨H⟩k}
N/B
k=1

λmax = max
k∈[N/B]

max
∀v:∥v∥=1

v⊤ ⟨H⟩k v. (7)

This λmax affects SGD through the Theorem proved by Hoffer et al. [32]: the iterates of SGD (Eq. 6)
will converge if

λmax <
2

η

The theorem implies that a high learning rate leads to convergence to be for global minima with low
λmax and low variability of Hn. Since in this work we are fixing the batch size, we maintain λmax,
the variability of ⟨H⟩k. Therefore, certain minima with high variability in Hn will remain accessible
to SGD. Now SGD may converge to these high variability minima, which were suggested to exhibit
worse generalization performance than the original minima [33].

We mitigate this problem by reducing the delta by which the original learning rate decreases the
learning rate (after the warm-up phase [34]). That way we make these new minima inaccessible again
while keeping the original minima accessible. Specifically, KAKURENBO adjusts the learning rate
at each epoch (or each iteration) e by the following rule:

ηe = ηbase,e ×
1

1− Fe
(8)

where ηbase,e is the learning rate at epoch e in the non-hiding scenario and Fe is the hiding fraction at
epoch e. By multiplying the base learning rate with a fraction 1

1−Fe
, KAKURENBO is independent

of the learning rate scheduler of the baseline scenario and any other techniques related to the learning
rate.

3.3 Adjusting the Maximum Hidden Fraction F

Merely changing the learning rate may not be sufficient, when some minima with high variability and
low variability will eventually have similar λmax, so SGD will not be able to discriminate between
these minima.

To account for this, we introduce a schedule to reduce the maximum hidden fraction. For the optimum
of the set of hidden samples, wM = G(xn) and an overall loss function F (·) that acts as a surrogate
loss for problems which are sums of non-convex losses fi(w), where each is individually non-convex
in w. With Lipschitz continuous gradients with constant Li we can assume

∥∇fi(w1)−∇fi(w2)∥ ≤ Li∥w1 −w2∥
Since we are hiding samples when computing the overall loss function F (·), we assume each of
the functions fi(.) shares the same minimum value minw fi(w) = minw fj(w) ∀ i, j. We extend
the proof of the theorem on the guarantees for a linear rate of convergence for smooth functions
with strong convexity [35] to the non-convex landscape obtained when training with hidden samples
(proof in Appendix A)
Lemma 1. Let F (w) = E[fi(w)] be non-convex. Set σ2 = E[∥∇fi(wM)∥2] with w∗ :=

argminF (w). Suppose η ≤ 1

supi Li
. Let ∆t = wt −w. After T iterations, SGD satisfies:

E
[
∥∆T ∥2

]
≤ (1− 2ηĈ)T ∥∆0∥2 + ηRσ (9)

where Ĉ = λ(1− η supi Li) and Rσ =
σ2

Ĉ
.
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Since the losses fi(w) are effectively dropping for individual samples, driven by the weight update,
we thus drop the maximum fraction that can be hidden to satisfy Eq. 9. Specifically, we suggest
selecting a reasonable number that is not too high at the first epoch, e.g, F = 0.3. We then adjust
the maximum fraction per epoch (denoted as Fe) to achieve Fe. We suggest using step scheduling,
i.e., to reduce the maximum hiding fraction gradually with a factor of α by the number of epochs
increases. For example, we set α as [1, 0.8, 0.6, 0.4] at epoch [0, 30, 60, 80] for ImageNet-1K and [0,
60, 120, 180] for CIFAR-100, respectively.

3.4 Update Loss and Prediction

Our technique is inspired by an observation that the importance of each sample of the local data does
not change abruptly across multiple SGD iterations [22]. We propose to reuse the loss and historical
prediction confidence, computed during the training process, and only recompute those metrics for
samples from the hidden list. Specifically, the loss and historical prediction confidence of samples
are computed only one time at each epoch, i.e., when the samples are fed to the forward pass. It is
not re-calculated at the end of each epoch based on the latest model. Therefore, only samples of the
last training iteration of a given epoch have an up-to-date loss. Furthermore, if we re-calculate the
loss of hidden samples, i.e., only skip the backward and weight update pass of these samples, the
loss of hidden samples is also up-to-date. For instance, if we cut off 20% of samples, we have nearly
20% up-to-date losses and 80% of not-up-to-date losses at the end of each epoch As the result, in
comparison to the baseline scenario, KAKURENBO helps to reduce the total backward and weight
update time by a fraction of Fe while it does not require any extra forward time

4 Evaluation

We evaluate KAKURENBO using several models on various datasets. We measure the effectiveness
of our proposed method on two large datasets. We use Resnet50 [36] and EfficientNet [37] on
ImageNet-1K [19], and DeepCAM [4], a scientific image segmentation model with its accompanying
dataset. To confirm the correctness of the baseline algorithms we also use WideResNet-28-10 on
the CIFAR-100 dataset. Details of experiment settings and additional experiments such as ablation
studies and robustness evaluation are reported in Appendix-B and Appendix-C. We compare the
following training strategies:

• Baseline: We follow the original training regime and hyper-parameters suggested by their authors
using uniform sampling without replacement.

• Importance Sampling With Replacement [11] (ISWR): In each iteration, each sample is chosen
with a probability proportional to its loss. The with-replacement strategy means that a sample may
be selected several times during an epoch, and the total number of samples fed to the model is the
same as the baseline implementation.

• FORGET is an online version of a pruning technique [13]: instead of fully training the model
using the whole dataset before pruning, we train it for 20 epochs, and a fraction F of forgettable
samples (i.e. samples that are always correctly classified) are pruned from the dataset1. The training
then restarts from epoch 0. We report the total training time that includes the 20 epochs of training
with the whole dataset, and the full training with the pruned dataset.

• Selective Backprop (SB) [17] prioritizes samples with high loss at each iteration. It performs the
forward pass on the whole dataset, but only performs backpropagation on a subset of the dataset.

• Grad-Match [18] trains using a subset of the dataset. Every R epoch, a new subset is selected so
that it would minimize the gradient matching error.

• KAKURENBO: our proposed method where samples are hidden dynamically during training.

It is worth noting that we follow the hyper-parameters reported in [38] for training ResNet-50, [39]
for training WideResNet-28-10, [37] for training EfficientNet-b3, and [4] for DeepCAM. We show
the detail of our hyper-parameters in Appendix B. We configure ISWR, and FORGET to remove the
same fraction F as KAKURENBO. For SB, we use the β = 1 parameter that results in removing
50% of samples. Unless otherwise mentioned, our default setting for the maximum hidden fraction

1We choose the samples to remove by increasing number of forgetting events as in [13].
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Figure 2: Convergence and speedup of KAKURENBO and importance sampling (ISWR).

Table 2: Max testing accuracy (Top-1) in percentage of
KAKURENBO in the comparison with those of the Baseline
and other SOTA methods. Diff. represent the gap to the Baseline.

Setting CIFAR-100 ImageNet-1K
WRN-28-10 ResNet-50 EfficientNet-b3 DeepCAM

Acc. Diff. Acc. Diff. Acc. Diff. Acc. Diff.

Baseline 77.49 74.89 76.63 78.14

ISWR 76.51 (-0.98) 74.91 (+0.02) N/A 75.75 (-2.39)

FORGET 76.14 (-1.35) 73.70 (-1.20) N/A N/A

SB 77.03 (-0.46) 71.37 (-3.52) N/A N/A

KAKURENBO 77.21 (-0.28) 75.15 (+0.26) 76.23 (-0.5) 77.42 (-0.9)

Table 3: Comparison with Grad-
Match in a single GPU (cutting
fraction is set to 0.3.

Setting CIFAR-100
ResNet-18

Acc. Time (sec)

Baseline 77.98 8556

Grad-Match-0.3 76.87
(-1.11)

8104
(-5.3%)

KAKURENBO-0.3 77.05
(-0.93)

8784
(+2.7%)

F for KAKURENBO is 30%, except for the CIFAR-100 small dataset, for which we use 10% (see
below).

To maintain fairness in comparisons between KAKURENBO and other state-of-the-art methods,
we use the same model and dataset with the same hyper-parameters. This would mean we are
not capable of using state-of-the-art hyper-parameters tuning methods to improve the accuracy of
ResNet-50/ImageNet (e.g., as in [40]). That is since the state-of-the-art hyper-parameters tuning
methods are not applicable to some of the methods we compare with. Particularly, we can not apply
GradMatch for training with a large batch size on multiple GPUs. Thus, we compare KAKURENBO
with GradMatch using the setting reported in [18], i.e., CIFAR-100 dataset, ResNet-18 model.

4.1 Accuracy

The progress in the top-1 test accuracy with a maximum hiding fraction of 0.3 is shown in Figure 2.
Table 2 summarizes the final accuracy for each experiment. We present data on the small dataset of
CIFAR-100 to confirm the correctness of our implementation of ISWR, FORGET, and SB. Table 3
reports the single GPU accuracy obtained with Grad-Match because it cannot work on distributed
systems. For CIFAR-100, we report similar behavior as reported in the original work on ISWR [11],
SB [17], FORGET [13], and Grad-Match [18]: ISWR, FORGET, and Grad-Match degrade accuracy
by approximately 1% , while SB and KAKURENBO roughly perform as the baseline. KAKURENBO
on CIFAR-100 only maintains the baseline accuracy for small fractions (e.g. F = 0.1). When hiding
a larger part of the dataset, the remaining training set becomes too scarce, and the model does not
generalize well.

On the contrary, on large datasets such as ImageNet-1K, ISWR and KAKURENBO slightly improve
accuracy (by 0.2) in comparison to the baseline, while FORGET and SB degrade accuracy by 1.2%
and 3.5%, respectively. On DeepCAM, KAKURENBO does not affect the accuracy while ISWR
degrades it by 2.4% in comparison to the baseline2. Table 4 reports the accuracy obtained for transfer
learning. We do not report Grad-Match results because we could not apply it to this application.
Using SB significantly degrades accuracy compared to the baseline, while ISWR, FORGET, and
KAKURENBO maintains the same accuracy as the baseline. Especially, as reported in Figure 3,
the testing accuracy obtained by KAKURENBO are varied when changing the maximum hiding
fraction. We observe that for small hiding fractions, KAKURENBO achieves the same accuracy as

2We confirm the same behaviors of KAKURENBO and other methods with different hyper-parameters (as
shown in Appendix-C).
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Figure 3: Test accuracy vs. epoch of KAKURENBO with different maximum hiding fractions F .

Table 4: Impact of KAKURENBO in transfer learning with DeiT-Tiny-
224 model.

Dataset Metrics Baseline ISWR FORGET SB KAKUR.

Up
stream Fractal-3K Loss 3.26 3.671 3.27 4.18 3.59

Time (min)
Impr.

623
-

719
(+15.4%)

533
(-14.4%)

414
(-33.5%)

529
(-15.1%)

Down
stream

CIFAR-10 Acc. (%)
Diff.

95.03
-

95.79
(+0.76)

95.85
(+0.82)

93.59
(-1.44)

95.28
(+0.25)

CIFAR-100 Acc. (%)
Diff.

79.69
-

79.62
(-0.07)

79.95
(+0.26)

76.98
(-2.71)

79.35
(-0.34)

Table 5: Impact of τ (pre-
diction confidence thresh-
old) on the performance
of KAKURENBO.

Setting CIFAR-100
WRN-28-10

Acc. Time (sec)

τ = 0.5 76.37 753.9

τ = 0.7 76.81 758.9

τ = 0.9 76.92 760.7

the baseline. When increasing hiding fractions, as expected, the degradation of the testing accuracy
becomes more significant.

4.2 Convergence Speedup and Training Time

Here we discuss KAKURENBO’s impact on training time. Figure 2 reports test accuracy as the
function of elapsed time (note the X-axis), and reports the training time to a target accuracy. Table 4
reports the upstream training time of DeiT-Tiny-224. The key observation of these experiments is
that KAKURENBO reduces the training time of Wide-ResNet by 21.7%, of ResNet-50 by 23%, of
EfficientNet by 13.7%, of DeepCAM by 22.4%, and of DeiT-Tiny by 15.1% in comparison to the
baseline training regime.

Surprisingly, Importance Sampling With Replacement (ISWR) [11] introduces an overhead of 34.8%
on WideNet, of 41% on ImageNet-1K and offers only a slight improvement of 2.5% on DeepCAM.
At each epoch, ISWR processes the same number of samples as the baseline. Yet, it imposes an
additional overhead of keeping track of the importance (i.e., the loss) of all input samples. While
on DeepCAM it achieves a modest speedup due to its faster convergence, these experiments reveal
that ISWR’s behavior is widely different on large datasets than on the smaller ones previously
reported [11, 17].

FORGET increases the training time of WideResNet by 46.1% because of the additional 20 epochs
training on the whole dataset needed for pruning the samples. When the number of epoch is large,
such as for ResNet50 that runs for 600 epochs, FORGET decreases the training time by 17.9%, and
for DeiT by 14.4%. However, this reduction of training time comes at the cost of degradation of the
test accuracy. On WideResNet and ResNet, SB performs similarly to KAKURENBO by reducing the
training time without altering the accuracy. However, SB significantly degrades accuracy compared
to the baseline for ImageNet and DeiT.

It is worth noting that KAKURENBO has computation overheads for updating the loss and prediction
(Step D in Figure 1), and sorting the samples based on the loss (Step A in Figure 1). For example,
Figure 4 reports the measured speedup per epoch as compared to the baseline epoch duration. The
speedup follows the same trend as the hiding rate. This is because reducing the number of samples in
the training set impacts the speed of the training. The measured speedup does not reach the maximum
hiding rate because of the computation overhead. The performance gain from hiding samples will be
limited if the maximum hiding fraction F is small, or potentially less than the overhead to compute
the importance score of samples. In experiments using multiple GPUs, those operations are performed
in parallel to reduce the running time overhead. When using a single GPU on CIFAR-100 with
ResNet-18 (Table 3), the computational overhead is bigger than the speedup gained from hiding

9



Figure 4: Reduction of hiding
fraction, per epoch, and the re-
sulting speedup.

Table 6: The impact of different components of KAKURENBO
on testing accuracy including HE: Hiding F% lowest-loss exam-
ples, MB: Moving Back, RF: Reducing the Fraction by epoch,
LR: Adjusting Learning Rate. Numbers inside the (.) indicate the
gap in percentage compared to the full version of KAKURENBO.

Component AccuracyHE MB RF LR

Baseline × × × × 73.68

v1000 ✓ × × × 72.25 (-1.8%)
v1001 ✓ × × ✓ 73.08 (-0.7%)
v1010 ✓ × ✓ × 72.81 (-1.1%)
v1011 ✓ × ✓ ✓ 73.27 (-0.4%)
v1100 ✓ ✓ × × 72.37 (-1.7%)
v1101 ✓ ✓ × ✓ 73.09 (-0.7%)
v1110 ✓ ✓ ✓ × 72.96 (-0.9%)
KAKUR. (v1111) ✓ ✓ ✓ ✓ 73.6

samples. Thus, KAKURENBO takes more training time in this case. In short, KAKURENBO is
optimized for large-scale training and provides more benefits when running on multiple GPUs.

4.3 Ablation Studies

Impact of prediction confidence threshold τ . Higher prediction confidence threshold τ leads to
a higher number of samples being moved back to the training set, i.e., fewer hidden samples at
the beginning of the training process. At the end of the training process, when the model has is
well-trained, more samples are predicted correctly with high confidence. Thus the impact of the
prediction confidence threshold on the number of moved-back samples becomes less (as shown
in Figure 4). The result in Table 5 shows that when we increase the threshold τ , we obtain better
accuracy (fewer hidden samples), but at the cost of smaller performance gain. We suggest to set
τ = 0.7 in all the experiments as a good trade-off between training time and accuracy.

Impact of different components of KAKURENBO. We evaluate how KAKURENBO’s individual
internal strategies, and their combination, affect the testing accuracy of a neural network. Table 6
reports the results we obtained when training ResNet-50 on ImageNet-1K3 with a maximum hiding
fraction of 40% . The results show that when only HE (Hiding Examples) of the 40% lowest loss
samples is performed, accuracy slightly degrades. Combining HE with other strategies, namely
MB (Move-Back), RF (Reducing Fraction), and LR (Learning Rate adjustment) gradually improves
testing accuracy. In particular, all combinations with RF achieve higher accuracy than the ones
without it. For example, the accuracy of v1110 is higher than that of v1100 by about 0.59%. We
also observe that using LR helps to improve the training accuracy by a significant amount, i.e., from
0.46% to 0.83%. The MB strategy also improves accuracy. For example, the accuracy of v1010 is
72.81%, compared to v1110 which is 72.96%. This small impact of MB on the accuracy is due to
moving back samples at the beginning of the training, as seen in Appendix C.3. By using all the
strategies, KAKURENBO achieves the best accuracy of 73.6%, which is very close to the baseline of
73.68%.

5 Conclusion

We have proposed KAKURENBO, a mechanism that adaptively hides samples during the training of
deep neural networks. It assesses the importance of samples and temporarily removes the ones that
would have little effect on the SGD convergence. This reduces the number of samples to process at
each epoch without degrading the prediction accuracy. KAKURENBO combines the knowledge of
historical prediction confidence with loss and moves back samples to the training set when necessary.
It also dynamically adapts the learning rate in order to maintain the convergence pace. We have
demonstrated that this approach reduces the training time without significantly degrading the accuracy
on large datasets.

3 We use the ResNet-50 (A) configuration in this evaluation as shown in Appendix-B
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APPENDIX

Appendix A. Proof of Lemma 1

Lemma 1. Let F (w) = E[fi(w)] be non-convex. Set σ2 = E[∥∇fi(wM)∥2] with w∗ :=

argminF (w). Suppose η ≤ 1

supi Li
. Let ∆t = wt −w. After T iterations, SGD satisfies:

E
[
∥∆T ∥2

]
≤ (1− 2ηĈ)T ∥∆0∥2 + ηRσ

where Ĉ = λ(1− η supi Li) and Rσ =
σ2

Ĉ
.

Proof. ∥∇fi(w)∥ = 0 in the noiseless setting, and so σ := 0. For xk being the input at i random
index for iteration k, there exists a parameter λwt for λmax (Eq. 7), and w = wλ, we have for step
size γ

E
[
∥∆T ∥2

]
= ∥xk − x⋆ − γ∇fi(xk)∥2

= ∥(xk − x⋆)− γ(∇fi(xk)−∇fi(x⋆))− γ∇fi(x⋆)∥2

= ∥xk − x⋆∥2 − 2γxk − x⋆ ∗ ∇fi(xk) + γ2∥∇fi(xk)−∇fi(x⋆) +∇fi(x⋆)∥2

≤ ∥xk − x⋆∥2 − 2γxk − x⋆ ∗ ∇fi(xk) + 2γ2∥∇fi(xk)−∇fi(x⋆)∥2 + 2γ2∥∇fi(x⋆)∥2

≤ ∥xk − x⋆∥2 − 2γxk − x⋆ ∗ ∇fi(xk)

+ 2γ2Lixk − x⋆ +∇fi(xk)−∇fi(x⋆) + 2γ2∥∇fi(x⋆)∥2

where we employ Jensen’s inequality in the first inequality for σ2 = E[∥∇fi(wM)∥2]. Then
E[∇fi(x)] = F (x), and we obtain

E
[
∥∆T ∥2

]
≤ ∥xk − x⋆∥2 − 2γxk − x⋆ ∗ F (xk) + 2γ2E [Lixk − x⋆,∇fi(xk)−∇fi(x⋆)]

+ 2γ2E∥∇fi(x⋆)∥2

≤ ∥xk − x⋆∥2 − 2γxk − x⋆ ∗ F (xk) + 2γ2 sup
i

LiExk − x⋆,∇fi(xk)−∇fi(x⋆)

+ 2γ2E∥∇fi(x⋆)∥2

= ∥xk − x⋆∥2 − 2γxk − x⋆ ∗ F (xk) + 2γ2 supLxk − x⋆, F (xk)− F (x⋆) + 2γ2σ2

when γ ≤ 1
supL . Recursively applying this bound over the first k iterations yields the desired result

E
[
∥∆T ∥2

]
≤

(
1− 2γµ(1− γ)

))k

∥x0 − x⋆∥2 + 2

k−1∑
j=0

(
1− 2γµ(1− γ)

))j

γ2σ2

≤
(
1− 2γµ(1− γ)

))k

∥x0 − x⋆∥2 +
γσ2

µ
(
1− γ

) .

Appendix B. Experiments Details

B.1. System detail

We run our experiments on a supercomputer with 1000s of compute nodes, each equipped with 2
Intel Xeon Gold 6148 CPUs, 384 GiB of RAM, 4 NVidia V100 GPUs, and Infiniband EDR NICs
(100Gbps×2). We run 4 MPI ranks per compute node so that each rank has a dedicated access to a
GPU.
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Table 7: Datasets and Models Used in Experiments (* Down-stream training using the pre-trained
model).

Model Dataset #Samples #Epoch #GPUs
minibatch

(per GPU)
Task

Resnet50 [36]
ImageNet-1K [19] 1.2M 100 32

64
Image Classification

EfficientNet-b3 [37] 32

WideResNet-28-10

[39]

CIFAR-100

[41]
50K 200 32 32 Image Classification

DeepCAM [4] DeepCAM [4] ∼ 122K 35 1024 1 Image Segmentation

DeiT-Tiny-224 [42]

Fractal-3K [6] 3M 80 32 16

Image Classification(*) CIFAR-10

[41]
50K 1000 8 96

(*) CIFAR-100

[41]
50K 1000 8 96

B.2. Model training method details and dataset information:

Table 7 summarizes the models and datasets used in this work. In details, we evaluate KAKURENBO
using several models on various datasets as the following:

• ImageNet-1K [19]: We use the subset of the ImageNet dataset containing 1000 classes each
containing around 1300 images (1,282,048 images in total). We also test the trained model
on the validation set of 50, 000 samples. We train ResNET-50 and EfficientNet-b3 provided
by ‘torchvision v0.12.0’ on ImageNet-1K dataset.

• CIFAR-10/CIFAR-100 [41]: The CIFAR-10/CIFAR-100 dataset dataset consists of 60,000
colour images. It has 100 categories each containing 600 images. The dataset provides
50,000 training images and 10,000 test images with a size of 32×32 pixels. CIFAR-100
dataset is available at https://www.cs.toronto.edu/ kriz/cifar.html.

• DeepCAM [4]: DeepCAM dataset for image segmentation, which consists of approximately
122K samples and requires 8.8TBs of storage. We use the settings in [4] to train DeepCAM
with the top learning rate of 0.0055.

• Fractal-3K [6] A rendered dataset from the Visual Atom method [6]. Fractal-3K dataset
comprise of 3 million images of visual atoms, where the number of classes is C = 3000
and the number of images per class is N = 1000. We train the DeiT-Tiny-224 model on
Fractal-3K dataset and fine tune it with CIFAR-10 and CIFAR-100 datasets.

B.3. Hyper-parameters

It is worth noting that we follow the hyper-parameters reported in [38] for training ResNet-50, [39]
for training WideResNet-28-10, [37] for training EfficientNet-b3, and [4] for DeepCAM. We also
use the setting in [6] for both pretrain and finetune tasks in Fractal-3K. Table 8 shows the detail of
our hyper-parameters. Specifically, We follow the guideline of ‘TorchVision‘ to train the ResNet-50
that uses the CosineLR learning rate scheduler 4, auto augments, and random erasing, etc [38]. We
also set the weight decay to 1e − 05 and crop the input image to 176 × 176 pixels and train for a
long number of epochs, i.e., 600 (The ResNet-50 setting). We train the WideResNet-28-4 on the
CIFAR-100 dataset in 200 epochs following the setting in [39]. Specifically, we use the base learning
rate of 0.025× k, momentum 0.9, and weight decay 0.0005. For EfficientNet-b3, we use RMSProp
optimizer with momentum 0.9; batch norm momentum 0.99 weight decay 1e− 5 (following [37]).
We use an initial learning rate of 0.016 that decays by 0.9 every 2 epochs. We set the minibatch size

4implemented by timm https://github.com/huggingface/pytorch-image-models/
tree/main/timm
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Table 8: Hyper-parameters used for different training in the paper and the baseline top-1 testing
accuracy. We also considers different hyper-parameters for ResNet-50 model on ImageNet-1K
dataset.

ImageNet-1K CIFAR-100 Fractal-3K CIFAR-10 CIFAR-100

ResNet-50 ResNet-50 (A) ResNet-50 (B) EfficientNet-b3 WideResNet-28-10 DeiT-Tiny-224
Train Res 224 224 224 224 32 224 224 224
Test Res 232 224 232 224 32 - 32 32
Epochs 600 100 600 100 200 80 1000 1000
Number of workers 32 32 32 32 32 32 8 8
Batch size 2048 1024 1024 1024 1024 512 768 768
Optimizer SGD SGD SGD SRMSProp SGD adamw SGD SGD
Momentum 0.9 0.9 0.9 0.9 0.9 - 0.9 0.9
LR 0.11 0.0125 0.125 0.01 0.025 0.001 0.01 0.01
Weight decay 1e-5 5e-5 2e-5 5e-5 5e-4 0.05 1e-4 1e-4
LR decay cosineLR step cosineAnnealing step step Cosine_iter Cosine_iter Cosine_iter
Decay rate - 0.1 - 0.9 0.2 - - -
Decay epochs - [30, 60, 80] - 2 [60, 120, 160] - - -
Warmup epochs 5 5 5 5 1 5 5 5
Warmup method linear linear linear linear linear linear linear linear
Label Smoothing 0.1 - - - - - 0.1 0.1
H.flip YES YES YES YES YES YES YES YES
Erasing prob. 0.1 - 0.1 - - 0.5 0.5 0.5
Auto augument ta_wide - ta_wide - - rand-m9-mstd0.5-inc1
Interpilation bilinear - bilinear - - bicubic bicubic bicubic
Train crop 176 - 176 - - 224 224 224
Test crop 224 - 224 - - - - -
EMA YES - - - - - - -
EMA steps 32 - - - - - - -
EMA decay 0.99998 - - - - - -

Loss
Cross

Entropy
Cross

Entropy
Cross

Entropy
Cross

Entropy
Cross

Entropy
Cross

Entropy
Soft Target

Cross Entropy
Baseline acc. 74.89 73.68 76.58 76.63 77.49 - 95.03 79.69

Max fraction 0.3 0.3 0.3 0.3 0.3 0.3 - -
Max fraction decay [1, 0.8, 0.6] [1, 0.8, 0.6] [1, 0.8, 0.6] [1, 0.8, 0.6] [1, 0.8, 0.6] [1, 0.8, 0.6] - -
Fraction decay epoch [200, 400, 600] [30, 60, 80] [200, 400, 600] [30, 60, 80] [60, 120, 160] [30, 60, 80] - -
KAKURENBO acc. 75.15 73.52 76.62 76.23 77.21 - 95.28 79.35

per worker (GPU) to b, e.g., the global batch size of b× p in the case of p GPUs. The minibatch size
per GPU and the number of GPUs in each experiments are shown in Table 7.

To show the robustness of KAKURENBO, we also train ResNet-50 with different settings, e.g.,
marked as (A) and (B) in the Table 8 and discuss the result in Appendix C.3. For example, in
ResNet-50 (A) setting, we follow the hyper-parameters reported in [34]. Specifically, we use using
the Stochastic Gradient Descent (SGD) optimizer with a Nesterov momentum of 0.9 and weight
decay of 0.00005. We trained all the models for 100 epochs and apply the linear scaling rule with the
base learning rate of 0.0125×k where k is the number of workers. We reduce the learning rate by 0.1
at the 30th, 60th, and 80th epoch. We gradual warmup which starts with 0 and is linearly increased to
the base learning rate over 5 epochs. We also use scale and aspect ratio data augmentation.The input
image is a 224× 224 pixel random crop from an augmented image or its horizontal flip.

B.4. Implementation

It is worth noting that KAKURENBO merely hides samples before the input pipeline. As a result,
KAKURENBO can be easily implemented with simple extensions to PyTorch and TensorFlow
implementations5. Using KAKURENBO with new models and datasets can be added to any training
code by indicating so in the model launch parameters.

5 Our PyTorch implementation is available at https://github.com/TruongThaoNguyen/
kakurenbo
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Appendix C. Ablation Studies

C.1. Analysis of the Factors Affecting KAKURENBO’s Performance

In this section, we present an analysis of the factors affecting KAKURENBO’s performance, e.g., the
lagging loss and the prediction confidence.

The loss. Figure 5 shows the histogram of the loss as the number of epochs increases when training
ResNet-50 (A) on the ImageNet-1K dataset. At the first few epochs, the histogram of the loss follows
a Gaussian distribution. As the number of epochs increases, the number of samples with small loss
increases significantly. For example, starting from epoch 30, more than 50% of the samples have a
loss which is lower than 5% of the highest loss. As a result, there is an increase in the number of
samples that provide about the same absolute contribution to the update, e.g., in the latter epochs.
Hiding a fraction of (fixed) F samples during training in this case may lead to a relatively higher
negative impact on the accuracy than that at some early epochs. Thus, we reduce the maximum
hidden fraction at the epoch number increases (as mentioned in Section 3.4 in the main manuscript).

Figure 5: Histogram of the lagging-loss as the number of epoch increases during training (ResNet-50
w/ ImageNet-1K).

Figure 6: Number of hidden samples of each class in KAKURENBO (ResNet-50, ImageNet-1K).
The figure shows the result of the first 50 classes. The number on top of each column shows the rank
over 1000 classes (a lower rank indicates a higher number of hidden samples).

In addition, as the number of samples with the same absolute loss increases, there is a high probability
that samples classified as important are in fact unimportant. To this end, we propose moving back
samples from the hidden set based on their prediction confidence score (as per Section 3.2). Unlike
the ahead-of-time method proposed by the authors in [13], instead of computing the loss of all the
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samples before training and selecting samples to be removed from the training process, we compute
the loss of the samples on the fly. With this method, at each epoch, a dynamic hiding fraction F ∗ is
applied. Figure 6 shows the number of hidden samples of each class in KAKURENBO (ResNet-50,
ImageNet-1K). The figure shows the result of the first 50 classes. The number on top of each column
shows the rank over 1000 classes (a lower rank indicates a higher number of hidden samples). The
result shows that our method could dynamically hide the samples at each epoch. For example, fewer
samples in the class 25 are hidden while more and more samples in class 13 are selected to hide as
epochs increase. Figure 7 shows that the impact of each class remains different during the training.
Easy classes such as class 1, and 2 are hidden during the training more than the class 31 and 47. The
result in Figure 8 also shows that in two continuous epochs, only (around) 30% of samples are hidden
again. This result infers that the importance (or contribution level) of samples is changing epoch by
epoch.

Figure 7: Number of hidden samples of each class in KAKURENBO (ResNet-50, ImageNet-1K).
The figure shows the result of the first selected classes for a better presentation. The impact of each
class (or each sample) is different in training. Easy classes such as class 1, 2 are hidden during the
training more than the class 31 and 47.

Figure 8: Number of hidden samples per epoch. Max. hidden samples presents the number of
samples considered for hidding in each epoch, e.g., which is in proportional to the fraction F . Hidden
samples is the actual fraction of hidden samples in each epoch (after moving samples from the hidden
list back to the training list). Hidden again presents the number of samples that were hidden in an
epoch i and also hidden in the epoch i− 1. In general, only around 30% of the samples are hidden
again in each epoch. The number of samples that are moved back becomes smaller when the epoch
increases because the prediction confidence becomes higher during the training.

The calibration of the softmax prediction confidence As mentioned in the main manuscript, only
samples that have low loss and sustain correct prediction with high confidence in the current epoch
are hidden in the following epoch. A sample is correctly predicted with high confidence at an epoch e
if it is predicted correctly (PA) and the prediction confidence (PC) is no less than a certain threshold
τ . As shown in Figure 8, the number of samples moved back becomes smaller when as the number
of epochs increases because the prediction confidence becomes higher during the training, thus the
actual hidden samples become similar to the max. hidden samples in the latter epoch. Results in
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Table 9: Max testing accuracy (Top-1) of KAKURENBO in the comparison with Baseline. Reported
Acc. represent the accuracy reported in the main manuscript. New Acc. represent the accuracy
achieved in 3 different runs with different random seeds.

Setting CIFAR-100 ImageNet-1K
WRN-28-10 ResNet-50(A)

Reported Acc. New Acc. Reported Acc. New Acc.

Baseline 77.49 77.26 ± 0.55 73.68 74.06 ± 0.08
KAKURENBO 77.21 77.20 ± 0.63 73.52 73.65 ± 0.07

Random - 76.82 ± 0.43 - -

Table 10: Test accuracy (Top-1) in percentage and total training time in seconds of KAKURENBO in
the comparison with those of the baseline.

Setting ResNet-50(A) + ImageNet-1K ResNet-50(B) + ImageNet-1K

Accuracy Time (sec) Accuracy Time (sec)

Baseline 73.68 16118 76.58 64060

KAKURENBO-0.2 - - 76.11 61723
KAKURENBO-0.3 73.52 12984 76.17 59063
KAKURENBO-0.4 - - 75.62 57582

Table 5 show that when we increase the threshold τ we obtain better accuracy (i.e., fewer hidden
samples) at the cost of smaller performance improvements. However, the gaps remain small.

C.2. Evolution of the Hiding Fraction

Figure 4 shows how KAKURENBO adapts the size of the hidden set during the training of
EfficientNet-b3. At the beginning of the training, the maximum hiding fraction is set to 30 %.
This fraction is progressively reduced after a few epochs followed by our fraction adjustment rule.
The figure also reports the effective proportion of samples that are hidden at each epoch (Hiding
rate in the Figure). As described in Section 3 in the main manuscript, KAKURENBO first cuts a
part of the dataset before moving back samples that are mispredicted or correctly predicted but with
low confidence. Figure 4 shows that the moving back strategy mostly impacts the beginning of the
training when the model is still inaccurate.

Figure 4 also reports the measured speedup per epoch as compared to the baseline epoch duration.
The speedup follows the same trend as the hiding rate. This is because reducing the number of
samples in the training set impacts the speed of the training. The measured speedup does not reach
the maximum hiding rate because of additional hidden sample selection and due to the need for
computing the forward pass on samples in the hidden list.

C.3. Robustness of Our Method

In this section, we first confirm that the results of our implementation are stable by running experi-
ments multiple times. Due to resource limitations, we could not run experiments multiple times for
each data point reported in the paper, especially for models and datasets that are big in this work. The
result for CIFAR-100 and ImangetNet-1K is reported in Table 9.The result shows that KAKURENBO
is stable with different random seeds.

We now demonstrate the robustness of KAKURENBO with different settings during training, e.g.
(1) when using different techniques to improve accuracy and (2) the batch size is changed.

We first measure the robustness of KAKURENBO when using SoTA techniques in training, the
ResNet-50 (A) and (B) described in Table 8. The result in Figure 9 and Table 10 show that our
proposed method is also stable with different learning techniques. For example, KAKURENBO could
reduce the total training time to 19.5% (7.8%) with only 0.2% (0.41) percent of accuracy reduction
when the maximum hidden fraction is set to 30% for RESNET-50 (A) and (B), respectively.
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Figure 9: Convergence and speedup of KAKURENBO with different settings of ResNet-50 including
[LEFT] ResNet-50 (A) and [RIGHT] ResNet-50 (B).

Table 11: Test accuracy (Top-1) in percentage of KAKURENBO in comparison with those of the
baseline when the batch size changes.

Setting ResNet-50 (A) + ImageNet-1K

#GPUs 32 64 128 256
Batch size 1024 2048 4096 8192

Baseline 73.68 73.98 73.59 73.81

KAKURENBO-0.4 73.60 73.21 73.03 72.84

We now fix the mini-batch size per worker to 32 and then increase the number of workers (GPUs),
i.e., we increase the global batch size in the case of ResNet-50 (A). Table 11 shows the top-1 testing
accuracy of ResNet-50 (A) on the ImageNet-1K dataset when the batch size changes from 1024 to
8192. The result shows that KAKURENBO can maintain the accuracy (or with a trivial reduction of
accuracy) even with large batch sizes. KAKURENBO could help with large-scale training which has
become common when training DL models on a large supercomputer or cluster.

C.4. Comparison with other methods

We provide extra results in Table 9 to evaluate the training accuracy of random hiding with the
CIFAR-100 dataset and WRN-28-10 model. As seen, accuracy is only 76.82% which is lower than
that of both KAKURENBO and Baseline. In fact, randomly hiding samples has been investigated
before in the GradMatch paper and it’s been reported that accuracy is low. This drove us originally
not to evaluate this method.

It is important to note that for method [28], the reported speedup is for a specific training regime (that
uses a particular optimizer: LARS). The specific training regime described in the paper leads to a
slow baseline (see Table 2 in [28], which shows the baseline that trains ImageNet-1K/ResNet-50 on
8 A100 GPUs for 90 epochs to be 3-4x slower than the typical number of hours to train ImageNet-
1K/ResNet-50 on 8 A100 GPUs, as reported by many sources, including Nvidia NGC catalog6).
That means while InfoBatch reports 26% in speedup, the baseline setting for which InfoBatch is
demonstrated to be effective is slow.

Basically the proposed method in [43] has a high overhead of visiting each sample to find the coreset.
In addition, it is only demonstrated on small datasets such as CIFAR and TinyImageNet, at which
the overheads for a large number of samples would not appear. KAKURENBO on the other hand is
demonsrated on ImageNet-1K, DeepCAM, and ImageNet-1K-Fractal.

6https://catalog.ngc.nvidia.com/orgs/nvidia/teams/dle/resources/resnet_
pyt/performance
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Figure 10: The impact of different components of KAKURENBO on testing accuracy (DeepCAM).
v1000: Hiding F% lowest-loss samples only (HE). v1001: HE + LR (Adjusting Learning Rate).
KAKURENBO: our proposed method with HE + LR + MB (Moving Back) + FR (Reducing the
Fraction by epoch). We also consider the version in which we cut 2% of the highest-loss samples at
each epoch (DropTop).

Appendix D. Discussion on DeepCAM

We have shown how KAKURENBO’s internal strategies, and their combination, affect the testing
accuracy of a neural network in the case of ResNet-50 and the ImageNet-1K dataset. Figure 10
presents the same result on the DeepCAM dataset. In this experiment, we evaluate two combinations:
v1000 and v1001. For v1000 we hide F% lowest-loss samples only (Hiding Example or HE for
short). For v1001 we combine HE and learning rate adjustment techniques. It is worth noting that our
proposed method, KAKURENBO, is the combination of HE, LR, MB (Moving Back sample), and
FR (Reducing the Fraction by epoch). The result with different maximum hidden fractions, e.g. F
from 0.2 to 0.4, shows that using LR helps to improve the training accuracy by a significant amount,
and KAKURENBO achieves the best accuracy which is very close to the baseline. This result is
similar to what we observed with ResNet-50 and the ImageNet-1K dataset.

For DeepCAM, we also observed that the loss of the samples with the highest loss does not decrease
significantly during the last few epochs of training and remain substantially above the rest of other
samples. Those samples may be hard to learn or represent noise in the data. Figure 11 demonstrates
this phenomena showing the loss distributions of the full, bottom 98% and top 2% of the dataset
according to the loss values, respectively. As seen, the top 2%’s loss distribution remains high until
the very last epoch.

This observation motivated us to consider a version in which we cut 2% of the highest-loss samples
at each epoch (DropTop). Interestingly, it helps to improve the testing accuracy of DeepCAM, e.g.,
from 77.16% in KAKURENBO to 77.37% with a maximum fraction of 0.3. For version v1001,
Droptop increases the accuracy by 0.82%.

Appendix E. Related work

As the size of training datasets and the complexity of deep-learning models increase, the cost of
training neural networks becomes prohibitive. Several approaches have been proposed to reduce this
training cost without degrading accuracy significantly.

Biased with-Replacement Sampling has been proposed as a method to improve the convergence rate
in SGD training [11, 12]. Importance sampling is based on the observation that not all samples are of
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Figure 11: Loss distributions of DeepCAM training samples (full dataset, bottom 98% and top 2%)
in the last 10 epoch of training.

equal importance when it comes to training, and accordingly replaces the regular uniform sampling
used to draw samples from datasets with a biased sampling function that assigns a likelihood to a
sample being drawn proportional to its importance; the more important the sample is, the higher the
likelihood it would be selected. The with-replacement strategy of importance sampling maintains the
total number of samples the network trains on.

Several improvements over importance sampling have been proposed. Reducible Holdout Loss
Selection (RHO-LOSS) [12] is a selection function that quantifies by how much each sample would
reduce the loss on unseen data had it been trained on. Mercury uses an importance-aware data
sharding technique in order to speed up distributed training [22]. It distributes important samples
across workers between iterations. This allows important samples to be uniformly distributed between
workers, and it reduces the number of samples to communicate for each epoch since non-important
samples are kept local.

The importance of a sample can be estimated with several methods. In [23], authors use distance
weighted sampling to determine the importance of samples. [24] uses stochastic optimization to re-
duce the stochastic variance. [25] selects each coordinate with a probability proportional to the square
root of its smoothness parameter (applied to accelerated coordinate descent). RAIS [26] proposes
approximating the ideal sampling distribution, which introduces little computational overhead.

Overall, biased with-replacement sampling aims at increasing the convergence speed of SGD by
focusing on samples that induce a measurable change in the model parameters, which would allow
a reduction in the number of epochs. While these techniques promise to converge in fewer epochs
on the whole dataset, each epoch requires computing the importance of samples which is time-
consuming; and the actual speedup in terms of time-to-solution remains unclear. Moreover, existing
studies [11, 12, 22] only evaluate small datasets. Our experiments show that the biased with-
replacement, importance sampling [11], the algorithm does not speedup the training when applied to
large-scale datasets (demonstrated in the evaluation section in the paper).

Data Pruning techniques are used to reduce the size of the dataset by removing less important
samples. Pruning the dataset requires training on the full dataset and adds significant overheads for
quantifying individual differences between data points [27]. However, the assumption is that the
advantage would be a reduced dataset that replaces the original datasets when used by others to train.
Several studies investigate the selection of the samples to discard from a dataset. In [13], authors
detect unforgettable samples that are correctly classified during the course of training. EL2N [15]
uses the loss gradient norm of samples to identify the important ones and prune the unimportant
samples from the dataset after a few epochs. While this work does not require fully training the
model before pruning, it remains unclear if EL2N reduces the total training time. Another work uses
memorization to identify outliers or mislabeled samples in a given dataset [14]. Removing these
atypical samples accelerates the training without altering the trained model accuracy. Ensemble
Active Learning [16] trains an ensemble of networks and uses ensemble uncertainty to identify which
samples are hard to learn. They manage to reduce the ImageNet dataset by 20% without degrading
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the accuracy of the trained model, but again, their method is prohibitive for models and datasets that
require excessive resources for training.

Pruning the dataset does reduce the training time without significantly degrading the accuracy [13, 14].
However, these techniques require fully training the model on the whole dataset to identify the samples
to be removed, which is compute intensive. While most of the proposed solutions perform well on
small datasets such as CIFAR, many fail to maintain accuracy on larger datasets like ImageNet [27].

Selective-Backprop [17] combines importance sampling and online data pruning. It reduces the
number of samples to train on by using the output of each sample’s forward pass to estimate the
sample’s importance and cuts a fixed fraction of the dataset at each epoch. While this method shows
notable speedups, it has been evaluated only on tiny datasets without providing any measurements on
how accuracy is impacted. In addition, the authors allow up to 10% reduction in test error in their
experiments. EIF [44] is similar to Selective-Backprop: it reduces the computation cost of training by
filtering out the samples with the lowest loss. E2-Train [45] shows that the combination of randomly
dropping samples during training with selective layer update in CNNs can significantly reduce the
training time, while slightly degrading the accuracy. However, E2-Train targets edge environments
and is evaluated only on very small datasets.

GRAD-MATCH [18] is an online method that selects a subset of the samples that would minimize
the gradient matching error, where the error of the gradients of a matched subset samples (and their
weights) becomes minimum. To avoid the impractical storing and computation of the optimization of
the gradients of all instances, the authors approximate the gradients by only using the gradients of the
last layer, use a per-class approximation, and run data selection every R epochs, in which case, the
same subsets and weights will be used between epochs. The infrequent selection, however, means the
model is limited in its capacity to learn in intermediate epochs - where selection occurs - since it trains
on the same limited subset of samples. This often leads to a longer numbers of epochs needed to
converge to the same validation accuracy that can be achieved by the baseline or the baseline reaching
much higher accuracy [29]. Another important point worth mentioning is that GRAD-MATCH is
impractical in distributed training, which is a de facto requirement in large dataset and models (e.g.,
the DeepCAM model/dataset). That is since the approximation of the classes would require very
expensive high-volume collective communication operations to gather the gradients scattered across
different samples belonging to the same class. The communication cost would be O(N .R.G) where
N is the number of samples, R is the frequency of selection, and G is the gradients (of the last
layer, if gradient approximation is to be used). Distributed GRAD-MATCH would require a scatter
communication to collect the class approximations and a collective all-reduce of the gradients to then
do the matching optimization. This is practically a very high cost for communication per epoch that
could even exceed the average time per epoch. Finally, the mini-batch variant of GRAD-MATCH
can only be effective for small mini-batches. However, since in distributed training the mini-batch
grows with the scale (i.e., the mini-batch aggregates the local mini-batch of all workers), the cost of
communication amplifies by B (where B is mini-batch size).
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