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Abstract. Recent theoretical investigations of the two-times measurement entropy production (2TMEP) in quan-
tum statistical mechanics have shed a new light on the mathematics and physics of the quantum-mechanical prob-
abilistic rules. Among notable developments are the extensions of entropic fluctuation relations to the quantum
domain and the discovery of a deep link between 2TMEP and modular theory of operator algebras. All these
developments concerned the setting where the state of the system at the instant of the first measurement is the same
as the state whose entropy production is measured. In this work we consider the case where these two states are
different and link this more general 2TMEP to modular theory. The established connection allows us to show that
under general ergodicity assumptions the 2TMEP is essentially independent of the choice of the system state at the
instant of the first measurement due to a decoherence effect induced by the first measurement. This stability sheds
a new light on the concept of quantum entropy production, and, in particular, on possible quantum formulations
of the celebrated classical Gallavotti–Cohen Fluctuation Theorem which will be studied in a continuation of this
work.
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1 Introduction

Starting with the seminal work [HHW67], the mathematical theory of equilibrium quantum statistical
mechanics based on the KMS-condition has developed rapidly in 1970’s, resulting in a structure of rare
unity and beauty summarized in the classical monographs [BR87, BR81]. A large part of these devel-
opments was centered around the link between the KMS-condition and the modular theory of operator
algebras.

Modular theory has also played a central role in the more recent developments in non-equilibrium
quantum statistical mechanics initiated in [JP01, Rue01], where the definition of an entropy produc-
tion observable and the related entropy balance equation are given in terms of basic objects of modu-
lar theory;1 a non-exhaustive list of related works is [AS07, ASF07, HA00, AP03, AJPP06, AJPP07,
FMSU03, FMU03, JKP06, JOP06a, JLP13, JOP06c, JOP06b, JOP07, JOPP10, JOPS12, JP02a, JP02b,
JP07, MMS07b, MMS07a, MO03, Oga04, Oji89, Oji91, OHI88, Pil01, Rue02, Tas06, TM03, TM05].

Perhaps more surprising were parallel developments related to the search for a quantum extension of
the celebrated fluctuation relations of classical non-equilibrium statistical mechanics [ES94, GC95a,
GC95b], see also the review [JPRB11]. The first of them introduced the two-times measurement entropy
production [Kur00, Tas00]. The spectral measure of a relative modular operator was the central object
of the second one [TM03].2 These two proposals turned out to be equivalent, shedding an unexpected
light on both quantum mechanical probabilistic rules and modular theory. A pedagogical discussion of
this topic can be found in the lecture notes [JOPP10].

In this work we continue to study the link between the two-times measurement entropy production and
modular theory. The more general setting we consider concerns the choice of the system state at the

1See [PW78] for a pioneering work on the subject.
2Another early work on the subject is [DR09],
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instant of the first measurement, which is here assumed to be arbitrary. Somewhat surprisingly, under
mild ergodicity assumptions, the modular link we establish gives that the two-times measurement entropy
production in open quantum systems is essentially independent of the state of the system at the instant
of the first measurement. This stability result will be the starting point of our follow-up work [BBJ+a],
in which we propose an extension of the celebrated Gallavotti–Cohen Fluctuation Theorem [GC95a,
GC95b] to the quantum domain; see also Remark 4 in Section 1.5.

This note is organized as follows. For notational purposes, the elements of algebraic quantum statistical
mechanics and modular theory that we will need are briefly reviewed in Sections 1.1 and 1.2. The two-
times measurement entropy production of finite quantum system is discussed in Section 1.2. Our results
are stated in Section 1.4 and are briefly discussed in Section 1.5. The proofs are given in Section 2.

Acknowledgments The work of CAP and VJ was partly funded by the CY Initiative grant "Investisse-
ments d’Avenir", grant number ANR-16-IDEX-0008. The work of TB was funded by the ANR project
“ESQuisses”, grant number ANR-20-CE47-0014-01, and by the ANR project “Quantum Trajectories”,
grant number ANR-20-CE40-0024-01. VJ acknowledges the support of NSERC. A part of this work
was done during long term visits of AP and LB to McGill University and the CRM-CNRS International
Research Laboratory IRL3457 at the Université de Montréal. The visits of AP were supported by the
CRM Simons and FRQNT-CRM-CNRS programs, and that of LB by CNRS.

1.1 Algebraic quantum statistical mechanics

We start with the setting of a quantum system with finite dimensional Hilbert space K. We will refer to
such quantum systems as finite. OK denotes the C∗-algebra of all linear mapsA : K → K and SK ⊂ OK
the set of all density matrices on K. Observables of the system are identified with elements of OK and
states with elements of SK, with the usual duality ν(A) = tr(νA), ν ∈ SK, A ∈ OK. The number ν(A)
is interpreted as the expectation value of the observable A when the system is in the state ν. A state ν is
called faithful if ν > 0. The dynamics is described by the system Hamiltonian H = H∗ ∈ OK and the
induced group τ = {τ t | t ∈ R} of ∗-automorphisms of OK defined by

τ t(A) = eitHAe−itH .

We will sometimes write At for τ t(A) and call the map A 7→ At the Heisenberg picture dynamics. In
the dual Schrödinger picture the states evolve in time as ν 7→ νt where

νt = e−itHνeitH .

Obviously, νt(A) = ν(At). The time-correlations are quantified by the function

Fν,A,B(t) = ν(ABt). (1.1)

A triple (OK, τ, ω), where ω is the reference state of the system, is called a finite quantum dynamical
system. This system is said to be in thermal equilibrium at inverse temperature β ∈ R if its reference
state is the Gibbs canonical ensemble

ω =
e−βH

tr(e−βH)
. (1.2)
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The Gibbs ensemble (1.2) is the unique state ν ∈ SK satisfying the KMS relation

ν(ABt+iβ) = ν(BtA)

for all A,B ∈ OK and t ∈ R.

More generally, in algebraic quantum statistical mechanics observables are described by elements of a
C∗-algebra O with identity 1l. For a large part of the general theory, no other structure is imposed on O.
States are elements of SO, the set of positive normalized3 elements ν of the dual O∗ of O. The number
ν(A) is interpreted as the expectation value of the observable A when the system is in the state ν.

The Heisenberg picture dynamics is described by a strongly continuous4 group τ = {τ t | t ∈ R} of
∗-automorphisms of O. The group τ is called C∗-dynamics and the pair (O, τ) a C∗-dynamical system.
The dual group τ∗ preserves SO and describes the Schrödinger picture dynamics. We writeAt for τ t(A),
νt for τ t∗(ν) = ν ◦τ t, and use the same shorthand (1.1) for time-correlation functions. A state ν is called
τ -invariant (or stationary) if νt = ν for all t ∈ R. The set of all τ -invariant states is denoted by Sτ and is
always non-empty. A triple (O, τ, ω), where ω is the reference state of the system, is called C∗-quantum
dynamical system. A state ω ∈ Sτ is called ergodic if

lim
T→∞

1

2T

∫ T

−T
ω(B∗AtB)dt = ω(A)ω(B∗B)

holds for all A,B ∈ O.

Time-reversal plays an important role in statistical mechanics. An anti-linear involutive ∗-automorphism
Θ of O is called time-reversal of (O, τ) if

Θ ◦ τ t = τ−t ◦Θ

for all t ∈ R. A state ω is called time-reversal invariant if there exists a time-reversal Θ such that
ω ◦Θ(A) = ω(A∗) for all A ∈ O.

For β ∈ R∗, ν ∈ SO is called (τ, β)-KMS state if, for all A,B ∈ O, the function R ∋ t 7→ Fν,A,B(t) has
an analytic extension to the strip 0 < sgn(β)Imz < |β| that is bounded and continuous on its closure
and satisfies the KMS-boundary condition

Fν,A,B(t+ iβ) = ν(BtA)

for all t ∈ R. We denote by S(τ,β) the set of all (τ, β)-KMS states. At the current level of generality this
set might be empty. One always has S(τ,β) ⊂ Sτ . A C∗-quantum dynamical system (O, τ, ω) is said to
be in thermal equilibrium at inverse temperature β ∈ R∗ (or just thermal) if ω ∈ S(τ,β).

A state ν is called modular if there exists a C∗-dynamics ςν on O such that ν ∈ S(ςν ,−1). ςν is called
modular group of ν and is unique when it exists. We denote by δν the generator of ςν with the convention
ςtν = etδν . If ν ∈ S(τ,β), then it is modular and its modular group is ςtν = τ−βt (or equivalently,
δν = −βδ, where δ is the generator of τ ).

3ν(A∗A) ≥ 0 for all A ∈ O and ν(1l) = 1.
4limt→0 ∥τ t(A)−A∥ = 0 for all A ∈ O.
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A special class of quantum dynamical systems, the so-called open quantum systems, play a privileged
role in the study of non-equilibrium quantum statistical mechanics, and we proceed to describe them.

ConsiderM thermal reservoirs Rj described byC∗-quantum dynamical systems (Oj , τj , ωj). We denote
by δj the generator of τj . The reservoir Rj is assumed to be in thermal equilibrium at inverse temper-
ature βj > 0, that is, we assume that ωj is a (τj , βj)-KMS state on Oj . In the absence of interaction,
the combined reservoir system R = R1 + · · · + RM is described by the quantum dynamical system
(OR, τR, ωR), where5

OR = O1 ⊗ · · · ⊗ OM ,

τR = τ1 ⊗ · · · ⊗ τM ,

ωR = ω1 ⊗ · · · ⊗ ωM .

We will consider two kinds of systems: directly coupled reservoirs and reservoirs coupled through a
small system S, with Hilbert space KS . With a slight abuse of terminology, we will refer to both of them
as open quantum systems.

In the first case, the interaction is described by a self-adjoint V ∈ OR and the interacting dynamics τ is
generated by δ = δR + i[V, · ], where δR =

∑
j δj is the generator of τR.

In the second case, let (OS , τS , ωS) be the finite dimensional C∗-quantum dynamical system describing
S6, where we assume that ωS > 0. The generator of τS is δS = i[HS , · ], where HS is the Hamiltonian
of S . In the absence of interaction, the joint system S +R is described by the C∗-quantum dynamical
system (O, τfr, ω) where

O = OS ⊗OR, τfr = τS ⊗ τR, ω = ωS ⊗ ωR.

The state ω is obviously modular. The interaction of S with Rj is described by a self-adjoint element
Vj ∈ OS ⊗ Oj , and the full interaction by V =

∑
j Vj . The interacting dynamics τ is generated by

δ = δS + δR + i[V, · ]. In what follows, we will always take

ωS =
1l

dimKS
(1.3)

for the reference state of S. This choice is made for convenience. It is easy to show that none of our
results depend on a specific choice of ωS as long as ωS > 0; see Remark 6 in Section 1.5.

The above description of open quantum system is sometimes modified in the case of fermionic systems.
The modifications are straightforward, and they do not affect any of our results; see [AJPP06, JOP07].

Modular theory and the closely related Araki’s perturbation theory of KMS-structure play a central role
in algebraic quantum statistical mechanics. A basic introduction to this subject can be found in [BR87,
BR81]; see also [DJP03] and references therein for modern expositions. A pedagogical introduction to
modular theory in the context of finite quantum systems can be found in [JOPP10]. We will not give
a detailed review of modular theory in this paper and only a short introduction to basic notions will be

5Whenever the meaning is clear within the context, we write A for A⊗ 1l and 1l⊗A, δj for δj ⊗ Id, Id⊗ δj , etc.
6We abbreviated by OS the C∗-algebra OKS of all linear operators on KS .
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presented in Section 1.2. However, as we proceed with the proofs, we will give references to the results
we will use.

W ∗-dynamical systems play a distinguished role in modular theory. Consider a pair (M, τ) where M
is W ∗-algebra and τ = {τ t | t ∈ R} is a pointwise σ-weakly continuous group of ∗-automorphisms
on M. We shall refer to such τ as W ∗-dynamics. A triple (M, τ, ω), where ω is a normal state on M,
is called a W ∗-dynamical system. In the general development of non-equilibrium quantum statistical
mechanics, the C∗-quantum dynamical systems are preferred starting point since the central notion of
non-equilibrium steady states cannot be naturally defined in the W ∗-setting.

1.2 GNS-representation and modular structure

Let ω be a modular state on O. We denote by (Hω, πω,Ωω) the GNS-representation of O associated to
ω, and by Mω = πω(O)′′ the enveloping von Neumann algebra of bounded operators on Hω. In what
follows, we drop the subscript ω whenever the meaning is clear within the context. Since the state ω is
assumed to be modular, the cyclic vector Ω is separating for M7, and in particular ∥π(A)∥ = ∥A∥ for all
A ∈ O. Whenever the meaning is clear within the context, we will denote π(A) by A.

N denotes the set of all normal states on M, i.e., the states described by density matrices on H. Ob-
viously, an element of N also defines a state on O and any state on O that arises in this way is called
ω-normal. Again, whenever the meaning is clear within the context, we will denote such states by the
same letter. In particular, the vector state M ∋ A 7→ ⟨Ω, AΩ⟩ is denoted by ω.

We will assume that the reader is familiar with the basic notions of Tomita-Takesaki’s modular theory;
see any of the references [BR87, BR81, DJP03, Haa96, OP93, Pil06, Str81]. For definiteness, we will
use the same notation and terminology as in [JOPS12, Section 5]. H+ and J denote the natural cone and
modular conjugation associated to the pair (M,Ω). The unique vector representative of ν ∈ N in the
natural cone is denoted by Ων . The modular operator of ν ∈ N is denoted by ∆ν . The relative modular
operator of a pair (ν, ρ) of ω-normal states is denoted by ∆ν|ρ.

The relative entropy of a pair (ν, ρ) of ω-normal faithful states is

Ent(ν|ρ) = ⟨Ων , log∆ρ|νΩν⟩.

This is the original definition of Araki [Ara76, Ara77], with the sign and ordering convention of [JP01].
In particular, Ent(ν|ρ) ≤ 0 with equality iff ρ = ν. For additional information about relative entropy we
refer the reader to [OP93].

Since ω is ςω invariant, the family {π ◦ ςtω | t ∈ R} extends to a W ∗-dynamics on M which we again
denote by ςω. For A ∈ M, one has

ςtω(A) = ∆it
ωA∆

−it
ω .

More generally, to any faithful ν ∈ N one associates the W ∗-dynamics ςν given by

ςtν(A) = ∆it
νA∆

−it
ν .

ςν is called the modular dynamics of ν, and ν is a (ςν ,−1)-KMS state on M.

Throughout the paper we assume that the following holds:
7See [BR81, Corollary 5.3.9]

6



A note on two-times measurement entropy production and modular theory

(Reg1) The family {π ◦ τ t | t ∈ R} extends the interacting dynamics τ to a W ∗-dynamics
on M which we again denote by τ .

This assumption is automatically satisfied by the interacting dynamics of the two kinds of open quantum
systems introduced in the previous section. It ensures that ωt is a ω-normal faithful state on M and that
there exists a unique self-adjoint operator L on H, called the standard Liouvillean of τ , such that

τ t(A) = eitLAe−itL, e−itLH+ = H+,

for all A ∈ M and t ∈ R. The vector representative of ωt in H+ is e−itLΩ. We will make use of the
following well-known result.

Theorem 1.1 (1) ω ∈ Sτ ⇔ LΩ = 0.

(2) Suppose that ω ∈ Sτ . Then the quantum dynamical system (O, τ, ω) is ergodic iff 0 is a simple
eigenvalue of L.

For latter reference we also recall the following well-known result that identifies ergodicity with the
so-called property of return to equilibrium [Rob73].

Theorem 1.2 Suppose that ω ∈ Sτ . Then the quantum dynamical system (O, τ, ω) is ergodic iff for any
ω-normal state ν and all A ∈ O one has

lim
T→∞

1

T

∫ T

0
ν(τ t(A))dt = ω(A).

To any pair of faithful ω-normal states ν and ρ one associates the Connes cocycle

[Dν : Dρ]it = ∆it
ν|ρ∆

−it
ρ , (t ∈ R), (1.4)

which is obviously a family of unitary operators. Its basic property is that [Dν : Dρ]it ∈ M; for
additional properties of Connes’ cocycle, see [AM82, Appendix C].

The Connes cocycle
[Dωt : Dω]α, α ∈ iR,

will play a central role in our work. In what follows, we assume

(Reg2) For all t ∈ R and α ∈ iR,

[Dωt : Dω]α ∈ π(O).

π−1([Dωt : Dω]α) will be also denoted by [Dωt : Dω]α. For the two kinds of open quantum systems
introduced in the previous section, (Reg2) holds if V ∈ Dom(δω). This follows from the definition (1.4),
the fact that

∆α
ωt|ω = eα(log∆ω+πω(Qt)), Qt =

∫ t

0
τ−s(δω(V ))ds,

as established in the proof of [JP03, Theorem 1.1], and time-dependent perturbation theory.

7



Benoist, Bruneau, Jakšić, Panati, Pillet

1.3 Two-times measurement entropy production in finite quantum systems

This notion of entropy production goes back to [Kur00, Tas00] and has been studied in detail in [JOPP10].
Consider a finite quantum dynamical system on a Hilbert space K with Hamiltonian H . The measure-
ment protocol is defined with respect to two faithful states ν and ω. The first one, ν, is the state of system
at the instant of the first measurement, and will be a variable in our work. The second one, ω, is assumed
to be fixed and defines the observable to be measured. More precisely, we will consider two consecutive
measurements of the observable

S = − logω

interpreting the increase ∆S in the outcomes of these two measurement as the entropy produced by
the system during the time interval between the two measurements. To motivate this interpretation, let
the small system S, with ωS given by (1.3), be coupled to thermal reservoirs R1, . . . ,RM at inverse
temperatures β1, . . . , βM . Setting

ω = ωS ⊗

 M⊗
j=1

e−βjHj

tr e−βjHj


where Hj denotes the Hamiltonian of the jth reservoir, we get

∆S =
M∑
j=1

βj∆Ej

where ∆Ej is the change in the energy of the jth reservoir. Thus, ∆S can be identified with the entropy
dumped by the system S in the reservoirs.

Let A be a finite alphabet indexing the distinct eigenvalues (λa)a∈A of ω, and let Pa be the eigenprojec-
tion corresponding to λa. The observable to be measured is described by the partition of unity (Pa)a∈A
on K, with outcomes of the measurement labeled by the letters of A. The two-times measurement pro-
tocol goes as follows. At the instant of the first measurement, when the system is in the state ν, the
outcome a ∈ A is observed with probability

pν(a) = ν(Pa).

After the measurement the system is in the reduced state

1

pν(a)
PaνPa,

which evolves under the system dynamics over the time interval of length t to

1

pν(a)
e−itHPaνPae

itH .

The second measurement, performed at the end of this time interval, yields the outcome b ∈ A with
probability

pν,t(b|a) =
1

pν(a)
tr(e−itHPaνPae

itHPb).

8
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Finally, the probability of observing the pair (b, a) in this two-times measurement protocol is

pν,t(b, a) = pν,t(b|a)pν(a) = tr(e−itHPaνPae
itHPb). (1.5)

The formula (1.5) defines a probability measure on A×A even when ν is not faithful, and from now on
we drop this restriction.8

The entropy production random variable E : A×A → R is defined by

E(b, a) = − log λb + log λa,

and its probability distribution with respect to pν,t is denoted by Qν,t,

Qν,t(s) =
∑

E(b,a)=s

pν,t(b, a).

The statistics of two-times measurement entropy production is described by the family (Qν,t)t>0. In the
case ν = ω, this family of probability measures was studied in detail in [JOPP10]. To the best of our
knowledge, the case ν ̸= ω was not considered before in the mathematical physics literature.

We set
Fν,t(α) =

∫
R
e−αsdQν,t(s), (α ∈ C).

The definition of Qν,t gives
Fν,t(α) = tr(ωα

−tω
−αν)

where ν =
∑

a∈A PaνPa. Taking ν = ω leads to the formulas

Fω,t(α) = ω([Dω−t : Dω]α) = ⟨Ωω,∆
α
ω−t|ωΩω⟩

and to the identification of Qω,t with the spectral measure of the operator − log∆ω−t|ω for the vector
Ωω. This deep link between the statistics of the two-times measurement entropy production and modular
theory has a somewhat unusual history and was discussed in detail in [JOPP10].

The starting point of this work is the observation that for general ν one can also link Qν,t to the modular
structure via the formula

Fν,t(α) = lim
R→∞

1

R

∫ R

0
ν
(
ςθω ([Dω−t : Dω]α)

)
dθ (1.6)

that follows by an elementary computation. This modular representation of Fν,t for general ν, to the best
of our knowledge, has not appeared previously in the literature.

We are now ready to state our main results.

1.4 Main results

Throughout this section (O, τ, ω) is a fixed C∗-quantum dynamical system with modular reference state
ω. Recall that Assumptions (Reg1) and (Reg2) are in force throughout the paper.

8For non-faithful ν the protocol can be implemented in a limiting sense by considering a sequence of faithful νn’s such that
limn νn = ν.
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Theorem 1.3 For all ν ∈ N , t ∈ R, and α ∈ iR, the limit

Fν,t(α) = lim
R→∞

1

R

∫ R

0
ν
(
ςθω ([Dω−t : Dω]α)

)
dθ (1.7)

exists, and there exists unique Borel probability measure Qν,t on R such that

Fν,t(α) =

∫
R
e−αsdQν,t(s). (1.8)

The family (Qν,t)t>0 describes the statistics of two-times measurement entropy production of (O, τ, ω)
with respect to ν in the above general setting. This definition, that arises by modular extension of the
finite quantum system physical notion discussed in the previous section, requires a general comment in
relation to the thermodynamic limit procedure; see Remark 1 in Section 1.5 and [JOPP10, Chapter 5].

In the case ν = ω,
ω
(
ςθω ([Dω−t : Dω]α)

)
= ⟨Ωω,∆

α
ω−t|ωΩω⟩

for all θ, and so Qω,t is the spectral measure of − log∆ω−t|ω for the vector Ωω. Thus, Qω,t coincides
with the proposal of [TM03], where the authors, unaware of the works [Kur00, Tas00], were searching
for a quantum version of the fluctuation relation of classical statistical mechanics; see Proposition 1.9
below. That, in the finite quantum system setting, this spectral measure coincides with the two-times
measurement entropy production statistics discussed in the previous section did not appear in print un-
til [JOPP10]. The basic properties of Qω,t are summarized in

Theorem 1.4 (1)
∫
R s dQω,t(s) = −Ent(ωt|ω). In particular,

∫
R s dQω,t(s) ≥ 0 with the equality iff

ω = ωt.

(2) The map iR ∋ α 7→ Fω,t(α) has an analytic extension to the vertical strip 0 < Reα < 1 that is
bounded and continuous on its closure and satisfies

Fω,t(α) = Fω,−t(1− α)

for 0 ≤ Reα ≤ 1 and t ∈ R.

In the remaining statements we assume that ω is time-reversal invariant.

(3) For any α satisfying 0 ≤ Reα ≤ 1,

Fω,t(α) = Fω,t(1− α). (1.9)

(4) Let r : R → R be the reflection r(s) = −s and Qν,t = Qν,t ◦ r. Then the measures Qω,t and Qω,t

are equivalent and
dQω,t

dQω,t
(s) = e−s. (1.10)

The relations (1.9) and (1.10) are known as the finite time quantum fluctuation relations.9 Theorem 1.4
was essentially proven in [TM03, Theorem 7]. For the reader convenience and future reference, we
provide its proof in Section 2.2.

We now return to general ν ∈ N . Our first result is an immediate consequence of Theorems 1.2 and 1.3:
9They are also sometimes called the Evans–Searles quantum fluctuation relations.
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Theorem 1.5 Suppose that the system (O, ςω, ω) is ergodic. Then for all t ∈ R and ν ∈ N ,

Qν,t = Qω,t.

The above theorem applies to open quantum systems with directly coupled reservoirs and its assump-
tion holds iff each reservoir system (Oj , τj , ωj) is ergodic. In what follows we consider open quantum
systems featuring a small system S. For any ν ∈ SO we denote by νS the restriction of ν to OS .10

Theorem 1.6 Consider an open quantum system where the reservoirs R1, . . . ,RM are coupled through
the small system S, each reservoir subsystem (Oj , τj , ωj) being ergodic. Let ν ∈ N .

(1) For all α ∈ iR,

Fν,t(α) = νS ⊗ ωR ([Dω−t : Dω]α)

= ⟨ΩνS⊗ωR ,∆
α
ω−t|ωΩνS⊗ωR⟩.

In particular, Qν,t is the spectral measure of − log∆ω−t|ω for the vector ΩνS⊗ωR .

(2) The measure Qν,t is absolutely continuous with respect to Qω,t and

dQν,t

dQω,t
≤ dimKS . (1.11)

If νS is faithful and γ is its smallest eigenvalue, then also

γ dimKS ≤ dQν,t

dQω,t
. (1.12)

We equip SO with the weak∗-topology and the set P(R) of all Borel probability measures on R with the
weak topology. By [Tak55, Lemma 2.1] and [Fel60, Theorem 1.1], the set of ω-normal states N is dense
in SO. This gives that under the assumptions of either Theorem 1.5 or 1.6, the map

N ∋ ν 7→ Qν,t ∈ P(R) (1.13)

uniquely extends to a continuous map

SO ∋ ν 7→ Qν,t ∈ P(R).

This continuous extension definesQν,t for all ν ∈ SO. In the case of Theorem 1.5, obviouslyQν,t = Qω,t

for all ν. In the case of Theorem 1.6, Qν,t is again the spectral measure of − log∆ω−t|ω for the vector
ΩνS⊗ωR and Part (2) holds. We summarize:

10For A ∈ OS , νS(A) = ν(A⊗ 1l).
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Theorem 1.7 Consider a non-ω-normal state ν ∈ SO. Then, Theorems 1.5 and 1.6 hold, with Qν,t

being the above mentioned continuous extension.

1.5 Remarks

1. Thermodynamic limit. Thermodynamic limit (abbreviated TDL) plays a distinguished role in statis-
tical mechanics. It realizes infinitely extended systems through a limiting procedure involving only finite
quantum systems and is central for the identification of physically relevant objects in the infinite setting.
The precise way the TDL is taken depends on the structure of the specific physical model under consider-
ation, and often different approximation routes are possible. This topic is well-understood and discussed
in many places in the literature; see, for example, [BR87, BR81, Rue69] and [JOPP10, Chapter 5]. Since
early days, it is known that the modular structure is stable under TDL [AI74, Ara76, Ara76, Ara77],
and this fact plays an important role in the foundations of quantum statistical mechanics. The customary
route in discussions of the structural theory is the following:

Step 1. A physical notion, introduced in the context of finite quantum systems, is expressed in a modular
form, and through this form is directly extended, by definition, to a general C∗/W ∗-dynamical system.
One basic example of such procedure is the introduction of the KMS-condition as characterization of
thermal equilibrium states. This is the approach we have taken in this work in the introduction of Qν,t.

Step 2. In concrete physical models the definitions of Step 1 are justified by the TDL limit.

Step 2 has been extensively studied in early days of quantum statistical mechanics and the wealth of ob-
tained results make its implementation in modern literature most often a routine exercise. For this reason
this step is often skipped. There is rarely a need for making an exception to this rule, but one is, we
believe, in the context of our work. The mixture of quantum measurements and thermodynamics, which
is central to the definition of two-times quantum measurement entropy production, has a number of unex-
pected features that, we believe, require the TDL justification to be put on solid physical grounds. More
precisely, the formula (1.6), which gives the modular characterization of the initial state decoherence
induced by the first measurement, also allows to postulate this decoherence effect for infinitely extended
systems. The physical and mathematical implications of this Step 1 definition make its TDL justification
necessary.

In the forthcoming article [BBJ+b] we will carry out Step 2 for the 2TMEP of two paradigmatic models
in non-equilibrium quantum statistical mechanics: open quantum spin system on a lattice11 and open
Spin-Fermion Model12.

2. The effect of the first measurement. The somewhat striking rigidity of the two-times measure-
ment entropy production statistics that follows from Theorems 1.5 and 1.6 can be understood in terms
of the dominating effect of the first decoherence inducing measurement. In the TDL, this effect is dra-
matic as the measurement induced decoherence forces the (ergodic) reservoirs into their unique invariant

11See [Rue01].
12See the seminal works [Dav74, SL78].
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state, while the state of the small system S has a marginal effect, being finite dimensional. In mathe-
matical terms, the first measurement decoherence corresponds to a projection on Ker log∆ω (see the
formula (2.1) below), which, for infinitely extended systems and due to the ergodicity assumptions of
Theorems 1.5 and 1.6, is finite dimensional.13 Along the sequence of TDL approximations the size
of this kernel grows to infinity together with the dimension of the reservoir Hilbert spaces to suddenly
drastically shrink in the limiting state. This dimension reduction is at the core of the need for the TDL
justification of the Step 1 definition of the 2TMEP.

A proposal for a less invasive measurement protocol through an auxiliary two-dimensional quantum
system (ancilla), that we call Entropic Ancilla State Tomography, avoids the above decoherence effect.
This alternative protocol and its stability are the topics of [BBJ+a], see also Remark 4 below.

3. On the extension to ν ∈ SO. In Theorem 1.7, the 2TMEP Qν,t of ν ̸∈ N is defined by the
continuous extension of the map (1.13) that builds on the stability results of Theorems 1.5 and 1.6. For
ν ̸∈ N the representation (1.7) fails (with Fν,t(α) defined by (1.8)). In the same vein, the direct TDL
limit justification of Qν,t is not possible for ν ̸∈ N . It is replaced by the TDL limit justification of the
approximating sequence Qνn,t, νn ∈ N , νn → ν, with νn’s chosen to reflect the physics of the limiting
ν. We emphasize that when ν /∈ N , Qν,t is defined by first taking the limit R → ∞ in (1.7) for a fixed
normal approximation νn of ν, and then by taking the limit νn → ν. Taken in reverse order, this double
limit does not necessarily exist, and will not produce the same limiting measure in general.

4. NESS and quantum Gallavotti–Cohen Fluctuation Theorem. This is the topic of the continuation
of this work [BBJ+a] whose starting points are Theorems 1.3–1.7, and we limit ourselves here to a
brief comment. The quantum Evans–Searles and Gallavotti–Cohen Fluctuation Theorems deal with
quantum extensions of the celebrated works [ES94, GC95a, GC95b] in classical statistical mechanics,
see also the review [JPRB11]. The quantum Evans–Searles Fluctuation Theorem concerns the Large
Deviation Principle (LDP) for the family of probability measures (Qω,t(t · ))t>0 in the limit t ↑ ∞. In
parallel with the classical theory, any putative quantum Gallavotti–Cohen Fluctuation Theorem should
concern the entropic fluctuations with respect to the Non-Equilibrium Steady State (NESS) that the
system (O, τ, ω) reaches in the large time limit t ↑ ∞. This NESS is defined as the weak∗-limit ω+ =
limt→∞ ωt.14 In typical non-equilibrium setting ω+ ̸∈ N , and for a long time it was unclear how to
define the statistics Qω+,t. Theorems 1.5–1.7 provide a route to this definition that, together with the
TDL justification of QωT ,t for all T, t ≥ 0, is both physically and mathematically natural. However,
due to a quantum decoherence effect, this route comes with a degree of stability that has no classical
counterpart and that identifies the two Fluctuation Theorems under very general ergodic assumptions
that are satisfied in paradigmatic models of open quantum systems. This triviality aspect is addressed
in [BBJ+a] by the introduction of Entropic Ancilla State Tomography that we have already mentioned in
Remark 2. Entropic Ancilla State Tomography provides a novel physical and mathematical perspective
on the entropic fluctuations in quantum statistical mechanics and links the two quantum Fluctuation
Theorems in a non-trivial way.

13In the case of Theorem 1.5 this kernel has dimension 1. In the case of Theorem 1.6 its dimension is (dimKS)
2.

14The existence of this limit is typically a deep dynamical problem.
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5. Repeated two-times measurement protocol. Besides the dynamical system approach to classi-
cal entropy production in which the reference state plays a central role (see the review [JPRB11] for a
discussion of this point), an altogether different random path approach has been developed in [Kur98,
LS99, Mae99] that does not make use of the reference state and is applicable to stochastic processes. Its
quantum formulation in the setting of repeated quantum measurement processes goes back to [Cro08],
and was elaborated in [BJPP18, BCJP21]. The advent of experimental methods in cavity and cir-
cuit QED, and in particular the experimental breakthroughs of the Haroche–Raimond and Wineland
groups [Har13, HR06, Win13] make this complementary approach particularly relevant. We postpone
the comparative discussion of the two approaches to the forthcoming review.

6. On the choice of ωS . The proof of Theorem 1.6 makes explicit use of the special form (1.3) of ωS ,
and that has the effect on the values of the constants in the estimates (1.11) and (1.12). However, if
ν1 and ν2 are any two states in Nω such that the restrictions ν1S and ν2S are faithful with the smallest
eigenvalues γ1 and γ2, then the chain rule

dQν1,t

dQν2,t
=

dQν1,t

dQω,t

dQω,t

dQν2,t

and (1.11), (1.12), give that

γ1 ≤
dQν1,t

dQν2,t
≤ 1

γ2
.

7. On the definition of Fν,t. In the context of Theorem 1.3, one also has that

Fν,t(α) = lim
R→∞

1

R

∫ R

0
ν
(
ςθω

(
[Dω−t : Dω]

∗
α
2

[Dω−t : Dω]α
2

))
dθ. (1.14)

For finite quantum systems (1.14) is an immediate consequence of the relation [ω, ν] = 0. In the general
case, (1.14) is established by a simple modification of the proof of Theorem 1.3. In the continuation of
this work [BBJ+a] we will make use of (1.14) in the context of the Entropic Ancilla State Tomography.

2 Proofs

We shall need the following results.

Lemma 2.1 For any t ∈ R, one has

eitL∆ω|ωt
e−itL = ∆ω−t|ω.
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Proof. For A ∈ M and t ∈ R, we have, taking into account the fact that JL+ LJ = 0,

eitL∆
1
2

ω|ωt
e−itLAΩ = eitL∆

1
2

ω|ωt
e−itLAeitLe−itLΩ

= eitLJJ∆
1
2

ω|ωt
τ−t(A)Ωt

= eitLJτ−t(A∗)Ω

= eitLJe−itLA∗eitLΩ

= JA∗Ω−t

= ∆
1
2

ω−t|ωAΩ,

where we used that eitLJ = JeitL. 2

Proposition 2.2 Suppose that ω is time-reversal invariant with respect to the time-reversal Θ. Then,
there exists an anti-unitary involution U on H such that:

(1) For any A ∈ M, Θ(A) = UAU∗.

(2) UΩ = Ω and UH+ = H+.

(3) [U, J ] = 0.

(4) [U,L] = 0.

(5) U∗∆ω−t|ωU = ∆ωt|ω for any t ∈ R.

Proof. The existence of U as well as Parts (1)–(3) follow from a simple adaptation of the proof of the
corresponding statements of [BR87, Corrolary 2.5.32].

To prove Part (4), we start with the relation τ t ◦Θ = Θ ◦ τ−t, which yields that

eitLUAU∗e−itL = Ue−itLAeitLU∗

for any t ∈ R and A ∈ M. It follows that

(U∗eitLU)A(U∗e−itLU) = e−itLAeitL,

and since Part (2) gives U∗eitLUH+ ⊂ H+, the unicity of the standard Liouvillean yields that

e−itU∗LU = U∗eitLU = e−itL,

from which (4) follows.

By Parts (1–2), for any t ∈ R and A ∈ M, one has

U∗∆
1
2

ω−t|ωUAΩ = U∗∆
1
2

ω−t|ωΘ(A)Ω

= U∗JΘ(A)∗eitLΩ

= (U∗JU)A∗(U∗eitLU)U∗Ω.
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Invoking Parts (3–4) further gives

U∗∆
1
2

ω−t|ωUAΩ = JA∗e−itLΩ = JA∗Ωt = ∆
1
2

ωt|ωAΩ,

which yields Part (5). 2

2.1 Proof of Theorem 1.3.

In parts, the arguments follow closely the proof of Theorem 3.3, Part (3) in [AJPP06]. We give details
for the reader’s convenience.

We consider first a state of the form νB(·) = (BΩ, · BΩ) where B ∈ π(O)′ and ∥BΩ∥ = 1. Then, for
any A ∈ O,

1

R

∫ R

0
νB(ς

θ
ω(A))dθ =

1

R

∫ R

0
⟨BΩ, eiθ log∆ωAe−iθ log∆ωBΩ⟩dθ

=
1

R

∫ R

0
⟨B∗BΩ, eiθ log∆ωAΩ⟩dθ.

The von Neumann ergodic theorem gives that, for all A ∈ O,

νB+(A) = lim
R→∞

1

R

∫ R

0
νB(ς

θ
ω(A))dθ = ⟨B∗BΩ, PAΩ⟩,

where P is the orthogonal projection on Ker log∆ω. In particular,

νB+([Dω−t : Dω]α) = ⟨B∗BΩ, P∆α
ω−t|ωΩ⟩.

This proves that for α ∈ iR,

FνB ,t(α) = lim
R→∞

1

R

∫ R

0
νB(ς

θ
ω([Dω−t : Dω]α))dθ = ⟨B∗BΩ, P∆α

ω−t|ωΩ⟩. (2.1)

The function iR ∋ α 7→ FνB ,t(α) is continuous. Moreover, this function is also positive-definite since,
for z1, · · · , zN ∈ C and α1, · · · , αN ∈ iR,

N∑
k,l=1

FνB ,t(αk − αl)zkzl =

〈
B∗BΩ, P

[
M∑
k=1

zk∆
αk

ω−t|ω

]∗ [ N∑
l=1

zl∆
αl

ω−t|ω

]
Ω

〉

=

〈
B∗BΩ, P

[
N∑
k=1

zk∆
αk

ω−t|ω∆
−αk
ω

]∗ [ N∑
l=1

zl∆
αl

ω−t|ω∆
−αl
ω

]
Ω

〉

= lim
R→∞

1

R

∫ R

0

〈
B∗BΩ, ςθω

([
N∑
k=1

zk[Dω−t : Dω]αk

]∗ [ N∑
l=1

zl[Dω−t : Dω]αl

])
Ω

〉
dθ

= lim
R→∞

1

R

∫ R

0
νB ◦ ςθω

([
N∑
k=1

zk[Dω−t : Dω]αk

]∗ [ N∑
l=1

zl[Dω−t : Dω]αl

])
dθ ≥ 0.
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Hence, by the Bochner-Khinchine theorem, there exists unique Borel probability measure QνB ,t on R
such that, for all α ∈ iR,

FνB ,t(α) =

∫
R
e−αsdQνB ,t(s).

Let now ν be an arbitrary ω-normal state on O. Since Ω is a cyclic vector for π(O)′, for any n ∈ N there
exists Bn ∈ π(O)′ such that

∥ν − νBn∥ ≤ 1

n
.

This gives that the sequence νBn is Cauchy in norm. If ν+ is any limit point of the net

1

R

∫ R

0
ν ◦ ςθωdθ (2.2)

as R ↑ ∞, we have that

∥ν+ − νBn+∥ ≤ ∥ν − νBn∥ ≤ 1

n
.

It follows that ν+ is the norm limit of νBn+ and in particular that the net (2.2) has the unique limit ν+.
This gives that for all α ∈ iR,

lim
R→∞

1

R

∫ R

0
ν(ςθω([Dω−t : Dω]α))dθ = lim

n→∞
νBn+([Dω−t : Dω]α) = ν+([Dω−t : Dω]α),

establishing the existence of Fν,t. In addition, we have that for α ∈ iR,

Fν,t(α) = lim
n→∞

∫
R
e−αsdQνBn ,t(s),

and so, by the Lévy continuity theorem, there exists unique Borel probability measure Qν,t on R such
that

Fν,t(α) =

∫
R
e−αsdQν,t(s).

2

2.2 Proof of Theorem 1.4.

(1) By definition of the relative entropy we have

Ent(ωt|ω) = ⟨Ωt, log∆ω|ωt
Ωt⟩.

Lemma 2.1 and the functional calculus allow us to write

Ent(ωt|ω) = ⟨Ω, eitL log∆ω|ωt
e−itLΩ⟩ = ⟨Ω, log∆ω−t|ωΩ⟩ = −

∫
R
s dQω,t(s).

(2) Since Ω ∈ Dom(∆
1/2
ω−t|ω), ∫

R
e−sdQω,t(s)ds <∞,
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and this implies the stated regularity of Fω,t. Invoking again Lemma 2.1, and using the fact that
J∗∆ν|µJ = ∆−1

µ|ν , we write

Fω,t(α) = ⟨Ω,∆α
ω−t|ωΩ⟩

= ⟨Ω, eitL∆α
ω|ωt

e−itLΩ⟩

= ⟨J∆1/2
ωt|ωΩ,∆

α
ω|ωt

J∆
1/2
ωt|ωΩ⟩

= ⟨Ω,∆1/2
ωt|ωJ

∗∆α
ω|ωt

J∆
1/2
ωt|ωΩ⟩

= ⟨Ω,∆1/2
ωt|ω∆

−α
ωt|ω∆

1/2
ωt|ωΩ⟩

= ⟨Ω,∆1−α
ωt|ωΩ⟩,

which yields the required identity.

(3) By Proposition 2.2, the time-reversal map Θ has a standard anti-unitary implementation U on H,
such that UΩ = Ω. It follows from Part (5) of the above mentioned proposition that

Fω,t(α) = ⟨Ω,∆α
ω−t|ωΩ⟩ = ⟨UΩ,∆α

ω−t|ωUΩ⟩ = ⟨Ω, U∗∆α
ω−t|ωUΩ⟩ = ⟨Ω,∆α

ωt|ωΩ⟩ = ⟨Ω,∆α
ωt|ωΩ⟩.

Thus, time-reversal invariance implies that

Fω,t(α) = Fω,−t(α)

for 0 ≤ Reα ≤ 1 and t ∈ R. Combined with the identity obtained in Part (2), this yields the result.

(4) It follows from Part (3) that for α ∈ iR,∫
R
e−αsdQω,t(s) =

∫
R
e−αsesdQω,t(s),

which ends the proof. 2

2.3 Proof of Theorem 1.6.

Let (ψ1, . . . , ψN ) be an orthonormal basis of KS consisting of eigenvectors of νS , and set Pij = |ψi⟩⟨ψj |.
For the GNS-representation (HS , πS ,ΩS) of OS induced by the state ωS given by (1.3) we take

HS = KS ⊗KS , πS(A) = A⊗ 1l, ΩS =
1√
N

N∑
i=1

ψi ⊗ ψi.

If (HR, πR,ΩR) is the GNS-representation of OR induced by ωR, then

H = HS ⊗HR, π = πS ⊗ πR, Ω = ΩS ⊗ ΩR,

18



A note on two-times measurement entropy production and modular theory

and

log∆ω = log∆ωR =
M∑
j=1

log∆ωj .

By our ergodicity assumption, it follows from Theorem 1.1(2) and the fact that the Liouvillean of the
j-th reservoir is −β−1

j log∆ωj ), that Ker log∆ω is spanned by the family (ψi ⊗ ψj ⊗ ΩR)1≤i,j≤N .

We follow up on the proof of Theorem 1.3. With νBn and P as in that proof, we have that

FνBn ,t(α) = ⟨B∗
nBnΩ, P∆

α
ω−t|ωΩ⟩

=

N∑
i,j=1

⟨B∗
nBnΩ, ψi ⊗ ψj ⊗ ΩR⟩⟨ψi ⊗ ψj ⊗ ΩR,∆

α
ω−t|ωΩ⟩.

(2.3)

Note that
ψi ⊗ ψj ⊗ ΩR = [Pijψj ]⊗ ψj ⊗ ΩR =

√
Nπ(Pij)Ω,

and so (2.3) gives that

FνBn ,t(α) =
√
N

N∑
i,j=1

νBn(π(Pij))⟨ψi ⊗ ψj ⊗ ΩR,∆
α
ω−t|ωΩ⟩.

Since limn→∞ νBn(π(Pij)) = νS(Pij), and since by the choice of the ψi’s, νS(Pij) = λiδij , where λi
denotes the eigenvalue of νS for ψi, one has

Fν,t(α) = lim
n→∞

FνBn ,t(α) =
√
N

N∑
i=1

λi⟨ψi ⊗ ψi ⊗ ΩR,∆
α
ω−t|ω∆

−α
ω Ω⟩.

Expressing Ω in terms of the ψi’s and invoking (1.4) further leads to

Fν,t(α) =
N∑

i,k=1

λi⟨ψi ⊗ ψi ⊗ ΩR, [Dω−t : Dω]αψk ⊗ ψk ⊗ ΩR⟩

=
N∑
i=1

λi⟨ψi ⊗ ψi ⊗ ΩR, [Dω−t : Dω]αψi ⊗ ψi ⊗ ΩR⟩,

where the last equality follows from the fact that [Dω−t : Dω]α ∈ M. Since

ΩνS =
∑
i

√
λiψi ⊗ ψi

is the vector representative of νS in H+
S , the last identity allows us to conclude that

Fν,t(α) = νS ⊗ ωR([Dω−t : Dω]α).

Finally, since ΩνS ⊗ ΩR ∈ Ker log∆ω, invoking (1.4) again yields

Fν,t(α) = ⟨ΩνS ⊗ ΩR,∆
α
ω−t|ωΩνS ⊗ ΩR⟩,
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from which we can conclude that Qν,t is the spectral measure of − log∆ω−t|ω for the vector ΩνS ⊗ΩR.

To prove Part (2), let B be a self-adjoint element of πS(OS)
′ ⊗ 1l such that BΩ = ΩνS ⊗ ΩR. B is

invertible iff νS is faithful. For α ∈ iR,∫
R
e−αsdQν,t(s) = ⟨BΩ,∆α

ω−t|ωΩνS ⊗ ΩR⟩

= ⟨BΩ,∆α
ω−t|ω∆

−α
ω ΩνS ⊗ ΩR⟩

= ⟨Ω,∆α
ω−t|ω∆

−α
ω BΩνS ⊗ ΩR⟩

= ⟨Ω,∆α
ω−t|ωBΩνS ⊗ ΩR⟩,

(2.4)

and similarly, if νS is faithful,∫
R
e−αsdQω,t(s) = ⟨ΩνS ⊗ ΩR,∆

α
ω−t|ωB

−1Ω⟩. (2.5)

The identities (2.4) and the spectral theorem give that the measure Qν,t is absolutely continuous with
respect to Qω,t, with dQν,t/dQω,t equal to the projection of BΩνS ⊗ ΩR onto the cyclic subspace
L2(R,dQω,t) generated by − log∆ω−t|ω and the vector Ω. Similarly, (2.5) gives that Qω,t is absolutely
continuous with respect to Qν,t, with dQω,t/dQν,t equal to the projection of B−1Ω onto the cyclic
subspace L2(R,dQν,t) generated − log∆ω−t|ω and the vector ΩνS ⊗ ΩR. It remains to prove the esti-
mates (1.11) and (1.12).

By the definition of ΩνS we have that for α ∈ iR,

⟨ΩνS ⊗ ΩR,∆
α
ω−t|ωΩνS ⊗ ΩR⟩ =

N∑
i=1

λi⟨ψi ⊗ ψi ⊗ ΩR,∆
α
ω−t|ω∆

−α
ω ψi ⊗ ψi ⊗ ΩR⟩

=
N∑
i=1

λi⟨ψi ⊗ ψi ⊗ ΩR,∆
α
ω−t|ωψi ⊗ ψi ⊗ ΩR⟩.

(2.6)

Since for ϵ > 0 and x ∈ R,

1

2i

∫
iR
e−α(s−x)e−|α|ϵdα =

ϵ

ϵ2 + (x− s)2
,

it follows from (2.6) that

⟨ΩνS ⊗ ΩR,
[
ϵ2 + (x+ log∆ω−t|ω)

2
]−1

ΩνS ⊗ ΩR⟩

=
∑
i

λi⟨ψi ⊗ ψi ⊗ ΩR,
[
ϵ2 + (x+ log∆ω−t|ω)

2
]−1

ψi ⊗ ψi ⊗ ΩR⟩,

which gives that for all x ∈ R and ϵ > 0,∫
R

dQν,t(s)

ϵ2 + (x− s)2∫
R

dQω,t(s)

ϵ2 + (x− s)2

≤ N, (2.7)
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and if λi ≥ γ for all i, that

Nγ ≤

∫
R

dQν,t(s)

ϵ2 + (x− s)2∫
R

dQω,t(s)

ϵ2 + (x− s)2

. (2.8)

Since15

dQν,t

dQω,t
(x) = lim

ϵ↓0

∫
R

dQν,t(s)

ϵ2 + (x− s)2∫
R

dQω,t(s)

ϵ2 + (x− s)2

,

the estimates (1.11) and (1.12) follow from (2.7) and (2.8). 2
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[JOP07] JAKŠIĆ, V., OGATA, Y. and PILLET, C.-A.: The Green-Kubo formula for lo-
cally interacting fermionic open systems. Ann. Henri Poincaré 8, 1013–1036 (2007),
[DOI:10.1007/s00023-007-0327-7].
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