
HAL Id: hal-04245594
https://hal.science/hal-04245594v1

Submitted on 6 Nov 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

On the Suitability of LSP and DAP for Domain-Specific
Languages

Josselin Enet, Erwan Bousse, Massimo Tisi, Gerson Sunyé

To cite this version:
Josselin Enet, Erwan Bousse, Massimo Tisi, Gerson Sunyé. On the Suitability of LSP and
DAP for Domain-Specific Languages. MODELS-C 2023: ACM/IEEE International Conference
on Model Driven Engineering Languages and Systems Companion, Oct 2023, Västerås, Sweden.
�10.1109/MODELS-C59198.2023.00066�. �hal-04245594�

https://hal.science/hal-04245594v1
https://hal.archives-ouvertes.fr


On the Suitability of LSP and DAP for
Domain-Specific Languages

Josselin Enet∗, Erwan Bousse†, Massimo Tisi‡, Gerson Sunyé§

∗†‡§Nantes Université, École Centrale Nantes, IMT Atlantique, CNRS, LS2N, UMR 6004, France
∗Email: josselin.enet@univ-nantes.fr
†Email: erwan.bousse@univ-nantes.fr
‡Email: massimo.tisi@imt-atlantique.fr
§Email: gerson.sunye@univ-nantes.fr

Abstract—Domain-Specific Languages (DSLs) help manage the
growing complexity of systems by facilitating their description
and execution or simulation via tailored languages. A large part
of the development costs of a DSL comes from building the
associated tools it requires, such as an editor or a debugger.
To reduce these costs, the Language Server Protocol (LSP) and
Debug Adapter Protocol (DAP) enable the creation of generic
tooling interfaces which rely on standardized services exposed by
languages. However, as these protocols have been designed for
General Purpose Languages (GPLs), their applicability to DSLs
has no yet been extensively studied. In this paper, we analyze both
LSP and DAP, with an emphasis regarding their relevance for
the development of tooling for DSLs. We provide both a high-
level insight into these protocols, such as a dependency graph
of their services, and a more fine-grained qualitative analysis
of each service. We show that while some services defined by
these two protocols can be provided by any DSL, others make
strong assumptions on the concepts that should be part of the
considered DSL. Conversely, domain-specific concepts available
in some DSLs are not exploitable through these protocols, thus
reducing the capabilities of generic tools.

Index Terms—Programming Languages and Software, Al-
gorithm/protocol design and analysis, Testing and Debugging,
Document and Text Editing.

I. INTRODUCTION

Domain-Specific Languages (DSLs) are languages explicitly
tailored for a given concern, providing abstractions and nota-
tions closely related to the concepts manipulated by domain
experts. DSLs can serve to produce either programs or mod-
els1, i.e. abstractions of real systems. Using DSLs has multiple
benefits, such as enhanced productivity thanks to the reduction
of implementation details, or clearer communication between
the actors involved in the development [1]. In addition, DSLs
often come with their own set of tools, further improving
productivity and ease of use. Still, the ad-hoc implementation
of specialized tooling has a high development cost.

Part of this cost comes from the effort of integrating
language tooling in existing user interfaces (UIs). A possible
solution to address this cost is protocol-based communication
between the UI and an independent component responsible

1Literature sometimes differentiates between Domain-Specific Languages
(DSLs) and Domain-Specific Modeling Languages (DSMLs). We don’t judge
this distinction necessary in this paper: since all DSMLs are DSLs, findings
related to DSLs presented in this work are also applicable to DSMLs.

for language logic. This structure presents benefits both for
toolmakers and language engineers:

• By using these protocols, a UI automatically supports all
languages that provide the proper services, independently
of each language implementation.

• By providing the correct services, a language can directly
be supported by all UIs able to communicate through
these protocols, allowing for a better adoption. Addition-
ally, instead of each UI having its own implementation
of the internal logic of the language, they all rely on the
same component, improving overall consistency.

Two notable examples of such protocol-based approaches are
the Language Server Protocol [2] (LSP), focused on textual
editing, and the Debug Adapter Protocol [3] (DAP), tailored
for debugging. LSP in particular had a considerable impact
on the IDE ecosystem, with a wide range of compatible IDEs
and language servers available2. However, these protocols are
geared towards imperative, object-oriented General Purpose
Languages (GPLs). As such, their usage for DSL tooling may
be hindered by an intrinsic bias. Providing DSLs access to
these protocols would greatly reduce the implementation effort
of their associated tooling, but the suitability of LSP and DAP
for DSLs has not yet been formally studied.

In this work, we propose a review of these two protocols,
in which we focus on the following concerns: 1) providing a
high-level, concise reading grid to improve the understanding
of these protocols; and 2) assessing the suitability of these
protocols for the development of DSL tooling. To achieve these
goals, we provide a classification of the services contained
in the protocols. This classification of services is based on
multiple criteria, such as the language concepts they rely on,
their relation to concrete syntax and their mandatoriness.

The remainder of this paper is structured as follows: we
provide in Section II further background on domain-specific
tooling and protocol-based architectures. Section III describes
the process used in our review of LSP and DAP, and shows the
results obtained. We use these results in Section IV to discuss
the relevance of the considered protocols for the development
of DSL tooling. Finally, we position this paper w.r.t. related

2https://langserver.org/



work in Section V, and Section VI concludes by highlighting
key results and bringing up future research possibilities.

II. BACKGROUND

In this section, we further describe the activities for which
LSP and DAP were created—i.e. textual editing and interactive
debugging—and explore the specificities of such activities
when applied to DSLs. We also provide an overview of the
idea behind protocol-based approaches for language tooling.

A. Domain-Specific Tooling

To help programers with their time-consuming and error-
prone activity, multiple techniques and helpers have been
adopted over the years.

One aspect of programing impacted by such tooling is
textual editing, which is the practice of writing programs
through a textual concrete syntax. Operations provided by
textual editing tooling is affected by the domain of each
language. For GPLs, common operations can be identified
and are usually provided by language tooling: these include
auto-completion, go-to operations, and renaming facilities. In
addition, languages manipulating other concepts may benefit
from more advanced operations. For object-oriented GPLs, a
typical specific operation is to display and / or manipulate
the type hierarchy of a class. For a State Machine DSL, a
specific ”Remove State” operation would remove both the state
declaration and all existing transitions referencing this state.

Another aspect is debugging, i.e. the process of under-
standing the execution of a program, often in an attempt to
find and fix bugs. This process can be interactive [4], which
means it takes place during the execution of the program itself.
Multiple features are very commonly found in debuggers for
GPLs. Control over the execution is usually handled through
a Pause and Continue operator, as well as stepping operators.
Breakpoints are conditions that can be apposed to a program,
and pause the execution when verified. However, these usual
operations may again not be sufficient for DSLs. Chiş et
al. [5] implement domain-specific debugging operations for
mutiple DSLs: a diff view is implemented for the testing
language SUnit, comparing expected and actual results; a
variety of stepping operators are provided for the parsing
language PetitParser, for instance to step until a production
is reached, or until an input matching failure is reached.

B. Protocol-Based Architecture

Language tooling has recently seen a surge in interest for
protocol-based architectures, following the foundations laid
by LSP. The main idea behind this approach is to sepa-
rate language tooling in two distinct components: a reusable
component responsible for handling language logic, and a
UI through which end-users can trigger operations exposed
by the first component. This separation presents important
benefits in terms of reuse: languages and UIs alike only have
to implement communication through a given protocol once.
Additionaly, these protocols usually communicate through the

network. This allows for UIs and languages existing in dif-
ferent technological spaces to interact with each other without
further difficulties. For instance, the Eclipse IDE implemented
in Java can easily communicate with the implementation of
LSP for the Typescript language (itself written in Typescript).

LSP and DAP are notable examples of such protocols, but
others have also emegerged: the Graphical Language Server
Protocol [6] (GLSP) is geared towards editing for graphical
languages; the Build Server Protocol [7] (BSP) handles the
build process for different phases, such as compiling, execu-
tion or testing.

III. PROTOCOLS REVIEW

This section presents the results of our evaluation of both
LSP and DAP regarding our research questions. We begin
by describing the review process followed to conduct this
evaluation, then we present the results obtained for the two
protocols.

A. Review Process

Fig. 1 presents the methodology followed for our analysis of
LSP and DAP. The different steps depicted in this methodology
are all based on manually inspecting the specification of each
protocol. In these protocols, services are provided either by
the UI or by the server (i.e. language server for LSP or debug
adapter for DAP). We include both kinds of services in our
review, which begins with four independent steps.

First, we identify the services that must always be provided
(either by the UI or the server), and those that are com-
pletely optional. This classification is achieved by examining
capabilities, a notion present in both protocols. Capabilities
are exchanged during the initialization of the communication;
the UI and the language can declare whether they implement
some services or not. Capabilities are data structures tied to
one or multiple services. Through the attributes present in
a capability, a component can declare whether its associated
services are implemented or not. We consider that a server-
side service is mandatory if it has no associated capability
that can be declared by the server. We consider that a UI-
side service is mandatory if a mandatory server-side behavior
relies on it. Additionally, if a service A has no associated
capability but can only be called if an optional service B is
called before, then service A is also considered optional. This
is for instance the case for the Cancel Work Done Progress
LSP service, which requires Create Work Done Progress to be
called before.

We also identify services that are dependent on concrete
syntax. Some of these services are tied to the concrete
representation of a program through the arguments of either
their request or response. More specifically, LSP and DAP
were designed to work with programs relying on a textual
syntax; this requirement might influence the suitability of
these protocols for languages using other forms of concrete
representation. Therefore, we specify for each service whether
they are dependent on concrete syntax or not. A service is
considered dependent on concrete syntax if it has at least one



Identify mandatory
and optional services

Identify services
dependent on the

concrete syntax from
their data structures

Identify language concepts
manipulated by each service,
from their data structures and

their semantics

Extract the dependency
graph of the services from

the protocol's data structures
and its semantics

Infer transitive information for
each service, about language
concepts and concrete syntax

dependency

Fig. 1. Overview of the review process.

mandatory attribute related to textual syntax, such as a location
expressed in terms of line and/or column, a range, or a portion
of code encoded as a string. It is also considered dependent
on concrete syntax if its semantics clearly mention such
dependency, e.g. the text document synchronization services of
LSP. A service is considered partially dependent on concrete
syntax if the only arguments related to textual syntax are
either optional attributes, or mandatory attributes that have a
default value that will result in them being ignored. Finally,
a service is considered agnostic of concrete syntax if none of
its attributes are related to textual syntax.

In addition, we identify the concepts that are required from
a language in order for this language to be able to implement
each service. For instance, in the LSP evaluation, there is a
group of services that require no specific language concept;
there is another group for services that require the presence
of callable elements, such as functions. A service can require
a language concept for multiple reasons: first, a mandatory
attribute referencing the required concept is present in the
request or response of the service. As such, the StackTrace
DAP service requires the notion of threads since this service
takes a thread ID as an attribute in its arguments. Second,
the required concept is mandated by the semantics of the
service. For instance, the DAP service StepInTargets does not
explicitely mention functions in its arguments. However, the
only purpose of this service is to return targets that the StepIn
service can optionally use to specify a target to step in.

Furthermore, we draw a graph of the dependencies between
the services of each protocol. A service A is dependent on
another service B if B must be called before A. We determine
these dependencies either when they are explicitly mentioned
in the semantics of the protocol, or when a service requires
an argument that can only be retrieved by calling another
specific service. As an example, DAP contains a number of
services which require a thread ID as argument; this ID must
correspond to the ID of one of the threads returned by the

Threads service. We then consider those services to depend
on the Threads service.

Once we have completed the last three steps, we can
infer transitive information for each service based on its
dependencies. The first information we infer revolves around
concrete syntax. A service is considered transitively dependent
on concrete syntax if itself or at least one of the services it
depends on is completely dependent on concrete syntax. Oth-
erwise, a service is considered transitively partially dependent
on concrete syntax if itself or at least one of the services
it depends on is partially dependent on concrete syntax (and
the service is not transitively dependent on concrete syntax).
The second inferred information is about required language
concepts. A service transitively requires a language concept
if itself or at least one of the services it depends on directly
requires this concept.

Finally, when all the previous steps are achieved, we simply
aggregate all the previously gathered results in a complete
classification of services.

B. Language Server Protocol

This review is based on version 3.17 of LSP3. The spec-
ification of LSP already provides a set of categories for its
different services:

• Lifecycle Messages: Services related to the start and
shutdown of the language server by the client, as well
as the declaration of capabilities.

• Document Synchronization: Services related to the syn-
chronization between the state stored by the language
server and the state of the text (or notebook) document.

• Workspace Features: Services related to workspace-wide
operations, such as file creation, folder navigation, etc...

• Window Features: Services related to window-specific
operations, such as logging or progress tracking.

3https://microsoft.github.io/language-server-
protocol/specifications/lsp/3.17/specification/



• Language Features: Services related to language-specific
operations.

We review LSP services from all the aformentioned cate-
gories.

1) Identified Language Concepts: In this section, we de-
scribe the language concepts identified during our review of
the aformentioned LSP services.

Executability: These services are only relevant to languages
with execution semantics. More specifically, the language
should be able to evaluate part of a program and return a
value that can then be manipulated by the UI.

Element Referencing: These services are relevant to lan-
guages that can declare elements and reference them at other
places in the code through a name binding. For instance, there
are a number of Go to operations that bring the focus of the
editor to either the declaration, definition or implementation
of a specific element.

Type Definition: These services only fit languages that
allow custom type definition. This type definition can be as
simple as declaring an alias for a base type, or propose more
advanced features such as fields definition or even operations
definition as in object-oriented programming.

Callable Elements: These services require the definition of
elements (e.g. functions) that can be called from other places
in the code.

Resource Linking: These services need the language to
support links to external resources, such as a website or
another file.

Import / Export: These services requires the language to
support the import and export of source code from other files,
either partially or entirely.

Color Referencing: These services are relevant to lan-
guages where color can be referenced. They are relevant for
a UI to directly display a color next to its reference, or even
present the user with a color picker.

2) Services Dependencies: Fig. 2 shows the dependency
graph of the considered LSP services. We can identify multiple
dependencies that follow the same patterns.

First, there exist multiple Refresh services; they simply
trigger a new call to another target service. As such, the
target service must be implemented in order for the associated
Refresh service to have any meaningful effect.

Another group of services involves Prepare services; they
perform some preliminary task in order for their target service
to be called.

Finally, Resolve services compute additional information for
a response obtained from a previous call to another service.

There also exist a slightly more complex dependency struc-
ture for text document synchronization, during which an order
must be respected.

It is interesting to note that there exists a single explicit
dependency between the two protocols. The Inline Value LSP
services computes the value of an expression in a given
context, which can then be displayed in the editor. The context
that is passed to the language during this request directly
references a stack frame as defined in DAP.

3) Results: Table I presents the results of our review for
the Language Features LSP services, following the process
presented at the beginning of this section. The first column
lists all the evaluated services, taken from the Language
Features group presented in the specification of the protocol.
The second column highlights whether the service is provided
by the language server or UI. The third and fourth columns
reflect the concepts a language must manipulate, either directly
or indirectly, in order to be able to implement the service
specified in the first column. Transitive dependencies on such
concepts are the union of direct and indirect dependencies.
Following the same logic, the fifth and sixth columns provide
information about the direct and transitive dependency of a
service to concrete syntax. Finally, the last column determines
whether a service is mandatory or not.

Table II presents the result of our review for the remaining
LSP services. It follows the same structure as Table I, but
contains an additional column specifying the category to which
a service belongs.

C. Debug Adapter Protocol

This review is based on version 1.61 of the protocol4.
1) Identified Language Concepts: In this section, we de-

scribe the language concepts identified during our review
of DAP services. While not explicitely mentioned in the
presented data, we consider that only executable languages
can benefit from DAP.

Steps: These services can be implemented by languages
with a notion of steps. Steps are transitions between coherent
runtime states of a program. It can be argued that every
executable language can define steps. However, for a language
with only a single step in each program, services that require
multiple steps have no interest.

Expressions: These services only work if a language sup-
ports expressions, i.e. part of a program that can be individu-
ally evaluated.

Scopes: Languages must support scoping in order to im-
plement these services. Scopes can be defined as a portion of
code in which a name binding is valid.

Threads: These services expect the language to be able to
list the threads a program is currently being executed on.

Stack: To implement these services, a language must ma-
nipulate concepts related to an execution stack, such as stack
traces or frames.

Variables: These services are relevant for languages allow-
ing the use of variables. Variables are very broadly defined in
DAP as a key/value pair. These pairs can be used to represent
arbitrary concepts in a language, but are commonly used for
properties, methods, classes, etc.

Modules: These services can be implemented by languages
that can use modules, i.e. external executable files.

Disassembly: These services are relevant for languages
whose source code can be translated to disassembled instruc-
tions (e.g. machine code or bytecode).

4https://microsoft.github.io/debug-adapter-protocol/specification



Document Link Document Link
Resolve

Prepare Call
Hierarchy

Call Hierarchy
Incoming Calls

Call Hierarchy
Outgoing Calls

Prepare Type
Hierarchy

Type Hierarchy 
Super Types

Type Hierarchy 
Sub Types

Code Lens Code Lens
Refresh

Code Action Code Action 
Resolve

Pull Diagnostics
(Document)

Diagnostics
Refresh

Pull Diagnostics
(Workspace)

Inlay Hint

Inlay Hint
Resolve

Inlay Hint
RefreshInline Value Inline Value 

Refresh

Prepare 
Rename Rename

Did Open 
Text Document

Did Change 
Text Document

Will Save 
Text Document

Will Save 
Wait Until 

Text Document

Did Close
Text Document

Did Save 
Text Document

Did Open 
Notebook
Document

Did Change 
Notebook
Document

Did Close
Notebook
Document

Did Save 
Notebook
Document

Workspace
Symbols

Workspace
Symbol Resolve

Register
Capability

Did Change
Watched Files

Create Work 
Done Progress

Cancel Work 
Done Progress

mandatory

at least 1 of

Initialize All
Services

Fig. 2. Dependency graph for LSP services.

Memory Access: Only languages that can directly read
bytes from and write bytes to the memory can implement these
services.

Functions: These services are relevant for languages allow-
ing the use of functions.

Exceptions: These services are relevant for languages with
support for exception throwing, i.e. an event halting the
normal execution of a program. It also presents a specific data
structure holding more detailed information. When unhandled,
such event results in the brutal stop of the running program,
but most languages offer structures to gracefully process
exceptions in code without interrupting the execution.

Backwards Execution: These services are meant for lan-
guages that support backwards execution. For a language to
support backwards execution, each operation contained in said
language must be reversible in some way, e.g. possibility to
undo the operation or to roll back to the state before said
operation. Supporting backwards execution may be especially
difficult for languages with side effects, such as message
exchanges or database modifications.

2) Services Dependencies: Fig. 3 shows the dependency
graph of the DAP services. The central services that can be
identified are the ones called to fill the variables view of the
UI: Threads, StackTrace, Scopes and Variables. DataBreak-
pointInfo has an optional dependency to Variables because it
relies either on Expressions or Variables language concepts.
Since expressions are simply encoded as strings in this service,
there is no dependency to other services if DataBreakpointInfo

relies on Expressions. If it relies on Variables however,
it must reference one via an identifier given as a response
of the Variables service. SetInstructionBreakpoints5 must be
passed either a reference to a disassembled instruction or a
memory reference. These references can be obtained through
different services, one of which must be implemented in
order to support SetInstructionBreakpoints. Notifications for
the update or end of a progress must contain the ID of the
corresponding progress, created in ProgressStart. Finally, a
Stopped notification can only happen if the execution was
unfolding, which can be the result of different services.

3) Results: Table III presents the results of our review
of DAP, following the process presented at the beginning of
this section. The first column lists all the evaluated services,
which are all the requests listed in the specification. The
second column highlights whether the service is provided by
the debug adapter or the UI. The third and fourth columns
reflect the concepts a language must manipulate, either directly
or indirectly, in order to be able to implement the service
specified in the first column. Transitive dependencies are the
union of direct and indirect dependencies. The fifth and sixth
columns provide information about the direct and transitive
dependency of a service to concrete syntax. Finally, the last
column determines whether a service is mandatory or not.

5Not to be confused with the SetBreakpoints service that applies breakpoints
to the program’s source code, whereas SetInstructionBreakpoints works on
underlying disassembled instructions.



TABLE I
CLASSIFICATION OF Language Features LSP SERVICES.

•: YES, ◦: NO, ∼: PARTIALLY
UI: USER INTERFACE, LS: LANGUAGE SERVER

Service Provided By
Required Language Concrete Syntax

MandatoryConcepts Dependent
Direct Indirect Direct Transitive

Hover LS ∅ ∅ • • ◦
Completion Proposals LS ∅ ∅ • • ◦

Completion Item Resolve LS ∅ ∅ • • ◦
Pull Diagnostics (Document) LS ∅ ∅ • • ◦
Pull Diagnostics (Workspace) LS ∅ ∅ • • ◦

Folding Range LS ∅ ∅ • • ◦
Selection Range LS ∅ ∅ • • ◦

Formatting LS ∅ ∅ • • ◦
On type Formatting LS ∅ ∅ • • ◦
Range Formatting LS ∅ ∅ • • ◦

Linked Editing Range LS ∅ ∅ • • ◦
Inlay Hint LS ∅ ∅ • • ◦

Inlay Hint Resolve LS ∅ ∅ • • ◦
Code Lens LS ∅ ∅ • • ◦

Document Symbols LS ∅ ∅ • • ◦
Semantic Tokens (Full) LS ∅ ∅ • • ◦

Semantic Tokens (Full Delta) LS ∅ ∅ • • ◦
Semantic Tokens (Range) LS ∅ ∅ • • ◦

Code Action LS ∅ ∅ • • ◦
Code Action Resolve LS ∅ ∅ ∼ • ◦
Publish Diagnostics UI ∅ ∅ • • ◦
Diagnostics Refresh UI ∅ ∅ ◦ • ◦
Inlay Hint Refresh UI ∅ ∅ ◦ • ◦
Code Lens Refresh UI ∅ ∅ ◦ • ◦

Semantic Tokens Refresh UI ∅ ∅ ◦ • ◦
Inline Value LS Executability ∅ • • ◦

Inline Value Refresh UI Executability ∅ • • ◦
Go to Declaration LS Element Referencing ∅ • • ◦
Go to Definition LS Element Referencing ∅ • • ◦

Go to Implementation LS Element Referencing ∅ • • ◦
Find References LS Element Referencing ∅ • • ◦

Document Highlight LS Element Referencing ∅ • • ◦
Rename LS Element Referencing ∅ • • ◦

Prepare Rename LS Element Referencing ∅ • • ◦
Prepare Type Hierarchy LS Type Definition ∅ • • ◦

Type Hierarchy Super Types LS Type Definition ∅ • • ◦
Type Hierarchy Sub Types LS Type Definition ∅ • • ◦

Prepare Call Hierarchy LS Callable Elements ∅ • • ◦
Call Hierarchy Incoming Calls LS Callable Elements ∅ • • ◦
Call Hierarchy Outgoing Calls LS Callable Elements ∅ • • ◦

Signature Help LS Callable Elements ∅ • • ◦
Document Link LS Resource Linking ∅ • • ◦

Document Link Resolve LS Resource Linking ∅ • • ◦
Moniker LS Import / Export ∅ • • ◦

Document Color LS Color Referencing ∅ • • ◦
Color Presentation LS Color Referencing ∅ • • ◦

Go to Type Definition LS Element Referencing ∅ • • ◦∧ Type Definition

IV. DISCUSSION

In this section, we further discuss the implications of the
results highlighted in Section III about the suitability of both
LSP and DAP for DSL tooling. Tables IV and V respectively
present an aggregation of numerical results for our review of
LSP and DAP.

We identify two reasons that may hinder the implementation
of certain services for some DSLs: required language concepts
and concrete syntax dependency. The first aspect refers to the
fact that different services require the language to manipulate
specific concepts, which may not all be supported by every

DSL. Regarding LSP, 79% the services require no distinctive
concepts. However, this concerns only about half of the
services related to Language Features. For DAP, this part drops
to 38%. In addition, if mandatory services of a protocol rely
on specific concepts, then any DSL needs to include those
concepts to be able to use the protocol. For LSP, the identified
mandatory services do not require any distinctive concept.
DAP however defines numerous mandatory services, together
relying on the concepts of Steps, Threads, Stack, Scopes,
Variables, Expressions and Functions.

The second aspect concerns the dependency of some ser-



TABLE II
CLASSIFICATION OF OTHER LSP SERVICES.

•: YES, ◦: NO, ∼: PARTIALLY
UI: USER INTERFACE, LS: LANGUAGE SERVER

Category Service Provided By
Required Language Concrete Syntax

MandatoryConcepts Dependent
Direct Indirect Direct Transitive

Lifecycle

Initialize LS ∅ ∅ • • •

Messages

Initialized LS ∅ ∅ ◦ • •
Set Trace LS ∅ ∅ ◦ • •
Shutdown LS ∅ ∅ ◦ • •

Exit LS ∅ ∅ ◦ • •
Log Trace UI ∅ ∅ ◦ • •

Register Capability UI ∅ ∅ ◦ • ◦
Unregister Capability UI ∅ ∅ ◦ • ◦

Document

Did Open Text Document LS ∅ ∅ • • ◦

Synchronization

Did Change Text Document LS ∅ ∅ • • ◦
Will Save Text Document LS ∅ ∅ • • ◦

Will Save Wait Until Text Document LS ∅ ∅ • • ◦
Did Save Text Document LS ∅ ∅ • • ◦
Did Close Text Document LS ∅ ∅ • • ◦

Did Open Notebook Document LS ∅ ∅ • • ◦
Did Change Notebook Document LS ∅ ∅ • • ◦

Did Save Notebook Document LS ∅ ∅ • • ◦
Did Close Notebook Document LS ∅ ∅ • • ◦

Workspace

Did Change Configuration LS ∅ ∅ ◦ • •

Features

Workspace Symbols LS ∅ ∅ ◦ • ◦
Workspace Symbol Resolve LS ∅ ∅ ◦ • ◦

Did Change Workspace Folders LS ∅ ∅ ◦ • ◦
Will Create Files LS ∅ ∅ ◦ • ◦
Did Create Files LS ∅ ∅ ◦ • ◦

Will Rename Files LS ∅ ∅ ◦ • ◦
Did Rename Files LS ∅ ∅ ◦ • ◦
Will Delete Files LS ∅ ∅ ◦ • ◦
Did Delete Files LS ∅ ∅ ◦ • ◦

Did Change Watched Files LS ∅ ∅ ◦ • ◦
Execute Command LS ∅ ∅ ◦ • ◦

Apply Edit UI ∅ ∅ ∼ • ◦
Configuration UI ∅ ∅ ◦ • ◦

Workspace Folders UI ∅ ∅ ◦ • ◦

Window

Cancel Work Done Progress LS ∅ ∅ ◦ • ◦

Features

Log Message UI ∅ ∅ ◦ • •
Show Message (Notification) UI ∅ ∅ ◦ • •

Telemetry UI ∅ ∅ ◦ • •
Show Message (Request) UI ∅ ∅ ◦ • ◦

Show Document UI ∅ ∅ ◦ • ◦
Create Work Done Progress UI ∅ ∅ ◦ • ◦

vices on the concrete textual syntax. While this type of
concrete representation is popular, there exist other kinds
of syntaxes that DSLs may rely on, such as graphical or
projectional. All LSP services are indirectly dependent on
concrete syntax since they all rely on the Initialize service,
which is itself dependent on the concrete syntax (notably to
set the encoding of documents). This makes sense, as the
protocol was explicitly developed for textual editing, but one
can question whether some commonalities can be found with
other editing protocols such as GLSP [6]. An increase in
the number of editing protocols means that it becomes more
costly for language engineers to interface with all of them.
For a language with both a textual and graphical syntax,
implementing both the LSP and GLSP interface may induce
some redundancy. It may be interesting to explore whether
an updated version of LSP could factorize services to support
editing for different kinds of concrete syntaxes. DAP only has

25% of its services directly relying (completely or partially) on
concrete syntax. However, since all DAP services depend on
the Initialize service, which is itself dependent on the concrete
syntax, then all services are indirectly dependent on concrete
syntax. This mandatory dependency to concrete syntax through
the Initialize service can be mitigated by simply ignoring the
proper attributes of this request on the language side (that is,
the attributes describing the UI’s offset for lines and columns),
but this requires to stray from the original semantics of the
protocol, a strategy discussed later on.

If for one of these reasons a DSL is not able to provide
a service, this will have a different impact depending on the
way this DSL implements the protocols. If the implementation
strictly conforms to the specification, then not implementing
a service will not have any negative effect as long as it is
an optional service. Obviously, if a DSL decides to provide a
service that depends on other services, then those additional



GotoTargetsGoto

RestartFrame

StackTraceThreads

Scopes

Variables SetVariable

SetInstructionBreakpoints

Evaluate

ExceptionInfo DataBreakpointInfo

SetDataBreakpoints

StepInTargets
SetBreakpoints

SetFunctionBreakpoints

SetExceptionBreakpoints

mandatory

optional

at least 1 of

Initialize All 
ServicesProgressStart

ProgressUpdate

ProgressEnd

Launch

Attach

Next

StepIn

Restart

Stopped

ReverseContinue

Continue

StepBack

Fig. 3. Dependency graph for DAP services.

services must also be implemented. If a mandatory service
is not provided, then unpredictable effects may occur within
the UI. On the other hand, if the DSL implements LSP or
DAP in a looser way, it might be able to provide services
which may seem impossible to implement when conforming
strictly to the specification. One strategy is to use mock values
to fake support for some language concepts. For instance,
support for threads in DAP may be mocked by pretending
to have a single thread returned by the Threads service, and
then referenced in other services requiring threads. Still, this
approach may produce unpredictable results within the UI, as
it treats the returned values according to the specification. For
instance, for a language that does not manipulate the notion
of thread, providing a single mock thread in order to fill the
variables view will still result in this thread being displayed
as a ”real” thread, which may cause some confusion for the
end-user. Another strategy is to provide a mapping between
concepts present in the language to concepts manipulated by
the protocol. For example, a DSL can use the Variables DAP
service to communicate values other than variables as usually
understood in GPLs, such as the states of a state machine
as implemented in [8]. However, these values may still be
manipulated as such by the UI and still be referenced as
variables.

It is interesting to note that through the Code Action service,
LSP provides a certain level of flexibility that allows language
engineers to define domain-specific editing operations. For
instance, the ”Remove State” operation presented in Section
II could be implemented using this mechanism. Still, not all
operations can be added this way: as an example, complex
workflows that do not consist of a single request to the
language server are not supported by this approach, as it would
require to change the implementation of LSP in UIs in order to
properly handle the additional requests and / or computation.
In contrast, DAP does not provide any mechanism to easily
configure new domain-specific debugging operations. For in-

stance, the PetitParser DSL mentioned in Section II cannot rely
on DAP to provide debugging operations related to parsing
rules, production or input matching.

We can also point out a strong imbalance between LSP
and DAP in terms of service coupling, as clearly shown by
comparing Fig. 2 and 3. The evaluated LSP services have a
maximum of two degree of dependency, i.e. they transitively
depend on a maximum of two services. In the other hand,
DAP presents an overall more complex structure, containing
services with higher degrees of dependency or having optional
dependencies. Because of this, mocking or mapping DSL
concepts for this protocol can have complex repercussions on
other services.

V. RELATED WORK

Barros et al. [9] mined through existing implementations of
LSP by languages and extracted common practices. The au-
thors do broadly classify the languages they work with—using
terms such as ”imperative”, ”declarative” or ”functional”—
and explore the correlation between these paradigms and
implemented services. However, they do not provide an in-
depth analysis of the underlying fine-grained concepts present
in each language. In the same way, the authors also highlight
services that are often implemented together, but do not rely
on the specification of the protocol.

Bünder et al. [10] review the integration of LSP for XText
projects by performing a case study and conduct a SWOT
analysis for the XText LSP integration, supported by the
mining of multiple existing projects. This work does not
provide any classification of the examinated DSLs, and offers
no discussion about the LSP protocol itself.

Jeanjean et al. [11] propose a vision where the features of
IDEs are dynamically configured by the languages they are
currently working with. LSP and DAP enable some level of
configurability, especially through capabilities. However, as
discussed earlier, their configurability is limited and would



TABLE III
CLASSIFICATION OF DAP SERVICES.

•: YES, ◦: NO, ∼: PARTIALLY
UI: USER INTERFACE, DA: DEBUG ADAPTER

Service Provided By
Required Language Concrete Syntax

MandatoryConcepts Dependent
Direct Indirect Direct Transitive

Initialize DA ∅ ∅ • • •
Source DA ∅ ∅ • • •
Launch DA ∅ ∅ ◦ • •
Attach DA ∅ ∅ ◦ • •

Disconnect DA ∅ ∅ ◦ • •
Cancel DA ∅ ∅ ◦ • •

Completions DA ∅ ∅ • • ◦
ConfigurationDone DA ∅ ∅ ◦ • ◦

Restart DA ∅ ∅ ◦ • ◦
Terminate DA ∅ ∅ ◦ • ◦

LoadedSources DA ∅ ∅ ◦ • ◦
Output UI ∅ ∅ • • •
Process UI ∅ ∅ ◦ • •

Initialized UI ∅ ∅ ◦ • •
Exited UI ∅ ∅ ◦ • •

Terminated UI ∅ ∅ ◦ • •
LoadedSource UI ∅ ∅ ◦ • •
Capabilities UI ∅ ∅ ◦ • •

ProgressStart UI ∅ ∅ ◦ • ◦
ProgressUpdate UI ∅ ∅ ◦ • ◦

ProgressEnd UI ∅ ∅ ◦ • ◦
RunInTerminal UI ∅ ∅ ◦ • ◦
StartDebugging UI ∅ ∅ ◦ • ◦
SetBreakpoints DA Steps ∅ • • •

BreakpointLocations DA Steps ∅ • • ◦
GotoTargets DA Steps ∅ • • ◦
Breakpoint UI Steps ∅ ◦ • •

Threads DA Threads ∅ ◦ • •
TerminateThreads DA Threads ∅ ◦ • ◦

Stopped UI Threads ∅ ◦ • •
Continued UI Threads ∅ ◦ • •

Thread UI Threads ∅ ◦ • •
Invalidated UI Threads ∅ ◦ • ◦

RestartFrame DA Stack Threads ◦ • ◦

Variables DA Variables Scopes ∧ Stack ◦ • •∧ Threads

SetVariable DA Variables Scopes ∧ Stack ◦ • ◦∧ Threads
Modules DA Modules ∅ ◦ • ◦
Module UI Modules ∅ ◦ • •

Disassemble DA Disassembly ∅ ∼ • ◦
ReadMemory DA Memory Access ∅ ◦ • ◦
WriteMemory DA Memory Access ∅ ◦ • ◦

Memory UI Memory Access ∅ ◦ • ◦
Evaluate DA Expressions ∧ Scopes ∅ ◦ • •

SetExpression DA Expressions ∧ Scopes ∅ ◦ • ◦
ExceptionInfo DA Exceptions ∧ Threads ∅ ◦ • ◦

StackTrace DA Stack ∧ Threads ∅ ∼ • •
Scopes DA Stack ∧ Scopes Threads ∼ • •
Pause DA Steps ∧ Threads ∅ ◦ • •
Next DA Steps ∧ Threads ∅ ◦ • •

Continue DA Steps ∧ Threads ∅ ◦ • •
Goto DA Steps ∧ Threads ∅ ◦ • ◦

SetInstructionBreakpoints DA Steps ∧ Disassembly ∅ ∼ • ◦
SetFunctionBreakpoints DA Steps ∧ Functions ∅ ∼ • ◦
SetExceptionBreakpoints DA Steps ∧ Exceptions ∅ ∼ • ◦

SetDataBreakpoints DA Steps ∧ (Expressions ∨ Variables) ∅ ∨ (Threads ∼ • ◦∧ Stack ∧ Scopes)

DataBreakpointInfo DA Steps ∧ (Expressions ∨ Variables) ∅ ∨ (Threads ◦ • ◦∧ Stack ∧ Scopes)
StepBack DA Steps ∧ Threads ∧ Backwards Execution ∅ ◦ • ◦

ReverseContinue DA Steps ∧ Threads ∧ Backwards Execution ∅ ◦ • ◦
StepIn DA Steps ∧ Threads ∧ Functions ∅ ∨ Stack ◦ • •

StepOut DA Steps ∧ Threads ∧ Functions ∅ ◦ • •
StepInTargets DA Steps ∧ Stack ∧ Functions Threads ∼ • ◦



TABLE IV
NUMERICAL RESULTS AGGREGATION FOR THE LSP EVALUATION

Metric Number of
affected services

Evaluated Services 87

Mandatory Services Mandatory 10 (11%)
Optional 77 (89%)

Concrete Syntax Yes 87 (100%)
Dependent Services Partially 0 (0%)

(Transitive) No 0 (0%)

Required

∅ 69 (79%)

Language Concepts

Element Referencing 8 (9%)

(Transitive)

Type Definition 4 (5%)
Callable Elements 4 (5%)

Executable 2 (2%)
Resource Linking 2 (2%)
Color Referencing 2 (2%)

Import / Export 1 (1%)

TABLE V
NUMERICAL RESULTS AGGREGATION FOR THE DAP EVALUATION

Metric Number of
affected services

Evaluated Services 61

Mandatory Services Mandatory 29 (48%)
Optional 32 (52%)

Concrete Syntax Yes 61 (100%)
Dependent Services Partially 0 (0%)

(Transitive) No 0 (0%)

Required

∅ 23 (38%)

Language Concepts

Threads 21-23 (34-38%)

(Transitive)

Steps 18 (30%)
Stack 6-9 (10-15%)

Scopes 5-7 (8-11%)
Functions 4 (7%)

Memory Access 3 (5%)
Expressions 2-4 (3-7%)

Variables 2-4 (3-7%)
Disassembly 2 (3%)
Exceptions 2 (3%)

Backwards Execution 2 (3%)
Modules 2 (3%)

benefit in this regard from the approach proposed in the
aforementioned paper.

Multiple papers also present the work of interfacing given
languages with LSP or DAP. Bour et al. [12] report on
their experience of implementing LSP support for OCaml, a
functional programming language. Sander [13] describe the
implementation of LSP services for the Nickel configuration
language. Our work is based on a careful inspection of the
specification of both LSP and DAP, and does not rely on
existing implementations by DSLs.

Finally, some papers propose an extension to these protocols
to support new features related to a given domain. Karmios et
al. [14] extend DAP to support operations related to symbolic
execution, and apply this new protocol to integrate a debugger
within the Gillian platform. Ernst et al. [15] specify new
semantics for a subset of DAP to enable support for deduc-
tive verification, and apply this specification to implement a
debugger for SecC, a program verifier for C. Rask et al. [16]
provide an extension to LSP in order to support additional
operations for specification languages, such as code generation

or theorem proving. In this paper, we describe the purpose,
properties and limitations of existing LSP and DAP services,
but do not propose any extension nor modification to take
advantage of other language concepts.

VI. CONCLUSION

In this work, we proposed a qualitative review of both LSP
and DAP, based on an analysis of their respective specifi-
cation. This review allowed us to provide an overview of
the functioning of these protocols, as well as a more fine-
grained analysis at the service level. We identified some key
aspects that limit the ability of DSLs to interface with LSP
and DAP. Most notably, a number of services rely on specific
language concepts that may not be part of every DSL. On the
other side, additional concepts manipulated by DSLs cannot be
taken advantage of through these protocols to provide related
domain-specific operations.

Multiple research perspectives are highlighted by this work:
• Is it possible to decouple concrete syntax from the rest

of the protocol in LSP and DAP? This would make it
easier to integrate new paradigms, such as graphical or
projectional syntaxes, and would limit the appearance of
new, concurrent protocols like GLSP6.

• An empirical study about the current practices to im-
plement LSP and DAP for DSLs could be performed
on existing tools. This study could highlight common
strategies to deal with the bias present in these protocols.
This differs from [9], where the authors look at which
LSP services are implemented by different languages, but
do not discuss the changes to the original LSP semantics
that were made in order to implement those services.

• Finally, it would be interesting to reflect on how to use
those protocols to provide domain-specific operations for
a broader panel of languages. This work was already
started in [8], which proposes a new architecture for
creating configurable interactive debuggers for DSLs,
applied to the support of domain-specific breakpoints.
This work can be extended to include other domain-
specific debugging operations—such as domain-specific
steps or configuration of the variables view—and to
support other execution paradigms like non-determinism
and parallelism.

REFERENCES

[1] M. Voelter, S. Benz, C. Dietrich, B. Engelmann, M. Helander, L. C. L.
Kats, E. Visser, and G. Wachsmuth, DSL Engineering - Designing,
Implementing and Using Domain-Specific Languages. dslbook.org,
2013.

[2] Microsoft, “Official page for Language Server Protocol,”
https://microsoft.github.io/language-server-protocol/, 2023.

[3] ——, “Official page for Debug Adapter Protocol,”
https://microsoft.github.io/debug-adapter-protocol/, 2023.

[4] A. Zeller, “How debuggers work,” in The Debugging Book. CISPA
Helmholtz Center for Information Security, 2023, retrieved 2023-01-06
17:58:51+01:00. [Online]. Available: https://www.debuggingbook.org/
html/Debugger.html

6https://www.eclipse.org/glsp/



[5] A. Chiş, T. Gı̂rba, and O. Nierstrasz, “The moldable debugger: A
framework for developing domain-specific debuggers,” in International
Conference on Software Language Engineering. Springer, 2014, pp.
102–121.

[6] Eclipse Fundation, “GLSP,” https://www.eclipse.org/glsp/.
[7] Build Server Protocol, “Build Server Protocol,” https://build-server-

protocol.github.io/.
[8] J. Enet, E. Bousse, M. Tisi, and G. Sunyé, “Protocol-Based Interactive

Debugging for Domain-Specific Languages.” The Journal of Object
Technology, vol. 22, no. 2, p. 2:1, 2023.

[9] D. Barros, S. Peldszus, W. K. G. Assunção, and T. Berger, “Editing
Support for Software Languages: Implementation Practices in Language
Server Protocols,” in Proceedings of the 25th International Conference
on Model Driven Engineering Languages and Systems, 2022, pp. 232–
243.

[10] H. Bünder and H. Kuchen, “Towards Multi-editor Support for Domain-
Specific Languages Utilizing the Language Server Protocol,” in Model-
Driven Engineering and Software Development, ser. Communications
in Computer and Information Science, S. Hammoudi, L. F. Pires, and
B. Selić, Eds. Cham: Springer International Publishing, 2020, pp. 225–
245.

[11] P. Jeanjean, B. Combemale, and O. Barais, “IDE as Code: Reifying
Language Protocols as First-Class Citizens,” in ISEC 2021: 14th In-
novations in Software Engineering Conference, Bhubaneswar, Odisha,
India, February 25-27, 2021, D. P. Mohapatra, S. Mishra, T. Clark,
A. Dubey, R. Sharma, and L. Kumar, Eds. ACM, 2021, pp. 23:1–23:5.

[12] F. Bour, T. Refis, and G. Scherer, “Merlin: A language server for
OCaml (experience report),” Proceedings of the ACM on Programming
Languages, vol. 2, no. ICFP, pp. 1–15, 2018.

[13] Y. Sander, “Design and Implementation of the Language Server Protocol
for the Nickel Language,” 2022.

[14] N. Karmios, S.-É. Ayoun, and P. Gardner, “Symbolic Debugging with
Gillian,” in Proceedings of the 1st ACM International Workshop on
Future Debugging Techniques, 2023, pp. 1–2.

[15] G. Ernst, J. Blau, and T. Murray, “Deductive Verification via the Debug
Adapter Protocol,” arXiv preprint arXiv:2108.02968, 2021.

[16] J. K. Rask, F. P. Madsen, N. Battle, H. D. Macedo, and P. G. Larsen,
“The specification language server protocol: A proposal for standardised
LSP extensions,” arXiv preprint arXiv:2108.02961, 2021.


