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ABSTRACT: Convergent routes to 1,3-dithiane-2-ones based on the radical addition of xanthates to alkenes possessing a suitably located 
(latent) leaving group are described. These can be converted into 1,2-dithiolanes by base mediated hydrolysis and oxidation. A broad variety 
of functional groups can be introduced and the process is modular, uses inexpensive starting materials and reagents, and is atom economical, 
since both sulfur atoms of the xanthate end up in the products. 
 

The sulfur-sulfur bond in disulfides is thermodynamically stable 
but kinetically labile in that it can be reversibly cleaved thermally, 
photochemically, by the action of thiyl radicals, or ionically by 
nucleophilic displacement with a thiol or a thiolate (Scheme 1a).1 
Redox combinations can also be used to switch between the thiol 
and the disulfide. These very useful features have been exploited by 
nature and by chemists to dynamically modify the structure of 
proteins and to produce adaptable materials that respond to various 
stimuli.2 One everyday application is the modification of hairstyles 
by straightening or curling the hair strands through cleavage and 
reformation of the disulfide bonds in hair proteins.  

The case of cyclic disulfides, especially 1,2-dithiolanes, is 
particularly interesting. This motif is present in asparagusic acid 1 
and a-lipoic acid 2 (Scheme 1b). The former was isolated from 
asparagus, whereas the latter is present is essentially all organisms 
and is extensively used as an over-the-counter dietary supplement, as 
a drug against diabetic neuropathy, and in dermatology and 
cosmetics.3 Interestingly, in the rather flat 5-membered disulfide, the 
lone pairs on the adjacent sulfur atoms are partially eclipsed 
(structure E in the box), whereas they are staggered in the 
homologous 6-membered disulfide (structure S in the box). The 
eclipsed disposition increases the electronic repulsion and weakens 
the S—S bond. Calorimetric measurements indicate 1,2-dithiolanes 
to be 3.7 kcal/mol less stable than the corresponding 1,2-dithianes.4a 
This translates into a 103 fold faster thiolate-disulfide exchange for 
the former as compared to the latter. 4b The ring strain present in 1,2-
dithiolanes 3 causes the equilibrium with the open-chain polymers 4 
to favor the latter.5 Furthermore, it was found that this equilibrium 
can be established under mild thermal or photochemical 
conditions.5a,b For instance, merely heating lipoic acid to 70 °C is 
sufficient to induce polymer formation 5c,d These observations have 
triggered numerous studies, especially from material scientists 

seeking to take advantage of these remarkable properties. 6 However, 
most of the work has revolved around commercially available lipoic 
and asparagusic acids and simple derivatives thereof, namely esters 
and amides. Comparatively little effort has been devoted to 
establishing generally applicable routes to such disulfides or their 
1,3-dithiol precursors. 
Scheme 1. Aspects of Disulfide and 1,3-Dithian-2-one Chemistry 

 
Broadly speaking, there are two main routes to these compounds. 

The first starts from 1,3-diols, which are converted into sulfonates or 
halides and substituted with a suitable sulfur nucleophile.7 
Treatment of 1,3 diols or their esters with thiourea under strongly 
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acidic conditions (HI or HBr) has also been reported.8 The second 
involves Michael addition of hydrogen sulfide or, more 
conveniently, a synthetic equivalent to unsaturated ketones and 
esters followed by reduction of the oxygen function to the alcohol, 
conversion into a leaving group and substitution with a sulfur 
nucleophile. 9 These approaches are relatively lengthy for accessing 
such rather simple structures and suffer from various limitations 
which have discouraged material scientists from going beyond lipoic 
acid and its derived esters and amides. Herein, we describe practical, 
modular routes to 1,3-dithiols protected as 1,3-dithian-2-ones. 
These are easily saponified into 1,3-dithiols and then oxidized to the 
corresponding 1,2-dithiolanes.  

Surprisingly, 1,3-dithian-2-ones have been seldom reported in the 
open literature. A search in REAXYS returned fewer than 10 such 
derivatives, essentially all prepared by reaction of 1,3-dithiols with 
carbonyl diimidazole. We accidentally discovered one such 
compound, 6, initially as a side-product while examining the radical 
additions of xanthate 5 to various alkenes, and later confirmed its 
formation by heating this substance alone in refluxing 
chlorobenzene (Scheme 1c).10b We have now found that this 
observation could be translated into a general synthesis of 1,3-
dithian-2-ones.  

Our route is outlined in Scheme 2. The radical addition of 
xanthate 7 to alkene 8 possessing a leaving group X (X = Br, OMs) 
in the homoallylic position gives rise to adduct 9.11 It is not necessary 
to isolate this intermediate; further heating of the reaction mixture 
completes the cyclization to afford dithianone 10 with concomitant 
loss of EtX. Fortunately, this second step does not interfere with the 
radical addition which is taking place concomitantly. The reactions 
were conducted in refluxing 1,2-dichloroethane (DCE) or ethyl 
acetate. Incidentally, it is fortunate in this respect that the formation 
of dithianedione 6 from xanthate 5 is sufficiently sluggish in these 
lower boiling solvents to allow the radical additions leading to a-
chloroketones to proceed without premature destruction of the 
starting xanthate.10b 
Scheme 2. Examples of 1,3-Dithian-2-ones 

 
The examples of 1,3-dithian-2-ones 10a-o and 11a-m displayed 

in Scheme 2 were prepared starting with two alkenes, 1-bromo-3-
butene 8 (X = H, R’ = H) and 1-mesyloxy-3-methyl-3-butene 8 (X= 
OMs, R’ = Me), respectively. The additions were initiated with 
dilauroyl peroxide (DLP) and 2 equivalents of alkene 8 were used. 
This one-pot synthesis of 1,3-dithian-2-ones allows the attachment 
of various functional groups, including ketones, nitriles, esters, 
lactones, thiolactones, nitriles, and tolerates the presence of 
aromatic bromides and iodides. This functionality can be 
subsequently exploited in myriad ionic and organometallic reactions 
to expand the diversity of the structures. Compounds 10o and 11m 
arise from a double radical addition and correspond to masked 
tetrathiols, which would be useful for making crosslinked polymers 
(cf., 4 in Scheme 2), strong chelators for the recovery of (heavy) 
metals, or multipronged anchors for the modification of metallic 
surfaces. 

The formation of 1,3-dithian-2-ones 10 and their conversion into 
the corresponding 1,2-dithiolanes 12 could also be accomplished in 
a one-pot procedure (Scheme 3). Thus, upon completion of the 
cyclization leading to dithianones 10, the cyclic dithiocarbonate is 
cleaved with potassium carbonate in cold methanol and the resulting 
dithiol (not shown) oxidized with manganese dioxide into 1,2-
dithiolanes 12. The overall (unoptimized) yield of dithiolanes 12a-
d is modest, possibly because of competing formation of 
polydisulfide polymer (cf., 4 in Scheme 1b). 
Scheme 3. Synthesis of 1,2-Dithiolanes 
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A complementary route to 1,3-dithian-2-ones of general structure 

15 is presented in Scheme 4.  It consists in the radical addition of 
xanthates 7 to tertiary homoallylic alcohols 13 followed by 
treatment of the resulting adducts 14 with trifluoroacetic acid 
(TFA). This is also a one-pot process that does not require the 
isolation of the intermediate radical adducts. The yields of 1,3-
dithian-2-ones 15a-m are moderate and correspond to the two steps 
combined.  
Scheme 4. A Second Route to 1,3-Dithian-2-ones 

 
    We explored briefly a third route to 1,3-dithian-2-ones 15, in 
which all the components needed to construct the sulfur heterocycle 
are located in the starting xanthate.  It is illustrated by the conversion 
of adduct 20 into into dithianone 15n (Scheme 5). A 9:1 mixture of 
methanesulfonic acid (MsOH) and acetic acid had to be used 
instead of TFA. The xanthate precursor 18 is derived from levulinic 
acid 16 via intermediate chloride 17, which is used directly without 
purification.12 Interestingly, all the carbon atoms in the main chain 
of dithianone 15n are derived from the biomass. Levulinic acid 16 is 
obtained from lignocellulosic waste13 and methyl 10-undecenoate 
19 is a thermolysis product from the castor oil plant (Ricinus 
communis), a sturdy shrub that can grow in non-arable lands and 
does not therefore interfere with the production of food.14        
Scheme 5. An Example of a Third Approach to 1,3-Dithian-2-
ones 

 
In summary, we have developed practical routes to 1,3-dithian-2-

ones and 1,2-dithiolanes. The corresponding 1,3 could also be 
produced in principle, if so desired. Such derivatives have numerous 
applications. 1,2-Dithiolanes related to lipoic acid for example have 
been used to make adhesive polymers,15 structurally dynamic and 
photocurable adaptable hydrogels,16 polymers with antifouling 
properties,17 additives for lubricants,18 and polymers for the removal 
of pollutants.19 Hopefully, the present, easy access to a broad variety 
of these important organosulfur compounds will assist in expanding 
the application scope.  
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