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Abstract

StressID is a new dataset specifically designed for stress identification from1

unimodal and multimodal data. It contains videos of facial expressions, audio2

recordings, and physiological signals. The video and audio recordings are acquired3

using an RGB camera with an integrated microphone. The physiological data4

is composed of electrocardiography (ECG), electrodermal activity (EDA), and5

respiration signals that are recorded and monitored using a wearable device. This6

experimental setup ensures a synchronized and high-quality multimodal data col-7

lection. Different stress-inducing stimuli, such as emotional video clips, cognitive8

tasks including mathematical or comprehension exercises, and public speaking9

scenarios, are designed to trigger a diverse range of emotional responses. The10

final dataset consists of recordings from 65 participants that performed 11 tasks,11

as well as their ratings of perceived relaxation, stress, arousal, and valence levels.12

StressID is one of the largest datasets for stress identification that features three13

different sources of data and varied classes of stimuli, representing more than14

39 hours of annotated data in total. StressID offers baseline models for stress15

classification including a cleaning, feature extraction, and classification phase for16

each modality. Additionally, we provide multimodal predictive models combining17

video, audio, and physiological inputs. The data and the code for the baselines are18

available at https://project.inria.fr/stressid/.19

1 Introduction20

While a healthy amount of stress is necessary for functioning in daily life, it can rapidly begin to21

negatively impact health and productivity when it exceeds an individual’s coping level. Negative22

stress can be a triggering or aggravating factor for many diseases and pathological conditions [16],23

and frequent and intense exposures to stress can cause structural changes in the brain with long-24

term effects on the nervous system [10]. Monitoring of stress levels could play a major role in the25

prevention of stress-related issues, and early stress detection is vital in patients exhibiting emotional26

disorders, or in high-risk jobs such as surgeons, pilots or long-distance drivers.27
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Figure 1: Data collection set-up of StressID.

In the last few years, machine and deep learning have been playing major roles in stress recognition.28

An essential element in building robust and reliable frameworks for stress recognition is high-29

quality datasets. However, existing datasets suffer from multiple limitations. They are generally30

restricted in size (i.e. a few dozen of participants) and a majority is focused on a single source of31

data (i.e. physiological signals, video or audio) – although multimodal datasets have considerable32

advantages [24, 27]. Moreover, existing datasets often provide imbalanced subject responses, due33

to both an inability of the recording protocol to elicit strong reactions and a lack of diversity in the34

stimuli – making it difficult to deploy deriving analyses to real-life applications.35

To address these limitations, we propose StressID, a novel multimodal dataset with facial video,36

audio, and physiological data. To the best of our knowledge, StressID is one of the largest available37

multimodal dataset in the field that includes varied stimuli. It is composed of 65 subjects and more38

than 39 hours of annotated data in total. StressID is designed specifically for the identification of39

stress from different triggers, by using a guided breathing task, 2 video clips, 7 different interactive40

stressors, and a relaxation task. As illustrated in Fig 1, StressID uses a collection of wearable41

sensors to record the physiological responses of the participants, namely, an Electrocardiogram42

(ECG), an Electrodermal Activity (EDA) sensor, and a respiration sensor. The data is coupled with43

synchronized facial video and audio recordings. Each task is associated with 6 different annotations:44

4 scores from a self-assessment rating perceived stress and relaxation, along with valence and45

arousal based on the Self-Assessment Manikin (SAM) [9]; and 2 discrete labels derived from the 446

self-assessments. These data annotations serve to train supervised models.47

We summarize our main contributions as follows:48

• A novel multimodal dataset focused on stress-inducing tasks, composed of ECG, EDA,49

respiration, facial video, and audio recordings. The modalities are synchronized and anno-50

tated with self-assessments from the participants evaluating their levels of relaxation, stress,51

valence, and arousal.52

• An easy to reproduce experimental protocol for recording behavioral and physiological53

responses to diverse triggers, using wearable and global sensors.54

• Instructions for using the presented dataset and an open-source implementation of sev-55

eral baseline models for stress recognition from video, audio, and physiological signals56

respectively, as well as multimodal models combining the three inputs.57

The remainder of this paper is organized as follows. Section 2 provides an overview of the existing58

datasets for stress recognition. Section 3 describes the dataset design and its contents. In Section 459

we present multiple baselines for stress detection using machine learning. In Section 5 and 6, we60

discuss the limitations and ethical considerations of our work. Finally, we summarize our work and61

discuss future directions.62
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2 Related work63

Table 1 places StressID in the context of related stress recognition datasets. The SUS datasets [49]64

gather the recordings of 35 subjects collected during aircraft communication training. This unimodal65

collection of datasets only features audio recordings without self-assessments or external annotation66

and employs an uncommon elicitation task. SADVAW [52] is a dataset composed of 1236 video clips67

from 41 Korean movies, making the setting closer to the real world and including a broader range68

of responses. However, it features video recordings exclusively, restricting deriving applications to69

computer vision systems only. Among the works investigating the physiological aspect of stress,70

DriveDB [23] collects physiological data from 9 subjects exposed to driving-related tasks. The lack71

of self-assessment or external annotations significantly limits the accuracy of measuring stress. In72

addition, the dataset is collected in the very specific setting of driving, with a narrow range of stressors73

– considerably restricting its usage. WeSAD [45] and CLAS [34], two of the most widely explored74

datasets for stress recognition, contain physiological data from 15 and 62 subjects respectively,75

collected using wearable devices. The participants partake in various tasks, combining perceptive76

stressors in the form of audiovisual stimuli, with several variations of the Trier Social Stress Test77

(TSST) [3]. However, they do not include any behavioral modalities.78

There exists a few multimodal datasets for stress recognition, such as MuSE [25] and SWELL-79

KW [31]. They feature a broader set of modalities and are collected in laboratory environments80

imitating real-life activities. MuSE participants are elicited through audiovisual and public speaking81

tasks. SWELL-KW participants perform office work on several topics designed to elicit different82

emotions. These datasets are limited in size with recordings of respectively 28 and 25 subjects.83

Finally, the distracted driving dataset [51] gathers recordings of 68 subjects in the setting of simulated84

driving with stress-inducing distractions. The lack of diversity in the stimuli restricts subsequent85

applications to the setting of driving. Moreover, cardiac activity is acquired in terms of heart rate,86

which does not allow the extraction of heart rate variability (HRV) measures, a key measure in the87

identification of stress [28].88

Comparison with the state-of-the-art. StressID aims to fill the gap in the existing related work. It89

features both physiological and behavioral modalities, includes a large number of participants, and ex-90

ploits varied stimuli. Indeed, StressID employs diverse and carefully selected tasks, and rather than91

relying on task-based ground truths, the subjects of StressID reply to 4 self-assessment questions92

after each task, thus providing insights on the subject’s emotional state. Although CLAS [34] and93

WeSAD [45] present similar experimental set-ups, they focus on physiological modalities and do not94

include behavioral data. Instead, StressID features three types of modalities: video, audio, and phys-95

iological signals capturing complementary information. While MUSE [25] and SWELL-KW [31] are96

also multimodal datasets recorded in similar conditions, they are very limited in size. On the contrary,97

with 65 subjects recorded StressID is one of the largest datasets designed for stress identification.98

Finally, although the size and modalities of the distracted driving dataset [51] are comparable to99

StressID, it relies on very environment-specific stressors, whereas StressID includes emotional100

video-clips, cognitive tasks, and social stressors based on public speaking, which represents a key101

Table 1: Comparison of StressID to related datasets.

Dataset #Subjects Modalities Stressors Data annotations
SUS 35 Speech Aircraft communication training Stressor-based
SADVAW - Video - External annotations
DriveDB 9 EMG, EDA, ECG, HR, Respiration Driving tasks Stressor-based

WeSAD 15 ECG, EDA, EMG, BVP,
Respiration, Temperature, Acceleration TSST, Audiovisual Stressor-based, PANAS [53],

STAI [48], SAM [9]

CLAS 62 ECG, PPG, EDA, Acceleration Cognitive load,
Audiovisual SAM

MuSE 28 EDA, HR, Breath rate, Temperature,
Face and upper body video, Audio Public speaking, Audiovisual PSS [32], SAM, External

annotations

SWELL-KW 25 ECG, EDA, Face and upper body video,
Posture, Computer logging

Office work with interruptions
and time pressure

NASA task load [22], SAM,
Stress assessment

Distracted Driving
dataset 68 EDA, HR signal, Respiration, Face video,

Driving performances Simulated driving with distractions Stressor-based, NASA task
load, SAM

StressID 65 EDA, ECG, Respiration, Face video,
Speech

Cognitive load, Public speaking,
Audiovisual SAM, Stress assessment
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Figure 2: Overview of the experimental protocol. The experiment consists of 11 tasks divided into
four blocks: a guided breathing task, 2 emotional video clips, 7 interactive stressors, and a relaxation
task.

aspect to guarantee the collection of a wide range of responses. To summarize, StressID is the first102

multimodal dataset for stress identification that is recorded on a large number of participants but also103

features a wide range of stimuli ensuring more versatility of deriving applications.104

3 StressID Dataset105

In this section, we first describe our dataset design in 3.1. We then introduce the resulting dataset106

in 3.2, and outline our data annotation process in 3.3.107

3.1 Dataset Design108

3.1.1 Experimental Protocol109

Figure 2 illustrates the experimental protocol used to collect StressID. It consists of 11 tasks110

separated by self-assessments and grouped into 4 blocks: guided breathing, watching emotional video111

clips, a sequence of interactive tasks, and a relaxation phase. Tasks have been designed to elicit 3112

different categories of responses; 1) stimulate the audiovisual cortex of the participants, 2) increase113

the cognitive load by soliciting attention, comprehension, mental arithmetic or multi-tasking abilities,114

and 3) elicit psycho-social stress leveraging on public speaking as a stressor. All stimuli are easy to115

implement and do not require any special setup [5]. The full instructions given to participants are116

provided in the supplementary material.117

Guided breathing. The first block of the protocol consists of the single task of Breathing. The118

participants watch a guided breathing video of 3 minutes. It aims to relax and reset to neutral the119

emotional state of the subjects. This recording is used as a baseline for the non-verbal neutral state of120

each participant. After the breathing task, the participants count forward for 1 minute.121

Emotional video-clips. This block consists in watching 2 emotional videos clips, retrieved from the122

FilmStim database [44]. These videos have been selected to elicit specific emotional responses.123

• Video1 : an extract from the movie There’s something about Mary, selected to elicit low124

arousal and positive valence in the participants.125

• Video2 : an extract from the movie Indiana Jones and the Last Crusade, selected to elicit126

high arousal and negative valence.127

Interactive tasks. This block consists of a sequence of 7 interactive stressors based on well-128

established clinical methods to induce stress [7]. All the tasks have a strict requirement for response129

in 1 minute and the order of the stressors is designed to be unexpected to the participants.130
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• Counting1 : a Mental Arithmetic Task (MAT) designed to increase the participants’ cognitive131

load through arithmetic operations with a varying range of difficulty. In this task, the132

participants receive the instructions to count backwards from 100 subtracting 3 as fast as133

they can.134

• Counting2 : another MAT of increased difficulty. Participants are asked to count backward135

from 1011 subtracting 7 as fast as they can.136

• Stroop : a variant of the Stroop Color-Word Test [50], selected to increase the cognitive load137

by soliciting the attention and reactivity of the participants.138

• Speaking : a Social Evaluative Task (SET), leveraging public speaking as a social stressor.139

The subjects are instructed to explain their strengths and weaknesses, emulating stressful140

job interview conditions.141

• Math : a task designed to increase the mental workload. The participants are asked to142

resolve 20 mathematical problems in one minute.143

• Reading : a task composed of 2 phases and designed as a TSST variation. Participants144

have to read a text, in the first step, and then explain what they read, in the next step, thus145

simultaneously soliciting comprehension abilities and using speaking as a stressor.146

• Counting3 : a MAT with added difficulty. Participants are instructed to count backwards147

from 1152 subtracting 3, as fast as they can, while repeating an independent hand movement.148

This task is designed to increase the mental workload by soliciting participants’ multi-tasking149

abilities.150

At the end of the third block, the participants are asked to designate the task perceived as most151

stressful.152

Relaxation. The last block of the experimental protocol is solely composed of the Relax task. It153

consists of a 2 minute and 30 seconds long relaxation, where participants are instructed to watch a154

relaxing video [21].155

3.1.2 Sensors156

Three different physiological signals are collected in StressID: electrocardiogram (ECG), electro-157

dermal activity (EDA), and respiration signal. They are recorded using the BioSignalsPlux acquisition158

system1. The BioSignalPlux kit consists of a 4-channel hub communicating via Bluetooth with the159

OpenSignals (R)evolution platform for data visualization and acquisition, connected to an ECG,160

EDA, and a respiration sensor. The hub ensures the synchronized recording of up to 4 sensors161

simultaneously. The ECG is acquired with 3 Ag/AgCl electrodes located on the ribs of the non-162

dominant side of the subjects. The EDA is measured with 2 Ag/AgCl electrodes attached to the163

palm of the non-dominant hand. The respiration is measured through a chest belt with an integrated164

piezoelectric sensing element. The selected devices have a high signal-to-noise ratio [39, 40, 41], and165

all physiological signals are acquired with a sampling rate of 500 Hz and resolution of 16 bits per166

sample.167

The video and audio are acquired using a Logitech QuickCam Pro 9000 RGB camera with an168

integrated microphone. The video is acquired with a 720p resolution and a rate of 15 frames per169

second. The audio is recorded at a sampling rate of 32kHz and a resolution of 16 bits per sample.170

3.2 Dataset Description171

3.2.1 Recruitment and Recording172

In total, 65 healthy participants were recruited on a voluntary basis, without any compensation. They173

included 18 women and 47 men of ages ranging between 21 and 55 years old (29y.o. ± 7). Among174

the participants, 32% were master students and interns, 20% PhD students, and the remaining 48%175

1biosignalsplux, PLUX wireless biosignals S.A. (Lisbon, Portugal)
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represented diverse tertiary professions. All subjects were required to have sufficient proficiency in176

English and they were requested to sign a consent form to participate.177

The participants could either consent to, Option A: research use and public release of all their178

recorded data, including identifying data (i.e. physiological, audio, and video). Option B: research179

use of all their recorded data, but no public release of identifying data (i.e. only physiological and180

audio data, but no video). Among the 65 participants, 62 opted for option A and 3 opted for option B181

(2 women and 1 man).182

Each participant was recorded in a single session, lasting approximately 35 minutes. They were183

instructed not to smoke, intake caffeine, or exercise 3 hours before the experiment. At the beginning184

of each session, they were introduced to the purpose and content of the study. The experiments are185

conducted entirely in English. The experimental protocol was identical for all participants, and the186

experimenter was always present in the room during the recording.187

3.2.2 Dataset Composition188

Following data collection, we split each recorded session into individual tasks: one 3 minutes189

breathing recording (block 1), 2 recordings corresponding to the watching of the video clips of190

respectively 2 and 3 minutes (block 2), 7 separate 1-minute recordings of the interactive tasks (block191

3), and a 2 minute and 30 seconds long relaxation recording (block 4). As the guided breathing,192

the video clips and the relaxation parts do not carry meaningful audio, the audio part of the dataset193

consists of the 7 talking tasks only. During the acquisitions, due to camera malfunctions, 8 video194

and audio recordings were damaged. More information about the available modalities for each195

subject can be found in the supplementary material. After splitting, StressID is composed of196

711 distinct annotated recordings of the physiological modalities, 587 annotated videos, and 385197

annotated audio recordings. In total, the final task-split dataset amounts to approximately 19 hours198

of annotated physiological data, 15 hours of annotated video data, and 6 hours of annotated audio199

data, thus amounting to more than 39 hours of data in total. Each task is identified in the dataset200

by subjectname_task, where the task names are as described in Section 3.1.1. This convention201

facilitates different types of analyses, whether subject-specific or task-specific.202

3.3 Data Annotation203

Each task is annotated using the answers to self-assessment questions. The first 2 questions establish204

the participants’ perceived stress and relaxation levels on a 0-10 scale. Additionally, they answer the205

SAM [9] to assess their valence and arousal on a 0-10 scale. Research suggests relaxation and stress206

conditions can be described in different quadrants of the arousal-valence space. For instance, high207

arousal and negative valence are characteristics of emotional stress induced by threatening stimuli [15],208

while low arousal and positive valence are characteristics of a calm and relaxed state [35].209

The distributions of the StressID self-assessments are reported in Figure 3. The analysis of the210

distributions highlights a positive correlation between stress and arousal, as well as relax and valence.211

This suggests that across subjects and tasks, a high arousal is associated with a higher level of212

stress, and a positive valence corresponds to a higher level of relaxation. In addition, the marginal213

distributions of stress and relax ratings (Figure 3) highlight a balance in the perceived stress and214

relaxation levels of the participants across the whole experiment, suggesting that the experimental215

protocol of StressID can arouse proportional instances of stress and relaxation. Furthermore, the216

distribution of arousal is significantly skewed towards a high rating across the dataset, while valence is217

centered around a neutral value, highlighting the ability of the protocol to create a high involvement in218

the participants and elicit strong responses. An extended analysis of the self-assessment distributions219

analyses can be found in the supplementary material.220

We propose 2 discrete labels that can be used to train supervised models: a 2-class label and a 3-class221

one. The 2-class label is computed using the stress self-assessment of each task by splitting the 0-10222

scale at 5. Precisely, tasks with self-assessment of stress below 5 are considered not stressed (0)223

while tasks with self-assessment equal or above 5 are stressed (1). The 3-class label is based on the224
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(a) Sress/Arousal (b) Relax/Valence

Figure 3: Distribution of the self-assessment answers. (left) Joint and marginal distributions of stress
and arousal. (right) Joint and marginal distributions of the relax and valence ratings.

results outlined by [15, 35], which are in line with the observations drawn from Figure 3. It allows225

the prediction of relaxed vs. neutral vs. stressed. We considered a subject to be relaxed (0) for a226

task where they reported a valence rating above 5, arousal rating below 5, and perceived relaxation227

rating above 5. Similarly, we label tasks with arousal levels above 5, valence levels below 5, and228

perceived stress levels above 5 as stressed (2), and neutral (1) otherwise.229

4 Baselines230

We implement several unimodal and multimodal baselines combining features extracted from video,231

audio, and physiological inputs. We train the models to perform 2-class classification, i.e. binary232

discrimination between stressed and not stressed, as well as 3-class classification. In all the experi-233

ments, we generate 10 random splits, using 80% of the tasks for training, and 20% for testing for each234

split. The results are averaged over the 10 repetitions. To ensure robustness to potential imbalance235

resulting from the train-test splits, the results are assessed using the weighted F1-score and the236

balanced accuracy on the test data. The full list of extracted features, additional experiments, model237

hyperparameters, and training details are reported in the supplementary material. The implementation238

of all the baselines can be found at https://github.com/robustml-eurecom/stressID.239

4.1 Unimodal Baselines240

Each unimodal baseline is trained and tested on all available tasks of the corresponding modality, i.e.241

715, 587, and 385 tasks respectively for the physiological, video, and audio baseline. In the following,242

we describe the baselines for each modality. The obtained results are reported in Table 2.243

Physiological Signals. In line with the literature on stress recognition from physiological signals [5,244

18, 19], we propose a baseline including pre-processing of the signals, feature extraction, and245

classification. In a first step, the ECG, EDA, and respiration signals are filtered with Butterworth246

filters to reduce high-frequency noise and baseline wander. Then, 35 ECG features, 23 EDA, and247

40 respiration features are extracted. These include HRV features in the time domain including the248

number of R to R intervals (RR) per minute, the standard deviation of all NN intervals (SDNN), the249

percentage of successive RR intervals that differ by more than 20ms and 50ms (pNN20 and pNN50),250

or the root mean square of successive RR interval differences (RMSSD), as well as frequency-domain,251

and non-linear HRV measures. We have extracted statistical features of the Skin Conductance Level252
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Table 2: Performances of unimodal baselines for the classification of stress. Each baseline is trained
and tested on all available tasks of the corresponding modality.

2-class 3-class
Baseline F1-score Accuracy F1-score Accuracy

Physio. HC features + RF 0.73 ± 0.02 0.72 ± 0.03 0.55 ± 0.04 0.56 ± 0.03
Physio. HC features + SVM 0.71 ± 0.02 0.71 ± 0.02 0.59 ± 0.04 0.59 ± 0.03
Physio. HC features + MLP 0.70 ± 0.03 0.70 ± 0.03 0.54 ± 0.04 0.53 ± 0.04

AUs + kNN 0.70 ± 0.04 0.69 ± 0.04 0.54 ± 0.05 0.53 ± 0.05
AUs + SVM 0.69 ± 0.04 0.69 ± 0.04 0.55 ± 0.05 0.54 ± 0.04
AUs + MLP 0.70 ± 0.03 0.70 ± 0.03 0.55 ± 0.03 0.55 ± 0.03

Audio HC features + kNN 0.67 ± 0.06 0.60 ± 0.05 0.53 ± 0.04 0.52 ± 0.04
Audio HC features + SVM 0.61 ± 0.06 0.54 ± 0.03 0.53 ± 0.08 0.48 ± 0.04

W2V 2.0 classifier 0.70 ± 0.02 0.66 ± 0.03 0.56 ± 0.04 0.52 ± 0.04

(SCL) and Skin Conductance Response (SCR) components of the EDA, including the slope and253

dynamic range of the SCL, along with time domain features including the number of SCR peaks254

per minute, the average amplitude of the peaks, and average duration of SCR responses. In addition,255

we have extracted Respiration Rate Variability (RRV) features in the time and frequency domains.256

The resulting handcrafted (HC) features are then classified using classical Machine Learning (ML)257

algorithms: a Random Forests (RF) classifier, Support Vector Machines (SVM), and a Multi-Layer258

Perceptron (MLP) with hyperparameters chosen by Cross-Validation (CV).259

Video Data. We propose a baseline employing Action Units (AU) and eye gaze for the classification260

of stress. AUs are commonly used as features in stress recognition applications [20, 25, 2]. They are261

fine-grained facial muscle movements [17], each relating to a subset of extracted facial landmarks [38].262

Each AU is described in two ways: presence, if the AU is visible in the face, and intensity, indicating263

how intense the AU is on a 5-point scale (minimal to maximal). After downsampling the recordings264

to 5 frames per second, we use the OpenFace library [8] to extract eye gaze and AUs from each265

video frame. We extract the following AUs: 1, 2, 4, 5, 6, 7, 9, 10, 12, 14, 15, 17, 20, 23, 25, 26,266

28, and 45. As eye gaze features, we use two gaze direction vectors computed individually for each267

eye by detected pupil and eye location.The averages and standard deviations of each AU and eye268

gaze directions are computed across time frames. The resulting 84-component vector is used as input269

to several models: a k-Nearest Neighbors (kNN) algorithm, an SVM, and an MLP with 4 layers of270

width 256. In line with [25], the number of layers and layer width of the MLP are chosen by CV in271

{2,3,4} and {64, 128, 256} respectively. We use ReLU activation and the MLP is trained for 100272

epochs with cross-entropy loss optimized using Adam [29] with an initial learning rate of 1e−3.273

Audio Data. We propose two baselines for speech signals: the first employs HC features and ML274

algorithms, and the second is built on the Wav2Vec 2.0 (W2V) model [46, 6]. Both techniques involve275

downsampling from the original 32 kHz audio to 16 kHz, and the application of amplitude-based276

voice activity detection (VAD) [30] prior to feature extraction to eliminate non-speech segments.277

The first baseline relies on a plethora of specific audio features [43, 4] widely used in the literature278

on emotion recognition from speech [1, 5, 33]. These include Mel Frequency Cepstral Coefficients279

(MFCCs) and their first and second derivatives, which characterize the short-term power spectrum280

and its dynamics. The spectral centroid, bandwidth, contrast, flatness, and roll-off, which together281

provide a rich statistical representation of the spectral shape. Harmonic and percussive components282

are also extracted, with tonal centroid features being computed for the harmonic component. The zero-283

crossing rate is a simple measure of the rate of sign changes; the rate of zero-crossings relates directly284

to the fundamental frequency of the speech signal. Last, we include tempogram ratio features [37]285

which represent local rhythmic information. We compute the mean and standard deviation over time286

for all features, thereby resulting in feature vectors for each, which are then concatenated to form a287

comprehensive feature vector of 140 components, and used as input for ML algorithms.288

The second baseline employs a large, pre-trained W2V model. The W2V model produces features289

capturing a wealth of information relevant to diverse tasks including emotion recognition [11, 47, 14].290
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Table 3: Performances of multimodal baselines for the classification of stress, compared to unimodal
models. All baselines are trained and tested only on tasks featuring all modalities, i.e. 370 tasks.

2-class 3-class
Baseline F1-score Accuracy F1-score Accuracy

Physiological only 0.66 ± 0.05 0.58 ± 0.04 0.50 ± 0.05 0.48 ± 0.06
Video only 0.67 ± 0.03 0.62 ± 0.04 0.58 ± 0.05 0.56 ± 0.05
Audio only 0.67 ± 0.04 0.62 ± 0.04 0.56 ± 0.06 0.54 ± 0.06

Feature fusion + SVM 0.64 ± 0.09 0.56 ± 0.05 0.55 ± 0.06 0.51 ± 0.05
Feature fusion + MLP 0.66 ± 0.04 0.61 ± 0.03 0.51 ± 0.07 0.51 ± 0.07
Feature fusion + DBN 0.58 ± 0.06 0.52 ± 0.05 0.30 ± 0.09 0.32 ± 0.04

SVM + Sum rule fusion 0.72 ± 0.05 0.64 ± 0.05 0.62 ± 0.05 0.58 ± 0.07
SVM + Product rule fusion 0.71 ± 0.05 0.63 ± 0.05 0.61 ± 0.05 0.56 ± 0.07

SVM + Average rule fusion 0.72 ± 0.05 0.65 ± 0.05 0.63 ± 0.05 0.58 ± 0.07
SVM + Maximum rule fusion 0.72 ± 0.05 0.64 ± 0.05 0.61 ± 0.06 0.57 ± 0.07

Features are extracted every 20 ms and averaged over time to obtain a single 513-component291

embedding per utterance, and are then classified using a linear classification layer optimized with292

Adam, cross-entropy loss, and an initial learning rate of 1e−3, until convergence.293

4.2 Multimodal Baselines294

Multimodal baselines that combine the features extracted from all 3 sources are evaluated on the295

tasks that feature all modalities only, i.e. 370 tasks, to avoid learning with severely missing values.296

This subset of StressID is composed of talking tasks exclusively, i.e. all tasks without the audio297

modality are excluded. In this setting, the dataset presents a strong imbalance in the labels (70%298

stress). We use Minority Over-sampling Techniques (SMOTE) [13] to balance the training set in each299

of the 10 repetitions, and leave the test sets untouched.300

We propose fusion models combining all features using the most prominent fusion methods in the301

literature: feature-level and decision-level fusion [1, 36]. For feature-level fusion, unimodal HC302

features are combined into a single high-dimensional feature vector, used as input for learning303

algorithms. Similarly to [26, 12], we evaluate feature-level fusion combined with SVM, MLP304

classifiers, and Deep Belief Networks (DBN). For decision-level fusion, following [54, 42], we train305

independent SVMs for each modality using the HC features as input, and integrate the results of the306

individual classifiers at the decision level, i.e. the results are combined into a single decision using307

ensemble rules. The results for all multimodal baselines for the 2-class and 3-class classification are308

reported in Table 3. To ensure fairness in the comparison, the multimodal baselines are evaluated309

against best-performing HC and ML-based unimodal baselines (Section 4.1), trained on the subset310

of the 370 tasks featuring all modalities. Additional results for all other modality combinations are311

reported in the supplementary material.312

5 Limitations313

First, this dataset is recorded in a controlled environment specifically designed to elicit responses.314

Experiments conducted in laboratory settings do not take into consideration the external factors that315

contribute to the psychological mental state of participants and typically assume a stress reaction is316

an isolated occurrence. In reality, human emotions are complex and are influenced by combinations317

of factors. In addition, the process of attaching electrodes to the participants may be stressful in318

itself. Therefore, the signals recorded in this setting are not necessarily representative of real-life319

situations. In consequence, although models built on the StressID dataset can learn to reliably320

recognize a response to stress-inducing stimuli, the discrimination between positive and negative,321

or short-term and long-term stress is a more sensitive task. Second, relying on self-assessed scales322

for data annotation is a participant-subjective process, and can lead to bias in subsequent analyses.323

Perception of stress and relaxation can vary a lot from one participant to another. Nevertheless,324
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analyses described in 3.3 highlight a coherent distribution of the self-reported annotations across325

participants and the whole experiment. Third, although all participants recruited for the study are326

proficient in English, the act of speaking English itself can be stress-inducing for non-native speakers.327

Fourth, the audio component of the dataset suffers from an uneven distribution of labels, as the verbal328

tasks are associated with higher levels of stress. Finally, StressID suffers from missing modalities329

for some participants.330

6 Ethical Considerations and Dataset Accessibility331

The recording and usage of human activity data are associated with ethical considerations. The332

StressID project is approved by the ethical committee of the Université Cote d’Azur (CER). The333

experiments have been conducted under agreement n° 2021-033 for data collection, and n° 2023-016334

for the publication of the dataset. The participants explicitly consent to the recording of their session,335

the dataset creation, and its release for research purposes following General Data Protection Rules336

(GDPR). The personal information (sex, age, education), and the acquired physiological and audio337

signals are pseudonymized, and an alphanumeric code is given for each participant. Video data can338

not be anonymized and is treated as sensitive data.339

Given the identifying nature of the facial videos, the dataset is made accessible through open340

credentialized access only, for research purposes. Users are required to sign an end-user license341

agreement to request the data. Once validated a secured link grants access to the dataset. The dataset342

uses a proprietary license for research purposes and is hosted on Inria servers using storage intended343

for long-term availability. The code uses an open-source license. We are aware that despite all344

precautions, the dataset can be misused by bad-intentioned users. The data and the code for the345

baselines are available at https://project.inria.fr/stressid/.346

Lastly, systems that use the dataset for modeling and understanding the mechanisms of human stress347

conditions need to be aware of the potential imbalance in representation in the dataset. Participants for348

the data collection were included in our dataset without restrictions on gender, race, age, or education349

level – instead favoring sample size.350

7 Conclusion351

We present StressID, a dataset for stress identification with three data modalities and three different352

types of stimuli. The experimental protocol designed to collect the StressID dataset is easy353

to replicate and can be adapted to additional sensors or stressors. The equipment used for the354

data collection is affordable, and the selected devices guarantee low noise in the recordings. The355

multimodal nature of StressID offers a large set of possibilities for the analysis of stress. On one356

hand, diverse modalities carry complementary information that can be jointly exploited: video and357

audio capture the behavioral component of emotions, the reactions that are visible from outside, while358

the physiological signals capture valuable internal states not visible on camera such as cardiac activity,359

or skin sweating. By providing access to multiple synchronized modalities, StressID enables cross-360

modal analyses and has the potential of improving the understanding of the relationships between361

video, audio, and physiological responses to stress. On the other hand, the dataset design also offers362

the possibility to develop models of different natures, by focusing on a single modality. Moreover,363

it allows a wide range of applications, including subject-specific, or task-specific studies. As an364

example, the video component could be used to investigate the difference between stress responses in365

verbal and non-verbal tasks.366

To foster reproducibility, StressID also offers a set of baseline experiments. Although the proposed367

baselines focus on predicting two discrete labels designed to illustrate the predictive potential of our368

dataset, they represent a good starting point for future work, to which researchers and developers can369

benchmark their work. In this context, a natural extension of this work would be the implementation370

of a web service that tracks and centralizes the performances of models developed using StressID.371

10

https://project.inria.fr/stressid/


Acknowledgments and Disclosure of Funding372

HC, VS, FB and MAZ are supported by the French government, through the 3IA Côte d’Azur373

Investments in the Future project managed by the National Research Agency (ANR) (ANR-19-P3IA-374

0002). MP, NE and MT are supported by the ANR RESPECT Project (ANR-18-CE92-0024). LMF375

has been partially supported by the Ville de Nice and the French government, through the UCAJEDI376

Investments in the Future project managed by the ANR (ANR-15-IDEX-01).377

References378

[1] Naveed Ahmed, Zaher Al Aghbari, and Shini Girija. A systematic survey on multimodal emotion379

recognition using learning algorithms. Intelligent Systems with Applications, 17:200171, 2023.380

[2] Jonathan Aigrain, Michel Spodenkiewicz, Severine Dubuisson, Marcin Detyniecki, David381

Cohen, and Mohamed Chetouani. Multimodal stress detection from multiple assessments. IEEE382

Transactions on Affective Computing, 9(4):491–506, 2016.383

[3] Andrew P Allen, Paul J Kennedy, Samantha Dockray, John F Cryan, Timothy G Dinan, and384

Gerard Clarke. The trier social stress test: principles and practice. Neurobiology of stress,385

6:113–126, 2017.386

[4] Alo Allik, György Fazekas, and Mark B. Sandler. An ontology for audio features. In Interna-387

tional Society for Music Information Retrieval Conference, 2016.388

[5] Aamir Arsalan, Syed Muhammad Anwar, and Muhammad Majid. Mental stress detection using389

data from wearable and non-wearable sensors: a review. arXiv preprint arXiv:2202.03033,390

2022.391

[6] Alexei Baevski, Yuhao Zhou, Abdelrahman Mohamed, and Michael Auli. wav2vec 2.0:392

A framework for self-supervised learning of speech representations. Advances in neural393

information processing systems, 33:12449–12460, 2020.394

[7] Anjana Bali and Amteshwar Singh Jaggi. Clinical experimental stress studies: methods and395

assessment. Reviews in the Neurosciences, 26(5):555–579, 2015.396

[8] Tadas Baltrusaitis, Amir Zadeh, Yao Chong Lim, and Louis-Philippe Morency. Openface 2.0:397

Facial behavior analysis toolkit. In 2018 13th IEEE international conference on automatic face398

& gesture recognition (FG 2018), pages 59–66. IEEE, 2018.399

[9] Margaret M Bradley and Peter J Lang. Measuring emotion: the self-assessment manikin and the400

semantic differential. Journal of behavior therapy and experimental psychiatry, 25(1):49–59,401

1994.402

[10] J Douglas Bremner. Traumatic stress: effects on the brain. Dialogues in clinical neuroscience,403

2022.404

[11] Fabio Catania. Speech emotion recognition in italian using wav2vec 2.0 and the novel crowd-405

sourced emotional speech corpus emozionalmente. 2023.406

[12] Valentina Chaparro, Alejandro Gomez, Alejandro Salgado, O Lucia Quintero, Natalia Lopez,407

and Luisa F Villa. Emotion recognition from eeg and facial expressions: a multimodal approach.408

In 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology409

Society (EMBC), pages 530–533. IEEE, 2018.410

[13] Nitesh V Chawla, Kevin W Bowyer, Lawrence O Hall, and W Philip Kegelmeyer. Smote:411

synthetic minority over-sampling technique. Journal of artificial intelligence research, 16:321–412

357, 2002.413

11



[14] Li-Wei Chen and Alexander Rudnicky. Exploring wav2vec 2.0 fine tuning for improved speech414

emotion recognition. In ICASSP 2023-2023 IEEE International Conference on Acoustics,415

Speech and Signal Processing (ICASSP), pages 1–5. IEEE, 2023.416

[15] Sven-Åke Christianson. Emotional stress and eyewitness memory: a critical review. Psycholog-417

ical bulletin, 112(2):284, 1992.418

[16] Joel E Dimsdale. Psychological stress and cardiovascular disease. Journal of the American419

College of Cardiology, 51(13):1237–1246, 2008.420

[17] Paul Ekman and Wallace V Friesen. Facial action coding system. Environmental Psychology &421

Nonverbal Behavior, 1978.422

[18] Shruti Gedam and Sanchita Paul. A review on mental stress detection using wearable sensors423

and machine learning techniques. IEEE Access, 9:84045–84066, 2021.424

[19] Giorgos Giannakakis, Dimitris Grigoriadis, Katerina Giannakaki, Olympia Simantiraki, Alexan-425

dros Roniotis, and Manolis Tsiknakis. Review on psychological stress detection using biosignals.426

IEEE Transactions on Affective Computing, 13(1):440–460, 2019.427

[20] Giorgos Giannakakis, Mohammad Rami Koujan, Anastasios Roussos, and Kostas Marias. Auto-428

matic stress detection evaluating models of facial action units. In 2020 15th IEEE international429

conference on automatic face and gesture recognition (FG 2020), pages 728–733. IEEE, 2020.430

[21] Auriane Gros, Emmanuelle Chapoulie, Remy Ramadour, Vincent Robert, Julie de Stoutz,431

Stephane Guetin, Damoun Chaïma, Emeline Wyckaert, Valeria Manera, Philippe Robert, et al.432

Rel@ x: Sensory and virtual immersion to reduce the anxiety of patients consulting for the first433

time in nice memory center. Alzheimer’s and Dementia, 13(7):P609–P610, 2017.434

[22] Sandra G Hart. Nasa task load index (tlx). 1986.435

[23] Jennifer Anne Healey. Wearable and automotive systems for affect recognition from physiology.436

PhD thesis, Massachusetts Institute of Technology, 2000.437

[24] Yu Huang, Chenzhuang Du, Zihui Xue, Xuanyao Chen, Hang Zhao, and Longbo Huang. What438

makes multi-modal learning better than single (provably). Advances in Neural Information439

Processing Systems, 34:10944–10956, 2021.440

[25] Mimansa Jaiswal, Cristian-Paul Bara, Yuanhang Luo, Mihai Burzo, Rada Mihalcea, and441

Emily Mower Provost. Muse: a multimodal dataset of stressed emotion. In Proceedings442

of the Twelfth Language Resources and Evaluation Conference, pages 1499–1510, 2020.443

[26] Apichart Jaratrotkamjorn and Anant Choksuriwong. Bimodal emotion recognition using deep444

belief network. In 2019 23rd International Computer Science and Engineering Conference445

(ICSEC), pages 103–109. IEEE, 2019.446

[27] Tzyy-Ping Jung, Terrence J Sejnowski, et al. Utilizing deep learning towards multi-modal447

bio-sensing and vision-based affective computing. IEEE Transactions on Affective Computing,448

13(1):96–107, 2019.449

[28] Hye-Geum Kim, Eun-Jin Cheon, Dai-Seg Bai, Young Hwan Lee, and Bon-Hoon Koo. Stress450

and heart rate variability: a meta-analysis and review of the literature. Psychiatry investigation,451

15(3):235, 2018.452

[29] Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In Yoshua453

Bengio and Yann LeCun, editors, 3rd International Conference on Learning Representations,454

ICLR 2015, San Diego, CA, USA, May 7-9, 2015, Conference Track Proceedings, 2015.455

[30] Tomi Kinnunen and Haizhou Li. An overview of text-independent speaker recognition: From456

features to supervectors. Speech communication, 52(1):12–40, 2010.457

12



[31] Saskia Koldijk, Maya Sappelli, Suzan Verberne, Mark A Neerincx, and Wessel Kraaij. The458

swell knowledge work dataset for stress and user modeling research. In Proceedings of the 16th459

international conference on multimodal interaction, pages 291–298, 2014.460

[32] Eun-Hyun Lee. Review of the psychometric evidence of the perceived stress scale. Asian461

nursing research, 6(4):121–127, 2012.462

[33] Surendra Malla, Abeer Alsadoon, and Simi Kamini Bajaj. A dfc taxonomy of speech emotion463

recognition based on convolutional neural network from speech signal. In 2020 5th International464

Conference on Innovative Technologies in Intelligent Systems and Industrial Applications465

(CITISIA), pages 1–10, 2020.466

[34] Valentina Markova, Todor Ganchev, and Kalin Kalinkov. Clas: A database for cognitive load,467

affect and stress recognition. In 2019 International Conference on Biomedical Innovations and468

Applications (BIA), pages 1–4. IEEE, 2019.469

[35] Maria D McManus, Jason T Siegel, and Jeanne Nakamura. The predictive power of low-arousal470

positive affect. Motivation and Emotion, 43:130–144, 2019.471

[36] Asif Iqbal Middya, Baibhav Nag, and Sarbani Roy. Deep learning based multimodal emotion472

recognition using model-level fusion of audio–visual modalities. Knowledge-Based Systems,473

244:108580, 2022.474

[37] Geoffroy Peeters. Rhythm Classification using spectral rhythm patterns. In ISMIR, pages –,475

London, United Kingdom, September 2005. cote interne IRCAM: Peeters05b.476

[38] Nazil Perveen and Chalavadi Krishna Mohan. Configural representation of facial action units477

for spontaneous facial expression recognition in the wild. In VISIGRAPP (4: VISAPP), pages478

93–102, 2020.479

[39] PLUX wireless biosignals S.A. Electrocardiography (ECG) Sensor User Manual, 2020.480

[40] PLUX wireless biosignals S.A. Electrodermal Activity (EDA) Sensor Datasheet, 2021.481

[41] PLUX wireless biosignals S.A. Respiration (PZT) Sensor User Manual, 2021.482

[42] K Prasada Rao, MVP Chandra Sekhara Rao, and N Hemanth Chowdary. An integrated approach483

to emotion recognition and gender classification. Journal of Visual Communication and Image484

Representation, 60:339–345, 2019.485

[43] Md. Sahidullah, Tomi Kinnunen, and Cemal Hanilçi. A comparison of features for synthetic486

speech detection. In INTERSPEECH 2015, 16th Annual Conference of the International Speech487

Communication Association, Dresden, Germany, September 6-10, 2015, pages 2087–2091.488

ISCA, 2015.489

[44] Alexandre Schaefer, Frédéric Nils, Xavier Sanchez, and Pierre Philippot. Assessing the effec-490

tiveness of a large database of emotion-eliciting films: A new tool for emotion researchers.491

Cognition and emotion, 24(7):1153–1172, 2010.492

[45] Philip Schmidt, Attila Reiss, Robert Duerichen, Claus Marberger, and Kristof Van Laerhoven.493

Introducing wesad, a multimodal dataset for wearable stress and affect detection. In Proceedings494

of the 20th ACM international conference on multimodal interaction, pages 400–408, 2018.495

[46] Steffen Schneider, Alexei Baevski, Ronan Collobert, and Michael Auli. wav2vec: Unsupervised496

pre-training for speech recognition, 2019.497

[47] Mayank Sharma. Multi-lingual multi-task speech emotion recognition using wav2vec 2.0. In498

ICASSP 2022-2022 IEEE International Conference on Acoustics, Speech and Signal Processing499

(ICASSP), pages 6907–6911. IEEE, 2022.500

13



[48] Charles D Spielberger, Fernando Gonzalez-Reigosa, Angel Martinez-Urrutia, Luiz FS Nata-501

licio, and Diana S Natalicio. The state-trait anxiety inventory. Revista Interamericana de502

Psicologia/Interamerican journal of psychology, 5(3 & 4), 1971.503

[49] Herman JM Steeneken and John HL Hansen. Speech under stress conditions: overview of the504

effect on speech production and on system performance. In 1999 IEEE International Conference505

on Acoustics, Speech, and Signal Processing. Proceedings. ICASSP99 (Cat. No. 99CH36258),506

volume 4, pages 2079–2082. IEEE, 1999.507

[50] J Ridley Stroop. Studies of interference in serial verbal reactions. Journal of experimental508

psychology, 18(6):643, 1935.509

[51] Salah Taamneh, Panagiotis Tsiamyrtzis, Malcolm Dcosta, Pradeep Buddharaju, Ashik Khatri,510

Michael Manser, Thomas Ferris, Robert Wunderlich, and Ioannis Pavlidis. A multimodal dataset511

for various forms of distracted driving. Scientific data, 4(1):1–21, 2017.512

[52] Thi-Dung Tran, Junghee Kim, Ngoc-Huynh Ho, Hyung-Jeong Yang, Sudarshan Pant, Soo-513

Hyung Kim, and Guee-Sang Lee. Stress analysis with dimensions of valence and arousal in the514

wild. Applied Sciences, 11(11):5194, 2021.515

[53] David Watson, Lee Anna Clark, and Auke Tellegen. Development and validation of brief516

measures of positive and negative affect: the panas scales. Journal of personality and social517

psychology, 54(6):1063, 1988.518

[54] Fen Xu and Zhe Wang. Emotion recognition research based on integration of facial expression519

and voice. In 2018 11th International Congress on Image and Signal Processing, BioMedical520

Engineering and Informatics (CISP-BMEI), pages 1–6. IEEE, 2018.521

Checklist522

1. For all authors...523

(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s524

contributions and scope? [Yes]525

(b) Did you describe the limitations of your work? [Yes] See Section 5.526

(c) Did you discuss any potential negative societal impacts of your work? [Yes] See527

Section 6 and Appendix B.2 of the supplementary material.528

(d) Have you read the ethics review guidelines and ensured that your paper conforms to529

them? [Yes]530

2. If you are including theoretical results...531

(a) Did you state the full set of assumptions of all theoretical results? [N/A]532

(b) Did you include complete proofs of all theoretical results? [N/A]533

3. If you ran experiments (e.g. for benchmarks)...534

(a) Did you include the code, data, and instructions needed to reproduce the main ex-535

perimental results (either in the supplemental material or as a URL)? [Yes] See536

https://github.com/robustml-eurecom/stressID537

(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they538

were chosen)? [Yes] See Section 4 and Appendix F.1.539

(c) Did you report error bars (e.g., with respect to the random seed after running experi-540

ments multiple times)? [Yes] See Section 4.1 and Section 4.2.541

(d) Did you include the total amount of compute and the type of resources used (e.g., type542

of GPUs, internal cluster, or cloud provider)? [Yes] See Appendix F.1.543

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...544

14

https://github.com/robustml-eurecom/stressID


(a) If your work uses existing assets, did you cite the creators? [Yes] .545

(b) Did you mention the license of the assets? [N/A] .546

(c) Did you include any new assets either in the supplemental material or as a URL? [Yes]547

See https://project.inria.fr/stressid/548

(d) Did you discuss whether and how consent was obtained from people whose data you’re549

using/curating? [Yes] See Section 3.2.1.550

(e) Did you discuss whether the data you are using/curating contains personally identifiable551

information or offensive content? [Yes] See Sections 3.2.1 and 6.552

5. If you used crowdsourcing or conducted research with human subjects...553

(a) Did you include the full text of instructions given to participants and screenshots, if554

applicable? [Yes] See Appendix D.2.555

(b) Did you describe any potential participant risks, with links to Institutional Review556

Board (IRB) approvals, if applicable? [Yes] See Section 6 and Appendix C.557

(c) Did you include the estimated hourly wage paid to participants and the total amount558

spent on participant compensation? [N/A] Participants are volunteers. See Sec-559

tion 3.2.1.560

15

https://project.inria.fr/stressid/

	Introduction
	Related work
	StressID Dataset
	Dataset Design
	Experimental Protocol
	Sensors

	Dataset Description
	Recruitment and Recording
	Dataset Composition

	Data Annotation

	Baselines
	Unimodal Baselines
	Multimodal Baselines

	Limitations
	Ethical Considerations and Dataset Accessibility
	Conclusion

