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Abstract: 

The present study aims at deciphering the effect of a high-intensity interval exercise 

on cognitive processes involved in perceptual decision-making through computational 

modelling. To that end, participants performed a perceptual decision task (RDK) before and 

after a high-intensity interval exercise (8 x 5min, 85 ± 8 % HRmax). Cognitive processes 

were measured by best-fitting parameters of a drift diffusion model (DDM) to behavioral data 

(accuracy and response times). Drift Diffusion modeling revealed faster non-decisional time 

and more efficient drift rate suggesting a better sensory encoding, a greater allocation of 

attentional resources and a faster processing speed following acute exercise.  

 

Running head: Improved Decision Following Acute HIE 

 

Key words: acute effect, exercise-cognition interaction, perceptual decision-making task, 

postexercise  

 

Acknowledgements: for the purpose of Open Access, a CC-BY public copyright licence has 

been applied by the authors to the present document and will be applied to all subsequent 

versions up to the Author Accepted Manuscript arising from this submission. We would like 

to thank the Filière Fastspor'in for its support in carrying out this study, and Anita Vergnaud 

et Laurine Stefanuto for their assistance in data collection.  

 

  

.CC-BY 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted February 14, 2023. ; https://doi.org/10.1101/2023.02.14.528466doi: bioRxiv preprint 

https://doi.org/10.1101/2023.02.14.528466
http://creativecommons.org/licenses/by/4.0/


High-intensity physical activity enhances cognitive decision processes 

 

April 15th, 2019. Notre-Dame is burning. A fireman eventually reaches the top of the 

tower. He now has to decide on which side the fire should be attacked first. Will his decision 

be impacted by the intense physical effort he just made? And if so, which precise underlying 

cognitive processes are altered?  

Meta-analytic studies actually suggest that acute (single) bout of physical activity 

enhances performances in various cognitive tasks (e.g., Psychomotor Vigilance Task, Flanker 

task, Critical Flicker Fusion). However, these results mainly concern moderate physical 

exercise intensities, which involves different cellular and molecular changes than intense 

physical activity such as those provided by the fireman (Herold et al., 2019), and therefore 

might not have the same impact on cognitive processes. Moreover, the underlying cognitive 

mechanisms have so far received less attention (e.g., Pontifex et al., 2019; Sudo et al., 2022).  

Assessing the impact of physical exercise on cognitive processes is challenging 

because they are not directly observable. The cognitive computational approach provides a 

way to tackle this issue. It provides theoretically grounded models, whose parameters 

represent latent cognitive processes and can be inferred from behavioral data. Among the 

cognitive computational models, the Drift Diffusion Model (DDM, Ratcliff, 1978) has proven 

to be particularly fruitful (Ratcliff et al., 2016). It belongs to the wide class of Evidence 

Accumulation Models (EAM, Bogacz et al., 2006), that postulate that decisions result from 

the continuous accumulation of a stochastic evidence until a given amount of evidence is 

attained. The basic DDM contains four parameters, each related to a different cognitive 

process: the starting point of the accumulation process (z), which represents the bias of the 

decision; the drift rate of the accumulation process (v), which depends on the difficulty of the 

task or on the subject’s ability; the distance between the bounds corresponding to each 

response (a), which represent the subject’s cautiousness (the larger a, the more accurate and 

slower the responses); and  a non-decision time (Ter), that encompass the encoding of 

relevant information and the decision execution processes.  

In this study, we relied on the DDM to decipher the impact of high-intensity interval 

exercise on cognitive processes involved in a perceptual decision-making task. Specifically, 

we used the random dot motion task (RDK), for which the DDM has consistently provided 

excellent accounts of behavioral data. Behavioral data were collected before and immediately 

after an intense aerobic physical activity generating a stress leading to noteworthy 

physiological repercussions notably on heart rate, blood lactate and glycemia levels. 
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Method 

Participants  

Twenty young adults (one women; age range: 18–34; mean age: 24 years) voluntarily 

participated in the experiment. All participants were healthy and practiced regular physical 

activities (peak oxygen uptake: 55 ± 7 mL kg−1 min−1; maximal heart rate: 185 ± 8 bpm). This 

sample size was determined based on prior studies reporting significant effects on cognitive 

performance using comparable physiological intensity (range 16 – 19 subjects; (Peirce et al., 

2019)Ando et al., 2022; Ramdani et al., 2021). All participants were fully informed about the 

study and signed a written informed consent before inclusion. The study was approved by the 

Ethics Committee for Research in Science and Technology of Physical Sports Activities 

(IRB00012476-2022-21-01-148). 

 

Apparatus  

The experiment was programmed in Python, using components of the PsychoPy 

toolbox (Peirce et al., 2019), and was run on a PC computer natively running Windows 10. 

Responses were communicated to the computer by means of two buttons (one for each hand).  

 

Random dot motion task (RDK) 

The task requires participants to determine the global direction of a random dot 

kinematogram featuring a proportion of dots moving coherently in the left or right signal 

direction.  Each trial started with the presentation of the random dot motion stimulus, which 

remained on the screen until the participant responded. A response time deadline was set to 5 

s. The interval between the response to the stimulus and the next trial was 1.5 s. The 

coherence parameter (proportion of dots moving in the same direction) was set for each 

participant at the beginning of the experiment according to a 2 up and 1 down staircase 

method lasting 30 trials. White dots were presented within a virtual 12.6° circular aperture 

centered on a 24.8° 3 13.9° black field. Each dot was a 4 x 4 pixel (0.05° square), moving at a 

speed of 8°/s. Dot density was fixed at 16.7 dots/deg2/s. Random dot motion was controlled 

by a white noise algorithm (Pilly & Seitz, 2009).  

 

Procedure 

Participants visited the laboratory on three occasions (a preliminary session, a 

familiarization session, and an experimental session) at least 48h apart. Participants were 
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seated on an upright cycle ergometer (Lode, Excalibur, Netherland), which included two 

thumb response buttons on the right and left handle grips.  A screen computer was placed at 

eye level in front of the participant at 1m.  

The preliminary session was carried out to individually adjust the difficulty of the 

cognitive task, determine the V̇O2max and estimate the power associated to the ventilatory 

thresholds (Wasserman, 2012) (see Table 1 for details). Participants were seated on the cycle 

ergometer (Lode Excalibur Sport, Groningen, The Netherlands), fitted with a facemask to 

measure gas exchange data (Innocor CO, Cosmed, Italia) and a heart rate monitor. The 

incremental cycling exercise to exhaustion test started at an initial power level defined 

according to the participant's level (100 watts for non-cyclists and 150 watts for cyclists) and 

increased by 30 watts every 2 minutes until exhaustion. The end of the test was determined by 

volitional cessation of exercise or failure to maintain pedal cadence above 60 rpm despite 

strong verbal encouragement. During the first step of this maximal test, 30 trials of the RDK 

task was performed to set up the consistency parameter according to a staircase procedure.  

 

 

 

Table 1. Anthropometric and physiological characteristics of participants. PSV: Power corresponding to the 

ventilatory threshold, HIE: high-intensity exercise, V̇O2max: maximal oxygen consumption. 

 

A familiarization session (about 1 250 trials), identical in all respects to the following 

experimental cognitive session, was carried out in order seemed to minimizing potential of 

learning or practicing effects, avoiding individual differences inherent to a design protocol, 

and excluding day-to-day variations of performance. During this session, participants 

Mean ± standard deviation 

Variables All Male Female

Sample size 20 19 1

Age (years) 24±5 24±5 32

Height (cm) 177±7 178±6 161

Weight (kg) 67±9 68±9 51

Fat mass (%) 15±4 14±3 27,9

V̇O2max (ml.kg-1.min-1) 55±7 56±6 35,7

Heart rate max (bpm) 185±8 185±8 185

Maximal aerobic power (W)  295±57 300±53 190

PSV1 (W) 204±56 208±55 130

PSV2 (W) 253±51 258±47 160

Heart rate HIE (bpm) 157±16 157±16 158

Heart rate HIE (% max) 85±8 85±9 86

Central temperature HIE (°C) 38,2±0,4 38,2±0,4 37,8
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completed the cognitive task at rest before and after the completion of the high-intensity 

interval exercise (lasting about 48 min), then the exercise started with 30s step performed at 

75 Watts, and the intensity gradually increases in power up to 90% of the first ventilatory 

thresholds (SV1).  This fairly low intensity was deliberately chosen in order to consider the 

additional physiological cost induced by the cognitive task. At this intensity, corresponding to 

an individual heart rate range between 62-97% HRmax, participants carry out 5 min cycling 

interspersed with 1 min active recovery. The RDK task was performed continuously while 

cycling (average 130 trials, ranged from 68 to 176 trials). Participants had to identify the 

motion direction (leftward vs. rightward) by pressing the corresponding button with their left 

or right thumb. They were instructed to respond as quickly and accurately as possible. 

Capillary blood samples from the fingertip were taken just before and after exercise to 

measure lactate and glucose. The skin was cleaned with alcohol, allowed to dry and then 

punctured with an automated lancet. Blood sample was analyzed using Biosen blood analyzer 

(EKF diagnostics, UK). During the experimental session, participants completed the exact 

same protocol.  

 

Data Analyses 

The analyses presented here focus exclusively on pre- and post-exercise data collected 

at rest. The data recorded during high-intensity exercise, compared to after exercise, induces 

very different physiological responses which implied other cognitive processes. They will thus 

be the object of another study. Anticipations (RTs < 150 ms; 0.11 %) were discarded from all 

analyses. Two subjects did not perform the perceptual task appropriately (i.e., percentage of 

accuracy under 50%) and were excluded from the initial sample of 22 participants.  

The Drift Diffusion Model (DDM) parameters were estimated using a hierarchical 

Bayesian procedure implemented with the DMC package (Heathcote et al., 2019) for the R 

software (R Core Team, 2016). Specifically, we considered the DDM with inter-trial 

variability in the drift rate (sv) and the starting point (sz), and let the drift (v), threshold (a) 

and nondecision time (Ter) vary across conditions. We used truncated normal priors at the 

individual level (bounds: [0,5] for a, [-5,5] for v, and [0,1] for all other parameters). At the 

group level, we assumed broad truncated normal distributions for the means and uniform 

distribution on [0,1] for the standard-deviations. In order to fit the model to the data, we used 

the two-steps procedure described by Heathcote et al. (2019). In a first step, we fitted each 

participant’s data individually. The averaged resulting parameters were used in a second step 

as starting values for hierarchical sampling. The quality of the fit was evaluated by visually 

.CC-BY 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted February 14, 2023. ; https://doi.org/10.1101/2023.02.14.528466doi: bioRxiv preprint 

https://doi.org/10.1101/2023.02.14.528466
http://creativecommons.org/licenses/by/4.0/


inspecting Markov chain Monte Carlo chains, comparing predicted data according to best 

fitting parameters to actual data, and computing Brooks and Gelman’s (1998) R statistics (see 

Supplemental Data). Finally, we tested the presence of an effect of the condition (before vs. 

after exercise) on the parameter values by computing Bayesian p values (Heathcote et al., 

2019). 

Results 

 

Physiological measures 

The intensity set up during the high-intensity interval exercise corresponds to 85 ± 8 % 

of the maximal hearth rate (HRmax) (range from 62 to 97 % of HRmax). Paired t-test showed 

higher heart rate at the end of the 8th block (159 ± 16 bpm) compared to the 1st block (151 ± 

16 bpm, t = -4.71, p < .001, d = 19, CI [-11.97, -4.60]) showing a classical derive of heart rate 

through the high-intensity interval exercise (Figure 1). Blood sample analyses confirmed the 

physiological repercussions of the protocol on lactate and glucose levels. Following exercise 

lactate concentration was higher (+2.2 ± 0.7 mml-1, t = -4.77, p = 2.54e-05, df = 39, CI [-2.28, 

-0.92]) and glucose was lower (-0.6 ± -1 x 10-3 mml-1, t = 3.85, p < .01, df = 39, CI [0.28, 

0.92]) than before exercise.  

 

Figure 1. Heart rate (bpm) evolution during the high-intensity interval exercise, lactate and glucose levels 

(mml.L-1) before and after exercise. Error bar represent ½ SD. 

Behavioral data 

Accuracy (%) by condition (before vs. after exercise) and RT (s) by accuracy and 

condition are presented in the Table 2. 

 

Before After

87% (34) 87% (34)

RT correct 0.99 (0.63) 0.92 (0.63)

RT error 1.4 (0.79) 1.3 (0.79)

Percentage of correct response

Mean RT
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Table 2. Response times in second and percentage of accuracy averaged across subjects before and after high-

intensity intermittent exercise. Standard deviation are in parentheses.  

 

DDM parameters  

Visual inspection of Markov chain Monte Carlo chains (Supplemental Data, graph 1), 

comparison between predicted and actual data (Supplemental Data, graph 2), and Brooks and 

Gelman’s (1998) R statistics (Supplemental Data, table 4) show that the estimation procedure 

was satisfactory.  

We investigated which component of the perceptual decision-making process was impact by 

exercise by comparing the best-fitting parameters of the DDM across conditions at the group 

level (detailed results of the fitting procedure are available in the Supplementary Data). Table 

3 shows the parameter estimates before and after exercise and the probability value 

associated: the drift v rate increases significantly following exercise compared to before, the 

non-decision time Ter decreases by about 70 ms, and the boundary a increases. Additional 

simulations allow to quantify the impact of the variation of the drift and the threshold. The 

increase in the drift and the threshold (drift rate: +0.010, threshold: + 0.0044) have opposite 

effects of similar size on RT (about 30 ms), and very small effects on accuracy.  

 

 

 

Table 3. Diffusion model best-fitting parameters before and after intense exercise, with 95% credible intervals. 

 

Discussion 

The present study aimed at deciphering the subsequent effect of a high-intensity 

interval exercise on cognitive processes involved in perceptual decision-making. To that end, 

participants performed a perceptual decision task (RDK) before and after a high-intensity 

interval exercise (i.e., 8 x 5min, 85 ± 8 % HRmax). Cognitive processes were measured by 

best-fitting parameters of a drift diffusion model (DDM) to behavioral data (accuracy and 

Before After
Proba 

(after>before)

1.7 1.8

[1.1,2.4] [1.2,2.6]

2.0 2.1

[1.7, 2.3] [1.8,2.4]

0.49 0.40

[0.36,0.59] [0.05,0.74]

v = drift rate 0.023

a = upper decision threshold 0.045

Ter = non decision time <0.01
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response times). We found that high-intensity interval exercise notably modulates non-

decisional and decisional processes immediately following physical activity.  

Specifically, we observed a diminution of non-decision time (Ter), which measures 

the mean duration time required for processes unrelated to the decision process in perceptual 

decision-making task. This observation is consistent and comparable with the results reported 

by Davranche et al. (2005, 2006) showing a facilitation of non-decisional processes during a 

single bout of moderate physical activity. Using the decomposition of reaction time, with 

respect to the electromyographic activity of response agonists (a chronometric and 

electromyographic study), these studies actually showed that exercise enhances motor 

processes involved in response execution as well as peripheral sensory processes involved in 

early sensory operations. Additionally, we observed an increase of the drift rate (v) after 

completion of high-intensity interval exercise. This finding is in line with the fact that (i) 

high-intensity physical activity is positively associated with changes in brain-indices 

associated with arousal levels and attention allocated to the task (Du Rietz et al., 2019) and 

(ii) vigilance state induced by sleep-deprivation modulates the drift rate in DDM (Ratcliff & 

Van Dongen, 2011).  

These results are fully consistent with the increase in central nervous system 

excitability associated with the release of central catecholamines during exercise and more 

particularly during such high-intensity exercise. The massive release in catecholamines 

renders the organism more receptive to sensory information (Moxon et al., 2007) and more 

prone to react (Davranche et al., 2015). Moreover, other peripheral biomarkers specific to 

high-intensity exercise such as circulating lactate (Hashimoto et al., 2021), blood glucose, 

circulating cortisol level or neurotrophic factors could also contribute to cognitive changes in 

a synergistic way. All these adaptive modulations (for a review see, Singh & Staines, 2015) 

most likely participate to enhance motor cortex sensitiveness to upstream influences, thereby 

increasing sensory sensitivity (promoting stimulus encoding), raising arousal level 

(accelerating processing speed) and modulating corticospinal excitability (promoting the 

execution of the response). 

We also observe a modulation of the decision threshold (a), with more cautious 

decisions after exercise. This effect is, however, statistically more fragile.  To the best of our 

knowledge, there is little reason to expect that physical exercise should modulate speed-

accuracy trade-off. For instance, neither the bromocriptine (a dopamine receptor agonist, 

Winkel et al., 2012), nor sleep deprivation (Ratcliff & Van Dongen, 2011) were found to 

modulate decision threshold. Therefore, the robustness of the observed modulation of decision 
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threshold after high intensity exercise, as well as the potential underlying physiological 

mechanisms remain open to further investigations. 

Most studies aiming at better understanding the acute effects of physical activity on 

cognitive processes, have focused on moderate-intensity continuous exercise. It is only very 

recently that there has been a growing interest in high-intensity exercise. By applying DDM 

model on a perceptual decision-making task, the present results provide a new insight into 

cognitive mechanisms underlying high-intensity exercise-induced changes. Faster non-

decisional time and more efficient drift rate suggest a better sensory encoding, a greater 

allocation of attentional resources and a faster processing speed following exercise. Less time-

consuming, more ecological and particularly efficient, high-intensity exercises appear a very 

promising alternative to traditional light- to moderate- exercises. 
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Supplementary data 

 

Graph 1: Markov chain Monte Carlo trace and density of DDM parameters (z: starting 

point, sv: drift variability, sz: starting point variability, t0: non-decisional time (Ter), a: decision 

thresholds, v: drift) before (C0) and after (C4) high-intensity interval exercise. 
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Graph 2: Fit quality for Accuracy rate (left) and Responses time (right) before and after high-

intensity interval exercise.  

 

 

Note. Open points: data; solid points: model prediction; error bars show the corresponding 95% 

credible intervals.   
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Table 4: Group parameters estimates  

  2.5% 50% 97.5% Rhat 

Hyper location 
 z 0.50 0.53 0.55 1.0 

 sv 0.02 0.33 1.02 1.0 
 sz 0.01 0.08 0.17 1.0 
 Before 

 a 1.74 2.05 2.34 1.0 

 v 1.07 1.71 2.40 1.0 

 Ter 0.36 0.48 0.59 1.0 

 After  

 a 1.82 2.13 2.41 1.0 

 v 1.16 1.83 2.56 1.0 

 Ter 0.05 0.40 0.74 1.0 

Hyper scale z 0.04 0.06 0.09 1.0 

 sv 0.51 1.00 1.91 1.0 

 sz 0.07 0.13 0.21 1.0 
 Before 

 a 0.44 0.61 0.94 1.0 

 v 1.03 1.43 1.93 1.0 

 Ter 0.12 0.17 0.84 1.1 

 After  

 a 0.43 0.60 0.92 1.0 

 v 1.09 1.51 1.96 1.0 

 Ter 0.15 0.26 1.76 1.0 

 

Note. Ter: non-decisional time, a: decision thresholds, v: drift, Rhat: Brooks and Gelman’s 

(1998) R statistics 
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Table 5. Individual parameters median before and after high-intensity interval exercise 

 
Note. Z: starting point, sv: drift rate variability, sz: starting point variability, Ter: non-decisional 

time, a: decision thresholds, v: drift rate. 

 

Before After

Subject z sz sv a v Ter a v Ter

1 0.47 0.14 1.11 1.72 2.83 0.45 1.75 3.25 0.37

2 0.51 0.14 0.14 3.08 0.87 0.75 3.04 0.94 0.69

3 0.56 0.14 0.40 2.47 0.27 0.47 2.51 0.49 0.58

4 0.57 0.14 0.37 1.96 1.55 0.56 1.83 1.35 0.36

6 0.42 0.12 0.80 1.64 0.71 0.33 1.58 1.19 0.26

7 0.47 0.12 0.83 1.17 0.76 0.63 1.29 0.46 0.46

8 0.54 0.23 1.62 1.62 2.34 0.35 1.92 2.85 0.28

9 0.60 0.12 1.42 1.59 4.79 0.36 1.77 4.59 0.28

10 0.56 0.16 0.56 1.92 3.14 0.34 2.07 3.70 0.33

12 0.49 0.13 0.27 2.97 0.23 0.68 2.80 0.11 0.84

14 0.63 0.12 0.34 1.98 0.42 0.46 2.24 0.30 0.47

17 0.52 0.12 0.32 2.55 0.78 0.70 2.76 1.40 0.56

18 0.56 0.13 0.68 1.42 3.23 0.36 2.05 3.18 0.32

19 0.58 0.13 0.87 1.48 3.45 0.35 2.40 4.17 0.26

20 0.56 0.13 0.35 2.30 0.31 0.63 2.75 0.44 0.10

22 0.50 0.15 0.32 1.99 1.42 0.38 1.33 2.08 0.43

23 0.54 0.12 0.24 2.83 1.24 0.46 2.88 0.89 0.66

24 0.45 0.12 1.37 2.72 3.03 0.32 2.14 2.41 0.33

25 0.49 0.13 1.02 1.59 1.28 0.77 1.36 1.26 0.55

26 0.49 0.14 0.82 2.08 1.94 0.35 2.21 1.99 0.34

Mean 0.53 0.14 0.69 2.05 1.73 0.49 2.13 1.85 0.42
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