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Markov chain Monte Carlo simulations, combining the sampling of the position of the particles
and their chemical nature, are very useful when calculating, for example, average site occupancies
at crystalline defects in alloys. Unfortunately, when the relaxations around the solutes are large,
the exchange moves can be systematically rejected because of atoms overlapping. As a consequence,
the simulations are often trapped in nonphysical configurations. In this paper, the “Smart Darting”
method from Andricioaei et al. is adapted and extended to propose a solution to this limitation. The
method is tested in a particularly demanding case: the sampling of the arrangements of delocalized
vacancies and divacancies in grain boundaries, both in the fcc and the bcc structure. Beyond
the methodological aspects, intergranular vacancy clusters are interesting in several contexts such
as ductile fracture, irradiation or thin film dewetting, and therefore several properties have been
measured that can be useful for mesoscale modeling: segregation energies, effective diffusion barriers
in and out of the grain boundaries, vacancy-vacancy binding energies and elastic dipole tensors.

I. INTRODUCTION

Vacancy clusters and voids, particularly at interfaces,
are important in various contexts. They are at the origin
of crack embryos in plasticity related fractures: they form
at dislocation boundaries during ductile fracture of pure
metals [1, 2] and at the interface between the matrix and
persistent slip bands in the early stages of fatigue crack
formation [3]. In the presence of interstitial solutes, they
can also lead to the formation of bubbles. Miura et al. [4]
have shown by microtensile testing of individual grain
boundaries that a critical He bubble size and intercavity
spacing, in the 5 nm range, can induce a transition from
ductile fracture to intergranular brittle fracture, with a
drop in fracture toughness. The phenomenon can be re-
produced, to some extent, by atomistic simulations with
voids only [5]. In the case of hydrogen embrittlement,
the role of nanoscale bubbles is less obvious [6] but it
was shown that submicron dislocation cells are formed
along the brittle crack path [7, 8] and nanoscale rough-
ness was measured on the fracture surface [9]. Therefore,
understanding how vacancies cluster along interfaces (cell
walls and grain boundaries) under the influence of stress
and temperature is important for modeling fracture in
many different conditions.
Atomistic simulations are tools of choice, with their

limitations, for addressing this question. Much has been
learned about single vacancies in interfaces. In fcc met-
als, they diffuse preferentially along dislocation cores but
also along the stacking fault ribbons. The activation en-
ergy is slightly reduced in comparison to the bulk [10–12]
but the mechanism remains a simple vacancy-first neigh-
bor exchange, i.e. the relaxations of the neighbors are
marginal [11]. The situation is quite different in grain
boundaries [13]. The relaxations are often large, espe-
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cially in the configurations of low energy (the most statis-
tically visited), and to such an extent that the vacancies
are said to be “delocalized” [14, 15]. Furthermore, some
grain boundary sites cannot host stable vacancies. This
can lead to long diffusion jumps where several atoms are
displaced [13, 16]. At increasing temperature, the crys-
talline order within the core of the GBs is much lower
than that in the bulk and continuously decreases until
melting [13]. Stringlike cooperative motions of atoms,
which are different from the long jumps at low temper-
ature, are activated [17, 18]. It was also shown that a
grain boundary emerging at a free surface, which acts
as a source of point defects (interstitials in this case),
can transition with temperature between different struc-
tures. The reverse transformation could be obtained by
absorbing vacancies [19]. More generally, it is well known
that the construction of a grain boundary, defined by
a set of macroscopic geometric parameters, requires the
optimization of the energy with respect to microscopic
parameters which are the relative translation of the two
grains, plus the number of atoms within the interface [20].
Recently, not only the lowest energy structures but also
all metastable structures [21, 22] were found. The struc-
tural unit model was generalized and its ability to pre-
dict the stable and metastable structures of families of
tilt boundaries, as a function of the misorientation angle,
was established. The large number of these metastable
structural units and the quasi-continuous spectra of their
excess energies, indicate that mixtures of such structures
should exist at non zero temperature. Since they can also
have different numbers of atoms, the mixing of structural
units could be an efficient way of accommodating vacan-
cies. This is of particular interest for designing materials
resistant to irradiation [23–26]. In this context, detailed
studies of the absorption of vacancies were conducted in
a fcc-bcc interface composed of a network of misfit dislo-
cations. Delocalized vacancies were not found to attract
each other, although misfit dislocation intersections con-
stituted preferential segregation sites [25]. In addition,
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mixed tilt/twist GBs in Cu [26] were submitted to the
absorption of large quantities of vacancies. The same GB
core structures were visited periodically during vacancy
loading when the GB changed structure by translation
and shear. Both studies show that grain boundaries can
be tolerant to large quantities of vacancies. Note that
no void formation was found by Molecular Dynamics. In
the bulk, experimentally, void formation appears when
a critical vacancy concentration, in the range of 10−2,
and at a high enough temperature, is reached [27]. Sim-
ple atomic kinetic Monte Carlo and simulations of phase
demixion by atomistically informed Cahn-Hillard equa-
tions can qualitatively reproduce the phenomenon [28].

Most of the valuable results summarized above have
been obtained by Molecular Dynamics (MD). However,
this method has well known limitations, particularly con-
cerning the limited timescale, which is somewhat com-
pensated by working at high temperature. In this case,
the grain boundaries are populated by defects, in ad-
dition to the vacancies deliberately introduced in the
system. They complexify the analysis and influence
the mechanisms that constitute unwanted side effects if
the interest is in the low temperature behavior. Few
studies of interfacial vacancies use elaborate, but out-
dated, versions of MD [12, 16], such as hyper-MD or
temperature-accelerated dynamics. These methods have
evolved [29, 30] and, combined with Adaptative Kinetic
Monte Carlo (AKMC) [31, 32], have successfully simu-
lated the dynamics of vacancies in a thin slab, in par-
ticular the re-entry of vacancies from the surface into
the subsurface on the microsecond timescale [33]. Nev-
ertheless, they might still be limited by the “low bar-
rier” problem in the case of grain boundaries because of
the transitions between SUs or by the massive number
of transition searches necessary for AKMC. When only
clustering tendencies are searched and not a realistic dy-
namics, Markov chain Monte Carlo, where the full phase
space is sampled (i.e., site occupancies and relaxations),
is very useful [34]. For example, in the semigrand canon-
ical ensemble, it was used to study intergranular segrega-
tion [35, 36]. Nevertheless, it suffers from the limitation
of the vanishing acceptance rate of exchanges when re-
laxations around solutes are large, which is the case for
delocalized vacancies.

In this context, we present a simulation methodol-
ogy that overcomes the trapping issue of Markov chain
Monte Carlo (MCMC). In the first part of the paper, the
method is detailed and illustrated in the case of a va-
cancy occupying a peculiar GB site where it can be in
two states: one localized and another delocalized. The
power of the method is demonstrated as it succeeds in
sampling, with a high acceptance rate, the occupancy of
different crystallographically equivalent positions, in the
delocalized state. Then, the average vacancy occupan-
cies corresponding to the equilibrium between the GB
site and a bulk site are calculated by exchange moves us-
ing two different paths: one going through the localized
state and another going through the delocalized state.

The energy barrier between the localized/delocalized va-
cancy states can be tuned by changing the strain perpen-
dicular to the interface in such a way that the two states
can be equilibrated by atomic displacement moves only.
In this condition, the occupancies calculated by the two
different paths should be equal. This demonstrates that
the method and its implementation are correct. In the
second part of the paper, the method is used to study
single and divacancies in 4 grain boundaries in Al (fcc)
and in bcc Fe. The efficiency is measured and the clus-
tering tendency, which is quite different from one GB to
another, is analyzed.

II. MONTE CARLO METHOD

The method combines three aspects: the classical
Monte Carlo simulation of the (N,V,T) ensemble by sam-
pling the particles’ positions [34], a periodic search for lo-
cal energy minima, and finally transitions between these
energy minima by the Smart Darting method [37] (Fig.1).
In the following each of these aspects is detailed.
The starting point is the classical Monte Carlo simula-

tion of the (N,V,T) ensemble [34, 38]. The definition of
the microstates was modified to introduce vacancies [39]:
the volume V is split into Voronoi cells according to the
stable crystalline structure. The N vectorial positions
of the particles are replaced by N displacements with re-
spect to the lattice nodes. It is implicitly considered that
a Voronoi cell does not contain more than one particle. If
this is not the case, the lattice should be refined by con-
sidering interstitial sites for example. The empty Voronoi
cells are defined as vacancies. The set of N displacements
is completed by a vector of M occupancies pi such that
pi = 1 if the site is occupied, zero otherwise, and M is the
number of sites contained in volume V. If the system con-
tains a grain boundary (GB), the lattice is the one of the
minimum energy GB structure [40]. The configuration
space is composed of the permutations of the vacancies
(a swap of the occupancies) and the volume of occupied
Voronoi cells. The partition function to be sampled is:

QM (N, V, T ) =
∑

{pn}M

1

Λ3N

∫

vor

d~uN

×exp(−β(H({pn}, (~u)
N ))) (1)

where vor is the volume of the Voronoi cell surround-
ing each lattice site and Λ is the thermal de Broglie
wavelength (Λ =

√

h2/(2πmkBT )), m is the mass of
the particle, h and kB are the Planck and Boltzmann
constants. The sampling is done by proposing random
displacement increments to a randomly selected particle
within the Voronoi cell of the site (∆u moves) or swap-
ping of occupancies between first neighbors (X moves).
The energy variation is calculated and the moves are ac-
cepted according to the Metropolis criterion. Most of
the time, a particle remains confined to the vicinity of
the lattice node. If a particle attempts to cross a facet of
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Figure 1. (Color online) Sampling of the configuration space of a system composed of the Σ33(554)[110] symmetrical tilt
grain boundary, under 3% strain with one vacancy. (a) Evolution of the energy (eV) as a function of the Monte Carlo steps,
essentially because of ∆u moves. Periodic energy minimizations are represented by vertical lines. (b) Evolution of the distance
between the current microstate and states 0 (vacancy delocalized and on the most favorable GB site) and 1 (localized). The
states are shown in figure 2. The Smart Darting parameter ǫ is set to 0.2 a0. As a consequence, the system is usually within
the neighborhood of state 0 or 1, and therefore, the number of Smart Darting moves attempts is close to the maximum. (c)
Evolution of the z position of the vacancy, illustrating acceptance of Smart Darting moves between the vacancy and one of its
first neighbors along the tilt axis. The comparison of the zooms (right pictures b and c) shows that Smart Darting moves are
accepted whether they are performed between states 0 or between state 0 and 1 at different z positions.

the Voronoi cell toward a vacant site by ∆u moves, the
microstate is updated by swapping the site occupancies
and modifying the displacements accordingly (vacancy
displacements are zero). If the relaxations around the
vacancies are small, this simple scheme is efficient [39].
Otherwise, the X moves are always rejected because of
overlaps between particles, as shown below.

Smart Darting [37] is an efficient way of avoiding trap-
ping along the Markov chain. Consider a list {X i

0} of
local minima of the potential energy and neighborhoods
of arbitrary size ǫ around them. A Smart Darting move
(SD move) consists in checking with probability pSD if
the current microstate of the Markov chain is within ǫ of
one of the minima. If not, the SD move is rejected (the
current microstate is counted again in the Markov chain).
If yes, for example X i

0, another local minimum of the list

is selected at random, for example Xj
0 . The move per-

forms a translation of the system from the neighborhood
of size ǫ of X i

0 to the neighborhood of size ǫ of Xj
0 . This

is done by adding the “dart” D = Xj
0 −X i

0 to the cur-
rent microstate, i.e. Xnew = Xold +D. The correspond-
ing energy variation is computed and the move is ac-
cepted/rejected according to the Metropolis rule. In our
case, the “dart” is a combination of an occupancy swap
(an exchange between a vacancy and a first neighbor for
example) and a translation (the relaxations around the
old position of the vacancy are canceled and the new
relaxations are applied around the new position of the
vacancy). In more detail, the structure of the GBs is pe-
riodic, particularly along the tilt axis for tilt GBs. The
lattice sites are given an index that repeats periodically.
The relaxations around the vacancies are collected, in the
different configurations, after the energy has been mini-
mized by a procedure that is detailed later. For a single
vacancy, the configuration is defined by the index of the
vacant site and the relaxations { ~u0} of the neighbors.
These are referenced by the index of the neighbor site
and the z position of its lattice node, relative to the z of
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the vacant site, called ∆z. The ensemble given by the
index of the vacancy and the list of (index,∆z, ~u0) of
the neighbors is called a “topology”, in reference to the
kinetic-Activation Relaxation Technique [32]. The do-
main over which { ~u0} is collected should be sufficiently
large to contain all the sites that are significantly re-
laxed. Otherwise, the attempts will be systematically
rejected because of overlaps of particles. For moving a
vacancy from site i, first the distance to the different
known topologies is evaluated as:

distk = max
(index,∆z)

{‖ ~u0
k − ~u‖} (2)

where the distance is evaluated only for the topologies
compatible with the distribution of the site occupancies,
and k is the index in the list of topologies. If there exists
a topology ki where distki

< ǫ, then a site j, neighbor
of i, is selected and a new topology is selected in the list
of topologies (compatible with site j being occupied by a
vacancy), referenced by kj . The “dart” is then the com-
bination of the swap of the occupancies of the lattice sites
j and i and the translation (index, ∆z, ~u0

kj − ~u0
ki). An

example is given in Fig. 1b. In the specific GB studied,
the vacancy can be in two states on the most favorable
GB site, one “localized” with limited relaxations of the
neighbors and one “delocalized”. They are labeled states
1 and 0. So, for the same GB site index, there exists
two topologies, shown in Fig. 2. The GB being a tilt
GB of axis [110] of the fcc structure, such sites consti-
tute a whole line of first neighbors. Figure 1b shows
the fluctuation of dist0 and dist1 due to the ∆u moves.
The neighborhood size ǫ has been adjusted such that the
system is usually either in state 0 or in state 1 so that
SD moves can be attempted. This is done in the follow-
ing way: starting from a microstate where the system is
in the neighborhood of topology 0, for example, a first
neighbor site is chosen at random, either above or be-
low the actual vacant site and a new topology is selected
at random for this site, for example topology 1. The
“dart” is applied, i.e. the neighbors of the old vacant
site are displaced by − ~u0

0 and the ones of the new site
are displaced by + ~u0

1. The occupancies are switched be-
tween the two GB sites. The variation in the energy is
calculated and the transition is accepted/rejected based
on the Metropolis criterion. Figure 1c shows the one
dimensional random walk of the vacancy obtained. The
simulation also contains topologies that would let the va-
cancy escape from the grain boundary but this does not
occur at that temperature (300 K).
An SD move can only be performed in between two al-

ready known topologies. Starting with no known topol-
ogy, the Markov chain is constructed with ∆u and X
moves alone and is quickly trapped in a configuration
where the vacancy is delocalized. The energy is mini-
mized at regular intervals. Then, the topology around
each vacancy is extracted and stored in the format given
above. When several vacancies are present, a topology
also contains a list of (index, ∆z) for the other vacancies
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Figure 2. (Color online) Relaxations around a single vacancy
(large cross) on the most favorable site of the Σ33(554)[110]
symmetrical tilt grain boundary, strained by 3% perpendic-
ular to its plane. (a) State 0 (“delocalized vacancy”) and
(b) state 1 (“localized vacancy”). Displacement values larger
than 0.05 a0 are represented by arrows. They constitute, to-
gether with the site index, the topology used for the Smart
Darting moves. (c) Distribution of the energy variation ∆E

(eV) when a simple exchange (X), a simple Smart Darting ex-
change (SD) or a Smart Darting exchange plus the sampling
of the neighbors, including the bias in the acceptance rule

−kT log
∏

(n→o)∏
(o→n)

(SD+R+b) (Eq. 7), are made. Only neigh-

bors with a relaxation larger than 0.1 a0 were considered and
the acceptance rate was on the order of 5% at T=300K.

within the cutoff radius of the topology. If the topology
is unknown, it is stored in the list of known topologies.
Since it is the first time it is visited, there are few chances
that other topologies appropriate for the SD move, i.e.,
with a vacancy in first neighbor position of the actual
vacancy, exist in the list. Therefore, no SD move can
be constructed from the information concerning the cur-
rent configuration alone. In addition to the extraction of
the current topology from the minimized configuration,
a series of robust Nudged Elastic Band (NEB) calcula-
tions [41] between the current configuration and the ones
obtained by swapping the vacancy with one of its neigh-
bors (within the same range as the one for the SD move,
which is not necessarily limited to first neighbors) is per-
formed. If the NEB finds an intermediate configuration,
the corresponding topology is extracted. Otherwise, the
topology is extracted from the end point of the NEB.
Therefore, the topologies are more than simple arrange-
ments of vacancies over the lattice nodes because the
same set of occupancies can lead to different relaxations.
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These topologies are stored, if unknown previously, in
the list of known topologies and marked as “unsearched”,
meaning that if they are visited and occupied during a
future energy minimization, they should be searched for
new transitions. In addition to topologies, the NEB gives
energy barriers that are not exploited by the method, at
the moment, but which constitute kinetic information
which could be useful either to evaluate at which tem-
perature the transitions could be realistic or opens the
possibility for kinetic Monte Carlo with a fixed catalog
of rates collected during the MCMC simulation. It can
be stressed that the MCMC simulation is richer than the
KMC simulations that could be done with the transitions
found by the NEB because the ∆u moves are sufficient
to pass over the low energy barriers and therefore they
participate in the exploration of the configuration space.

In the example presented in figures 1 and 2, the ac-
ceptance rate is 0.7% for first neighbor exchanges, by SD
moves only, between equivalent sites along the tilt axis, in
topology 0 (the one with the most extended relaxations).
The distribution of the energy variation for SD moves
is shifted by almost 3 eV toward low energies in com-
parison to the distribution for X moves (basic exchange)
(Fig. 2c), which confirms that the problem of the over-
lap of the particles is solved. Nevertheless, there are few
attempts that have a negative energy (see insert). One
way of improving the acceptance rate is to sample the po-
sitions of the particles which are significantly displaced
from the lattice nodes during the SD move. For this,
the “configurational-bias” Monte Carlo method [34, 42]
for growing chain molecules in dense systems has been
adapted to the vacancy problem. Originally, a molecule
is grown segment by segment by picking the segment’s
orientation out of k trial orientations. The energy vari-
ation related to each trial orientation is calculated and
the new orientation is selected according to its Boltzmann
weight in the list of trial orientations. It is clear that the
probability of selecting this orientation is not random
and depends not only on the environment (the configu-
ration of the other molecules in the system), but also on
the orientation of the segments previously grown. This
probability must be introduced in the acceptance rule
and therefore, it must be calculated both for the forward
and reverse moves. This means, in the chain molecule
example, that the old configuration has to be regrown
segment per segment. In the case of vacancy exchange,
the same procedure is followed but, instead of choosing
orientations for segments, displacements are chosen for
neighbors. This is done after the SD move is applied. A
list of neighbors with significantly large “darts” is estab-
lished, typically displacements larger than 0.05 a0. Nn
is the number of such neighbors. The displacements in
the “old” configuration are stored as uold

i , to calculate
the probability of the reverse move. i refers to the posi-
tion of the neighbor in the list. Then, sequentially, the
“new” displacement for every neighbor unew

i is chosen
among Nr random possibilities un

ik = rkǫ+ ui
0. rk is the

kth random vector of the list of length Nr, ǫ is the size

of the domain around the component of the dart ~u0 on
site i named ui

0. The energy variation for every of these
trial positions is calculated and named ∆E(unew

ik ). The
probability of picking a displacement, for example unew

ik′ ,
in the list is:

p(unew
ik′ ) =

e−∆E(unew
ik′ )/kT

∑Nr
k=1 e

−∆E(unew
ik

)/kT
(3)

Once this is done, the index k′ is dropped, and after all
the neighbors have been treated, the energy of the new
configuration is

Enew = Eold +∆ESD +

Nn
∑

i=1

∆E(unew
i ) (4)

and the probability of choosing this set of displacements
is

∏

(o → n) =

Nn
∏

i=1

p(unew
i ) =

e−
∑Nn

i=1
∆E(unew

i )/kT

∏Nn
i=1

∑Nr
k=1 e

−∆E(unew
ki

)/kT

(5)
For the reverse move: starting from the “new” configu-
ration, the SD move is reverted and then, for each neigh-
bor, Nr− 1 displacements are selected at random within
the ǫ volume around the displacement corresponding to
the reversed dart. The corresponding energy variations
are calculated and named ∆E(uold

ik ) and the one for the
stored “old” displacement uold

i named ∆E(uold
i ). The

probability that the old configuration is recovered dur-
ing the reversed move is:

∏

(n → o) =

e−
∑

Nn
i=1

∆E(uold
i )/kT

∏Nn
i=1(e

−∆E(uold
i )/kT +

∑Nr−1
k=1 e−∆E(uold

ki
)/kT )

(6)

Detailed balance gives the acceptance rule:

acc(o → n)

acc(n → o)
=

ρn
ρo

∏

(n → o)
∏

(o → n)

= e−(∆ESD+
∑Nn

i=1
∆E(unew

i ))/kT

∏

(n → o)
∏

(o → n)

(7)

By construction, ∆E(unew
i ) tends to be negative, on aver-

age. Therefore, in equations 4 and 7, the energy variation
related to the SD move, ∆ESD, tends to be decreased

by
∑Nn

i=1 ∆E(unew
i ), and therefore, the acceptance rate

increased. The term
∏

(n→o)∏
(o→n) is complex. Statistics

about its distribution have been acquired numerically.
It strongly depends on the number Nn of neighbors in-
volved, with a strong tendency to degrade the positive

influence of
∑Nn

i=1 ∆E(unew
i ), to an extent where the ac-

ceptance rate could be lower than SD moves alone. The
strategy followed consist in selecting the neighbors that
are the most displaced during the SD move, keeping the
number of neighbors low. For example, in the case of
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figure 2, a threshold of 0.1 a0 on the displacements leads
to only 4 neighbors involved in the “configurational-bias”
procedure. For N = 1000, the acceptance rate is 5%, i.e.,
a boost by a factor of 7 with respect to SD moves alone
(SD in Fig. 2c). With a threshold of 0.05 a0 and 10 neigh-
bors involved, the acceptance rate is only 1.7%. With 4
neighbors, the total computational time of the SD move
is only multiplied by a factor of 2 (using 6 threads).
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state 0 (replica 11) obtained by the NEB, as a function of
the homothety factor applied perpendicular to the GB. (b)
Occupancy of a bulk site when it is put in equilibrium with the
GB either in state 0 or in state 1, as a function of temperature
and for two strain levels hx=1.03 and hx=1.04.

Finally, the question of the validation is addressed.
The energy variation between states 0 and 1 is shown
in figure 3a. The barrier tends to zero when the strain
goes to zero, i.e., state 1 (replica 0 in Fig. 3a) is unstable.
The barrier is low enough to be crossed by ∆u moves only,
provided the temperature is high enough. The validation
test consists in putting states 0 and 1 in equilibrium with
a bulk site by two different paths, using two different MC
moves. Path 0 is bulk ⇋ state 0 ⇋ state 1, with the first
equilibrium established by SD moves and the second by
∆u moves. Path 1 is bulk ⇋ state 1 ⇋ state 0, with the
first equilibrium established by X moves and the second
by ∆u moves. The X moves have a nonzero acceptance
rate because the neighbors are only weakly relaxed to-
ward the vacancy. Figure 3b shows that the two paths
lead to the same average occupancies which establishes
that the SD moves, including the configurational bias,
are properly implemented.

III. APPLICATION TO DIFFERENT GRAIN

BOUNDARIES

The method is applied to four symmetrical tilt grain
boundaries, two in Al: Σ33(554)[110] [43] (without
strain) and Σ13(320)[001] [44, 45], and two in bcc Fe:
Σ29(730)[001] and Σ9(114)[110] [46]. The technical de-
tails are given in the appendix. The grain boundary
structures, vacancy segregation energies and relaxations
when the vacancy occupies the most favorable position
are shown in figure 4. The amplitude of the relaxations

(umax in table I) is large: between 0.1 and 0.4 a0 depend-
ing on the grain boundary. The efficiency of the Monte
Carlo method is evaluated by measuring the acceptance
rate for vacancy-particle exchanges in the different struc-
tures. To mimic diffusion, exchanges with nearest neigh-
bors were proposed first. When the tilt axis is not aligned
with a nearest neighbor pair, the move involves leaving
the site that is most favorable energetically and therefore
the acceptance is biased by the change in segregation en-
ergy. Taking into account this effect, the list of neighbor
sites is extended beyond the first neighbors to include
the sites that are crystallographically equivalent, along
the tilt axis. This means second neighbors for the [100]
axis and third neighbors for the [110] axis of the bcc
structure. The acceptance rate is measured specifically
for moves that do not involve changes in segregation en-
ergy. Different degrees of complexity were tested. They
are designated in table I as: X for the simple exchange,
SD for “Smart Darting” alone and SD+R+b for a Smart
Darting exchange combined with a Rosenbluth sampling
“R” of neighbor’s displacements and inclusion of the cor-
responding energy bias “b” in the metropolis criterion
according to equation 7 (∆ESD is the energy variation re-

lated to SD,
∑Nn

i=1 ∆E(unew
i ) to “R” and−kT log

∏
(n→o)∏
(o→n)

to “b”). The reported acceptance rate for the X moves
only reflects the absence of acceptance after a large num-
ber of trials because of the relaxation of the neighbors
shown in Fig. 4. The acceptance rate for SD moves is al-
ready very significant: between 1 and 6% depending on
the structure. It can be improved up to between 3 and
10% by the SD+R+b move (table I). As already men-
tioned above, the number of neighbors (Nn) involved in
R sampling is crucial and should be minimized. In these
tests, they were selected according to the amplitude of
their relaxation in the topology with a threshold that
is specified by uTopo. Both Nn and uTopo are given in
table I. Finally, the “global” acceptance rate is also re-
ported. In this case the moves also involve sites that are
not those of optimal segregation energy and therefore less
prone to be visited. They are nonetheless important for
sampling arrangements of several vacancies.

The process of finding the topologies necessary for the
SD moves also produces activation barriers. Although
not used in the Monte Carlo simulation, they provide
interesting information concerning the kinetics of the va-
cancies. The effective barrier for diffusion along the tilt
axis Ea

tilt and the effective barrier to exit the GB Ea
out

are given in table II. The former is the minimum barrier
for a change in the z position of the vacancy and the lat-
ter is calculated following the minimum energy path. It is
composed of several jumps and stops when the vacancy
bulk activation barrier is recovered. The local minima
along the path form a basin where, as a first approxima-
tion, the occupancies are considered equilibrated before
the exit event [47]. The escape rate (through the path)
is the product of the probability of being in the last local
minimum along the path times the frequency for crossing
the last barrier. If the bottom of the basin has a signifi-
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Figure 4. (Color online) Symmetrical tilt grain boundary structures without vacancies: (a) Σ13(320)[001], (b) Σ33(554)[110] in
Al and (c) Σ29(730)[001], (d) Σ9(114)[110] in bcc Fe. Colors represent the vacancy segregation energy (∆Eseg). The minimum
values are given in table II. The relaxations around a single vacancy in this optimal configuration are represented by arrows on
(e,f,g,h) projected in the (x,y) plane and in the (x,z) plane on (i,j,k,l) (only the displacements are shown). The vacant site is
marked by a large cross.

cantly lower energy than the others, the prefactor ahead
of the final rate can be approximated. Then, the effec-
tive energy barrier for exiting the basin is simply the
difference in segregation energy between the bottom of
the basin and the last state before exit added to the last
jump barrier. It is this value which is reported as the ef-
fective barrier for exiting the GB. The vacancy diffusion
along the grain boundaries is found to be significantly
dependent on the structure (as already known from MD
simulations of self-diffusion [48]). The exit barrier is al-
ways much larger than the bulk barrier. It is close to, but
not exactly equal to, the difference between the bulk ac-
tivation energy and the segregation energy. In contrast,
the activation energy for diffusion along the tilt axis can
be larger, or smaller than the bulk value, meaning that
intergranular vacancies do not necessarily diffuse faster
than bulk vacancies. Nevertheless, self-diffusion is faster
than in the bulk because the vacancy formation energy is
decreased. Finally, for these grain boundaries, the diffu-
sion occurs along the tilt axis with no easy path to move
from one structural unit to the other (i.e. in the y di-
rection). The activation energy in the y direction can be
taken, as an approximation, as the exit activation energy.

The aggregation of two vacancies is also studied by the

MCMC method. Each grain boundary studied exhibits
a different behavior. The results of the simulations dedi-
cated to the two GBs in Al are reported in Figure 5, those
in Fe are discussed in the Supplemental Material. The
inserts (Fig. 5 a and b) represent the position of the va-
cancies along the tilt axis of the GBs along the Markov
chain. Periodic boundary conditions are applied. The
length of the simulation box is 12 periods in both cases
but one period is 1 a0 long for the Σ13 of axis [001]

and
√

(2)/2 a0 for the Σ33 of axis [110]. Therefore, the
nearest crystallographically equivalent sites along the tilt
axis are a second neighbor and a first neighbor, respec-
tively. Both inserts demonstrate that the z positions are
well sampled. The clustering tendency is very different.
In the Σ13 case, the distance between the vacancies (d)
fluctuates between 1 and Lz/2, which is the maximum
separation allowed by the periodic boundary conditions.
The energy of the topologies “visited”is superimposed to
d. This energy is the one found after minimization when
the topology is extracted. It is not the current energy
of the system. “Visited” is to be taken in the “Smart
Darting” sense, i.e., the distance between the microstate
and the local energy minimum is lower than the thresh-
old defining the neighborhood of the local minimum in
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Table I. Acceptance rates for exchange moves between equivalent sites along the tilt axis, with different types of moves: X
simple exchange, SD Smart Darting move, SD+R+b Smart Darting move combined with a Rosenbluth sampling of the Nn
neighbors of the vacancy that have a displacement larger than uTopo. umax is the maximum amplitude the relaxations. The
“global” acceptance rate is also given. Numbers in parentheses are the mean square difference obtained from 4 independent
runs.

Σ13 Σ33 Σ29 Σ9

SD 0.011 (0.003) 0.018 (0.001) 0.016 (0.001) 0.066 (0.004)

SD+R+b 0.046 (0.001) 0.058 (0.003) 0.030 (0.001) 0.102 (0.003)

global 0.010 (0.0002) 0.011 (0.0002) 0.005 (0.0002) 0.014 (0.0003)

X < 6 10−5
< 4 10−5

< 4 10−5
< 10−4

Nn 2 1 1 2

umax (a0) 0.23 0.30 0.40 0.11

uTopo (a0) 0.2 0.1 0.2 0.1

Table II. Bulk vacancy formation energy, vacancy segrega-
tion energy on the most favorable site, energy barrier for an
exchange between a vacancy and a first neighbor in a per-
fect cristal environment, effective energy barrier for diffusion
along the tilt axis of the GB.

Σ13 Σ33 Σ29 Σ9

Ef
bulk 0.68 0.68 2.10 2.10

∆Eseg -0.43 -0.29 -0.64 -1.49

Ea
bulk 0.65 0.65 0.68 0.68

Ea
tilt 0.82 0.61 0.76 0.97

Ea
out 0.99 0.94 1.13 2.15

SD. The energy variations are small, lower than 0.05 eV.
The minimum energy found is a configuration where the
vacancies are separated by a distance of 2 a0. The sad-
dle searches have explored configurations with d<1 and
their energies are higher than the minimum by 0.4 to
0.6 eV, which might explain why transitions from mi-
cro states with d=1 to those with d<1 are not observed.
In contrast, in the Σ33 case, the vacancies bind. The
evolution of d (Fig. 5b) illustrates how the algorithm ex-
plores new configurations that enrich the list of topolo-
gies, which opens new transitions for Smart Darting, such
as transitions with smaller and smaller d. The simula-
tion is started with d maximum and the list of topolo-
gies obtained for the single vacancy. First, d fluctuates
with values larger than 3 times the period in z until the
method learns the configurations where d is equal to 2
periods. Then, these configurations are visited without
significant energy changes, and from there, the method
finds the configuration where the vacancies bind in first
neighbor position. The energy drops by approximately
0.3 eV. Beyond this point, the energy fluctuates with an
amplitude as high as 0.5 eV, and the cluster moves along
the tilt axis, without complete splitting (insert Fig. 5b).
In the case of Fe, the vacancies bind by more than 1 eV
in the Σ29 and form pairs along the tilt axis with a sep-
aration of one period (1 a0). In the Σ9 case, they repel

each other by 60 meV and therefore remain split (see the
Supplemental Material).

 0
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Figure 5. (Color online) Evolution of the distance between
the vacancies, the energy of the topology visited and the
number of topologies detected along the Markov chain for
a system containing two vacancies: (a) Σ13(320)[001], (b)
Σ33(554)[110] in Al. The position in z (the tilt axis direc-
tion) is shown on the insert.

IV. DISCUSSION AND CONCLUSION

One interesting question about intergranular vacancies
is whether their specific structure, qualified as “delocal-
ized”, leads to specific properties or if they behave in a
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similar way as in the bulk. Regarding diffusion, our find-
ings are similar to what is summarized in the introduc-
tion: several sites lead to the delocalized structure (the
dark sites in Fig. 4) which means that long jumps can be
expected when entering the GBs. In contrast, once the
vacancy is in the optimum location, saddle searches have
not revealed any low energy path for diffusing out of this
configuration and the barriers are similar to bulk diffu-
sion (Tab. II). The elastic field produced is analyzed by
calculating the elastic dipole tensor Pij (Tab. IV), via the
Kanzaki forces [49]. Convergence of the calculation with
the number of neighbor shells gives an estimate of the
range of the elastic deformation produced by the defect.
The influence of the number of shells restored [49, 50]
gives an estimate of the range of the anharmonic region
around the defect. The range of the elastic field is ap-
proximately 3 a0, similar to the bulk (re in table IV).
In contrast, the range of the anharmonic relaxations can
be much larger in the GBs, up to 1.75 a0. These values
are coherent with the radius used for defining the topolo-
gies (2.5 a0) which was found empirically by increasing
the radius until no configuration built from the topolo-
gies relaxed toward a different minimum than the one
targeted. Furthermore, the amplitude of Pij in the GBs
can be approximately twice that in the bulk (Tab. IV).
This suggests that an external elastic field could have a
significant impact on the segregation energies. Indeed,
the magnitude of this difference, typically 4 eV, leads
to interaction energies of the same order of magnitude
as the segregation energies for reasonably large elastic
strains. For example, 2% normal strain ǫ11 leads to

∆Ee = −(P gb
ij − P bulk

ij )ǫextij ∼ 0.08 eV which is already

of the order of 20% of the segregation energy (Tab.4).
In contrast, the calculation of the vacancy-vacancy elas-
tic interaction energy, from the Pij and within isotropic
elasticity (the Al case), gives a negligible interaction (on
the order of 1 meV in first neighbor along the tilt axis
of Σ33). The binding energies found, which are there-
fore pure core effects, depend on the structure and are
different from the bulk values: -0.02 eV, 0.3 eV, 1 eV
and -0.06 eV for Σ13, Σ33, Σ29 and Σ9, respectively,
while in the bulk the interaction is zero in Al [51] and
0.14 and 0.3 eV in the first and second nearest neighbor
positions in Fe [52]. Additionally, because the segrega-
tion energies are large, the interactions are along the tilt
axis in every case. In brief, the differencies between a
bulk and a delocalized intergranular vacancy are a strong
anisotropy for diffusion, which is essentially along the tilt
axis, an enhanced elastic interaction with external elas-
tic fields and a structure-dependent tendency of form-
ing one-dimensional chains, in the 4 structures studied,
which are pure tilt. Note that the binding is quite differ-
ent in twist grain boundaries where vacancies accumulate
at the intersections of screw dislocations [53].

In conclusion, the paper presents an extension of
Markov chain Monte Carlo that overcomes the limita-
tions of the vanishing acceptance rate for particle ex-
changes in the case of large relaxations. The method is

illustrated in the particularly demanding case of delocal-
ized intergranular vacancies. The Monte Carlo moves are
composed of the classical random particle displacements
and vacancy-particle exchanges, to which “Smart Dart-
ing” moves are added. They are based on a list of topolo-
gies built on the fly, which contain the relaxations around
the vacancies in the configurations of local minimum po-
tential energy. When the system enters a neighborhood
of one such minimum, it can be transported in the vicin-
ity of another minimum of the list. In the vacancy case,
the move consists in erasing the relaxations of the neigh-
bors of the vacancy before inserting a particle at its loca-
tion and creating the appropriate relaxations at its new
location. Taking four different tilt boundaries, it is shown
that the occupancy of the crystallographically equivalent
sites along the tilt axis can be sampled with acceptance
rates of several % at room temperature. These high rates
are obtained when, in addition to “Smart Darting”, the
positions of key neighbors are also sampled. Note that
if the relaxations are dilatations, a similar but simpler
algorithm exists [54]. Divacancies were also studied by
the method. They exhibit GB-specific behaviors such as:
permanent binding, dissociation followed by immediate
binding or no interaction at all. Additional data are re-
ported that could be useful to build mesoscale models:
elastic dipole tensors, activation barriers for 1D diffusion
along the tilt axis and effective barriers to exit the GB
or diffuse perpendicular to the tilt axis. Future work will
consist in sampling intergranular vacancy configurations
beyond 2 vacancies and under the influence of an exter-
nal strain, since the use of particle displacements enables
equilibrating stresses when applying a displacement on
the side of the system. The effect of elastic strains on
intergranular vacancies seems particularly strong and is
important in the context of ductile fracture [1], includ-
ing under irradiation [55], and in thin films [56] when
discussing the existence of cavities.
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Appendix A: Technical details

The particles interact by EAM potentials: refer-
ence [57] for Al and [52] for Fe. The box sizes are given
in table III and the crystallographic directions in figure 4.
Periodic boundary conditions are applied in the y and z
directions and two regions are fixed on the sides perpen-
dicular to the x direction (the normal to the GBs). The
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width of the rigid regions is the range of the potential
plus 0.5a0. The main parameters for SD are: ǫ = 0.2
a0, the size of the neighborhood around the local energy
minima, the radius around the vacancy for defining the
topology is 2.5 a0 in the plane perpendicular to the tilt
axis and 2.2 a0 along the tilt axis and the number of
random displacements per atom in the Rosenbluth sam-
pling Nr = 1000. Note that the displacements are taken
within a cube of side ǫ, therefore it is a dense sampling.

Table III. Simulation box sizes Lx, Ly , Lz (a0), number of
atoms nat, and coincidence site lattice cell size CSLx, CSLy ,
CSLz (a0).

Σ13 Σ33 Σ29 Σ9

Lx (a0) 31.3 32.2 15.6 33.8

Ly (a0) 14.4 11.5 15.2 12.0

Lz (a0) 12.0 8.48 16 17.0

nat 19776 12528 7232 13632

CSLx (a0) 7.2 8.12 7.6 8.48

CSLy (a0) 7.2 5.74 7.6 6.0

CSLz (a0) 1.0 0.71 1.0 1.41

Appendix B: Elastic dipole tensor

Table IV. Components of the elastic dipole tensor Pij (eV) for
a vacancy in bulk Al and Fe and in the four grain boundaries,
in the favorable configuration (Fig. 4), computed from the
Kanzaki forces [49]. The range of the elastic distortions re

and of the anharmonicity ra are also given (a0).

bulk Al Σ13 Σ33 bulk Fe Σ29 Σ9

P11 (eV) -3.9 -11.2 -7.5 -1.3 -21.0 -7.8

P22 (eV) -3.9 -8.8 -3.3 -1.3 -4.0 -8.2

P33 (eV) -3.9 -4.5 -7.2 -1.3 -11.8 -7.1

P12 (eV) 0.0 -4.0 -2.3 0.0 -0.3 0.0

P13 (eV) 0.0 0.0 0.0 0.0 0.0 0.0

P23 (eV) 0.0 0.0 0.0 0.0 0.0 0.0

P11 (eV) -2.5a -3.6b

re (a0) 2.5-3. 3. 3. 3.5 3.5 3.5

ra (a0) 0.7 1.58 1.75 1.41 1.75 1.75

a DFT value from reference [58]
b DFT value from reference [59]
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