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I. EXAMPLE OF A VACANCY TRAJECTORY

The vacancy trajectory in Fig. 1 was obtained by an MCMC simulation with Smart Darting moves at T=400 K
and under 3% strain perpendicular to the grain boundary plane. The vacancy performs a one dimensional random
walk along the tilt axis before leaving the GB and doing a 3D random walk in the perfect crystal before entering
again the GB, performing another 1D random walk and finally leaving the GB again. The trajectory was originally
obtained with periodic boundary conditions and was “unfolded” for the figure.
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Figure 1. A trajectory (purple) of a single vacancy along and out of the Σ33{554}[110], under 3% strain perpendicular to the
interface, in Al. The green dots are the lattice sites of the core region of the GB. Left is a 3D view, right is the same trajectory
projected in the (x,y) plane, perpendicular to the tilt axis.

II. VACANCY SEGREGATION ENERGY PROFILES

The vacancy segregation energy profiles in figure 2 are obtained by removing a particle sequentially on every lattice
site in the vicinity of the interface, starting from the minimum energy structure, and minimizing the energy. They
are coherent with the maps given in the paper. The energies are not necessarily the same as the ones found by the
Monte Carlo simulation because there can be local minima separated by barriers. In the Monte CArlo simulation, the
system is thermalized and the topologies are periodically searched after the energy is minimized. In the absence of
external strain, the most stable vacancy configurations are the same between the two methods, for single vacancies,
apart from minor differences in relaxations and the energy differences are small. Sometimes, the true minimum is
separated by the starting configuration by an energy barrier (for example, in the Σ33 under strain in Fig. 3 in the
paper or in the case of divacancies in Fig. 5 below). In this case the relevant configuration is missed by the direct
minimization but can be found by the Monte Carlo simulation either because the barrier is crossed by the ∆u moves
or found by the NEB searches (as an intermediate minimum between the end points).
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Figure 2. Vacancy segregation energy profiles, perpendicular to the interface plane: (a) Σ13{320}[001] and (b) Σ33{554}[110]
in Al and (c) Σ29{730}[001] and (d) Σ9{114}[110] in bcc Fe.

III. DIVACANCY SIMULATIONS IN FE

Figure 3 gives additional information about the behavior of divacancies by reporting simulations done on
Σ29{730}[001] and Σ9{114}[110] symmetrical tilt boundaries in bcc Fe (T=300 K). In figure 3(a) (Σ29), a sim-
ulation is started with two vacancies far apart. The algorithm progressively learns the topologies where the vacancies
are closer and closer until d=1 and the energy decreases by more than 1 eV (the energy shown on the graph corre-
sponds to the energy of the topologies visited, not to the energy of the system, see paper). Then the system remains
in this configuration i.e. the divacancy is not split at this temperature and no migration of the divacancy by ∆u

moves was found. On the opposite, in figure 3(b) (Σ9), the system is constructed with the vacancies separated by
√

(2) a0 (the minimal distance along the tilt axis). The vacancies split during the simulation and seldom visit the

configuration d =
√

(2) a0 again, in agreement with a repulsive interaction at T=0 of 60 meV.
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Figure 3. Evolution of the distance between the vacancies, the energy of the topology visited and the number of topologies
detected along the Markov chain for a system containing two vacancies: (a) Σ29{730}[001] and Σ9{114}[110] in bcc Fe. The
position in z (the tilt axis direction) is shown on the insert.

IV. OTHER INFORMATION CONCERNING INTERGRANULAR DIVACANCIES IN AL

In this section additional information concerning divancies in Al are given: the number of topologies found, the
number of topologies visited and the structure and position of the lowest energy configurations found. Figure 4a
concerns the Σ33{554}[110] symmetric tilt grain boundary in Al. The structures of low energy are shown in the main
article. The lowest energy configuration corresponds to two vacancies aligned along the tilt axis, in first neighbor
position and on the sites where the segregation energy of the single vacancy is the most favorable (-0.29 eV). This
structure is taken as the reference for the energies on figure 4a. The energy that has to be spent to break the divacancy
(the binding energy) but leave the vacancies on the same type of site is 0.28 eV. The number of topologies extracted is
45. Essentially, only the topologies with energies 0, 0.28 and 0.52 were visited, at T=600 K. For this grain boundary
the configuration of the divacancy is intuitive but it is not always the case, for example in the Σ9{221}[110] detailed
below.

Four low energy configurations for divacancies in the Σ9{221}[110] symmetrical tilt grain boundary in Al are shown
in figure 5. The three first are for vacancies in first neighbor position. The divacancy is split in the the last one.
Configurations (a) and (b) are connected by low barriers (0.3 eV / 0.2 eV). Configuration (a) was found by ∆u moves
from configuration (b). Note that both vacancies occupy different lattice sites. Configuration (c) is a variant from
configuration (b) where only the displacements are different. They are also connected by low barriers (0.12 eV / 0.16
eV). Starting a simulation from configuration (c) (constructed by hand), the system made a transition to configuration
(b) by ∆u moves. During the search for topologies, the algorithm takes into consideration not only the transitions
where a vacancy is exchanged with one of its neighbors, but also the existence of additional configurations which differ
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Figure 4. Histograms of the energies of the different topologies explored by the method in the case of the (a) Σ33{554}[110]
and (b) Σ9{221}[110] symmetrical tilt grain boundaries in Al.

by their displacements only. The NEB calculates the barriers for all these transitions and the appropriate topologies
are extracted. About 50 topologies were extracted during the Monte Carlo run. A temperature of 400 K is high
enough to observe the displacement of the divacancy along the tilt axis, which means that Smart Darting is efficient.
The distribution of the energies is shown in Fig. 4b. The last configuration (d) is connected to (b) with barriers 0.66
eV / 0.55 eV. Such transitions occur only by Smart Darting moves because the barriers are too high to be crossed
only by ∆u moves at the low temperatures of interest for the clustering problem.
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Figure 5. Divacancy configurations of low energy in the Σ9{221}[110] symmetrical tilt grain boundaries in Al. The energies
are (a) 0 eV, (b) 0.1 eV, (c) 0.06 eV and (d) 0.2 eV.

In complement, the segregation energies of an isolated vacancy in this grain boundary are given in Fig. 6.

V. ELASTIC DIPOLE TENSOR FROM KANZAKI FORCES: CONVERGENCE

[1] E. Clouet, C. Varvenne, and T. Jourdan, Comp. Mat. Sci. 147, 49 (2018).
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Figure 6. Vacancy segregation energy for Σ9{221}[110] symmetrical tilt grain boundaries in Al: (a) map and (b) profiles.
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Figure 7. Elastic dipole tensor from Kanzaki forces: convergence. Symmetrical tilt grain boundaries: (a,b) Σ13{320}[100],
(c,d) Σ33{554}[110] in Al and (e,f) Σ29{730}[100], (g,h) Σ9{114}[110] in bcc Fe. The graphs give the variation of the tensor
components as a function of the cutoff radius in the sum Pjk =

∑
q
F

q

j a
q

k, where F is the Kanzaki force at the lattice site a [1]

and the influence of the restoration radius. Constant values means that all the remaining relaxations are harmonic [1].
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