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Markov chain Monte Carlo simulations, combining the sampling of the position of the particles
and their chemical nature, are very useful when calculating, for example, average site occupancies
at crystalline defects in alloys. Unfortunately, when the relaxations around the solutes are large,
the exchange moves can be systematically rejected because of atoms overlapping. As a consequence,
the simulations are often trapped in nonphysical configurations. In this paper, the “Smart Darting”
method from Andricioaei et al. is adapted and extended to propose a solution to this limitation. The
method is tested in a particularly demanding case: the sampling of the arrangements of delocalized
vacancies and divacancies in grain boundaries, both in the fcc and the bcc structure. Beyond
the methodological aspects, intergranular vacancy clusters are interesting in several contexts such
as ductile fracture, irradiation or thin film dewetting, and therefore several properties have been
measured that can be useful for mesoscale modeling: segregation energies, effective diffusion barriers
in and out of the grain boundaries, vacancy-vacancy binding energies and elastic dipole tensors.

I. INTRODUCTION

Vacancy clusters and voids, particularly at interfaces,
are important in various contexts. They are at the origin
of crack embryos in plasticity related fractures: they form
at dislocation boundaries during ductile fracture of pure
metals [1, 2] and at the interface between the matrix and
persistent slip bands in the early stages of fatigue crack
formation [3]. In the presence of interstitial solutes, they
can also lead to the formation of bubbles. Miura et al. [4]
have shown by microtensile testing of individual grain
boundaries that a critical He bubble size and intercavity
spacing, in the 5 nm range, can induce a transition from
ductile fracture to intergranular brittle fracture, with a
drop in fracture toughness. The phenomenon can be re-
produced, to some extent, by atomistic simulations with
voids only [5]. In the case of hydrogen embrittlement,
the role of nanoscale bubbles is less obvious [6] but it
was shown that submicron dislocation cells are formed
along the brittle crack path [7, 8] and nanoscale rough-
ness was measured on the fracture surface [9]. Therefore,
understanding how vacancies cluster along interfaces (cell
walls and grain boundaries) under the influence of stress
and temperature is important for modeling fracture in
many different conditions.
Atomistic simulations are tools of choice, with their

limitations, for addressing this question. Much has been
learned about single vacancies in interfaces. In fcc met-
als, they diffuse preferentially along dislocation cores but
also along the stacking fault ribbons. The activation en-
ergy is slightly reduced in comparison to the bulk [10–12]
but the mechanism remains a simple vacancy-first neigh-
bor exchange, i.e. the relaxations of the neighbors are
marginal [11]. The situation is quite different in grain
boundaries [13]. The relaxations are often large, espe-
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cially in the configurations of low energy (the most statis-
tically visited), and to such an extent that the vacancies
are said to be “delocalized” [14, 15]. Furthermore, some
grain boundary sites cannot host stable vacancies. This
can lead to long diffusion jumps where several atoms are
displaced [13, 16]. At increasing temperature, the crys-
talline order within the core of the GBs is much lower
than that in the bulk and continuously decreases until
melting [13]. Stringlike cooperative motions of atoms,
which are different from the long jumps at low temper-
ature, are activated [17, 18]. It was also shown that a
grain boundary emerging at a free surface, which acts
as a source of point defects (interstitials in this case),
can transition with temperature between different struc-
tures. The reverse transformation could be obtained by
absorbing vacancies [19]. More generally, it is well known
that the construction of a grain boundary, defined by
a set of macroscopic geometric parameters, requires the
optimization of the energy with respect to microscopic
parameters which are the relative translation of the two
grains, plus the number of atoms within the interface [20].
Recently, not only the lowest energy structures but also
all metastable structures [21, 22] were found. The struc-
tural unit model was generalized and its ability to pre-
dict the stable and metastable structures of families of
tilt boundaries, as a function of the misorientation angle,
was established. The large number of these metastable
structural units and the quasi-continuous spectra of their
excess energies, indicate that mixtures of such structures
should exist at non zero temperature. Since they can also
have different numbers of atoms, the mixing of structural
units could be an efficient way of accommodating vacan-
cies. This is of particular interest for designing materials
resistant to irradiation [23–26]. In this context, detailed
studies of the absorption of vacancies were conducted in
a fcc-bcc interface composed of a network of misfit dislo-
cations. Delocalized vacancies were not found to attract
each other, although misfit dislocation intersections con-
stituted preferential segregation sites [25]. In addition,
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mixed tilt/twist GBs in Cu [26] were submitted to the
absorption of large quantities of vacancies. The same GB
core structures were visited periodically during vacancy
loading when the GB changed structure by translation
and shear. Both studies show that grain boundaries can
be tolerant to large quantities of vacancies. Note that
no void formation was found by Molecular Dynamics. In
the bulk, experimentally, void formation appears when
a critical vacancy concentration, in the range of 10−2,
and at a high enough temperature, is reached [27]. Sim-
ple atomic kinetic Monte Carlo and simulations of phase
demixion by atomistically informed Cahn-Hillard equa-
tions can qualitatively reproduce the phenomenon [28].

Most of the valuable results summarized above have
been obtained by Molecular Dynamics (MD). However,
this method has well known limitations, particularly
concerning the limited timescale, which is somewhat
compensated by working at high temperature. In this
case, the grain boundaries are populated by defects,
in addition to the vacancies deliberately introduced in
the system. They complexify the analysis and influ-
ence the mechanisms that constitute unwanted side ef-
fects if the interest is in the low temperature behavior.
Few studies of interfacial vacancies use elaborate ver-
sions of MD [12, 16], such as hyper-MD or temperature-
accelerated dynamics, but these might suffer from a slow-
ing down due to low barriers. These methods have
evolved [29, 30] and, combined with Adaptative Kinetic
Monte Carlo (AKMC) [31, 32], have successfully simu-
lated the dynamics of vacancies in a thin slab, in par-
ticular the re-entry of vacancies from the surface into
the subsurface on the microsecond timescale [33]. Nev-
ertheless, they might still be limited by the “low bar-
rier” problem in the case of grain boundaries because of
the transitions between SUs or by the massive number
of transition searches necessary for AKMC. When only
clustering tendencies are searched and not a realistic dy-
namics, Markov chain Monte Carlo, where the full phase
space is sampled (i.e., site occupancies and relaxations),
is very useful [34]. For example, in the semigrand canon-
ical ensemble, it was used to study intergranular segrega-
tion [35, 36]. Nevertheless, it suffers from the limitation
of the vanishing acceptance rate of exchanges when re-
laxations around solutes are large, which is the case for
delocalized vacancies.

In this context, we present a simulation methodol-
ogy that overcomes the trapping issue of Markov chain
Monte Carlo (MCMC). In the first part of the paper, the
method is detailed and illustrated in the case of a va-
cancy occupying a peculiar GB site where it can be in
two states: one localized and another delocalized. The
power of the method is demonstrated as it succeeds in
sampling, with a high acceptance rate, the occupancy of
different crystallographically equivalent positions, in the
delocalized state. Then, the average vacancy occupan-
cies corresponding to the equilibrium between the GB
site and a bulk site are calculated by exchange moves us-
ing two different paths: one going through the localized

state and another going through the delocalized state.
The energy barrier between the localized/delocalized va-
cancy states can be tuned by changing the strain perpen-
dicular to the interface in such a way that the two states
can be equilibrated by atomic displacement moves only.
In this condition, the occupancies calculated by the two
different paths should be equal. This demonstrates that
the method and its implementation are correct. In the
second part of the paper, the method is used to study
single and divacancies in 4 grain boundaries in Al (fcc)
and in bcc Fe. The efficiency is measured and the clus-
tering tendency, which is quite different from one GB to
another, is analyzed.

II. MONTE CARLO METHOD

The method combines three aspects: the classical
Monte Carlo simulation of the (N,V,T) ensemble by sam-
pling the particles’ positions [34], a periodic search for lo-
cal energy minima, and finally transitions between these
energy minima by the Smart Darting method [37]. In
the following each of these aspects is detailed. All along
this section, the method and concepts will be illustrated
by the example of a single vacancy in the core of the
Σ33(554)[110] symmetrical tilt boundary, in Al, under
strain.

A. Localized / delocalized vacancies

The starting point is the classical Monte Carlo simula-
tion of the (N,V,T) ensemble [34, 38]. The definition of
the microstates was modified to introduce vacancies [39]:
the volume V is split into Voronoi cells according to the
stable crystalline structure (Fig. 1a). The N vectorial po-
sitions of the particles are replaced by N displacements
with respect to the lattice nodes. It is implicitly con-
sidered that a Voronoi cell does not contain more than
one particle. If this is not the case, the lattice should be
refined by considering interstitial sites for example. The
empty Voronoi cells are defined as vacancies. The set of N
displacements is completed by a vector of M occupancies
pi such that pi = 1 if the site is occupied, zero otherwise,
and M is the number of sites contained in volume V. If
the system contains a grain boundary (GB), the lattice is
the one of the minimum energy GB structure [40]. The
configuration space is composed of the permutations of
the vacancies (a swap of the occupancies) and of the vol-
ume of occupied Voronoi cells. The partition function to
be sampled is:

QM (N, V, T ) =
∑

{pn}M

1

Λ3N

∫

vor

d~uN

×exp(−β(H({pn}, (~u)
N ))) (1)

where vor is the volume of the Voronoi cell surrounding
each lattice site and Λ is the thermal de Broglie wave-
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length (Λ =
√

h2/(2πmkBT )), m is the mass of the par-
ticle, h and kB are the Planck and Boltzmann constants.
The sampling is done by proposing random displacement
increments to randomly selected particles (one particle
at a time), provided the displacements remain within
the Voronoi cells (∆u moves). In addition, swapping of
occupancies between first neighbors (X moves) are also
performed. For every elementary move, the energy vari-
ation is calculated and the move is accepted or rejected
according to the Metropolis criterion. Most of the time,
a particle remains confined to the vicinity of a lattice
node. If a particle attempts to cross a facet of a Voronoi
cell towards a vacant site by ∆u moves, the microstate
is updated by swapping the site occupancies and mod-
ifying the displacements accordingly (vacancy displace-
ments are zero). If the relaxations around the vacancies
are small, this simple scheme is efficient [39]. Otherwise,
the X moves are always rejected because of overlaps be-
tween particles.

For example, a collection of microstates obtained by
the Monte Carlo procedure with ∆u moves only is pre-
sented in figure 1a. The lattice nodes are the black dots
while the crosses represent the position of the particles.
The points within a packet grouped around a lattice node
are from different microstates. Two Voronoi cells are also
represented. One contains the vacancy (large cross) and
is therefore empty whatever the microstate. In the case
studied, applying a strain creates additional minima in
the energy landscape (see Fig. 4a). It is illustrated by the
second Voronoi cell where the particles are split in two
packets, each corresponding to one minimum. One of
the packets is close to the lattice site (green color crosses
labeled “state 1” on Fig. 1a) and corresponds to the lo-
calized state of the vacancy. The other packet is far from
the lattice site (purple crosses labeled “state 0”) and cor-
responds to the “delocalized” state of the vacancy in the
sense that if the packet was centered on the Voronoi cell
border, the vacancy would be frequently attributed to
one lattice site or the other as the neighbor switches
cell by ∆u moves. In addition, the transitions between
state 0 and 1 occur at T=300 K by ∆u moves only be-
cause the energy barriers between these states are low
(0.1 eV/0.05 eV Fig. 4a). Vacancy/particle exchanges
occur by X moves only and only when the vacancy is lo-
calized. More precisely, starting the simulation with a
microstate in the vicinity of state 0, the one of minimum
energy, the simulation will attempt ∆u moves with an
acceptance rate of about 50% (the maximum amplitude
of the displacements can be tuned) and will attempt also
X moves. These will always be rejected because the ex-
change will introduce overlaps between particles. After
several millions of accepted ∆u moves, the system might
be in the vicinity of “state 1”. Then an X move will be
accepted and the vacancy will most likely move to a crys-
tallographically equivalent site along the tilt axis, where
the energy is the lowest. There, similar states 0 and 1
exists by translational invariance of the lattice along the
tilt axis (these states will be called below “topologies”).

Then, the system will quit state 1 for state 0 after some
∆u moves have been accepted because the barrier is low
(0.05 eV). X moves will then be rejected again and the
vacancy will be trapped until the basin of attraction of
state 0 is left again. Several concepts are introduced in
this example that are useful for understanding the Smart
Darting procedure adapted to vacancies: a “microstate”
is a point (small volume) in configuration space, a “state”
is a local minimum of the potential energy, the symetries
of the lattice (along the tilt axis) make that there are rows
of equivalent lattice sites favorable for the vacancy and
finally, the notion of “distance” between a microstate and
a state. The sequence described is represented schemat-
ically in figure 1b, where X0 and X1 are states 0 and 1
and Xj would be another state far away in configuration
space, for example a state where the vacancy would be
on a bulk site. The large curved arrows represent the
transitions between X0 and X1 which require many ∆u
moves and the small curved arrows represent the single
∆u moves. They can bring a microstate in or out the
neighbourhood of a state. These concepts will be reused
to present the original Smart Darting method.

B. The original Smart Darting method

Smart Darting [37] (SD) is an efficient way of avoid-
ing trapping along the Markov chain. In the original
method, a list of local minima of the potential energy
{Xi} is known a priori. It can be obtained by MD or
MC simulations at high temperature with periodic en-
ergy minimizations. The idea is to translate the sys-
tem from one energy minimum to another, while satis-
fying detailed balance. For this, the system cannot be
transported directly at the energy minimum. The au-
thors define “ǫ-spheres” Sǫ(Xi) around each minimum
by Sǫ(Xi) = {X |‖X − Xi‖ < ǫ}. In the 1D example
in figure 1b the spheres reduce to segments. They will
be cubes intersected by Voronoi cells in the case of va-
cancies discussed below. The Monte Carlo procedure is
a sequence of elementary moves. At each step, a ran-
dom number is picked to decide, with fixed probabilities,
which type of move will be attempted among particle
displacement or SD move. If an SD move is picked, the
procedure is: (i) calculate the distance to every minimum
and determine if X is within one of the ǫ-spheres; (ii) if
not, the current microstate is added one more time to the
Markov chain; (iii) if X is within Sǫ(Xi), pick at random
another stateXj , calculate the “dart”Dji = Xj−Xi and
add it to the current microstate, i.e. Xnew = X + Dji.
By this translation, the microstate remains at the same
distance from the minimum and since the volumes of the
spheres are the same, the move is symmetric. The en-
ergy difference is calculated and the acceptance / rejec-
tion by the Metropolis rule establishes detailed balance.
Figure 1b illustrates the different ingredients: the small
curved arrows are elementary displacement moves which
enable sampling configuration space in the vicinity of X0
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Figure 1. (Color online) (a) A collection of 84 microstates
projected on the plane perpendicular to the tilt axis of the
Σ33(554)[110] symmetrical tilt boundary, in Al, under 3%
strain. Only the positions (small crosses) in the vicinity of
the vacancy (large cross) and within two (220) layers contain-
ing the vacancy are shown. The black dots are the lattice
sites (the edges of two Voronoi cells [41] are also shown). (b)
Schematic illustration of the Smart Darting method. Xj is a
local minimum of the potential energy, ǫ is the radius of the
spheres around the minima.

(in the sphere Sǫ(X0), in and out of the sphere and even-
tually bring the system in the vicinity of other minimum
X1 if the energy barrier between them is small), dart Dj0

translates the system from a microstate in Sǫ(X0) to an-
other one in Sǫ(Xj). This is particularly relevant in the
case where the barriers are too high to be crossed by a
chain of elementary displacement moves.

C. Adapting Smart Darting to vacancy clusters

The original method has to be adapted to the case of
intergranular vacancies. In particular, the states can’t be
determined by energy minimization from high tempera-
ture MD or MC simulations because the vacancy clus-
ters might not be stable at that temperature or even
the vacancies might not stay in the grain boundary. Fur-
thermore, high temperature favors the mixing of different
structural units [23, 24] which would drastically increase
the number the states. Instead, the list of states is con-
structed on the fly. In addition to the elementary MC

moves, periodic energy minimizations are performed, i.e.
the simulation is a series of cycles composed of a sequence
of N microsteps, typically 20 million, where moves are
randomly picked between ∆u, X and SD, followed by an
energy minimization and a search for states. At the end
of the search, the list of states is enriched and a new
sequence of N microsteps is run, starting from the last
microstate of the previous sequence. In other words, the
minimized configuration is used only to enrich the list of
states and does not appear in the chain of microstates.
The cycles are illustrated by Fig. 2a where the potential
energy is represented as a function of the number of MC
microsteps. The vertical lines correspond to minimiza-
tions.

Furthermore, the goal is to use Smart Darting to per-
form single vacancy-particle exchanges and therefore, the
idea is to characterize the environment locally (particles
relaxations and relative position of the other vacancies)
around each vacancy of the system in the state under
consideration. If the GB structure is periodic there are
many crystallographically equivalent favorable sites for
a vacancy. Therefore the local environment should be
characterized in a way which is independent of which pe-
riodic cell the vacancies are in. This is obtained in the
following way. The lattice sites of an elementary crys-
tallographic cell (for example, one “coincidence lattice”
cell) are given an index. For each vacancy, the local con-
figuration is defined by the index of the vacant site and
the displacements {~u} of the neighbors, within a certain
radius. These are referenced by the indexes of the site
the neighbor occupies and the z position of the site, rela-
tive to the z of the vacant site, called ∆z. The direction
z is the direction of the tilt axis. The ensemble given
by the index of the vacancy and the list of {index, ∆z,
~u} of the neighbors is called a “topology”, in reference
to the kinetic-Activation Relaxation Technique [32]. The
process of transforming a site specific collection of dis-
placements into a local set of displacements relative to
the position of the central vacancy is called “extraction
of the topology”. The spatial domain over which {~u} is
collected should be sufficiently large to contain all the
sites that are significantly influenced by the presence of
the vacancy. Otherwise, the vacancy-particle exchange
attempts will be systematically rejected because of over-
laps of particles. If the domain contains other vacancies,
the topology contains also their index and ∆z. Finally,
a list of topologies is used in the Smart Darting move
instead of a list of states, i.e. a list of local environments
for vacancies (extracted from local energy minima). The
“current topology” is also defined. It is the one extracted
from the current microstate in the Markov chain.

The next modification to the original SD method is
the definition of the ǫ-sphere. In the MC algorithm, the
SD move starts by selecting a vacancy at random. The
lattice site it occupies is labeled i. The current topology
centered on i is “extracted” from the microstate. Then
the distance between the current topology and the kth
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Figure 2. (Color online) Sampling of the configuration space of a system composed of the Σ33(554)[110] symmetrical tilt grain
boundary, under 3% strain with one vacancy. Temperature is 300 K and the model is Mishin’s EAM for Al [42]. (a) Evolution
of the energy (eV) as a function of the Monte Carlo steps, essentially because of ∆u moves. Periodic energy minimizations are
represented by vertical lines. (b) Evolution of the distance between the current microstate and states 0 (vacancy delocalized
and on the most favorable GB site) and 1 (localized). The states are shown in figure 3. The Smart Darting parameter ǫ is
set to 0.2 a0. As a consequence, the system is usually within the neighborhood of state 0 or 1, and therefore, the number of
Smart Darting moves attempts is close to the maximum. (c) Evolution of the z position of the vacancy, illustrating acceptance
of Smart Darting moves between the vacancy and one of its first neighbors along the tilt axis. The comparison of the zooms
(right pictures b and c) shows that Smart Darting moves are accepted whether they are performed between states 0 or between
state 0 and 1 at different z positions.

compatible topology of the list (distk) is:

distk = max
(index,∆z)

{|uk
l − ul|}l=x,y,z (2)

where uk
l is the l component of the displacement of in-

dex index at ∆z from site i of the topology k and ul

is the same but in the current topology. Topology k is
compatible with the current topology if, locally around i,
the vacancies are distributed in the same way, i.e. same
index and ∆z, including the central vacancy. An ǫ-sphere
is defined by dist < ǫ. It is a collection of cubes of side 2ǫ
centered on the position of the neighbors of the vacancy,
in the configuration of local minimum energy. distk can
be large as soon as a neighbor has a displacement signif-
icantly different from the one it has in topology k. Fig-
ure 2b shows the evolution of the distance to the topolo-
gies extracted from the states 0 and 1 of figure 1a. The
distance can be larger than 0.3 a0. This occurs when
one neighbor is close to the side of its Voronoi cell when

the microstate is in the basin of attraction of state 0
(Fig. 1a). In this case, the distance to topology 1 (lo-
calized vacancy) is large. Other details concerning ǫ are
mentioned in the appendix.

Finally, a “dart” is defined. If there exists a topology ki
where distki

< ǫ, then the vacancy at i can be moved to
another site by an SD move. For that, a site j, neighbor
of i, is selected and a new topology is selected in the
list of topologies (compatible with site j being occupied
by a vacancy), referenced by kj . The “dart” is then the
combination of the swap of the occupancies of the lattice
sites j and i and the translation {index, ∆z, ~ukj − ~uki}.

An example is given in Fig. 3 where (a) and (b) are
the topologies extracted from states 0 and 1 (Fig. 1a).
The displacements are represented by arrows. Most of
them are smaller than the size of the dots which represent
the lattices sites. The remarkable displacement already
discussed several times is visible on topology 0. Imagine
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Figure 3. (Color online) Relaxations around a single vacancy
(large cross) on the most favorable site of the Σ33(554)[110]
symmetrical tilt grain boundary, strained by 3% perpendic-
ular to its plane. (a) State 0 (“delocalized vacancy”) and
(b) state 1 (“localized vacancy”). Displacement values larger
than 0.05 a0 are represented by arrows. They constitute, to-
gether with the site index, the topology used for the Smart
Darting moves. (c) Vectors represent the “dart” for moving
the vacancy along the tilt axis by one period. (d) Distribu-
tion of the energy variation ∆E (eV) when a simple exchange
(X), a simple Smart Darting exchange (SD) or a Smart Dart-
ing exchange plus the sampling of the neighbors, including

the bias in the acceptance rule −kT log
∏

(n→o)∏
(o→n)

(SD+R+b)

(Eq. 7), are made. Only neighbors with a relaxation larger
than 0.1 a0 were considered and the acceptance rate was on
the order of 5% at T=300 K.

an SD move which shifts the vacancy by one period along
the tilt axis while it is in the vicinity of topology 0 on the
old lattice site and remains in the vicinity of topology 0
on the new lattice site. The corresponding dart (Fig. 3c)
is −~u0 centered on the old vacant site and +~u0 centered
on the new vacant site where ~u0 is given in Fig. 3a. A
one dimensional random walk of the vacancy along the
tilt axis is obtained (Fig. 2c) instead of a trapping on
single site. The simulation also contains topologies that
would let the vacancy escape from the grain boundary
but this does not occur during this simulation at 300
K (the escape at 400 K is illustrated by a figure in the
supplemental material).

D. Construction of the topology list

So far, the way the states are searched was not com-
pletely described. Starting the simulation with an empty
list of topologies, the Markov chain is constructed with
∆u and X moves alone and is quickly trapped in a config-
uration where the vacancy is delocalized. At the end of
the first cycle, the first topology is extracted. With only
one topology, the SD moves are limited to proposing only
one type of exchange and only 1D random walks along
the tilt axis are possible. Therefore, in addition to the ex-
traction of the current topology, a series of robust Nudged
Elastic Band (NEB) calculations [43] between the current
configuration and the ones obtained by swapping the va-
cancy with one of its neighbors (within the same range
as the one for the SD move, which is not necessarily lim-
ited to first neighbors) is performed. If the NEB finds an
intermediate configuration, the corresponding topology
is extracted. Otherwise, the topology is extracted from
the end point of the NEB. Therefore, the topologies are
more than simple arrangements of vacancies over the lat-
tice nodes because the same set of occupancies can lead
to different relaxations. These topologies are stored, if
unknown previously, in the list of known topologies and
marked as “unsearched”, meaning that if they are visited
and occupied during a future energy minimization, they
should be searched for new transitions. In addition to
topologies, the NEB gives energy barriers which are not
exploited by the method, at the moment, but which con-
stitute kinetic information which could be useful either
to evaluate at which temperature the transitions could be
realistic or opens the possibility for kinetic Monte Carlo
with a fixed catalog of rates collected during the MCMC
simulation. It can be stressed that the MCMC simu-
lation gives more accurate site occupancies than the one
the KMC simulations (with the catalog mentioned above)
would give because anharmonic effects are included and
also because the ∆u moves participate in the exploration
of configuration space, i.e. states which are not accessi-
ble to SD moves because the corresponding topologies are
not in the list can be visited by ∆u moves if the energy
barriers to reach them are low enough.

E. Boosting the acceptance rate

In the example presented in figures 2, the acceptance
rate is 0.7% for first neighbor exchanges, by SD moves
only, between equivalent sites along the tilt axis, in topol-
ogy 0 (the one with the most extended relaxations).
The distribution of the energy variation for SD moves
is shifted by almost 3 eV toward low energies in compar-
ison to the distribution for X moves (empty/full circles
in Fig. 3d), which confirms that the problem of the over-
lap of the particles is solved. Nevertheless, there are few
attempts which have a negative energy (see insert). One
way of improving the acceptance rate is to sample the po-
sitions of the particles which are significantly displaced
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from the lattice nodes during the SD move. For this,
the “configurational-bias” Monte Carlo method [34, 44]
for growing chain molecules in dense systems has been
adapted to the vacancy problem. Originally, a molecule
is grown segment by segment by picking the segment’s
orientation out of k trial orientations. The energy vari-
ation related to each trial orientation is calculated and
the new orientation is selected according to its Boltzmann
weight in the list of trial orientations. It is clear that the
probability of selecting this orientation is not random
and depends not only on the environment (the configu-
ration of the other molecules in the system), but also on
the orientation of the segments previously grown. This
probability must be introduced in the acceptance rule
and therefore, it must be calculated both for the forward
and reverse moves. This means, in the chain molecule
example, that the old configuration has to be regrown
segment per segment. In the case of vacancy exchange,
the same procedure is followed but, instead of choosing
orientations for segments, displacements are chosen for
neighbors. This is done after the SD move is applied. A
list of neighbors with significantly large “darts” is estab-
lished, typically displacements larger than 0.05 a0. Nn
is the number of such neighbors. The displacements in
the “old” configuration are stored as uold

i , to calculate
the probability of the reverse move. i refers to the posi-
tion of the neighbor in the list. Then, sequentially, the
“new” displacement for every neighbor unew

i is chosen
among Nr random possibilities un

ik = rkǫ+ ui
0. rk is the

kth random vector of the list of length Nr, ǫ is the size
of the domain around the component of the dart ~u0 on
site i named ui

0. The energy variation for every of these
trial positions is calculated and named ∆E(unew

ik ). The
probability of picking a displacement, for example unew

ik′ ,
in the list is:

p(unew
ik′ ) =

e−∆E(unew
ik′ )/kT

∑Nr
k=1 e

−∆E(unew
ik

)/kT
(3)

Once this is done, the index k′ is dropped, and after all
the neighbors have been treated, the energy of the new
configuration is

Enew = Eold +∆ESD +

Nn
∑

i=1

∆E(unew
i ) (4)

and the probability of choosing this set of displacements
is

∏

(o → n) =
Nn
∏

i=1

p(unew
i ) =

e−
∑

Nn
i=1

∆E(unew
i )/kT

∏Nn
i=1

∑Nr
k=1 e

−∆E(unew
ki

)/kT

(5)
For the reverse move: starting from the “new” configu-
ration, the SD move is reverted and then, for each neigh-
bor, Nr− 1 displacements are selected at random within
the ǫ volume around the displacement corresponding to
the reversed dart. The corresponding energy variations
are calculated and named ∆E(uold

ik ) and the one for the

stored “old” displacement uold
i named ∆E(uold

i ). The
probability that the old configuration is recovered dur-
ing the reversed move is:

∏

(n → o) =

e−
∑

Nn
i=1

∆E(uold
i )/kT

∏Nn
i=1(e

−∆E(uold
i

)/kT +
∑Nr−1

k=1 e−∆E(uold
ki

)/kT )

(6)

Detailed balance gives the acceptance rule:

acc(o → n)

acc(n → o)
=

ρn
ρo

∏

(n → o)
∏

(o → n)

= e−(∆ESD+
∑

Nn
i=1

∆E(unew
i ))/kT

∏

(n → o)
∏

(o → n)

(7)

By construction, ∆E(unew
i ) tends to be negative, on aver-

age. Therefore, in equations 4 and 7, the energy variation
related to the SD move, ∆ESD, tends to be decreased

by
∑Nn

i=1 ∆E(unew
i ), and therefore, the acceptance rate

increased. The term
∏

(n→o)∏
(o→n) is complex. Statistics

about its distribution have been acquired numerically.
It strongly depends on the number Nn of neighbors in-
volved, with a strong tendency to degrade the positive

influence of
∑Nn

i=1 ∆E(unew
i ), to an extent where the ac-

ceptance rate could be lower than SD moves alone. The
strategy followed consist in selecting the neighbors that
are the most displaced during the SD move, keeping the
number of neighbors low. For example, in the case of
figure 3, a threshold of 0.1 a0 on the displacements leads
to only 4 neighbors involved in the “configurational-bias”
procedure. For Nr = 1000, the acceptance rate is 5%, i.e.
a boost by a factor of 7 with respect to SD moves alone
(empty circles/filled cubes in Fig. 3d). With a threshold
of 0.05 a0 and 10 neighbors involved, the acceptance rate
is only 1.7%. With 4 neighbors, the total computational
time of the SD move is only multiplied by a factor of 2
(using 6 threads).
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F. Validation

Finally, the question of the validation is addressed.
The energy variation between states 0 and 1 (Fig. 3)
is shown in figure 4a. The barrier tends to zero when
the strain goes to zero, i.e., state 1 (replica 0 in Fig. 4a)
is unstable. The barrier is low enough to be crossed by
∆u moves only, provided the temperature is high enough.
The validation test consists in putting states 0 and 1 in
equilibrium with a bulk site by two different paths, us-
ing two different MC moves. Path 0 is bulk ⇋ state 0
⇋ state 1, with the first equilibrium established by SD
moves and the second by ∆u moves. Path 1 is bulk ⇋

state 1 ⇋ state 0, with the first equilibrium established
by X moves and the second by ∆u moves. The X moves
have a nonzero acceptance rate because the neighbors
are only weakly relaxed toward the vacancy. Figure 4b
shows that the two paths lead to the same average occu-
pancies which establishes that the SD moves, including
the configurational bias, are properly implemented.

III. APPLICATION TO DIFFERENT GRAIN
BOUNDARIES

The method is applied to four symmetrical tilt grain
boundaries, two in Al: Σ33(554)[110] [45] (without
strain) and Σ13(320)[001] [46, 47], and two in bcc Fe:
Σ29(730)[001] and Σ9(114)[110] [48]. The technical de-
tails are given in the appendix. The grain boundary
structures, vacancy segregation energies (the profiles are
in the supplemental material) and relaxations when the
vacancy occupies the most favorable position are shown
in figure 5. The amplitude of the relaxations (umax in
table I) is large: between 0.1 and 0.4 a0 depending on
the grain boundary. The efficiency of the Monte Carlo
method is evaluated by measuring the acceptance rate for
vacancy-particle exchanges in the different structures. To
mimic diffusion, exchanges with nearest neighbors were
proposed first. When the tilt axis is not aligned with
a nearest neighbor pair, the move involves leaving the
site that is most favorable energetically and therefore
the acceptance is biased by the change in segregation en-
ergy. Taking into account this effect, the list of neighbor
sites is extended beyond the first neighbors to include
the sites that are crystallographically equivalent, along
the tilt axis. This means second neighbors for the [100]
axis and third neighbors for the [110] axis of the bcc
structure. The acceptance rate is measured specifically
for moves that do not involve changes in segregation en-
ergy. Different degrees of complexity were tested. They
are designated in table I as: X for the simple exchange,
SD for “Smart Darting” alone and SD+R+b for a Smart
Darting exchange combined with a Rosenbluth sampling
“R” of neighbor’s displacements and inclusion of the cor-
responding energy bias “b” in the metropolis criterion
according to equation 7 (∆ESD is the energy variation re-

lated to SD,
∑Nn

i=1 ∆E(unew
i ) to “R” and −kT log

∏
(n→o)∏
(o→n)

to “b”). The reported acceptance rate for the X moves
only reflects the absence of acceptance after a large num-
ber of trials because of the relaxation of the neighbors
shown in Fig. 5. The acceptance rate for SD moves is al-
ready very significant: between 1 and 6% depending on
the structure. It can be improved up to between 3 and
10% by the SD+R+b move (table I). As already men-
tioned above, the number of neighbors (Nn) involved in
R sampling is crucial and should be minimized. In these
tests, they were selected according to the amplitude of
their relaxation in the topology with a threshold that
is specified by uTopo. Both Nn and uTopo are given in
table I. Finally, the “global” acceptance rate is also re-
ported. In this case the moves also involve sites that are
not those of optimal segregation energy and therefore less
prone to be visited. They are nonetheless important for
sampling arrangements of several vacancies.

The process of finding the topologies necessary for the
SD moves also produces activation barriers. Although
not used in the Monte Carlo simulation, they provide
interesting information concerning the kinetics of the va-
cancies. The effective barrier for diffusion along the tilt
axis Ea

tilt and the effective barrier to exit the GB Ea
out

are given in table II. The former is the minimum barrier
for a change in the z position of the vacancy and the lat-
ter is calculated following the minimum energy path. It is
composed of several jumps and stops when the vacancy
bulk activation barrier is recovered. The local minima
along the path form a basin where, as a first approxima-
tion, the occupancies are considered equilibrated before
the exit event [49]. The escape rate (through the path)
is the product of the probability of being in the last local
minimum along the path times the frequency for crossing
the last barrier. If the bottom of the basin has a signifi-
cantly lower energy than the others, the prefactor ahead
of the final rate can be approximated. Then, the effec-
tive energy barrier for exiting the basin is simply the
difference in segregation energy between the bottom of
the basin and the last state before exit added to the last
jump barrier. It is this value which is reported as the ef-
fective barrier for exiting the GB. The vacancy diffusion
along the grain boundaries is found to be significantly
dependent on the structure (as already known from MD
simulations of self-diffusion [50]). The exit barrier is al-
ways much larger than the bulk barrier. It is close to, but
not exactly equal to, the difference between the bulk ac-
tivation energy and the segregation energy. In contrast,
the activation energy for diffusion along the tilt axis can
be larger, or smaller than the bulk value, meaning that
intergranular vacancies do not necessarily diffuse faster
than bulk vacancies. Nevertheless, self-diffusion is faster
than in the bulk because the vacancy formation energy is
decreased. Finally, for these grain boundaries, the diffu-
sion occurs along the tilt axis with no easy path to move
from one structural unit to the other (i.e. in the y di-
rection). The activation energy in the y direction can be
taken, as an approximation, as the exit activation energy.

The aggregation of two vacancies is also studied by
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Figure 5. (Color online) Symmetrical tilt grain boundary structures without vacancies: (a) Σ13(320)[001], (b) Σ33(554)[110] in
Al and (c) Σ29(730)[001], (d) Σ9(114)[110] in bcc Fe. Colors represent the vacancy segregation energy (∆Eseg). The minimum
values are given in table II. The relaxations around a single vacancy in this optimal configuration are represented by arrows on
(e,f,g,h) projected in the (x,y) plane and in the (x,z) plane on (i,j,k,l) (only the displacements are shown). The vacant site is
marked by a large cross.

Table I. Acceptance rates for exchange moves between equivalent sites along the tilt axis, with different types of moves: X
simple exchange, SD Smart Darting move, SD+R+b Smart Darting move combined with a Rosenbluth sampling of the Nn
neighbors of the vacancy that have a displacement larger than uTopo. umax is the maximum amplitude the relaxations. The
“global” acceptance rate is also given. Numbers in parentheses are the mean square difference obtained from 4 independent
runs.

Σ13 Σ33 Σ29 Σ9

SD 0.011 (0.003) 0.018 (0.001) 0.016 (0.001) 0.066 (0.004)

SD+R+b 0.046 (0.001) 0.058 (0.003) 0.030 (0.001) 0.102 (0.003)

global 0.010 (0.0002) 0.011 (0.0002) 0.005 (0.0002) 0.014 (0.0003)

X < 6 10−5
< 4 10−5

< 4 10−5
< 10−4

Nn 2 1 1 2

umax (a0) 0.23 0.30 0.40 0.11

uTopo (a0) 0.2 0.1 0.2 0.1

the MCMC method. The goal is to demonstrate that the
method can handle the simplest vacancy clusters before
moving to larger clusters, under the influence of elastic
strains, in connection to the fracture mechanisms men-
tioned in the introduction. Each grain boundary studied
exhibits a different behavior. The results of two repre-
sentative simulations are reported in Figure 6. Others,
in Al and Fe are discussed in the Supplemental Mate-

rial. The inserts (Fig. 6 a and b) represent the position
of the vacancies along the tilt axis of the GBs along the
Markov chain. Periodic boundary conditions are applied.
The length of the simulation box is 12 periods in both
cases but one period is 1 a0 long for the Σ13 of axis [001]

and
√

(2)/2 a0 for the Σ33 of axis [110]. Therefore, the
nearest crystallographically equivalent sites along the tilt
axis are a second neighbor and a first neighbor, respec-



10

Table II. Bulk vacancy formation energy Ef
bulk, vacancy seg-

regation energy ∆Eseg on the most favorable site, energy bar-
rier for an exchange between a vacancy and a first neighbor in
a perfect crystal environment Ea

bulk, effective energy barrier
for diffusion along the tilt axis of the GB Ea

tilt and effective
energy barrier to leave the GB Ea

out.

Σ13 Σ33 Σ29 Σ9

Ef
bulk (eV) 0.68 0.68 2.10 2.10

∆Eseg (eV) -0.43 -0.29 -0.64 -1.49

Ea
bulk (eV) 0.65 0.65 0.68 0.68

Ea
tilt (eV) 0.82 0.61 0.76 0.97

Ea
out (eV) 0.99 0.94 1.13 2.15

tively. Both inserts demonstrate that the z positions are
well sampled. The clustering tendency is very different.
In the Σ13 case, the distance between the vacancies (d)
fluctuates between 1 and Lz/2, which is the maximum
separation allowed by the periodic boundary conditions.
The energy of the topologies “visited”is superimposed to
d. This energy is the one found after minimization when
the topology is extracted. It is not the current energy
of the system. “Visited” is to be taken in the “Smart
Darting” sense, i.e., the distance between the microstate
and the local energy minimum is lower than the thresh-
old defining the neighborhood of the local minimum in
SD. The energy variations are small, lower than 0.05 eV.
The minimum energy found is a configuration where the
vacancies are separated by a distance of 2 a0. The sad-
dle searches have explored configurations with d<1 and
their energies are higher than the minimum by 0.4 to
0.6 eV, which might explain why transitions from mi-
cro states with d=1 to those with d<1 are not observed.
Therefore, for this grain boundary, the vacancies remain
split. In contrast, in the Σ33 case, the vacancies bind.
The evolution of d (Fig. 6b) illustrates how the algorithm
explores new configurations that enrich the list of topolo-
gies, which opens new transitions for Smart Darting, such
as transitions with smaller and smaller d. The simula-
tion is started with d maximum and the list of topolo-
gies obtained for the single vacancy. First, d fluctuates
with values larger than 3 times the period in z until the
method learns the configurations where d is equal to 2
periods. Then, these configurations are visited without
significant energy changes, and from there, the method
finds the configuration where the vacancies bind in first
neighbor position. The energy drops by approximately
0.3 eV. Beyond this point, the energy fluctuates with an
amplitude as high as 0.5 eV (T=600 K), and the cluster
moves along the tilt axis, without complete splitting (in-
sert Fig. 6b). The total number of topologies extracted
is 45 but essentially three are visited. They are repre-
sented in Fig. 6c. The stable divacancy configuration is
intuitive: a pair of first neighbors, occupying the GB site
where the segregation energy of an isolated vacancy is
the lowest. Note that the relaxations are very different.

It is representative of several grain boundaries. For ex-
ample, in the case of Fe, the vacancies bind by more than
1 eV in the Σ29 and form pairs along the tilt axis with a
separation of one period (1 a0). In the Σ9 case, they re-
pel each other by 60 meV and therefore remain split (see
the Supplemental Material). It is not always the case: in
the Σ9{221}[110] in Al, there are more configurations of
low energy, connected by low energy barriers and some of
them are only different by the relaxations. The MCMC
simulation handles this situation: the transitions over the
low barriers by ∆u moves and the splitting/reforming of
the divacancy by Smart Darting moves. The distribution
of the energy of the topologies, the structure of the low
energy divacancies and the relevant energy barriers are
given in the Supplemental Material.

IV. DISCUSSION AND CONCLUSION

One interesting question about intergranular vacancies
is whether their specific structure, qualified as “delocal-
ized”, leads to specific properties or if they behave in a
similar way as in the bulk. Regarding diffusion, our find-
ings are similar to what is summarized in the introduc-
tion: several sites lead to the delocalized structure (the
dark sites in Fig. 5) which means that long jumps can be
expected when entering the GBs. In contrast, once the
vacancy is in the optimum location, saddle searches have
not revealed any low energy path for diffusing out of this
configuration and the barriers are similar to bulk diffu-
sion (Tab. II). The elastic field produced is analyzed by
calculating the elastic dipole tensor Pij (Tab. IV), via the
Kanzaki forces [51]. Convergence of the calculation with
the number of neighbor shells gives an estimate of the
range of the elastic deformation produced by the defect.
The influence of the number of shells restored [51, 52]
gives an estimate of the range of the anharmonic region
around the defect. The range of the elastic field is ap-
proximately 3 a0, similar to the bulk (re in table IV).
In contrast, the range of the anharmonic relaxations can
be much larger in the GBs, up to 1.75 a0. These values
are coherent with the radius used for defining the topolo-
gies (2.5 a0) which was found empirically by increasing
the radius until no configuration built from the topolo-
gies relaxed toward a different minimum than the one
targeted. Furthermore, the amplitude of Pij in the GBs
can be approximately twice that in the bulk (Tab. IV).
This suggests that an external elastic field could have a
significant impact on the segregation energies. Indeed,
the magnitude of this difference, typically 4 eV, leads
to interaction energies of the same order of magnitude
as the segregation energies for reasonably large elastic
strains. For example, 2% normal strain ǫ11 leads to

∆Ee = −(P gb
ij − P bulk

ij )ǫextij ∼ 0.08 eV which is already

of the order of 20% of the segregation energy (Tab.5).
In contrast, the calculation of the vacancy-vacancy elas-
tic interaction energy, from the Pij and within isotropic
elasticity (the Al case), gives a negligible interaction (on
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Figure 6. (Color online) Evolution of the distance between the
vacancies, the energy of the topology visited and the number
of topologies detected along the Markov chain for a system
containing two vacancies: (a) Σ13(320)[001] at T=300 K, (b)
Σ33(554)[110] at T=600 K both in Al. The position in z (the
tilt axis direction) is shown on the insert. (c) The three main
topologies visited in (b) with energies 0 eV, 0.52 eV and 0.28
eV from left to right.

the order of 1 meV in first neighbor along the tilt axis
of Σ33). The binding energies found, which are there-
fore pure core effects, depend on the structure and are
different from the bulk values: -0.02 eV, 0.3 eV, 1 eV
and -0.06 eV for Σ13, Σ33, Σ29 and Σ9, respectively,
while in the bulk the interaction is zero in Al [53] and
0.14 and 0.3 eV in the first and second nearest neighbor
positions in Fe [54]. Additionally, because the segrega-
tion energies are large, the interactions are along the tilt
axis in every case. In brief, the differencies between a
bulk and a delocalized intergranular vacancy are a strong
anisotropy for diffusion, which is essentially along the tilt

axis, an enhanced elastic interaction with external elas-
tic fields and a structure-dependent tendency of form-
ing one-dimensional chains, in the 4 structures studied,
which are pure tilt. Note that the binding is quite differ-
ent in twist grain boundaries where vacancies accumulate
at the intersections of screw dislocations [55].
In conclusion, the paper presents an extension of

Markov chain Monte Carlo that overcomes the limita-
tions of the vanishing acceptance rate for particle ex-
changes in the case of large relaxations. The method is
illustrated in the particularly demanding case of delocal-
ized intergranular vacancies. The Monte Carlo moves are
composed of the classical random particle displacements
and vacancy-particle exchanges, to which “Smart Dart-
ing” moves are added. They are based on a list of topolo-
gies built on the fly, which contain the relaxations around
the vacancies in the configurations of local minimum po-
tential energy. When the system enters a neighborhood
of one such minimum, it can be transported in the vicin-
ity of another minimum of the list. In the vacancy case,
the move consists in erasing the relaxations of the neigh-
bors of the vacancy before inserting a particle at its loca-
tion and creating the appropriate relaxations at its new
location. Taking four different tilt boundaries, it is shown
that the occupancy of the crystallographically equivalent
sites along the tilt axis can be sampled with acceptance
rates of several % at room temperature. These high rates
are obtained when, in addition to “Smart Darting”, the
positions of key neighbors are also sampled. Note that
if the relaxations are dilatations, a similar but simpler
algorithm exists [56]. Divacancies were also studied by
the method. They exhibit GB-specific behaviors such as:
permanent binding, dissociation followed by immediate
binding or no interaction at all. Additional data are re-
ported that could be useful to build mesoscale models:
elastic dipole tensors, activation barriers for 1D diffusion
along the tilt axis and effective barriers to exit the GB
or diffuse perpendicular to the tilt axis. Future work will
consist in sampling intergranular vacancy configurations
beyond 2 vacancies and under the influence of an exter-
nal strain, since the use of particle displacements enables
equilibrating stresses when applying a displacement on
the side of the system. The effect of elastic strains on
intergranular vacancies seems particularly strong and is
important in the context of ductile fracture [1], includ-
ing under irradiation [57], and in thin films [58] when
discussing the existence of cavities.
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Appendix A: Additional details concerning the
definition and choice of ǫ

The cubes which define the ǫ-sphere have to be com-
patible with the Voronoi tesselation. When the cube is
not entirely contained in the Voronoi cell, the volume
considered available for the neighbor in the definition of
the ǫ-sphere is the intersection of the cube of side 2ǫ and
the Voronoi cell. In order to respect the symmetry of
the MC move, this constraint on the displacement of the
neighbor should be imposed also for the reverse move. In
addition, the original Smart Darting move considers that
the spheres do not overlap. If the vacancy arrangement is
not the same between to topologies, there is no constraint
on the value of ǫ, apart from the compatibility with the
Voronoi tesselation and ǫ can be large. On the contrary,
if the vacancies occupy the same sites and only the dis-
placements are different (such as in Fig. 1a), ǫ should be
half of the maximum difference in displacement over the
sites included in the topology. It could be a small num-
ber. The measurement of the displacement fluctuations
on bulk sites show that their maximum amplitude is of
the order of 0.1 a0 at T=300 K. For this reason, when
deciding in the “search” phase of the algorithm which
state is eligible for a topology extraction, the constraint
imposed is that it should be at minimum at a distance
0.2 a0 from an already known topology. Unfortunately,
in the GB there are often displacements beyond 0.15 a0,
even not connected to vacancies. A small value of 0.1
a0 for ǫ is therefore unpractical. The value ǫ = 0.2 a0
was chosen from the distance fluctuations in Fig. 2b and
therefore, the cubes overlap in the Voronoi cell of Fig. 1a.
It has no consequence for the simulations presented (it
was checked), because this neighbor is tightly bound to
the local minima and ǫ = 0.1 a0 would work for this site,
but not for the other sites of the GB... One solution, not
implemented yet, would be to use site dependent values
of ǫ in the topologies where this is needed. It is left for
further work.

Appendix B: Technical details

The particles interact by EAM potentials: refer-
ence [42] for Al and [54] for Fe. The box sizes are given
in table III and the crystallographic directions in figure 5.
Periodic boundary conditions are applied in the y and z
directions and two regions are fixed on the sides perpen-
dicular to the x direction (the normal to the GBs). The

width of the rigid regions is the range of the potential
plus 0.5a0. The main parameters for SD are: ǫ = 0.2
a0, the size of the neighborhood around the local energy
minima, the radius around the vacancy for defining the
topology is 2.5 a0 in the plane perpendicular to the tilt
axis and 2.2 a0 along the tilt axis and the number of
random displacements per atom in the Rosenbluth sam-
pling Nr = 1000. Note that the displacements are taken
within a cube of side ǫ, therefore it is a dense sampling.

Table III. Simulation box sizes Lx, Ly , Lz (a0), number of
atoms nat, and coincidence site lattice cell size CSLx, CSLy ,
CSLz (a0).

Σ13 Σ33 Σ29 Σ9

Lx (a0) 31.3 32.2 15.6 33.8

Ly (a0) 14.4 11.5 15.2 12.0

Lz (a0) 12.0 8.48 16 17.0

nat 19776 12528 7232 13632

CSLx (a0) 7.2 8.12 7.6 8.48

CSLy (a0) 7.2 5.74 7.6 6.0

CSLz (a0) 1.0 0.71 1.0 1.41

Appendix C: Elastic dipole tensor

Table IV. Components of the elastic dipole tensor Pij (eV) for
a vacancy in bulk Al and Fe and in the four grain boundaries,
in the favorable configuration (Fig. 5), computed from the
Kanzaki forces [51]. The range of the elastic distortions re

and of the anharmonicity ra are also given (a0).

bulk Al Σ13 Σ33 bulk Fe Σ29 Σ9

P11 (eV) -3.9 -11.2 -7.5 -1.3 -21.0 -7.8

P22 (eV) -3.9 -8.8 -3.3 -1.3 -4.0 -8.2

P33 (eV) -3.9 -4.5 -7.2 -1.3 -11.8 -7.1

P12 (eV) 0.0 -4.0 -2.3 0.0 -0.3 0.0

P13 (eV) 0.0 0.0 0.0 0.0 0.0 0.0

P23 (eV) 0.0 0.0 0.0 0.0 0.0 0.0

P11 (eV) -2.5a -3.6b

re (a0) 2.5-3. 3. 3. 3.5 3.5 3.5

ra (a0) 0.7 1.58 1.75 1.41 1.75 1.75

a DFT value from reference [59]
b DFT value from reference [60]
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