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Abstract

This work proposes a new method for building an explanatory spatial autore-
gressive model in a multicollinearity context. We use Ridge regularization to
bypass the collinearity issue. We present new estimation algorithms that allow
for the estimation of the regression coefficients as well as the spatial dependence
parameter. A spatial cross-validation procedure is used to tune the regulariza-
tion parameter. In fact, ordinary cross-validation techniques are not applicable
to spatially dependent observations. Variable importance is assessed by permuta-
tion tests since classical tests are not valid after Ridge regularization. We assess
the performance of our methodology through numerical experiments conducted
on simulated synthetic data. Finally, we apply our method to a real dataset and
evaluate the impact of some socio-economic variables on the COVID-19 intensity
in France.

Keywords: Spatial autoregressive models, Multicollinearity, Ridge regularization,
Spatial cross-validation, Variable importance, Permutation tests
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1 Introduction

Statistical models intend to represent, understand and interpret the information lying
in a data set. Among others, linear regression analysis is a popular tool used to model
underlying relationships between the response variable and covariates (or explana-
tory variables). This method is widely used in practice due to its advantages, namely
the simplicity of the model structure and the consequent ease of interpretation of its
results, in addition to the good properties of the estimator, which is unbiased and
efficient. However, the assumptions of this model are violated in the case of spatial
data, particularly the independence of residuals. There are many ways to take into
account spatial dependence in linear regression models. Among them, we shall con-
sider the class of spatial autoregressive models which arose in spatial econometrics.
Spatial Autoregressive models, also called Simultaneous Autoregressive models, are
widely used, see for instance the seminal works of Anselin, LeSage and their co-authors,
mainly (Anselin, 1988) and (LeSage, 2008); their success relies on their intuitive writ-
ing, similar to ordinary regression models with the addition of a “spatial lag” term.
We shall deal in this work with two well-known key models, the mixed spatial lag
model and the spatial error model.

A common trait of real data is the presence of multicollinearity, i.e. some covari-
ates are approximately linear combination of others. This phenomenon causes high
variability of parameter estimators and biased inference statistics. Also, for model
interpretation, the effects of the variables cannot be distinguished and extrapolation
is likely to be misleading (Alin, 2010). Regularization techniques for regression are
frequently applied to solve the issue. A quite general theory on the properties of the
regularization techniques has been developed over the last decades, see for example
(Hoerl and Kennard, 1988), (Zou and Hastie, 2005) and (Tibshirani, 1996). The most
classical techniques, Ridge and Lasso, constrain the norm of the vector β of regression
coefficients by adding a regularization term to the function to be optimized. This intro-
duces some bias, but can greatly reduce the variance. The difference between Ridge
and Lasso lies in the regularization term; the Ridge imposes an L2-penalty which is
γ×

∑p
i=1 β

2
i while Lasso considers a L1-penalty equal to γ×

∑p
i=1 |βi|. In both cases,

γ is an hyperparameter to be tuned. Ridge regression always keeps all the covariates
in the model. On the contrary, Lasso produces a parsimonious model by allowing some
coefficient estimates to be set to 0. In the situation of highly correlated covariates,
Lasso may keep only one of them.

In this work, our objective is to build an explanatory model, which is different from
building a predictive model. Indeed, when one wants to build a predictive model, the
main goal is predictive accuracy. The objective is to obtain good predictions for the
outcome, without any further consideration about the significance of the predictors
and even their collinearity. It may happen that statistically significant variables are not
included in a predictive model because their addition adds no predictive benefit. On the
other hand, in an explanatory model objective, we want to identify the variables which
are statistically significant to express their relationship with the response variable.
Moreover, the knowledge of non-significant variables also provides valuable information
for the practitioners. Thus, we aim at including all explanatory variables in the model
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and keeping them all. To this aim, Lasso technique is not suitable since it performs
variable selection, while the Ridge regularization method is in line with our objective.

There has been a tremendous amount of research about Ridge adaptation, see
(McDonald, 2009) for a general review. Ridge regularization has been adapted to the
spatial setting; Wheeler and Páez (Wheeler, 2009) consider Ridge adaptation in the
framework of geographically weighted regression; more interesting in our framework,
Fan et al. (2017) considered the context of spatial autoregressive models. They propose
“Spatially Filtered Ridge Regression”, which we describe in section 3.2. However, if the
authors use a Ridge procedure for computing the coefficients estimates, they estimate
the spatial dependence parameter as if there were no collinearity issues. In this work,
we propose new estimation algorithms which take into account that matter for all the
parameters.

Furthermore, Ridge regression involves the delicate choice of the regularization
parameter γ. Indeed, this parameter plays a crucial role since it controls the strength
of the regularization. The appropriate choice of this parameter is a difficult problem.
A quite general theory on the properties of the various regularization methods and
different parameter choice procedures has been developed over the last decades, start-
ing from the seminal work of Tikhonov and Arsenin (1977). Fan et al. (2017) choose
γ according to the Ridge trace criterion proposed by Hoerl and Kennard (1970), that
is plotting Ridge coefficients versus γ values, and select the minimum value of γ for
which the coefficients start to stabilize. Despite being commonly used in applications,
this method suffers from being user-dependent, in the sense that the final choice is
done by the user according to what he observes in the plot. Cross-validation is another
common re-sampling method used to tune model parameters. But special care needs
to be taken in the presence of spatial dependence; indeed, classical cross-validation
techniques are no longer suitable since the assumption of independence between the
training and test sets is violated, see Roberts et al. (2017). Here, we want to use an
adapted spatial cross-validation procedure to select automatically the regularization
parameter; we will make use of spatial leave-one-out (SLOO) which is especially well
adapted for spatial autoregressive models.

Building an explanatory model, a crucial point is to determine which variables
significantly affect the behaviour of the outcome. Unfortunately, one consequence of
Ridge regression is that Student tests or classical F-tests are not appropriate any more.
Halawa and El Bassiouni (2000) proposed a t-test based on Ridge estimators; however,
other authors showed in intensive simulation studies that it may fail depending on the
value of the regularization parameter. We propose permutation F-tests and t-tests.

In Section 2, we present the two main spatial autoregressive models that we are
going to consider. We develop our new estimation procedures in Section 3. The crucial
step of selecting the regularization parameter is achieved through a coherent spatial
leave-one-out procedure. Finally, we propose in Section 4 to run permutation F-tests
to assess the importance of the explanatory variables.

To validate the performance of our new procedure, we conduct comprehensive sim-
ulations whose results are summarise in Section 5; we simulate spatial autoregressive
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models with 8 highly correlated variables, and estimate their parameters using classi-
cal spatial and non-spatial methods, the Spatially Filtered Ridge Regression proposed
by Fan et al. (2017), and our procedure.

Finally, for purpose of illustration, we conduct a thorough study on a real data
set in Section 6. We consider the hospitalization rate due to Covid-19 pandemic in
metropolitan France, to be explained by socio-economic covariates. First we resume
the data and include an exploratory analysis which highlights the presence of spatial
dependence and multicollinearity. Then we run our estimation procedure and finally
determine the core variables affecting the epidemic indicator. Our concluding remarks
are provided in Section 7.

2 Spatial autoregressive models

Let us consider a finite set of sites S = {si, i = 1, · · · , n} on a spatial domain
D ⊂ Rd. We assume that we observe some data Y = (Y (s1), · · · , Y (sn))

T on S and
p explanatory variables X1, . . . ,Xp.

Simultaneous spatial autoregressive models are common in spatial econometrics;
they take into account spatial dependence structures by using a neighbourhood graph
on S. In this work, we will consider two main models; the first one, that we shall
denote SAR, is a mixed regressive-spatial autoregressive model defined by

Y = ρWY +Xβββ + εεε

εεε ∼ N(0, σ2In)
(1)

where In is the identity matrix of order n and X = [X1 · · ·Xp] is a n × p matrix
with Xi = (Xi(s1), · · · , Xi(sn))

T , i = 1, . . . , p. W is a deterministic spatial weights
matrix; though there’s no direct counterpart, it is often considered as the equivalent
of the backshift operator B for time series, like a spatial lag operator acting as a shift
over space. The spatial weights depend on the definition of a neighbourhood set for
each observation. We set wii = 0 and wij = 0 if sites si and sj are not neighbours.
(WY )i is interpreted as a weighted average of the neighbouring values of y(si). Let
us note that there are many specifications of the spatial weights, the usual way is to
consider geographical distances (at a negative power), but one can consider economic
or social distances. The parameter ρ in model (1) above reflects the strength of the
spatial dependence between the elements of Y.

The second widely used model is the Spatial Error Model, denoted by SEM, and
defined by:

Y = Xβββ + u,

u = λWu+ εεε, εεε ∼ N(0, σ2In)
(2)

In this model u corresponds to a noise that is spatially correlated and λ characterizes
the strength of the dependence.
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These two models are well-defined under assumptions relying on the eigenvalues of
the spatial weight matrix W that we will not discuss here; see for instance the works
of Anselin (1988) or LeSage (2008).

Let us recall that our objective is to obtain explanatory SAR or SEM models
under the assumption of multicollinearity between the covariates Xi. Thus, the matrix
[XTX] has very small eigenvalues, leading to numerical instability of its inverse. The
poor behaviour of the estimator of the coefficients β in the presence of multicollinearity
is inherited from ordinary linear regression by spatial autoregressive models. Further-
more, the estimation of the parameter ρ or λ is also computed indirectly from matrix
[XTX]. The Ridge regularization is a way to overcome the problem, bypassing the mul-
ticollinearity issue while preventing from variable removal. But it has to be adapted
to the spatial framework. We present new algorithms to derive Ridge estimates for
SAR and SEM models in the next paragraph.

3 Estimation

To exhibit the novelty of our procedure, we start by recalling the usual estimation
procedure to estimate SAR and SEM models defined in (1) and (2).

3.1 Spatial autoregressive models estimation

Let us recall that the least squares estimation of these models produces biased and
inconsistent estimates. Therefore, one considers the following procedure, which is
described for example in Anselin (1988). The estimation is based on the so-called
concentrated likelihood and is achieved in a few steps.

Let us start with the SAR model. The log-likelihood has the following expression,

lSAR(y | βββ, σ2, ρ) = − n

2
ln (2π)− n

2
ln (σ2) + ln |In − ρW |

− 1

2σ2

(
(In − ρW )y −Xβββ

)T (
(In − ρW )y −Xβββ

) (3)

We first focus on parameter βββ. Its maximum likelihood estimator is

β̂ββML =
(
XTX

)−1
XT (In − ρW )Y

=
(
XTX

)−1
XTY − ρ

(
XTX

)−1
XTWY

=β̂ββO − ρβ̂ββL

(4)

where β̂ββO =
(
XTX

)−1
XTY is the ordinary least squares (OLS) estimator of the

coefficients of the regression of Y on X and β̂ββL =
(
XTX

)−1
XTWY is the OLS

estimator of the coefficients of the regression of the spatial lag (WY) on X. So, we

obtain β̂ββML as soon as ρ is known. The idea is then to perform OLS on the two

regressions, and compute the residuals eO = y−Xβ̂ββO and eL = Wy−Xβ̂ββL. Then, it
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also can be shown that the ML estimate of σ2 is given by

σ̂2 =
1

n
(eO − ρeL)

T (eO − ρeL). (5)

Again, we obtain this estimate as soon as ρ is known. Substituting σ2 and βββ in the log-
likelihood (3) by their expressions in equations (5) and (4), we obtain the concentrated
log-likelihood function,

lCSAR(y | ρ) = −n

2
ln (2π)− n

2
ln { 1

n
(eO − ρeL)

T (eO − ρeL)}+ ln |In − ρW | (6)

We then find ρ̂ maximising (6), which resumes in a one-parameter non-linear opti-
mization problem. The final step consists in plugging ρ̂ in (4) and (5) to obtain the
final estimators.

Let us now turn to the SEM model. The estimation procedure is analogous to the
previous one. We write the log-likelihood as,

lSEM (y | βββ, σ2, λ) = − n

2
ln (2π)− n

2
ln (σ2) + ln |In − λW |

− 1

2σ2
(y −Xβββ)T (In − λW )T (In − λW )(y −Xβββ)

(7)

Let us note the filtered variables Xλ = X − λWX and Yλ = Y − λWY. Then, for

a fixed λ, we get the maximum likelihood estimators β̂ββλ =
(
XT

λXλ

)−1
XT

λYλ and

σ̂2
λ = 1

ne
T
λeλ with eλ = Yλ −Xλβ̂ββλ. One can notice that these estimators are those

obtained from writing again the SEM model (2) as

Yλ = XT
λβββ + εεε, εεε ∼ N(0, σ2In) (8)

Substituting the expressions of β̂ββλ and σ̂2
λ in the log-likelihood (7), we obtain the

concentrated log-likelihood,

lCSEM (y | λ) = −n

2
ln (2π)− n

2
ln { 1

n
eTλeλ}+ ln |In − λW | (9)

which is a non-linear function of λ. Again, optimizing this function gives λ̂, then the

final estimates β̂ββλ and σ̂2
λ.

In both models, the procedures will suffer from collinearity issues and produce
unstable numerical solution of the estimate of βββ. Therefore, the residuals derived from

β̂ββ inherit from its instability. Finally, σ̂2 as well as the estimates of ρ or λ can’t be
trusted. The impact of collinearity is felt all the way to all the parameters. It seems
then important to consider all parameters in the new estimation algorithms to release
them from the collinearity burden.
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3.2 Ridge regression for spatial autoregressive models

In ordinary non-spatial regression, the Ridge estimator is defined by

β̂ββR = (XTX+ γIp)
−1XTY, (10)

γ > 0 being the so-called regularization parameter. Let us note that in all this para-
graph, we consider centred variables, since the regularization concerns the coefficients
of the variables without the intercept. It is also very common to scale the variables.

Spatially filtered Ridge regression (SFRR) as named by the authors who first
proposed it (Fan et al., 2017) integrates Ridge regression and spatial autoregressive
models. This method follows three fundamental steps. For the SAR model, [resp. the
SEM model],

1. Estimate ρ [resp. λ].

2. Consider the new response vector to be Yρ̂ = (I− ρ̂W )Y [resp. Yλ̂ = (I− λ̂W )Y

and Xλ̂ = (I− λ̂W )X].

3. Select γ following Ridge trace criterion and estimate β̂ββR in (10) with the new
response vector (and current or new design matrix).

Fan et al. do not raise it, but the first step is, in fact, an issue, since, as we
mentioned above, the ML estimator of ρ (or λ) is obtained using residuals, derived on
their own from the ill-conditioned matrix [XTX]. We bypass the problem in proposing
an iterative algorithm which takes into consideration both parameters ρ (or λ) and βββ.
The estimation of σ2 automatically follows.

The algorithms we propose for estimating parameters of the SAR and SEM models
are similar.

Ridge Regularization for SAR models (RRSAR)

1. Initialization. Consider the ordinary linear regression model Y = Xβββ + εεε and
estimate βββ by β̂ββ0,R = (XTX + γ0Ip)

−1XTY defined in (10) for γ0 > 0. Similarly,

for γL > 0, compute β̂ββL,R = (XTX + γLIp)
−1XTWY the ridge estimate of βββ in

the ordinary regression of (WY) on X.

2. Compute e0 = Y − Xβ̂ββ0,R and eL = WY − Xβ̂ββL,R and estimate ρ by using the
concentrated ML (6).

3. Consider the filtered Yρ̂ = (I− ρ̂W )Y and compute β̂ββ
SAR

R = (XTX+γIp)
−1XTYρ̂

for γ > 0.

Ridge Regularization for SEM models (RRSEM)

1. Initialization. Consider the ordinary linear regression model Y = Xβββ + εεε and
estimate βββ by β̂ββR defined in (10).

2. Consider Yλ = Xλβ̂ββR + εεε and eλ = Yλ − Xλβ̂ββR and estimate λ by using the
concentrated ML (9).

3. Consider the filtered Yλ̂ = (I− λ̂W )Y, the filtered matrix Xλ̂ = (I− λ̂W )X, and

compute β̂ββ
SEM

R = (XT
λ̂
Xλ̂ + γIp)

−1XT
λ̂
Yλ̂ for γ > 0.
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4. Consider Yλ = Xλβ̂ββ
SEM

R + εεε and eλ = Yλ − Xλβ̂ββ
SEM

R and estimate new λ by
using the concentrated ML (9).

5. Repeat step 3 to obtain the final β̂ββ
SEM

R .

Let us note that the RRSAR algorithm follows the original estimation algorithm

of SAR models; Ridge estimates replace OLS estimates in the first step, and β̂ββ
SAR

is changed to β̂ββ
SAR

R . Let us point out that the regularization parameters γ in the
first step are not identical, we get different values whether considering the dependent
variable to be Y or WY. This is crucial to get a correct estimation of ρ. Then we
can’t just plug-in the obtained estimates in (4) but we need to regularize globally βββ
considering the new dependent variable Yρ̂ .

The RRSEM algorithm has two more steps than the RRSAR because the first
estimate of λ in step 2 is obtained after an OLS procedure and has to be refined.

In these algorithms, the computation of the Ridge estimates necessitate sub-
steps to determine a good regularization parameter γ. This is done by spatial
cross-validation. This step is the subject of the next section 3.3.

3.3 Spatial cross-validation for selecting the Ridge parameter

The parameter γ has a key role in Ridge regularization ; assigning γ to 0 is considering
ordinary least squares (OLS); on the contrary, high values of γ increase the penalty
term and thus drags down the regression coefficients βi. Each value leads to different
estimates of β, crushing them more or less towards zero. In their algorithm, Fan
et al. (2017) follow the Ridge trace criterion (Hoerl and Kennard, 1970) to choose γ.
They plot the coefficients estimates versus γ and look for the value of γ for which
the coefficients stabilize. Another common method is selecting the parameter γ that
minimizes the mean square error estimated using cross-validation techniques.

Spatial data, and more accurately, spatial auto-correlation, challenges classical
cross-validation techniques. In this situation, random splitting of the data into train-
ing and testing sets does no longer simulates the original structure of the data and
therefore the key assumption of independent data samples behind cross-validation is
violated. There exist some extensions of classical cross-validation to deal with spatial
dependence. Detailed works and applications have been conducted on spatial leave-
one-out (SLOO) (Le Rest et al., 2013), spatial k-fold cross-validation (Pohjankukka
et al., 2017) and blocked cross-validation (Brenning, 2012). The majority of these mod-
ifications correspond to the idea of achieving independence between the training set
and the test set by the means of “point separation”. This is done by deleting points
from the training set within a distance h of the test set. The area of deleted points is
called “buffer” or dead zone. The selection criterion for h is still under debate. In the
case of spatial autoregressive models, SLOO rises naturally because the determination
of h is beneficially replaced by taking out the first order neighbours designed by W .

Spatial leave-one-out follows the usual leave-one-out procedure; at the m−th itera-
tion of SLOO, one observation becomes the validation set Vm = {(y(sm),x(sm))}, as
in the classical method. Then, we define the buffer around sm as the set of its neigh-
bours ∂sm = {si ∈ S : wmi ̸= 0}. The training set is then Tm = {(y(sj),x(sj)) :
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wmj = 0}. If needed, one can easily extend the buffer to take out the k-th order
neighbouring observations, k being chosen for instance following a Moran test (Moran,
1950) based on the k-th order neighbours.

We describe now the SLOO algorithm that we use to select the regularization
parameter γ. Let us consider, for example, the SAR model; the procedure is similar for
the SEM model. Our criterion is based on the maximisation of the likelihood rather
than MSE; indeed, MSE is mostly used for prediction purposes, while we are interested
in an explicative model.

For a fixed γ, we run the following procedure. For m = 1 to n, we compute

β̂ββ
SAR

R,m (γ) = (XT
mXm + γIp)

−1XT
mYρ̂,m; the subscript m states for the calculations are

made on the training set Tm. Note that ρ̂ has been obtained from computations on
the whole data set at the previous step of the estimation algorithm and is fixed at this
point. The same applies for σ̂2.

Next we compute the conditional log-likelihood on the validation set, conditionally
to the neighbouring values,

lm(γ) = −1

2
ln(2π)−1

2
ln(σ̂2)− 1

2σ̂2

y(sm)− ρ̂
∑

sj∈∂sm

wmj−y(sj)− x(sm)T β̂ββ
SAR

R,m (γ)

2

.

Finally, the regularization parameter γ̂ selected in the estimation algorithm is
defined by

γ̂ := argmax
γ∈{γk}K

k=1

1

n

n∑
m=1

lm(γ). (11)

where {γk}Kk=1 is a sequence of possible values of γ; this sequence is created using the
path-wise coordinate descend method (Friedman et al., 2010); it first selects γmax, the

smallest value that crushes down β̂ to 0; then the sequence of K values decreases on
the log-scale from γmax to γmin = c ∗ γmax. The most common choices are K = 100
and c = 0.001.

4 Importance of the explanatory variables

When building an explanatory model, one major point is to determine how important
is the influence of the explanatory variables on the dependent variable Y . For spatial
autoregressive models, the interpretation of coefficients is not classical, it is made in
terms of “impacts” rather than exploiting coefficients values. Indeed, if we consider
a SAR model, for example, the presence of the spatially lagged dependent variable
entails, as a logical consequence, that a change in an explanatory variable at a single
location can affect several values of Y in other sites. These impacts depend directly on
ρ and the components of βββ, see LeSage (2008). Furthermore, in the context of Ridge
regression, the coefficients suffer a steep fall due to the regularization; then, classic
tests are not valid any more.

Halawa and El Bassiouni (2000) propose to use a statistics that imitates the classic
Student ratio to test individual regression coefficients in the case of ordinary regression
(without spatial dependence).
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Let us recall that the bias and variance of the Ridge estimator of the regression
coefficients βββ are defined by respectively,

bias(β̂ββR) = E[β̂ββR]− βββ = −γ
(
XTX+ γI

)−1
βββ

V ar(β̂ββR) = σ2
(
XTX+ γI

)−1
XTX

(
XTX+ γI

)−1
(12)

To test the null hypothesis (H0) : βR,j = 0, Halawa and El Bassiouni (2000)

propose to consider Tj =
β̂R,j

S(β̂R,j)
, where β̂R,j is the j-th element of β̂ββR and S(β̂R,j) is

the square root of the j-th diagonal element of V ar(β̂ββR). They state that this statistics
follows approximately a Student distribution. In practice, σ2 in (12) is replaced by its
estimation based on the residuals. However, Perez-Melo and Kibria (2020) show that
the test behaves differently according to the regularization parameter; in his thesis
(available at https://theses.hal.science/tel-01326950v2) Bécu also states that the test
fails especially for large values of γ.

Permutation tests offer a good alternative to determine statistical significance.
They are based on the assumption that under the hypothesis of no relationship
between the dependent variable Y and an explanatory variable Xj , the observations
are exchangeable and the joint probability distribution of the permuted samples coin-
cides with the joint probability distribution of the original sample. There are numerous
works proposing permutation tests for OLS with the permutation done to the response
(Manly, 2006), or the residuals (Kennedy, 1995; Anderson and Robinson, 2001), or the
predictor (Hastie and Tibshirani, 1995). Thus, Bécu et al. (2017) propose to replace
the classic F-test by a permutation F-test, which is asymptotically exact when the
tested variable is independent of the other explanatory variables, and is approximate
in the general case. Though the assumption of independence is violated, this test might
perform well in the case of not so high correlations.

The permutation F-test is defined as follows. First, let us note M0 the small model
(without the variable to be tested) nested in M1 the larger model (including all the
variables), Ŷ0 and Ŷ1 the respective predictors of Y estimated in these models. The
classic F-statistic is defined by

F =
∥Y − Ŷ0∥2 − ∥Y − Ŷ1∥2

∥Y − Ŷ1∥2/(n− p)
(13)

Now, let us permute B times the n values of Xj , and let us note Xj(b) the b-th
permutation. We consider the estimator of the parameters of the spatial autoregressive
model with the explanatory variables (X1, · · · , Xj−1, Xj(b), Xj+1, · · · , Xp). Ŷj(b) is the
corresponding predictor of Y . We define the permutation test statistic Fj(b) by

Fj(b) =
∥Y − Ŷ0∥2 − ∥Y − Ŷj(b)∥2

∥Y − Ŷj(b)∥2/(n− p)
(14)

The estimated p-value is

pv =
1

B

B∑
b=1

1
{
Fj(b) ≥ Fj

}
(15)
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where Fj is the usual F-statistic defined in equation (13) above. This resumes to

pv =
1

B

B∑
b=1

1
{
∥Y − Ŷ1∥2 ≥ ∥Y − Ŷj(b)∥2

}
(16)

Similarly, we can derive a permutation t-test considering the following statistics,

Tj(b) =
β̂R,j

S(β̂R,j)
(17)

associated to the p-value

pv =
1

B

B∑
b=1

1
{
Tj(b) ≥ Tj

}
(18)

Note that these permutation tests are considered to be more conservative tests
than parametric tests; moreover in our case, they may fail in case of very large values
of γ too, and most of all, they do not take into account spatial dependence in the
model and potentially spatially correlated covariates. We point out that in all the tests
above, γ is chosen by the user and in our case, results from SLOO (each permutation
gives its own optimal value).

5 Simulation experiments

In this section, we present simulation results to assess the performance of our method-
ology. We consider various scenarios, always in a multicollinearity framework. We
simulate SAR and SEM models, with 8 highly correlated covariates, as described fur-
ther, and for various values of ρ or λ in order to consider weak to strong spatial
dependence. For each model, we explore two settings; in the first one, we simulate the
covariates once for all and only the error term is renewed at each simulation. In the
second scenario, we simulate the covariates each time. Then, each resulting dataset
is estimated according to different methods depending on whether or not the spatial
feature and the Ridge regularization are taken into consideration. The code for our sim-
ulations is available in our Github repository https://github.com/c0ra/RRSARMMI
along with the full results.

We consider a 30x30 grid over which we generate 8 covariates with multicollinearity
issues. Here, we use the function RFsimulate from the package RandomFields in R.

The first two variables are generated as Gaussian random fields; X1 is generated
with an exponential covariance function with variance equal to 1 and scale set to 0.5,
while X2 has a Gaussian covariance function with variance 1 and scale set to 0.4. The
remaining six variables are generated as follows,

X3 = exp (X1)− |X2| X4 = |X2|+ (
X1 +X2

2
− 4)2

X5 = X1 +X1X2 X6 = log(X4)−
X1

12
+X2

1

X7 = X1 + 2X2 +
√

X4 X8 = X5 +
X2

2
+X2

2
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Afterwards, all covariates are standardized to build the matrix X. In the determin-
istic scenario, this matrix is the same for all simulations; the high multicollinearity is
expressed by very large values of matrix XTX’s condition number, 138 473.1, and pf
the variance inflation factor (VIF) for the covariates, given in Table 1; moreover we
plot the correlation matrix of the covariates in Figure 1.

Table 1: Variance inflation factor (VIF) of the simulated covariates

X1 X2 X3 X4 X5 X6 X7 X8

4821.923 16507.146 13.756 3804.250 13.649 29.921 10690.157 74.898
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Fig. 1: Correlations between the 8 simulated covariates

The spatial weight matrix W was constructed using a row-standardized contiguity
matrix with the rook neighbourhood (which is similar on a regular grid to the four
nearest neighbours system). Then we simulate the dependent variable Y according
to the SAR or the SEM model, with 5 different values of the spatial autoregressive
coefficient reflecting weak to strong dependence, ρ (resp.λ) ∈ (0.1, 0.3, 0.5, 0.7, 0.9).
The dependent variable Y was obtained by either

Y = (In − ρW )−1Xβββ + (In − ρW )−1εεε, (19)

or
Y = Xβββ + (In − λW )−1εεε, (20)

where X is the covariates matrix, βββ is a vector of ones, and εεε follows a Gaussian
distribution with mean 0 and standard deviation 1. Then we centre Y but we do not
scale it.
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Each model is simulated 500 times, and then estimated. We consider the following
estimation procedures, whose abbreviation that we shall use in the summaries is given
between parenthesis: Ordinary least squares regression (OLS), ordinary Ridge regres-
sion (RR), ordinary SAR or SEM (SAR or SEM) without regularization, Spatially
Filtered Ridge Regression (SFRR) proposed by Fan et al. (2017), and our estimation
procedure, named as Ridge Regression for SAR models (RRSAR) or Ridge Regression
for SEM models (RRSEM). In this regular grid setting, the buffer around each site s
during the SLOO procedure is defined by the rook neighbourhood.

For comparability purpose we compute the bias, variance and mean square error
(MSE) of the regression coefficients β1 to β8 as well as for ρ or λ.

We summarize the results in the tables hereafter. We only display the results for
the case of “stochastic” covariates simulated each time; those obtained for the case
where we simulate them once for all are very similar. Moreover, for sake of place, we
gathered the results for the regression coefficients in presenting the average of their
bias, variance and MSE. We do not present the results between SFRR, RRSAR and
RRSEM for the dependence parameters ρ and λ. Indeed, the bias, variances, and MSE
of λ estimates are identical up to the third digit for SFRR and RRSEM, equal to
±0.000; they are similar for the SAR framework, with a small difference in the bias;
we observe a small bias of −0.001 in our procedure for ρ equal to 0.3 to 0.7, while it is
−0.000 following the SFRR procedure. Detailed results for each regression coefficient
and for each value of ρ or λ are retrievable from our Github repository.

Let us note that if we are going to compare the MSE between the different estima-
tion procedures, one has to keep in mind that other diagnostics are ignored here, but
obviously, SAR and SEM lead to poor estimates due to the multi-collinearity issue, we
can get low variances from RR but it suffers from the absence of spatial dependence
in the model, and OLS endures both inconveniences. Our real challenge is to compare
our procedure with SFRR.

When examining the average bias, variance and MSE of regression coefficient esti-
mates (Tables 2, 3, 4), a clear pattern emerges as we vary the value of the dependence
parameter. Bias and variance (and thus MSE) constantly increase with the spatial
dependence parameter for OLS, leading sometimes to crazy values (we get an average
variance of 656.4 for ρ = 0.9). This illustrates the failure of this model in our frame-
work and the strong need of regularization. SAR and SEM estimation procedures
help to reduce the bias, which is almost constant whatever the strength of the spatial
dependence; on the other hand, they lead to high (stable) variances of order 5 or 6.
Unsurprisingly, the RR estimation procedure helps a lot to reduce the variances but
may lead to a large bias (2.5 for ρ = 0.9); it is interesting to note that the variances
increase with ρ and λ denoting the lack of spatial feature inclusion. To summarize, as
we transition from 0.1 to 0.9, OLS experiences a significant surge in MSE, multiplied
by more than 100. In contrast, RR’s MSE average is multiplied by “only” 25 for the
SAR simulation, and increase by 40% over the same range for the SEM one.

As expected, the best results are obtained for SFRR and our algorithms. In both
cases, the bias is more important than for ordinary SAR and SEM estimation, but this
is expected since these techniques force the coefficients towards zero. Let us note that in
all cases, the bias is more important after SFRR estimation than after our procedures.
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Especially in the SEM simulation, SFRR leads to increasing larger bias (-1 for λ = 0.9
and SFRR versus -0.4 for RRSEM). SFRR estimation leads to very low variances,
lower than ours. Interestingly, though they stay constant for the SAR simulation over
the ρ variation, they increase with λ in the SEM framework for both methods, SFRR
and RRSEM. Considering the MSE, our method is superior to SFRR, for both models.
Our conclusion is that SFRR crushes down the coefficients too far, raising the bias;
indeed our regularization procedure is sufficient to stabilise the coefficients, leading to
lower bias.

Table 2: Average regression coefficient bias

SAR simulation SEM simulation

ρ/λ OLS SAR RR SFRR RRSAR OLS SEM RR SFRR RRSEM

0.1 0.044 -0.236 -0.521 -0.551 -0.445 0.164 0.161 -0.533 -0.576 -0.422
0.3 0.746 -0.233 -0.360 -0.550 -0.444 0.166 0.165 -0.533 -0.703 -0.413
0.5 1.803 -0.229 -0.112 -0.547 -0.443 0.176 0.168 -0.547 -0.810 -0.406
0.7 3.714 -0.224 0.441 -0.548 -0.443 0.199 0.168 -0.559 -0.933 -0.402
0.9 9.092 -0.220 2.567 -0.543 -0.443 0.280 0.167 -0.551 -1.051 -0.400

Table 3: Average regression coefficient variance

SAR simulation SEM simulation

ρ/λ OLS SAR RR SFRR RRSAR OLS SEM RR SFRR RRSEM

0.1 6.739 5.788 0.053 0.053 0.109 6.277 6.201 0.068 0.070 0.131
0.3 11.702 5.778 0.078 0.053 0.109 6.968 6.227 0.074 0.079 0.143
0.5 26.719 5.769 0.083 0.052 0.109 8.484 6.126 0.075 0.110 0.155
0.7 83.771 5.765 0.167 0.052 0.109 12.301 5.909 0.086 0.141 0.166
0.9 656.366 5.776 1.519 0.054 0.109 32.018 5.598 0.194 0.209 0.170

Table 4: Average regression coefficient MSE

SAR simulation SEM simulation

ρ/λ OLS SAR RR SFRR RRSAR OLS SEM RR SFRR RRSEM

0.1 6.741 5.844 0.323 0.356 0.307 6.304 6.226 0.352 0.401 0.309
0.3 12.258 5.832 0.207 0.355 0.307 6.996 6.254 0.358 0.573 0.313
0.5 29.971 5.822 0.095 0.351 0.306 8.514 6.154 0.374 0.766 0.320
0.7 97.565 5.815 0.361 0.353 0.306 12.341 5.938 0.399 1.013 0.328
0.9 739.036 5.824 8.107 0.349 0.305 32.096 5.625 0.497 1.314 0.330
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6 Application

We apply our methodology to a real data set. The data is related to the Covid-19
epidemic in metropolitan France in 2020. The observations are collected from the
96 “départements”, which are administrative units. Their geographic distribution is
illustrated in Figure 2, including the Corsica island, and we will call them “depart-
ments” from now. We consider the hospitalization rate due to the Covid, reflecting
the strength of the epidemic, and a set of socio-economic covariates, which are highly
correlated. The aim of the study is to determine whose covariates have a significant
impact on the dependent variable. First, we conduct an exploratory analysis of the
data to bring out spatial dependence as well as multi-collinearity issues. Then we con-
sider both SAR and SEM models; we estimate the coefficients of each model using
Ridge regularization, according to one or the other of the iterative algorithms RRSAR
and RRSEM derived in section 3.2; the Ridge parameter is chosen following a spatial
leave-one-out procedure, as described in paragraph 3.3. Once the model is estimated,
the significance of the explanatory variables is determined by running permutation F-
tests presented in section 4. Finally, we compare our results with those obtained by
classical estimation of SAR and SEM models. Our code and results are available on
our Github repository https://github.com/c0ra/RRSARMMI

6.1 Data description

The COVID-19 epidemic in France, upon its arrival at the end of February 2020,
did not affect the entire territory equally. The “Grand Est”, “Hauts-de-France” and
“Ile-de-France” regions, corresponding roughly to East France, North, and Paris and
its suburbs, concentrated the highest number of cases in the initial months of 2020.
The spatial study of the state of the epidemic before the introduction of vaccination
campaigns is a crucial tool to provide information on the behaviour of future epidemics,
as well as to suggest in which sites more resources should be invested to prepare
facilities and personnel capacities to face this kind of health emergencies.

Amdaoud et al. (available at EconomiX Working Papers https://ideas.repec.org/
p/drm/wpaper/2020-4.html ) studied the spatial distribution of three indicators of the
intensity of the COVID-19 epidemic. These indicators are the hospitalization rate, the
mortality rate, and the excess of mortality rate; the data are collected from 19 March
2020 to 12 May 2020 and aggregated at the scale of the department. Even though we
studied the three indicators, we will focus here on the hospitalization rate; the results
for the two others are analogous. The exploratory analysis revealed an heterogeneous
spatial distribution as can be seen in Figure 2, and the authors proposed to use spatial
autoregressive models involving some socio-economic covariates to explain the spatial
behaviour of the epidemic. We extend their study, including more updated data and
more importantly, a larger number of socio-economic variables; actually, Amdaoud et
al. removed some of the covariates in order to avoid multi-collinearity problems.

For better linearisation fitting, we consider the logarithm of some variables; thus,
the response variable, denoted by LnHosp, is the logarithm of the hospitalization rate,
attributed to the covid. We consider 8 covariates; some are related to the general
population characteristics: population density (LnPop), proportion of people aged 65
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Fig. 2: Hospitalization rate by French department (by decile)

and over (A65pls), share of the three main municipalities in the population (C3).
Three variables are linked to social aspects: the proportions of workers (Work), inactive
people (Inac) and the disparities of income (SLiveR); finally two variables reflect the
professional health care facilities, the rate of doctors (FDoc) and the rate of emergency
services (Emer). The exact definition of the variables are listed in table A1 in the
Appendix. Let us note that these covariates are considered as explanatory factors of
the health status of a population and its mortality rate (Link and Phelan, 1995).

6.2 Exploratory analysis

According to the map of french departments, we choose the classic Queen neighbour-
hood, displayed in Figure 3, and in a standard way we choose the weights of the
associated matrix W to be equal to the inverse distance between adjacent departments
and 0 elsewhere. However, contrary to the usual row-standardization, we normalize W
by its spectral radius. The Moran’s one-sided randomization tests (see (Moran, 1950))
confirms the presence of a strong positive spatial autocorrelation for the hospitalization
rate, for neighbours up to the second order, see Table 5.

Table 5: Moran’s one sided randomization tests with alternative “greater”

Variable Neigh.Order Moran I Mean SD Statistic p-value
LnHosp 1 0.988 -0.0105 0.0069 12.13 3.65e-34

2 0.576 -0.0107 0.0023 11.98 2.20e-33
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Fig. 3: Queen neighbourhood graph for French departments

Multi-collinearity
We compute the correlation matrix between the variables; the correlation matrix

plot displayed in Figure 4 shows that the pairwise correlation is high for several pairs
of variables, with the highest values obtained for the pairs LnPop - SLivR, LnPop -
A65pls, Work - SLivR and LnPop - Emer.

Furthermore, some multi-collinearity tests and individual diagnostic tests were per-
formed to detect problematic variables. When performing the overall multi-collinearity
diagnostic tests, a small value of the determinant of the correlation matrix (|XTX| =
0.0199) was found, accompanied by a high value of the Farrar’s statistic (358.3260).
The individual diagnostic tests for multi-collinearity point to the variables LnPop,
SLivR, Work, Inac and A65pls as probable sources of multi-collinearity.

Principal Component Analysis on the covariates
Finally, we conducted a principal component analysis on the explanatory variables

considering the hospitalization rate as a supplementary variable.
As shown in Figure 5, the first two principal components accumulated 65.1% of

the variance present in the data set. The first component is positively correlated
with LnPop, SLivR, Inac, and negatively correlated with A65pls, Emer and Work.
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Fig. 4: Correlation matrix

The location of the epidemic indicator LnHosp suggests that excess hospitalization
rate is mostly characterized by the variables featuring the first component; its high
values correspond to densely populated departments, with large economic inequalities,
large portions of inactive population and low proportion of population older than 65
years; the opposite corresponds to its low values. This is related to a urban / rural
segmentation of the departments. Indeed, the representation of individuals, see Figure
6, clearly illustrates this feature, with mostly urban departments on the right side and
rural ones on the left side.

LnPopSLivRC3WorkInacA65plsEmerFDocLnHosp−1.0−0.50.00.51.0−1.0−0.50.00.51.0Dim1 (42.2%)Dim2 (22.9%)Variables − PCA

Fig. 5: PCA biplot

The second component is mainly dominated by the variable FDoc with a notable
contribution from the variable C3. Interestingly, this component is negatively corre-
lated with the hospitalization rate.

In addition, PCA provides evidence of spatial correlation in the data because many
departments located in the same region are close to each other in the representation
of individuals; this latter plot is displayed in Figure B1 in the Appendix because it is
difficult to interpret for non-experts in the geography of France.
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Fig. 6: Plot of departments in the space of the first two principal components, labelled
according to the variable Urban

6.3 Results

Let us recall that the goal of the study is to determine which of the explanatory
variables play a significant role in the spread of the Covid-19, represented by the
hospitalization rate (when hospitalization is attributed to the disease). In all what fol-
lows, the explanatory variables are centred and scaled, and LnHosp is centred. SAR
and SEM models are estimated under their ordinary procedure (without regulariza-
tion) and following our algorithms RRSAR and RRSEM derived in Section 3.2. Let
us recall that in each Ridge estimation procedure, the regularization parameter γ is
determined by SLOO; to this aim, the dead zone is defined for each department by its
first neighbours according to the Queen neighbourhood graph.

Figure 7 displays the evolution of the coefficients values (7a and 7b) as well as
the log-likelihood (7c and 7d) in function of log(γ). The coloured lines are paths of
regression coefficients, and the vertical line gives the set of coefficients corresponding
to the value of γ selected via SLOO. We observe as expected the classic behaviour of
the coefficients crushing down to zero as the regularization parameter γ increases, but
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Fig. 7: Coefficients paths and log-likelihood as a function of the logarithm of the
regularization parameter. Optimal regularization parameter for Ridge SAR and Ridge
SEM is represented by a vertical line.

the behaviour is different between the variables. While the coefficients of Inac, C3,

Emer are very stable, those of SLivR, Work, A65pls head towards zero; the coefficient
of LnPop is very particular as it changes its sign in the SEM framework. We also note
that the selected γ values according to one or the other model are similar; indeed,
the values are about 34.26 for the SAR model and 38.02 for the SEM (see Table 7).
Finally, we emphasize that the maximum log-likelihood coincides with the selected γ.

Once the model is estimated, we want to assess the importance of the explana-
tory variables. When the estimation has been performed under ordinary SAR and
SEM modelling, we report the p-values corresponding to a two-sided z-test. For the
Ridge versions, we conduct different tests: the t-test for Ridge estimators (Halawa and
El Bassiouni, 2000), the permutation t-test, and the permutation F-test, as described
in Section 4. Here, we chose to run 100 permutations for each of the 8 variables in the
permutation versions. We present the results in Table 6 and Table 7. Note that the
values of the regression coefficients in this table have been multiplied each one by the
sample standard deviation of the corresponding covariate (but the tests statistics are
computed with the original coefficient).

Results are quite coherent. Before analysing them, we point out that here of course
we do not know the true model. The absolute value of the regression coefficients are
without interest while we are mostly interested in their p-value.
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We see how collinearity affects the results for the ordinary SAR and SEM models;
for instance in the SAR and SEM estimation, the coefficients of LnPop is negative,
though this variable is positively correlated with LnHosp. The most correlated variables
with LnHosp are LnPop, SLivR, Inac and A65pls, but LnPop and A65pls appear
to be non-significant; Inac is also non significant in the SEM model.

The regularized estimation of those models suppress most of these hassles.

SAR RRSAR
R. Perm. F-test R. t-test R. Perm. t-test

Coef p-value Coef p-value p-value p-value
LnPop -0.1256 0.2297 -0.0006 0.8900 0.4910 0.4000
C3 0.5337 0.4365 0.3333 0.6500 0.5157 0.2700

SLivR 0.6277 0.0029 0.2593 0.0000 0.0031 0.0000
Work 12.8074 0.0019 6.7131 0.0000 0.0027 0.0100
Inac 6.7543 0.0742 5.1264 0.0800 0.0184 0.0300

A65pls -0.0357 0.1713 -0.0257 0.0800 0.0108 0.9900
Emer -6.6582 0.6206 -4.8059 0.7300 0.2132 0.7300
FDoc -0.1584 0.7012 -0.2118 0.9700 0.4542 0.7200
γ 34.2557
ρ 0.8489 0.0001 0.7282 0.0003

Table 6: Coefficients and p-values of variable importance tests for hospi-
talization rate models. For SAR, we report the p-values corresponding to a
two-sided z-test. For RRSAR, importance is determined via tests as described
in Section 4 with 100 permutations for each of the 8 variables in the case of
the permutation tests.

SEM RRSEM
R. Perm. F-test R. t-test R. Perm. t-test

Coef p-value Coef p-value p-value p-value
LnPop -0.0363 0.7775 0.0211 0.5300 0.2019 0.2400
C3 0.4144 0.5608 0.2672 0.7500 0.5964 0.2900

SLivR 0.6293 0.0036 0.2455 0.0000 0.0065 0.0000
Work 12.0400 0.0101 5.1042 0.0100 0.0218 0.0100
Inac 6.0018 0.1553 4.1157 0.2100 0.0586 0.0300

A65pls -0.0284 0.3336 -0.0213 0.1300 0.0393 0.9800
Emer -3.4274 0.8062 -4.9290 0.7300 0.2242 0.7100
FDoc -0.2583 0.5795 -0.2010 0.6300 0.5110 0.7800
γ 38.0189
λ 0.8549 0.0047 0.8996 0.0000

Table 7: Coefficients and p-values of variable importance tests for hospi-
talization rate models. For SEM, we report the p-values corresponding to a
two-sided z-test. For RRSEM, importance is determined via tests as described
in Section 4 with 100 permutations for each of the 8 variables in the case of
the permutation tests.

First, the coefficient of LnPop becomes positive in RRSEM, and is very close to zero
in RRSAR (we have seen that it would become positive with a larger γ in Figure 7a)
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which is an improvement. We note that the variables SlivR, Work that were significant
stay significant. On the other side and very suprinsingly, we see that variables Emer,
FDoc do not play any role as explanatory variables. Then, very interestingly, the three
tests do not select the same variables to be important. Globally, the permutation F-
test seems to be more conservative than the t-tests. The variable Inac which was
barely significant in the SAR model (p-value equal to 0.0742) keeps the same level
of significance for the F-test but becomes important according to the two t-tests; it
also becomes significant in the SEM framework according to the same t-tests. One
other interesting variable is A65pls; it is not significant in the SAR and SEM models
after the ordinary estimation procedure; but it becomes significant after the Ridge
regularization following the t-test in both models, and barely significant (at level 10%)
for the F-test in the SAR framework (note that its p-value has jumped from 33% down
to 13% in the SEM model). The result of the permutation t-test for this variable is
surprising, giving a very large p-value of about 98% for both models. To summarize, it
is clear that variables Work and SLivR are very significant to explain the hospitalization
rate due to Covid-19, which reflects the importance of inequalities and low income,
before all. The relative selection of Inac supports this idea. Then, the proportion of
elder people is also determinant, illustrated by the p-values of A65pls.

7 Conclusions

Multi-collinearity is a common feature of real life data; it also affects the class of
simultaneous spatial autoregressive models in spatial econometrics.

We propose estimation algorithms that take into account multi-collinearity in the
estimation of all the parameters using a regularization technique of type Ridge; then,
the regularization parameter is obtained via a spatial ad-hoc cross-validation proce-
dure; SLOO is particularly well adapted to spatial autoregressive models since there’s
no issue defining the size of the buffer surrounding the validation set, it is naturally
determined by the first order neighbours. A drawback of SLOO is that it is computa-
tionally expensive in the case of a large number of observations. Some users propose
to choose a large proportion of observations to serve as validation sets in the SLOO,
instead of all the observations. These points can be chosen either randomly or regu-
larly spaced. After Ridge regularization, the question of importance of the covariates
rises. We considered three different tests adapted to ridge regression; ran on the appli-
cation they provided coherent and different results. The question of a test adapted to
both regularization and spatial dependence, including also the spatial dependence of
the covariates themselves, is still an open problem.

A R package containing the whole method is a work in progress, but our code is
already available on our Github project.

Our methodology can be extended in several directions. First, for variable selection
purpose, the procedure can be easily adapted to Lasso regression and Elastic net.
Next, it can also be further developed to consider other models like the general spatial
model (which roughly speaking integrates both SAR and SEM in one model) or the
Durbin model which extends the SAR model to include spatially lagged explanatory
variables.
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