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Abstract: 35 

Over the last 12,000 years, the adoption of an agro-pastoral lifestyle has become prevalent, 36 

leading to gradual change in landscapes. In northwestern Morocco, typical elements of an agro-37 

pastoral economy emerged around 7,400 cal BP in the Tingitana Peninsula. This was associated 38 

with Cardial ceramic style and the presence of key cultivated plant species and domestic 39 

mammals. However, in this region, the archaeological record of the last five millennia remains 40 

fragmented, with significant regional variations that challenge our understanding of the 41 

neolithization processes. This study introduces a new five-meter-long core from Lake Iffer in 42 

the North African Middle Atlas. Our objective is to assess the site's potential to reveal insights 43 

into the impacts of climate and human activities on the ecosystems and the landscape of the 44 

Middle Atlas during the Holocene. Employing a pluridisciplinary approach, we combined 45 

paleolimnology and palynology with, for the first time in this context, ancient DNA analysis 46 

focusing on sedimentary samples spanning from Late Neolithic to Bronze Age.  47 

Our findings reveal an environmental opening between 4.1-3.9 ka BP likely triggered by a 48 

drought episode, possibly associated with the so-called “4.2 ka cal. BP event”. During the same 49 

period, we present evidence of increased anthropic pressure, reflected by the presence of ruderal 50 

taxa and Bovidae, despite the absence of archaeozoological material. It attests of pastoral 51 

activities at least 4,371 years ago at Iffer lake site while no evidence of cultivated plant taxa 52 

was found.  Moreover, our study demonstrates that both climatic fluctuations and human 53 

activities contributed to the local decline of Elephantidae, as indicated by ancient sedimentary 54 

DNA Our findings offer new perspectives for exploring and studying Mediterranean sites with. 55 

limited material evidence. 56 

 57 

Key-words: pastoralism, Late Neolithic, Bronze Age, Morocco, Middle Atlas Lake, ancient 58 

sedimentary DNA, Palynology 59 

 60 

Highligths: 61 

•  Drought episode between 4,133-3,992 cal. BP, possibly linked to the "4.2 ka cal. BP event." 62 

• Evidence of pastoralism demonstrated by Bovidae aDNA detection 63 

• Presence of Elephantidae in the anthropological system since the late Neolithic. 64 

• Anthropization and climate variations influence land use and wildlife variations. 65 

• Multidisciplinary approach unveils new perspectives for exploring limited Mediterranean material. 66 

 67 
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1. Introduction 68 

 69 

Over the past 12,000 years, human has seen his way of life change drastically. From nomadic 70 

he gradually became sedentary and the adoption of an agro-pastoral regime became widespread. 71 

This transition was possible from the end of the Late glacial in Near East in parallel with climate 72 

changes (Bar-Yosef and Belfer-Cohen, 1989), and spreads across the Mediterranean from the 73 

9th millennium BP onwards (Berger and Guilaine, 2009; Weninger et al., 2006). Intensification 74 

of the economy of production and increasing anthropization have gradually evolved over the 75 

last millennia, resulting in a gradual change in landscapes. 76 

The Mediterranean region, situated between 30 and 40°N, is one of the most sensitive zones to 77 

climatic fluctuations which contributed to shape the ecosystems. Its geographical situation lies 78 

in a zone of influence of the North Atlantic oceanic circulation (Ait Brahim et al., 2019). In the 79 

Mediterranean basin, past environmental changes have resulted from critical climate 80 

oscillations and growing ecosystem instability exacerbated by human activities over the past 81 

9,000 years (Cheddadi et al., 2016; Fletcher and Zielhofer, 2013; Mercuri et al., 2012; Sadori 82 

et al., 2013). 83 

In northwestern Morocco, typical elements of an agro-pastoral economy appeared in the 84 

Tingitana Peninsula around 7,400 cal BP (Gibaja et al., 2012; Linstädter et al., 2018; Marinval 85 

and Ballouche, 2003; Morales et al., 2016, Simoes et al. 2023), associated with Cardial ceramic 86 

style similar to that of the eastern coast of the Iberian Peninsula. This event is accompanied by 87 

the appearance of the main cultivated species of cereals and legumes, as well as domestic 88 

mammals common to the early Iberian Neolithic, (Manen et al., 2007; Martínez-Sánchez et al., 89 

2018), suggesting that the Neolithic wave diffused from the southern coast of the Iberian 90 

Peninsula via sea crossing following a north to south axis (Martínez-Sánchez et al., 2018). 91 

However, the archaeological record of the last five millennia in northwestern Morocco remains 92 

very fragmented and poorly studied, with great regional contrasts that complicate the 93 

understanding of the chronology of the neolithization processes (Lucarini et al., 2021; Martínez-94 

Sánchez et al., 2018). 95 

Lake sediment changes and variations in sedimentation rate offer valuable information about 96 

past climate influences, water depth, and paleoenvironments (Damnati et al., 2016; Magny et 97 

al., 2007). These elements associated with the study of ancient remains and chrono-cultural 98 

frameworks helps understand biodiversity fluctuations and past land use impacts (Cheddadi et 99 

al., 2015; Simonneau et al., 2013). Over the last two decades, lake sedimentary DNA has 100 
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complemented pollen and macro-remains, proving valuable for studying past community-level 101 

changes (Capo et al., 2021). It enables direct identification of organisms in sedimentary archives 102 

and helps understand changes in their representation over time. To date, such studies have never 103 

been performed in northwestern Maghreb contexts. 104 

In Morocco, valuable information on ecosystem changes and species dynamics has primarily 105 

come from studies focused on the northern coasts, the Tingitane peninsula, and the Middle and 106 

High Atlas Mountains. Several multi-proxy studies of Middle Atlas lakes (such as 107 

Tigalmamine, Sidi Ali, Iffrah, Afourgagh) have documented the main hydroclimatic variations 108 

and the evolutionary trend of regional climate during the Holocene (Lamb and van der Kaars, 109 

1995; Rhoujjati et al., 2010; Zielhofer et al., 2019). Despite pioneering paleolimnological and 110 

pluridisciplinary works in the Middle Atlas lakes since the 1990s (Cheddadi et al., 1998; Lamb 111 

and van der Kaars, 1995), continuous and long Holocene records with robust absolute 112 

chronologies in Mediterranean North Africa remain incomplete, despite recent 113 

paleoenvironmental studies and anthropogenic impacts identification has been performed 114 

(Cheddadi et al., 2019, 2015; López-Sáez et al., 2023; Nourelbait et al., 2016). Recently, a 115 

continuous study from Lake Sidi Ali archive reconstructs Western Mediterranean hydro-116 

climatic variability, seasonality and forcing mechanisms. The study reveals low lake levels at 117 

6.6-5.4 ka and from 3 ka, a multi-centennial-scale NAO-type pattern and Western 118 

Mediterranean, and a winter rain maximum generally associated with solar minima (Zielhofer 119 

et al., 2019, 2017). 120 

Due to the scarcity of well-dated fossil records, the absence of reliable absolute chronologies, 121 

and incomplete archaeological studies in Mediterranean North Africa, a comprehensive 122 

analysis of spatial and temporal patterns of environmental variations and species dynamics, 123 

which could provide insights into land use and practices, remains challenging. In consequence, 124 

the process of progressive anthropization and the development of agro-pastoral practices which, 125 

in parallel with the climate, have shaped the environment in northwestern Morocco over the 126 

past 7,000 years, remain not fully understood. Therefore, these processes cannot be 127 

contextualized and integrated into the known patterns in southern Europe and the Near East 128 

edges of the Mediterranean. 129 

In this study, we present a newly recovered five meters long core from Lake Iffer in the North 130 

African Middle Atlas. Our objective is to assess the site's capability in providing insights into 131 

the impacts of climate and human-induced changes on the Holocene ecosystems and landscape 132 

of the Middle Atlas. To achieve this, we employed a pluridisciplinary approach combining 133 

paleolimnology, palynology and, for the first time in this context, ancient sedimentary DNA 134 

4

This preprint research paper has not been peer reviewed. Electronic copy available at: https://ssrn.com/abstract=4534181

Pr
ep

rin
t n

ot
 p

ee
r r

ev
ie

w
ed



 

(sedaDNA) analysis on a few samples to explore the potential of paleogenomic methods on 135 

such Mediterranean sites. 136 

 137 

 138 

2. Study area 139 

 140 

Lake Iffer (33°36'30''N, 4°54'30''W), located in northeastern Morocco (Figure 1A), is one of 141 

several lake systems in the tabular Middle Atlas Mountains at the boundary of the Imouzzère 142 

and Amekla causses (Rhoujjati et al., 2012). Of moderate size (3.5 ha), it is located in a tectono-143 

karstic zone of middle altitude (Baali, 1998), and occupies the center of a watershed of endoreic 144 

type whose surface of 4.5 km2 extends between 1500 to 1846 m of altitude (Figure 1B). The 145 

bein of the lake is composed of a calcic bicarbonate facies (Benkaddour et al., 2008; Damnati 146 

and Taieb, 2003), associated with the intense karstification of the liasic dolomites lying on an 147 

impermeable substratum formed by the Trias argillites (Baali, 1998). The lake is supplied by a 148 

network of gullies that function periodically during the rainy season, particularly well-marked 149 

on its eastern shore, connected to a vast lacustrine terrace. Its level fluctuates according to the 150 

seasons and the annual rainfall. The climate is Mediterranean sub-humid with cold winters. 151 

Remnants of ancient red Mediterranean soils (terra rossa) are observed on the slopes, more or 152 

less heavily colluviated and brunified (rendziniform) by Holocene pedogenesis (Alaoui et al., 153 

2020). The surrounding forest vegetation is composed of holm oaks (Quercus ilex) with a few 154 

feet of Aleppo and maritime pines (Pinus halepensis and P. maritimus). The matorrals are 155 

dominated by Thymeleae tartonraira and Adenocarpus (Lecompte, 1986). The lake has 156 

significant water deficits because of recurring drought and human pastoral pressure since the 157 

1980s, leading to the decrease in water level and increasing salinity, with relatively alkaline 158 

water (Damnati et al., 2016). The aquatic flora of the lake is dominated by cattail (Typha 159 

latifolia), white water lily (Nymphaea alba), pondweed (Potamogeton pectinatus) and Eurasian 160 

watermilfoil (Myriophyllum spicatum), which are very dense near the shores (Chillasse et al., 161 

2001). 162 
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 163 
Figure 1: Geographic, topographic and lithostratigraphic data of the studied samples at Iffer lake 164 
(Morocco). A. Location of the study site in the Moroccan Middle Atlas mountains; B. Topographic 165 
restitution of the lake perimeter with position of the studied core; C. Panoramic view of the eastern shore 166 
of the lake with the position of the core (red star) and the steep western and northern wooded slopes; D. 167 
Photograph and lithostratigraphy of core-C1 with position of radiocarbon dates, ancient sedimentary 168 
DNA and pollen samples; E. Photograph of the lake's western shoreline during a low-water event in 169 
autumn 2022, with flocks of sheep and cattle. 170 
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Morpho-stratigraphic analysis of the catchment was performed by Alaoui et al., (2020), who 171 

confirmed an upper Pleistocene age at the base of the upper terrace lacustrine chalk formations 172 

to the east (29,360+/-490 BP). Traces of nesting of highly oxidized and pedogenized peaty 173 

lacustrine formations, rich in Neolithic flints and shards, are identified in the middle part of the 174 

beine.  175 

First geochemical and magnetic analyses of detrital formations stored in the lake reflect the 176 

nature of the dolomite bedrock and from forest developed soils (Rhoujati et al. 2012, Damnati 177 

et al. 2015). These preliminary studies describe warm and dry climate (6500-4600 cal. BP), 178 

wetter climatic conditions with high lake level (4600-2000 cal. BP), increasing pastoral and 179 

agricultural activities (e.g. Figure 1E) caused the decline of forest linked to increased soil 180 

erosion from 2,000 years. 181 

 182 

 183 

3. Material and methods  184 

 185 

3.1 Archeological context and Geomorphology of the site 186 

 187 

The new field study conducted at Lake Iffer combined surveys of natural sections (from 188 

regressive erosion gullies) and a transect of six cores (from 3 to 6m), carried out with a "Cobra" 189 

thermic corer, which complete a series of three deep cores (10m) located in the middle of the 190 

lake, which have been the subject of sedimentological analyses and a palynological study 191 

(Damnati et al., 2016; Rhoujjati et al., 2012). The 500-cm-long sediment core IF-C1 was 192 

extracted from the eastern shore of the lake (Figure 1C).  193 

On IF-C1, six accelerator mass spectrometry radiocarbon dates were measured on charcoals at 194 

the Artemis-Lyon/Saclay and Poznan Radiocarbon Laboratory (Table S1). We used a Bayesian 195 

approach implemented in the new version of ChronoModel (Lanos & Dufresne, 2022) and the 196 

calibration data set IntCal20 (Reimer et al, 2020) to estimate an average age-depth curve 197 

(MCMC; 3,000,000 iterations, SI, Figure S1). From the age-depth curve obtained by 198 

ChronoModel 3.2.2, the sediment accumulation rate was estimated. The estimated curve with a 199 

confidence interval allows to calculate a date interval whatever the depth (posterior probability 200 

density region HPD at a given confidence level (95%)) and an age (Mode A Posteriori) was 201 

assigned for each sample (Table S2). 202 
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This core was sampled every 10 cm for pollen analyses, and was passed through the core 203 

scanner for XRF analysis every centimeter. Hydroclimatic fluctuations have succeeded one 204 

another leading to the oscillation of lake levels for more than 6 millennia, visible on both sides 205 

of the lake, by the alternation between silty-organic and chalky facies. The yellowish sandy or 206 

silty facies, more or less rubefied, testify to more detritic phases, connecting the slopes and the 207 

lake. The samples were collected between 2.3 and 3.03m depth, i.e. according to the age-depth 208 

model between 4,600 and 3,900 BP (late Neolithic-early Bronze Age). This part of the core 209 

corresponds globally to a period of higher water levels (positive water balance), associated with 210 

lacustrine deposits containing numerous carbonate biomarkers (tubes and plates) (Figure 1D).  211 

To document human occupation near the lake, fifteen windows of archaeological survey were 212 

carried out over 1.5 to 2 ha with the support of a GPS on the eastern terrace of the lake, rich in 213 

chipped flints, with scattered ceramics on the surface. Three sectors indicate an occupation of 214 

the Epipaleolithic period (flakes with cut edges and bladeletts also pointed by abrupt retouches). 215 

Five other sectors indicate a debitage rather of Mesolithic age (with segments of circle, 216 

unidirectional nuclei with negatives of narrow bladeletts). Eight places show evidence of 217 

Neolithic occupation sensu lato. The presence of larger flint pieces with more imposing 218 

modules indicates productions attributable to a Late Neolithic, possibly corroborated by the 219 

presence of some beige ceramic shards with incised decorations of the campaniform culture 220 

type (study in progress R. Guilbert-Berger). Concentrations of more recent ceramics (non-221 

turned and turned) testify to proto-historic to antique human occupations (studies in progress). 222 
 223 
 224 

3.2 Palynological analysis  225 

 226 

A total of 48 samples have been studied in Iffer-C1 core sequence. The chemical 227 

treatment of the samples has been carried out following the so-called classical method (Burjachs 228 

and Renault-Miskovsky, 1992; Faegry and Iversen, 1975; Girard and Renault-Miskovsky, 229 

1969; Goeury and De Beaulieu, 1979; Moore et al., 1999), resulting in a final portion of the 230 

sediment preserved in glycerin gelatin (detailed in SI). An optical microscope (Nikon Eclipse 231 

50i model), with 40X, 60X and 100X objectives, the latter with immersion oil, has been used 232 

for the identification of the pollen and non-pollinic microfossils. The reference collection of the 233 

Environmental Archaeology Research Group of the CSIC (Madrid), in addition to various 234 

bibliographic sources on the morphometric characterization of palynomorphs have been used 235 
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for the identification of pollen morphotypes (Bonnefille, 1980; Moore et al., 1999, 1991; Moore 236 

and Webb, 1978; Reille, 1995, 1992). 237 

Non-pollen microfossils (algal spores, cyanobacteria, fungal spores and talus remains, fungal 238 

bodies of fungi, fragments of bryophytes or pteridophytes, animal micro-species, microfossils 239 

of unknown biological nature, etc.) were also identified based on abundant bibliographic 240 

references (Bakker and Van Smeerdijk, 1982; Lopez-Saez et al., 1998; Pals et al., 1980; 241 

Pantaleon-Cano et al., 1996; Sáez-López et al., 1999; van Geel, 1978; van Geel et al., 2003; 242 

van Geel et al., 1989, 1980). For the elaboration of the pollen diagram, hydro-hygrophilic taxa, 243 

non-pollen microfossils, as well as Aster type, Cardueae and Cichorioideae have been excluded 244 

from the base sum, due to their zoophilic character being usually overrepresented (Bottema, 245 

1975; López-Sáez et al., 2003; Sáez-López et al., 1999). The relative percentage of these 246 

excluded palynomorphs has been calculated with respect to the total sum. 247 

In this study we describe results (Table S3) of the four samples (at 300, 279, 250 and 236 cm 248 

depth) that coincide with ancient DNA (aDNA) samples. 249 

 250 

 251 

3.3 Ancient DNA analysis 252 

The entire Iffer-C1 core was opened in a dedicated room in the Palgene platform (ENS 253 

Lyon). DNA samples were taken each nine centimeters. We first scraped the sediment surface 254 

using sterile scalpels (5-10mm), then sampled inner uncontaminated sediments with a new 255 

sterile scalpel and transferred them to sterile tubes. Subsampled sediment was stored at −20°C 256 

for subsequent extractions. For this study, four samples were chosen for analysis (Figure 1D, 257 

Table S2). All the extractions were then conducted on the P2GM platform (MNHN Paris) 258 

equipped with specialized facilities devoted to aDNA analysis. 259 

The four extractions of sedaDNA were performed from 100 mg of sediment (+/- 10%), in one 260 

batch, including one extraction blank following Dabney et al (2013) protocol (detailed in SI). 261 

We prepared libraries following a slightly modified protocol from Meyer and Kircher (2010) 262 

using the double indexing strategy of Kircher et al. (2012) (detailed in SI). 263 

All samples underwent enrichment using custom probes (MyBaits custom design) designed to 264 

target 19 mammal and 22 plant taxa (Table S4, SI). The enrichment utilized complete 265 

mitogenome for mammals and matk, rbcl, and trnl-trnt chloroplast loci for plants. Libraries 266 

were captured per batch of two following the MYbaits manual V3, with 48 hours hybridisation 267 

at 56°C. The captures were amplified using KAPA Hi-Fi polymerase following the MyBaits 268 
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manual instructions. Captured libraries were all sequenced in paired-end on a partial Illumina 269 

NovaSeq 6000 S4 XP lane (300 cycles, PE 150). 270 

Reads were processed through the Paleomix pipeline (Schubert et al., 2014), (Table S5) 271 

allowing 1) adapters removal, read pairing and merging, and sequence filtering using 272 

AdapterRemoval (Lindgreen, 2012) (min length reads>=35bp, trimns: yes, triml qualities: yes, 273 

mm: 5); 2) duplicates filtering and 3) reads mapping (Li and Durbin, 2009), (BWA aln; -l 1024; 274 

-o 2; -n 0.01) against a database comprising one sequence per genus and targeted loci (retaining 275 

the longest sequence) from available mammal and viridiplantae in the GenBank Database 276 

(march 2020). Reads were secondary analyzed with Prinseq (Schmieder and Edwards, 2011) to 277 

remove low complexity sequences (-lc_method dust -lc_threshold 7 -trim_tail_left 5 -278 

trim_tail_right 5). Bam files were filtered with samtools (Danecek et al., 2021) using tag “X0:i:” 279 

to generate two sequence files, one with unique best hit and one with multiple best hit. All reads 280 

with matches were identified through DNA homology searches using BLAST (Altschul et al., 281 

1990) against the nr database (08/2022) to validate or determine the best taxonomic assignment. 282 

Significant homologies obtained by Blast (best query cover and e-value) that refer to a single 283 

taxon are retained. If scores are equivalent for multiple taxa, the taxonomic rank is adjusted 284 

until a clear result is obtained (from genus to family depending on the case). To achieve precise 285 

and unambiguous taxonomic classification, biocurators performed this analysis manually. Taxa 286 

present in the control (extraction blank: sample without DNA) were excluded from the study 287 

and regarded as experimental contamination.  288 

Mosses, ferns, algae and hornworts were not included in this study. We have selected taxa that 289 

represent more than 1% of the total number of reads attributed to plant or mammal taxa in at 290 

least one of the four samples studied (Table S6). However, taxa that do not fill the 1% criterion 291 

but described in the pollen analysis (Table S6) were added in figure 2. Given the capture design 292 

and the results obtained for both sedaDNA and palynology, we have chosen the following four 293 

categories: mammals, trees, aquatic plants and terrestrial plants. The relative evolution of the 294 

proportion of each taxon (>1% of total reads assigned) is then considered intra-categories 295 

(normalized in %, Figure 2). The results were illustrated as charts using R version 4.2.2 (2022-296 

10-31) via Rstudio version 2022.12.0+353 and ggplot2, hrbrthemes and dlpyr packages. 297 

Finally, sedaDNA deamination pattern and fragment length distributions were inspected with 298 

mapDamage2 (Jónsson et al., 2013) for taxa with sufficient read counts after mapping of the 299 

reads against each reference genomes (Table S7, Figure S3).  300 

 301 

 302 
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4. Results and Discussion  303 

  304 

4.1 Landscape dynamics 305 

 306 

At the molecular level, less than 1% of total sequences could be assigned (Table S5). In 307 

sample SL383394 at 302cm depth, showed no identified mammals, and very low number of 308 

plant reads (n=161) (Table S2, S6), reaching a maximum of four reads for taxa of interest. For 309 

this reason, the relative proportions of plant families for this sample are biased and difficult to 310 

interpret and we decided to not present and discuss sedaDNA results for this sample. This 311 

period corresponds to one of the four arid abrupt events identified around 4.5-4.4 ka BP, in 312 

Lake Tigalmamine (about 100 km from Lake Iffer, El Hamouti, 2014). The dates also mark the 313 

end of Lake Iffer's initial filling and the existence of a shallow water body due to low water 314 

inputs, with very high carbonate content (Rhoujjati et al, 2012). This high alkalinity, combined 315 

with aridity, may have led to greater DNA degradation, as already reported in other studies 316 

(Capo et al, 2021). This deficiency of DNA may explain the low sequencing yields for this 317 

sample (approximately 4 to 30 times less sequences than the other three samples, Table S5) and 318 

the difficulties in taxonomic identification. (Parducci et al, 2017). Sequenced DNA quantities 319 

for the three other samples are adequate (Table S5). They indeed cover the 4.3-3.9 ka BP period, 320 

that corresponds to declining carbonate contents and temperatures in Lake Iffer, due to rising 321 

lake water levels linked to wetter conditions. Regional references also indicate episodes of low 322 

lake levels with reduced precipitation/evaporation ratio during this time (Rhoujjati et al, 2012). 323 

 324 

Three major genera of trees (Pinus, Quercus and Arbutus) can be clearly identified within 325 

sedaDNA during the considered period (Figure 2A, Table S6). Pinus and Quercus are currently 326 

present on the site and their DNA as well as pollen remains are present throughout the period 327 

studied. Arbutus is only detected by sedaDNA analysis at 4,371 cal. BP (30% of the tree and 328 

shrub population) before drastically decrease. Its presence is in accordance with a previous 329 

study at Benzú Cave, located in the northernmost tip of the Tingitan Peninsula, 360 kilometers 330 

north of Iffer Lake, where it was used as fuel together with Quercus sp., Olea sp., Fraxinus sp. 331 

among others (Muñoz et al., 2013; Vijande-Vila et al., 2019). Its absence in the pollen register 332 

could be explained by its entomophilous pollination, the fact that Arbutus is a poor pollen 333 

producer since its mode of pollination is autogamy (Hagerup, 1957; Faida et al., 2023) and 334 
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because its pollen is large and heavy and does not travel far from the tree and, moreover, it is 335 

similar to other pollens of the Ericaceae family and difficult to distinguish (Almeida et al, 2022). 336 

Nowadays in Morocco, Arbutus occurs in scrublands, oak forests, and dense maquis. Its density 337 

depends on a gradient with densest populations where the climate is subhumid to humid as this 338 

species prefers fresh, well-drained soils (Wahid et al, 2019). However, Arbutus shows strong 339 

resistance to hard environmental conditions and has the ability to regenerate after forest fires 340 

(El Haouari et al, 2021). The significant decline in its population, in proportion to that of 341 

Quercus and Pinus after 4.2 ka BP could be explained by the so-called “4.2 cal. ka BP event” 342 

corresponding to an interval of cooling and drying conditions (Bini et al, 2019). During this 343 

period, the percentages of tree pollen show, in Morocco, a moderate increase in tree cover 344 

between 4.5 and 4.2 ka BP followed by a decline, creating an opening of the forests between 345 

4.2 and 3.9 ka BP (di Rita et al, 2022). As Arbutus is part of the understory vegetation and its 346 

growth has been shown to be inversely related to the presence of holm oak (Badal et al, 1994), 347 

we can hypothesize that the growth of the forest cover between 4.5 and 4.2 ka BP, followed by 348 

its opening, also observed with our sedaDNA results, is one of the causes of the decline of this 349 

species after 4.2 ka BP. 350 

This forest development around the 4.2 ka BP event is clearly evidenced by our Iffer Lake 351 

sedaDNA analysis. The proportion of tree DNA increases from 12% to 30% between 4.3 ka 352 

and 4.1 ka BP and then stabilizes (Figure 2E). This dominant association of Quercus and Pinus 353 

is also corroborated by palynological analyzes which confirm that this Pinus-Quercus mixed 354 

forest ecosystem is well developed during this period (Table S3, Figure 3). They are associated 355 

with Olea europea around 4.5 ka BP and then riparian taxa at 4.3 ka BP (Alnus and Fraxinus) 356 

while Cedrus remains constant. We first observe a predominant presence of Quercus, that 357 

decline together with Cedrus or Olea europea, indicating some deforestation around 4.1 ka BP. 358 

This episode is followed by a re-expansion of oak forests at 3.9 ka BP and Olea europaea and 359 

the progressive disappearance of riparian taxa, (Figure 2A, Figure 3). 360 

This significant disturbance in the relative composition of mixed oak and pine forests between 361 

4.1 and 3.9 ka BP could be attributed to drought but also probably to possible fires. In Ait Ichou, 362 

70 km from Ifter lake, the number of micro-charcoals increased considerably after ~4.5 ka BP 363 

with maximum values between ~3 and 1.5 ka BP (Tabel, 2015). As human activities in the 364 

Middle Atlas were rather minor until ~2-1.5 ka BP (Cheddadi et al, 2015; Tabel, 2015), these 365 

fires are likely of natural origin, given the more arid environment. A recent study, carried out 366 

in the northeast of Spain, shows that, while these two species regenerate effectively after fire, 367 

Pinus recolonizes disturbed areas via seedlings, whereas Quercus regrows vigorously after 368 
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disturbances. Therefore, in mixed forests, even small-scale fires can lead to significant 369 

probabilities of transitioning from mixed forests to monospecific forests, with Quercus 370 

dominating at higher altitudes and Pinus at lower altitudes, particularly in drier and warmer 371 

conditions (Broncano et al, 2005). We can therefore hypothesize that the relative deforestation 372 

and the decrease in Pine DNA in favor of oak DNA between 4.1- 3.9 ka BP would correspond 373 

to the consequence of fires, themselves linked to an episode of drought. 374 

At Dayat Hachlaf, a few kilometers from lake Iffer, Quercus and Pinus forest contingencies 375 

have been recorded since 6 ka BP, with a noticeable change in forest composition around 3.5 376 

ka BP (Nourelbait, 2016). These Quercus-Pinus variations were not really recorded via the 377 

palynological study. Pinus is a well-known quantitatively and extensively dispersed pollen 378 

producer (Poska and Pidek, 2010; López-Sáez et al., 2013), dominating Iffer lake record and 379 

complicating the correlation between its presence on the site and its pollen abundance (Bell & 380 

Fletcher, 2016), well in less proportion. Other trees are detected by the pollen (Cupressaceae, 381 

Cedrus, Olea europea and riparian taxa (Fraxinus), only found as traces for some of them 382 

among sedaDNA data, indiscernible among other representatives of the same families (co-best 383 

hits and <2% of assigned reads). 384 

 385 

 386 
Figure 3: Palynological diagram reconstituted from four samples at Iffer lake, covering a 380 years 387 
period (Late Neolithic to Bronze Age) 388 

 389 

Among herbaceous, seven families could be determined among sedaDNA sequences, each with 390 

a majority genus (Lamiaceae/Salvia, Convolvulaceae/Convolvulus, Fabaceae/Medicago, 391 

Polygonaceae/Rumex, Asteraceae/Artemisia, Poaceae/Phragmites, Rosaceae/Potentilla, Figure 392 
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2B). We noticed a slight variation in the proportion of these taxa over time where Fabaceae is 393 

the most abundant around 4.3 ka BP whereas Asteraceae dominates at 4.1 ka BP in detriment 394 

of other families, and in association with other ruderal taxa in the palynological record 395 

(Plantago lanceolata, Rumex, Medicago; Figure 3). The palynological rests are dominated by 396 

Poaceae, showing probably the presence of grasslands in the vicinity.  397 

Finally, we could determine two major genera of aquatic plants among sedaDNA sequences 398 

(Figure 2C, Table S6): Myriophyllum (Haloragaceae) and Ceratophyllum (Ceratophyllaceae), 399 

along with low amount of Ruppia (Cymodoceae) and Carex (Cyperaceae). Myriophyllum and 400 

Carex were also determined in palynological remains with the same relative evolution of their 401 

proportion (Figure 3). As already demonstrated in previous studies, aquatic plants, which grow 402 

in and around the lake, dominate the assemblage (Figure 2E) to the detriment of terrestrial plants 403 

which are often under-represented (Birks, 2003, Alsos, et al 2018). Myriophyllum appears in 404 

the pollen record of the four samples with constant values of 4-9% (Figure 3), indicating a stable 405 

presence throughout this time, as well as shallow and somewhat eutrophic waters. sedaDNA 406 

results (Figure 2C, Table S6) show a decrease of Ruppia and Carex over the time since these 407 

two species, represent respectively 3.7% and 4.6% of aquatic plants at 4.3 ka BP then pass to 408 

the state of traces.  409 

Myriophyllum dominated in the lake during the whole studied period even if we observe, at 410 

4,133 cal. BP, an increase of the proportion of Ceratophyllum sp. Myriophyllum and 411 

Ceratophyllum are two species of submerged macrophytes with common characteristics (fast 412 

growth, low preference for light). However, Myriophyllum is a rooted species, while 413 

Ceratophyllum does not form roots and is found free-floating. Consequently, nutrient uptake by 414 

Ceratophyllum is almost entirely foliar whereas Myriophyllum can absorb nutrients from 415 

sediments and the water column, thereby limiting nutrients available to floating plants (Cao & 416 

Wang, 2012). Although Nourebailt et al (2016) seems to denote that the proportion of aquatic 417 

plants cannot be used as indicators of lake level variations but only presence of water in the 418 

site, a paleoecological analysis of the macro-remains of Lake Iffer for 6000 years (Middle Atlas, 419 

Morocco, Huillery, 2022) shows, between 4,350 and 3,320.5 cal. BP, a progressive installation 420 

of relatively humid conditions. Same study pointed out abundance of microcharcoals between 421 

4.1-3.9 ka BP that testifies local fires (which corroborates our hypothesis concerning the cause 422 

of the Quercus-Pinus shift). We can hypothesize that Ceratophyllum benefited from favorable 423 

conditions (light, dissolved nutrient) at 4.1 ka BP but that then, plant degradation following 424 

fires and humidification of the environment favored Myriophyllum. This hypothesis 425 

corresponds to the observations showing that, in Lake Iffer, between 4.6 and 3.6 ka BP, the 426 
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organic matter content marks a very significant return in terms of contribution compared to the 427 

previous period (Rhoujjati et al, 2012).  428 

In total, all taxa identified by pollen were retrieved in sedaDNA (sometimes as traces) but 429 

sedaDNA identified seven taxa absent in pollen (Ericaceae, Convolvulaceae, Fabaceae, 430 

Lamiaceae, Rosaceae Ceratophyllaceae and Cymodoceae), either because pollen diffusion 431 

mode (anemogamy and entomogamy) or low quantity of pollen produced and/or detected. The 432 

absence of total overlap between the two approaches as well as the relative differences between 433 

trees/shrubs and herbaceous is not surprising. Pollen reflects local and regional landscape while 434 

sedaDNA explain local vegetation variation (Capo et al., 2021, Parducci, 2013, 2019). 435 

 436 

Altogether, results indicate an environment dominated by evergreen oak and Poaceae. Around 437 

4.3 ka BP, increased environmental humidity is characterized by the rise of Fraxinus and 438 

Cyperaceae. This precedes a relative opening of the environment, between 4.1- 3.9 ka BP, with 439 

relative deforestation, the gradual disappearance of riparian taxa and the decrease in Pine in 440 

favor of oak. This may have resulted from a drought episode, possibly linked to the "4.2 ka cal. 441 

BP event." Additionally, we observe greater anthropic pressure during the same period, as 442 

evidenced by the presence of ruderal taxa. 443 

 444 

 445 

4.2 Evidence of increased anthropization and pastoralism  446 

 447 

Morocco, especially the Western Maghreb, is the most well-dated and documented 448 

region of Mediterranean Africa (excluding Egypt) between 6,000-2,900 years BP. However, 449 

information remains scarce, particularly about the ways of life that supported people in this area 450 

during the preceding fourth and early third millennia BP (Lucarini et al., 2021). 451 

Among sedaDNA sequences, the major part of mammal reads mapped on Elephantidae and 452 

Bovidae mitogenomes. Two main genera identified within Bovidae are Ovis and Bos, but 453 

differentiation between the two genera was not always possible due to the similarity of the 454 

genomic regions mapped to the reads. In the palynological record, in sample 300, fungal 455 

ascospores of coprophilic ecology (Sordaria sp., Figure 3), a fungi that develop in animal 456 

excrement, have been identified (van Geel, 1978, López Sáez and López Merino, 2007). Its 457 

scarce dispersion undoubtedly determines the existence of animals on a local scale. 458 

Domesticated animals, mainly caprines and cattle (all already present during the eighth-seventh 459 

millennia BP), remained widely attested throughout Mediterranean Africa. In Western 460 
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Maghreb, their presence is reported in coastal sites during the early to mid-sixth millennium BP 461 

with evidence of cattle, caprines, and pigs (Linstädter et al., 2018; Morales et al., 2013; 462 

Schmieder and Edwards, 2011). Later, the site of Oued Beh (late sixth millennium BP), 463 

indicates a possible socially complex agricultural society (Rus et al., 2012). Evidence of 464 

pastoral activity and crop cultivation remains diffuse for the first half of the fifth millennium 465 

BP (Lucarini et al., 2021). Finally, during the fourth millennium BP until the start of the third 466 

millennium BP only few remains attest of pastoral way of life with the presence of domestic 467 

cattle and caprines (Wengler et al., 1994; Wengler and Vernet, 1992).  468 

Here we evidence, for the first time, presence of Bovidae on the Iffer site, since 4,371 cal. BP 469 

and continuously during at least 380 years. The site and the approach to the lake as an access 470 

to the water could have constituted a favorable environment for grazing. We observe the 471 

proportion of this taxa increasing since 4,133 cal. BP at the expense of the Elephantidae, 472 

detected since 4,371 cal. BP before disappearing 140 years later (Figure 2D). This corresponds 473 

to a slight landscape opening and increased human influence, marked by the presence of ruderal 474 

taxa. However, there is no indication of cultivated plant taxa at this site. This is not unexpected 475 

as it is well-established that agriculture was delayed in most of Mediterranean Africa, due to 476 

pastoral groups that have traditionally exhibited robust and resilient lifestyles, influenced by 477 

Saharan foraging and pastoral practices (Lucarini et al., 2021). Also, these populations probably 478 

exploited wild plants such as acorns, pine nuts, and arbutus (Barker et al., 2010, 2009; Morales, 479 

2018; Morales et al., 2015) that were crucial sources of food along the Saharan belt (Dunne et 480 

al., 2016; Lucarini, 2014; Mercuri et al., 2018; Wasylikowa, 2001), and the Mediterranean coast 481 

(Lucarini et al., 2016) even during Neolithic. 482 

 483 

 484 

4.3 Presence of Elephantidae is impacted by anthropic pressure and climatic 485 

variations 486 

 487 

The presence of elephants is attested by sedaDNA identified in two of the four samples, 488 

spanning 140 years (from 4,371 to 4,133 cal BP, Figure 2D). This detection is noteworthy as 489 

elephants was not a targeted taxon in the capture. Unlike plants, detecting animals through 490 

sedaDNA is often challenging and incomplete, given the limited traces they leave. Thus, their 491 

detection suggests a significant population on the site, sufficient for their DNA to be deposited 492 

and later detected thousands of years later (Giguet-Covex et al., 2019).  493 
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In the Plio-Pleistocene, proboscidean species in Morocco include the genera Anancus, 494 

Mammuthus (the species M. africanavus) and Elephas. In Morocco, Elephas taxa include the 495 

species Elephas recki Dietrich 1915, a widespread Pleistocene African species that ranged from 496 

Eritrea (Martínez-Navarro, 2010) to the Atlantic coast of Morocco (Arambourg, 1979) and the 497 

species Elephas iolensis excavated from the mid-pleistocene Anchrif fossil site (Marinheiro et 498 

al., 2014; Ouchaou et al., 2017). These specialized grazing species became extinct in the 499 

Middle-Upper Pleistocene (Manthi et al., 2020), likely due to the intensity and increasing rate 500 

of climatic fluctuations, which favored the generalist and mixed feeder Loxodonta africana. 501 

The subspecies Loxodonta africana pharaohensis, also called Atlas elephant, was present in 502 

North Africa and therefore in Morocco, until its extinction in Roman times. In particular, the 503 

‘African Humid phase’ in North West Africa (c.10.5–5.5 ka cal BP) offered favorable 504 

conditions permitting its far wide distribution (Schuhmacher, 2017).  505 

The exact determination of the genus and the species of Elephantidae at Iffer site was impossible 506 

due to the similarity of the genomic regions mapped to the reads in both Elephas and Loxodonta 507 

genus. Although paleontological evidence suggests the absence of Elephas genus in this region 508 

during that period, we could hypothesize they could belong to Loxodonta taxa. Moreover, none 509 

of the reads attributed to Elephantidae matches 100% with the available sequences of current 510 

representatives (mitogenomes available for seven different species). It suggests that these 511 

sequences could be attributed to a species not represented in the current databases and therefore 512 

possibly ancient, as it is the case for Loxodonta africana pharaohensis. 513 

During the Neolithic and Bronze Age period, the presence of elephants in Morocco has been 514 

documented through various archaeological artefacts and rock art (eg: petroglyph of an 515 

elephant, cave site of Aït Ouazik, late Neolithic, engravings of Hassi Ghilan; (Boudouhou, 516 

2020; Daugas, 2010; Schuhmacher, 2017). While these representations and archeological 517 

elements could testify of their environment, of the richness of the fauna in the Atlas and of the 518 

use of elephants (hunting, transportation, trade, ivory) (Daugas, 2010; Fregel et al., 2018; 519 

Schuhmacher, 2017), the scarce number of objects and remains in Morocco do not allow to 520 

fully understand their exploitation and incorporation in the human system and in this region 521 

during Neolithic and Bronze Age. Here, we both show archeological and biological evidence 522 

of human site occupation and of pastoralism 4,371 years ago, while elephants were present at 523 

Iffer site. Although we cannot presume human-elephant interactions, we can assume that these 524 

animals were indeed part of the anthropological system and could even be exploited. Their 525 

importance is attested, for example, by the existence, since the Chalcolithic, of African ivory 526 

exchange networks from the Maghreb to southwestern Spain and Portugal (Schuhmacher, 527 
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2017). Its disappearance from sample 236 at 3,992 cal. BP, for which the plant biodiversity as 528 

well as the number of DNA sequences attributed to each taxon is similar to samples 279 and 529 

252, could more likely be linked to both anthropic pressure and climatic variations. Their 530 

disappearance followed a period of warmer and drier climate leading to a decline of the forest 531 

and an opening of the landscape. Together with a possible exploitation of this species, the 532 

relative intensification of pastoralism and a change in land use (even if no agricultural practice 533 

was detected), their preferred environment could have been modified affecting their ability to 534 

survive. 535 

 536 
 537 

5. Conclusion 538 

 539 

Here, for the first time in Northern Western Maghreb, we employed both palynological and 540 

paleogenomic to reveal climate changes and human presence at Iffer lake from late Neolithic 541 

to Bronze Age. Archeological and biological results demonstrate evidence of pastoralism 4.3 542 

ka years ago on this site. The intensification of anthropic pressure in this region precedes the 543 

environment opening between 4.1-3.9 ka BP possibly triggered by a drought episode linked to 544 

the so-called "4.2 ka cal. BP event". Both factors likely contributed to the local decline of 545 

Elephantidae, whose presence is attested through ancient sedimentary DNA. 546 

Our results hold significant importance for the archaeological community. They not only shed 547 

light on the processes of anthropization in this region, but also provide valuable evidence of 548 

pastoral practices for a period poorly documented.  Particularly noteworthy is the detection, for 549 

the first time through sedaDNA, of the presence of Bovidae and Elephantidae. It offers new 550 

perspectives for the exploration and study of these Mediterranean sites with scarce 551 

archeozoological material. An extensive analysis of the genomic data (including at the 552 

microbial level) is currently underway to gain a deeper understanding of the ecological changes 553 

of this site. This data will be complemented by a more comprehensive paleoclimatic study to 554 

facilitate a better interpretation of biodiversity changes. 555 

Extending ancient sedimentary DNA analysis to more recent and arid periods, characterized by 556 

intensified anthropization and catchment detriticism, would be valuable in observing the 557 

evolution and response of DNA signatures and biodiversity. Additionally, a high-resolution 558 

coupled analysis between DNAs and pedosedimentary facies, as opposed to traditional 559 

sedimentology and geochemistry, could help discern the connection between the DNA signal 560 

and the stability/instability of slopes near Lake Iffer. 561 
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