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Recurrence of the plane Elephant random walk

We give a short proof of the recurrence of the two-dimensional elephant random walk in the diffusive regime. This was recently established by Shuo Qin [5], but our proof only uses very rough comparison with the standard plane random walk. We hope that the method can be useful for other applications.

Introduction

The elephant random walk on Z d has been introduced in dimension 1 by Schütz and Trimper [START_REF] Schütz | Elephants can always remember: Exact long-range memory effects in a non-markovian random walk[END_REF] and is a well-studied discrete process with reinforcement, see [START_REF] Laulin | About the elephant random walk[END_REF] for background and references. Its definition (see (1.2)) depends on a memory parameter 1 α > 0 and it exhibits a phase transition going from a diffusive when α < α c = 1 2 to a superdiffusive behavior when α > α c . We focus here on the two-dimensional case and establish recurrence of the process in the diffusive regime. This has been recently proved by Shuo Qin [START_REF] Qin | Recurrence and transience of multidimensional elephant random walks[END_REF] but our approach is different and much shorter, however it gives less quantitive information and does not directly apply in the critical regime α = α c .

Notation.

We write e i the four directions of Z 2 for 1 ≤ i ≤ 4. We shall write (X k : k ≥ 0) for the canonical underlying process starting from 0 := (0, 0) ∈ Z 2 , we denote its steps by ∆X k = X k+1 -X k ∈ {e 1 , e 2 , e 3 , e 4 } and we introduce for 1 ≤ i ≤ 4 the centered counting direction processes D

[X]

k (e i ) defined by

D [X] k (e i ) = k-1 j=0 1{X j+1 -X j = e i } - k 4 , in particular notice that 4 i=1 D [X]
n (e i ) = 0.

eq:sum0

(1.1)

For any stopping time θ, we denote by X (θ) the shifted process

X (θ) k = X θ+k -X θ for k ≥ 0.
Finally F n is the canonical filtration generated by the first n steps of the walk and we use X [0,n] as a shorthand for (X k : 0 ≤ k ≤ n).

Under the law P the underlying process (X) evolves as the standard simple random walk on Z 2 , whereas under P , for α ∈ (-1, 1), it evolves as the α-elephant random walk i.e. satisfying for n ≥ 0 eq:defelph

P (∆X n = e i | F n ) = 1 4 + α D [X] n (e i ) n , (1.2) 
(where we interpret 0/0 = 0 for n = 0). In particular, under P , the process (D

[X]
k (e i ) : 1 ≤ i ≤ 4, k ≥ 0) is Markov and evolves as an urn process with four colors, which was crucially used in [START_REF] Bertenghi | Functional limit theorems for the multi-dimensional elephant random walk[END_REF] to establish the phase transition diffusive/superdiffusive. The local evolution of the elephant random walk (for large times) ressembles that of the simple random walk and this is quantified in the following lemma: lem:contiguity Proposition 1.1 (Markov contiguity). For any ε > 0 and any A > 0, there exists c ε,A > 0 and a sequence of events E n satisfying lim inf n→∞ P (X

[0,n] ∈ E n ) ≥ 1 -ε such that for any measurable function f , E   f X (n) [0,n] 1 X (n) [0,n] ∈En F n and |D [X] n (e i )| √ n ≤ A   ≥ c ε,A • E f X [0,n] )1 X [0,n] ∈En .
Proof. In the event considered in the conditioning, we have |D

[X] n (e i )| ≤ A √ n for all 1 ≤ i ≤ 4. By (1.
2), the Radon-Nikodym derivative of (X n+k -X n : 0 ≤ k ≤ n) under P with respect to P is given by eq:RND

RND n := 2n-1 k=n   1 + α D [X] k (∆X k ) k   = n-1 k=0   1 + α D [X] n (∆X (n) k ) + D [X (n) ] k (∆X (n) k ) n + k   .
(1.3) By Donsker's invariance principle, we can find a constant A ε such that the event

G n = max i sup 0≤k≤n |D [X (n) ] k (e i )| ≤ A ε √ n
has probability at least 1 -ε under P . On this event (and conditionally on the event of the statement of the proposition), the counting directions processes D

[X]

[n,2n] (e i ) are in absolute value bounded by (A + A ε )

√ n. In particular, using log(1 + αx) ≥ αx -(αx) 2 for small |x|, we deduce that on this event, for n large enough, the Radon-Nikodym derivative in (1.3) is lower bounded by

RND n 1 Gn ≥ exp αM n -α 2 (A + A ε ) 2
where

M j = j-1 k=0 D [X] n+k (∆X n+k ) n + k . Using (1.1), it is trivial to check that (M j : 0 ≤ j ≤ n) is a (F n+• )-martingale with quadratic variation E[M 2 j+1 -M 2 j | F n+j ] = E[(M j+1 -M j ) 2 | F n+j ] = 1 4 4 i=1 D [X] n+j (e i ) 2 (n + j) 2 ≤ on Gn (A + A ε ) 2 4n . It follows that E[M 2 n 1 Gn ] ≤ (A+Aε) 2 4
. In particular, thanks to Markov inequality, for any ε > 0, the event

H n = {|M n |1 Gn < (A+Aε) 2 √
ε } is of probability at least 1 -ε. Gathering up the pieces, on the event E n = G n ∩ H n which is of P measure at least 1 -2ε, the Radon-Nikodym derivative of the elephant w.r.t. the simple random walk is at least e -α

(A+Aε) 2 √ ε -α 2 (A+Aε) 2 =: c ε,A .
It is classical that in the plane, the simple random walk started from x ∈ Z 2 with ∥x∥ ≈ √ n has a probability of order log -1 n to visit (0, 0) within n steps. Our weak bound (Proposition 1.1) is sufficient to imply the same kind of estimate for the elephant random walk:

prop:retour Proposition 1.2. For any A > 0 there exists c A > 0 such that Conditionally on F n and on the fact that the counting directions processes are controlled at time n, the blue and red parts are independent on events of large probability. This is sufficient to imply a lower bound on the probability of return to 0.

E   ∃ 5 2 n ≤ k ≤ 3n : X k = 0 F n and |D [X] n (e i )| √ n ≤ A   ≥ c A log n . X n 0 X 2n X (n) [0,n] X (2n) [0,n]
Proof. Let us denote x n = X n which is fixed conditionally on F n . Using Proposition 1.1 twice, for any positive functions f and g and any A, A ′ > 0 and any ε > 0, we can find two sequences of events E n and E ′ n and constants c ε,A and c ε,A ′ such that

E f (X (2n) [0,n] )g(X (n) [0,n] ) | F n ≥ E   f (X (2n) [0,n] )g(X (n) [0,n] )1 ∥D [X] 2n (e i )∥ √ n ≤A ′ | F n   ≥ c ε,A ′ • E f (X [0,n] )1 X [0,n] ∈E ′ n • E   1 ∥D [X] 2n (e i )∥ √ n ≤A ′ g(X (n) [0,n] ) F n    ≥ c ε,A ′ • E f (X [0,n] )1 X [0,n] ∈E ′ n • c ε,A • E g(X [0,n] )1 X [0,n] ∈En 1 ∥D [X] n (e i )∥ √ n ≤A ′ -A 1 ∥D [X] n (e i )∥ √ n ≤A .
Up to increasing A ′ we may suppose that the event

H n = E n ∩ E ′ n ∩ { ∥D [X]
n (e i )∥ √ n ≤ A ′ -A} has probability at least 1 -3ε and particularizing the inequality above, we deduce that for some constant cε,A > 0 the probability in the proposition is lower bounded by

cε,A • P   ∃ 3 2 n ≤ k ≤ 2n : X k = -x n and X (0) [0,n] ∈ H n X (n) [0,n] ∈ H n   ,
so that we can apply the following lemma to conclude.

Lemma 1.3. For any A > 0, there exists ε > 0 and δ A > 0 so that if

x n ∈ Z 2 is such that ∥x n ∥ ≤ A √ n and if E n is a sequence of events such that P (X [0,n] ∈ E n ) ≥ 1 -ε then we have P   ∃ 3 2 n ≤ k ≤ 2n : X k = -x n and X (0) [0,n] ∈ E n X (n) [0,n] ∈ E n   ≥ δ A log n .
Proof. We use a second-moment method on the random variable

N En xn := # 3 2 n ≤ k ≤ 2n : X k = -x n 1 X (0) [0,n] ∈En 1 X (n) [0,n] ∈En .
We denote by p En k (y) = E [1 X k =y 1 X [0,n] ∈En ] and p k (y) = P (X k = y) for the heat kernels. By the standard local limit theorem (or just Stirling approximation on the binomial coefficients) there exists C > 0 such that p k (y) ≤ C k for all k ≥ 1 and y ∈ Z 2 . First, by lifting the restrictions on E n we have

E N En xn 2 ≤ E      2n k=3/2n 1 X k =-xn   2    ≤ 2 3 2 n≤k≤k ′ ≤2n p k (-x n )p k ′ -k (0) ≤ 2 3 2 n≤k≤k ′ ≤2n C n C k ′ -k ≤ C ′ log(n),
for some C ′ > 0 (independent of n). To evaluate the first moment, introduce the (truncated) Green functions g En (y) = n k=n/2 p En k (y) and similarly g(y) = n k=n/2 p k (y). In particular, since P (E n ) ≥ 1 -ε we have ∥p -p En ∥ 1 := y p(y) -p En (y) ≤ ε and similarly and ∥g -g En ∥ 1 = y g(y) -g En (y) ≤ εn. Recalling that C n ≥ p En n (y) ≥ p n (y) and 2C ≥ g En (y) ≥ g(y), we have

E [N En xn ] = y∈Z 2 p En n (y)g En (-y -x n ) = y∈Z 2     p En n (y)g En (-y -x n ) -p En n (y)g(-y -x n ) -p n (y)g(-y -x n ) + p En n (y)g(-y -x n ) +p n (y)g(-y -x n )     ≥ y p n (y)g(-y -x n ) -∥p En n ∥ ∞ ∥g -g En ∥ 1 -∥g∥ ∞ ∥p n -p En n ∥ 1 ≥ y p n (y)g(-y -x n ) -3C 2 ε.
However, since ∥x n ∥ ≤ A √ n, the local limit theorem implies that y p(y)g(-y -x n ) > c A for some c A > 0 independently of n and so one can choose ε > 0 small enough so that if P (E n ) ≥ 1 -ε then we have E N En xn > c A /2. We conclude by the second moment method that for some random variable X (whose distribution is irrelevant for our purposes). Together with our Proposition 1.2, this shows that in the diffusive regime, for any ε > 0 there exists δ > 0 such that for large j's we have eq:atom0 P (j • P 3 j > δ) ≥ 1 -ε.

(1.4)
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 14 (N En xn > 0) ≥ E N En xn /E N En xn 2 ≥ c A 2C ′ log n .In the diffusive regime α < α c = 1 2 , the plane elephant random walk is recurrent.Proof. Let us denote P 3 j = P (∃ 3 j ≤ k ≤ 3 j+1 , X k = 0 | F 3 j ). When α < α c , i.e. the diffusive regime, Bertenghi[START_REF] Bertenghi | Functional limit theorems for the multi-dimensional elephant random walk[END_REF] Theorem 4.2] showed that under P we have
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Notice that the variables P 3 j are not independent, but Jeulin's lemma [START_REF] Matsumoto | On a zero-one law for the norm process of transient random walk[END_REF]Proposition 3.2] gives eq:jeulin

To be honest we rather use the proof that the lemma itself, and since the argument is short let us reproduce it here: Suppose by contradiction that there exists ε, M > 0 so that the event A = { ∞ k=1 P 3 k < M } has probability at least ε > 0. Using (1.4) we take δ > 0 so that P (j • P 3 j > δ) ≥ 1 -ε 2 and write

which is a contradiction. Given (1.5), the conditional Borel-Cantelli lemma ([2, Theorem 4.3.4]) then implies that the events {∃ 3 j ≤ k ≤ 3 j+1 : X k = 0} happen for infinitely many j's with probability one, implying recurrence of the process.