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Abstract. Inspired by Schwartz, Jang-Lewis and Victory, who study in particular generalizations
of triangularizations of matrices to operators, we shall give for positive operators on Lebesgue spaces
equivalent definitions of atoms (maximal irreducible sets). We also characterize positive power com-
pact operators having a unique non-zero atom which appears as a natural generalization of irreducible
operators and are also considered in epidemiological models. Using the different characterizations of
atoms, we also provide a short proof for the representation of the ascent of a positive power compact
operator as the maximal length in the graph of critical atoms.

1. Introduction and main results

1.1. Setting and main goals. We consider the Lebesgue space Lp “ LppΩ,F , µq with p P p1,`8q,
and a state space Ω endowed with a σ-field F and a non-zero σ-finite measure µ. Let T be a positive
bounded operator on Lp. For A P F , we denote by T pAq the support of T p1Aq (if 1A does not belong
to Lp, then one can replace it by f1A for any positive function f P Lp) which is defined up to sets of
µ-zero measure. Then, we say a set A P F is invariant if T pAq Ă A. A set A is co-invariant if Ac is
invariant (or equivalently if A is invariant for the dual operator T ‹). The collection of admissible sets
corresponds to the σ-field A Ă F generated by the invariant sets. We define the atoms as the minimal
admissible sets with positive measure. An atom is non-zero if T restricted to this atom is non-zero.
An atom is critical if it is non-zero and the spectral radii of T and of T restricted to this atom are
equal.

Building on works by Schwartz [25] and Jang-Lewis and Victory [17], that study in particular
generalizations of triangularizations of matrices to operators, our aim in this work is threefold:

(1) give several equivalent definitions of atoms,
(2) describe all the nonnegative eigenfunctions of T using distinguished atoms, allowing a charac-

terization of operators T having a unique non-zero atom;
(3) describe all the generalized eigenfunctions of T whose eigenvalue is the spectral radius of T ,

and represent the ascent of T as the maximal length in the graph of critical atoms.
Except the characterization of atoms, all our results are proved under the assumption that T is power
compact.

We now give details on each of these aspects, discussing the relevant literature after each statement.

1.2. On atoms. For a measurable set A, we consider its future F pAq (resp. its past P pAq) as the
smallest invariant (resp. co-invariant) set containing A. When T is seen as the transmission operator for
an epidemic propagation, see Delmas, Dronnier and Zitt [8], the future F pAq can be interpreted as the
sub-population of Ω which might be infected by an epidemic starting in A, and P pAq can be interpreted
as the sub-population of Ω which may contaminate the population A. Motivated by the point of view
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of successive infections, we prove the following interpretation of the future in Corollary 3.45, for A P F :

eT pAq “
ď

nPN

TnpAq “ F pAq.

We say the operator T on Lp is irreducible if its only invariant sets are a.e. equal to H or Ω; in
particular F pAq “ P pAq “ Ω for any measurable set A with positive measure. We say that a set A P F
is irreducible if it has positive measure and the operator T restricted to the set A is irreducible.

Motivated by the example of Volterra operator, see Example 3.20 below for details, and by an
analogy with order theory, we say that an admissible set A is convex if A “ P pAq X F pAq.

Our first result gives equivalent characterizations of atoms using convex sets and irreducible sets.

Theorem 1 (Equivalent definitions of atoms). Let T be a positive operator on Lp with p P p1,`8q.
The following properties are equivalent.

(i) The set A is an atom.
(ii) The set A is minimal among convex sets with positive measure.
(iii) The set A is an admissible irreducible set.
(iv) The set A is a maximal irreducible set.

Following [25], we also give an at most countable partition of Ω in atoms and a (possibly empty)
set Ω0 such that T restricted to each atom is irreducible; if the operator T is power compact, then T
is quasi-nilpotent on Ω0.

Remark 1.1 (Related notions and results.). Various definitions and properties of atoms already appear
in the literature. Our definition of invariance and atoms are adapted from Schwartz [25], see also
Victory [27, 28]. The past of a set appears in Nelson [20] (as the closure) and in Jang-Lewis and
Victory [17] (as closure for bands in a Banach lattice). Irreducibility corresponds to ideal-irreducibility
from Schaefer [24]. Maximal irreducible sets appear in [20] and [27] for kernel operators (where they are
called components), and Omladič and Omladič [21] for more general Banach lattices (where they are
called classes). Convexity of atoms is used in the proof of [25, Lemma 12]; the irreducible bands used
in the Frobenius decomposition from Jang and Victory [15] are convex irreducible sets, and the semi-
invariant bands, considered by Bernik, Marcoux and Radjavi [5] are in particular convex. However,
to the best of our knowledge, convexity has not been studied for its own sake in this setting, and the
equivalence provided by Theorem 1 is new.

Finally, the decomposition of the space in atoms and a part where T is quasi-nilpotent is essentially
due to Schwartz [25]. It corresponds, for nonnegative matrices, to the Frobenius normal form introduced
by Victory [29], that is, a block triangularization of the matrix according to the communication classes.
Notice that the triangularization of matrices has been extended to (bounded) operators in Banach
spaces by Ringrose [22] using invariant spaces, see also Dowson [10, Section 2].

1.3. Nonnegative eigenfunctions. From now on we assume that the positive operator T is power
compact with positive spectral radius ρpT q ą 0. For a (non-zero) eigenfunction v of T , let ρpvq denote
the corresponding eigenvalue: Tv “ ρpvq v (and similarly for left eigenfunctions).

Let us recall briefly two key results on nonnegative eigenfunctions for positive power compact oper-
ators, see Theorem 4.2. Let mpλ, T q denote the algebraic multiplicity of λ P C˚, that is, the dimension
of

Ť

kPN Ker pT ´ λ Idqk. Recall that λ P C˚ is a simple eigenvalue if mpλ, T q “ 1. According to
Krein-Rutman theorem, ρpT q is an eigenvalue of T , and there exists corresponding nonnegative right
and left eigenfunctions. Furthermore, if ρpT q is positive and if T is irreducible, the Perron-Jentzsch
theorem states that the eigenvalue ρpT q is simple, and the corresponding right and left eigenfunctions
are in fact positive.

Our first result characterizes monatomic operators, that is, operators having a unique non-zero
atom, in terms of nonnegative eigenfunctions.

Theorem 2 (Characterization of monatomic operators). Let T be a positive power compact operator
on Lp with p P p1,`8q with positive spectral radius. The following properties are equivalent.

(i) The operator T is a monatomic.
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(ii) There exist a unique right and a unique left nonnegative eigenfunctions of T related to a non-
zero eigenvalue, and ρpT q is a simple eigenvalue of T .

(iii) There exist a unique right and a unique left nonnegative eigenfunctions of T related to a non-
zero eigenvalue, say u and v, and supppuq X supppvq has positive measure.

Furthermore, when the operator T is monatomic, if u and v denote its unique right and left nonnegative
eigenfunctions, then ρpuq “ ρpvq “ ρpT q and supppuq X supppvq is the non-zero atom.

Remark 1.2 (On monatomicity). Monatomicity is a natural extension of irreducibility, and generalizes
the notion of quasi-irreducibility defined for symmetrical operators, see Bollobás, Janson and Riordan
[7, Definition 2.11]. Monatomic operators naturally appear when studying the concavity property of
the function η ÞÑ ρpTMηq where η is a r0, 1s-valued measurable function defined on Ω and Mη the
multiplication by η operator defined on Lp, see for example Delmas, Dronnier and Zitt [9, Lemma 7.3]
and its discussion for additional references in particular in epidemiology.

More generally, we may characterize nonnegative eigenfunctions in terms of the atoms appearing in
their support. Let us give a few more definitions. Let A denote the set of atoms (which is at most
countable and might be empty); and we introduce a (partial) order ď and the corresponding strict
order ă on this set (see Proposition 3.38): for two atoms A,B, we write B ă A if B Ă F pAqzA. A
family of atoms is an antichain if no two atoms in the family satisfy B ă A. For any atom A, let ρpAq
be the spectral radius of the restriction of T to A. Let us say that an atom A is distinguished if, for
any atom B, B ă A implies that ρpBq ă ρpAq, and that an eigenvalue λ is distinguished if there exists
a distinguished atom A with ρpAq “ λ. For λ P R˚`, we consider the (finite but possible empty) set
Apλq of atoms with spectral radius λ and the subset Adistpλq of distinguished atoms associated to λ:

Apλq “ tA P A : ρpAq “ λu and Adistpλq “ tA P Apλq : A is distinguishedu .

To any distinguished atom A, we may associate a unique (up to a multiplicative constant) nonneg-
ative eigenfunction denoted wA such that supppwAq “ F pAq and furthermore ρpwAq “ ρpAq (see
Lemma 4.12 (iii)); and then the following holds.

Theorem 3 (Characterization of nonnegative right eigenfunctions). Let T be a positive power compact
operator on Lp with p P p1,`8q. Let λ ą 0. We have the following properties.

(i) There exists a nonnegative eigenfunction of T with eigenvalue λ if and only if λ is a distin-
guished eigenvalue.

(ii) The set Adistpλq is a (possibly empty) finite antichain of atoms, and the family pwAqAPAdistpλq

is linearly independent.
(iii) The cone of nonnegative right eigenfunctions of T with eigenvalue λ is the conical hull of

twA : A P Adistpλqu, and more precisely: if v is a nonnegative eigenfunction with ρpvq “ λ,
then we have:

v “
ÿ

APAdistpλq

cAwA,

where cA P R`, and cA ą 0 if and only if A Ă supppvq.

Remark 1.3 (Related results). The theorem is in essence a reformulation of results by Jang-Lewis and
Victory. More precisely, definitions and characterization of distinguished atoms and eigenvalues appear
in [16, 17, 26, 27] ; Point (i) is in [17, Theorem IV.1] in the more general context of power compact
operators on a Banach lattice with an order continuous norm, and Point (iii) appears in [27, Corollary
1] for power compact kernel operators on Lp.

The salient point of our approach is that it leverages the decomposition of the multiplicities of the
eigenvalues given in [25, Theorem 7] and our characterization of atoms from Theorem 1 to provide
simpler and shorter proofs.

1.4. Critical atoms and generalized eigenspace. We now give a particular attention to the atoms
associated to ρpT q. We define the generalized eigenspace:

KpT q “
ď

kPN

Ker pT ´ ρpT q Idq
k
.
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Following [11] and [18], we define, with the convention infH “ `8, the ascent of T at its spectral
radius ρpT q by:

αT “ inftk P N : Ker pT ´ ρpT q Idqk “ Ker pT ´ ρpT q Idqk`1u.

It is well-known, see [18], that when the operator T is power compact, the ascent αT is finite.
We say that an atom A is critical when we have ρpAq “ ρpT q, and we denote Acrit “ ApρpT qq the

set of the critical atoms. For n ě 1, a chain of length n is a sequence pA0, . . . , Anq of elements of Acrit

such that Ai`1 ă Ai for all 0 ď i ă n. The height hpAq of a critical atom A is one plus the maximum
length of a chain starting at A.

Our last result is the following.

Theorem 4 (Ascent and maximal height). Let T be a positive power compact operator on Lp with
p P p1,`8q with positive spectral radius. Then the ascent of T at its spectral radius ρpT q is equal to
the maximal height of the critical atoms:

αT “ max
APAcrit

hpAq.

This result is also stated in [15, 17] for positive power compact operators on Banach lattices with
order continuous norm. Here also, we provide a shorter proof using properties of convex sets.

1.5. Structure of the paper. After recalling basic notions on Banach spaces in Section 2, we intro-
duce the invariant/admissible sets and the atoms in Section 3, then we define the future and the past
of a set in Section 3.2, the irreducible sets in Section 3.3, the convex sets in Section 3.5 and the order
ď in Section 3.9. We then study properties and characterizations of atoms in Sections 3.7 and 3.8, and
we stress some relation between the atoms of T and Tn in Section 3.10.

To build intuition, we devote Section 3.4 to the particular case where Ω is countable, and therefore
a union of atoms.

We characterize the cone of nonnegative eigenfunctions with the same eigenvalue for power compact
positive operators in Section 4.2 and prove Theorem 3 (see Theorem 4.13). Section 4.3 is devoted to
the proof of Theorem 2 (see Theorem 4.15) on the characterization of monatomic operators.

Section 5 is devoted to the generalized eigenfunction associated to the eigenvalue ρpT q and Theorem 4
(see Theorem 5.3 and Corollary 5.4).

2. Notations

2.1. Ordered set. Let pE,ďq be a (partially) ordered set, also called poset. Whenever it exists, the
supremum of A Ă E, denoted by suppAq, is the least upper bound of A (formally, suppAq P E is defined
by: for all x P A, x ď suppAq and if for some z P E one has x ď z for all x P A, then suppAq ď z). A
collection pxiqiPI of elements of E is an antichain if for all distinct i, j P I, the elements xi and xj are
not comparable for the order relation. A set D Ă E is a downset if for all x P D, y P E, the relation
y ď x implies y P D.

2.2. Banach space and Banach lattice. Let pX, ‖ ¨ ‖q be a complex Banach space not reduced
to t0u. An operator T on X is a bounded linear (and thus continuous) map from X to itself. Its
operator norm is given by:

‖T ‖X “ sup t‖T pxq ‖ : x P X s.t. ‖x ‖ “ 1u ,

its spectrum by SppT q “ tλ P C : T ´ λ Id has no inverseu, where Id is the identity operator on X,
and its spectral radius (see [23, Theorem 18.9]) by:

(1) ρpT q “ sup t|λ| : λ P SppT qu “ lim
nÑ8

‖Tn ‖1{n
X .

By convention we set T 0 “ Id.
Let X‹ denote the (topological) dual Banach space of X, that is the set of all the bounded linear

forms on X. For x P X, x‹ P X‹, let xx‹, xy denote the duality product. For an operator T , the dual
operator T ‹ on X‹ is defined by xT ‹x‹, xy “ xx‹, Txy for all x P X, x‹ P X‹.
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If λ P C and v P Xzt0u satisfy T pvq “ λv, we say that v is a right eigenfunction of T , λ is a
right eigenvalue of T , and, in view of the forthcoming Corollary 4.10, shall write λ “ ρpvq. Any right
eigenvalue (resp. eigenfunction) of T ‹ is called a left eigenvalue (resp. eigenfunction) of T . Unless
there is an ambiguity, we shall simply write eigenvalue and eigenfunction for right eigenvalues and
eigenfunctions.

An ordered real Banach space pX, ‖ ¨ ‖ ,ďq is a real Banach space pX, ‖ ¨ ‖q with an order relation ď.
For any x P X, we define |x| “ supptx,´xuq the supremum of x and ´x whenever it exists. Following
[24, Section 2], the ordered Banach space pX, ‖ ¨ ‖ ,ďq is a Banach lattice if:

(1) For any x, y, z P X,λ ě 0 such that x ď y, we have x` z ď y ` z and λx ď λy.
(2) For any x, y P X, there exists a supremum of x and y in X.
(3) For any x, y P X so that |x| ď |y|, we have ‖x ‖ ď ‖ y ‖.
Let pX, ‖ ¨ ‖ ,ďq be a real Banach lattice. A vector subspace Y of X is an ideal if:

x P Y, y P X, |y| ď |x| ñ y P Y.

Let T be an operator on X. A set Z Ă X is T -invariant or simply invariant when there is no ambiguity,
if T pZq Ă Z. An operator T on X is positive if the positive cone X` “ tx P X : x ě 0u is invariant.
The operator T is ideal-irreducible if the only invariant closed ideals of X are t0u and X, see [24,
Definition 8.1].

Any Banach lattice X and any operator T on X admits a natural complex extension. The spectrum
of T will be identified as the spectrum of its complex extension and denoted by SppT q, furthermore
by [1, Lemma 6.22], the spectral radius of the complex extension is also given by limnÑ8 ‖Tn ‖1{n

X .
Moreover, by [1, Corollary 3.23], if T is positive (seen as an operator on the real Banach lattice X),
then T and its complex extension have the same norm. If S and T are two operators on X, we write
T ď S if the operator S ´ T is positive. If the operators T, S and S ´ T are positive, then we have
ρpT q ď ρpSq, see [19, Theorem 4.2].

2.3. Lebesgue spaces. Let pΩ,F , µq be a measured space with µ a σ-finite measure such that µpΩq ą
0. For any A Ă F , we denote by σpAq the σ-field generated by A. If f, g are two real-valued
measurable functions defined on Ω, we write f ď g a.e. (resp. f “ g a.e.) when µptf ą guq “ 0
(resp. µptf ‰ guq “ 0), and denote supppfq “ tf ‰ 0u the support of f . We say that a real-valued
measurable function f is nonnegative when f ě 0 a.e., and we say that f is positive, denoted f ą 0
a.e., when µptf ď 0uq “ 0. If A,B Ă Ω are measurable sets, we write A Ă B a.e. (resp A “ B a.e.)
when 1A ď 1B a.e. (resp. 1A “ 1B a.e.). For the sake of clarity, we will omit to write a.e. in the
proofs. We shall consider the following definition of minimal/maximal sets.

Definition 2.1 (Minimal or maximal set for a property P). Let P Ă F be a class of measurable sets.
We say that A P F is minimal for P if A P P and for any B P P such that B Ă A a.e., we have B “ H
a.e. or B “ A a.e.. We say that A P F is maximal for P if Ac is minimal for tBc : B P Pu.

We will usually say “minimal + property set” for a minimal (measurable) set for the corresponding
property. For example, an atom of the measure µ is any minimal measurable set with positive measure,
that is, any minimal set of P “ tA P F : µpAq ą 0u.

Lemma 2.2 (Existence of a minimal set). Let P Ă F be a class of measurable sets stable by countable
intersection. Then there exists a measurable set minimal for P.

Proof. We recall, see [13, Appendix A.5] (where the result is stated for µ a probability measure, but
can be easily extended to a σ-finite measure), that if tfi : i P Iu is a (possibly uncountable) family of
r´8,`8s-valued measurable defined on Ω, then there exists a r´8,`8s-valued measurable function
f , called the essential infimum of tfi : i P Iu such that:

(i) For all i P I, fi ě f a.e..
(ii) If g is another r´8,`8s-valued measurable function satisfying (i), then a.e. f ě g.
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Furthermore, there exists an at most countable set I 1 Ă I such that a.e. f “ infiPI1 fi.

We consider f the essential infimum of t1B : B P Pu. Thus, there exists an at most countable set
P 1 Ă P such that a.e. f “ infBPP 1 1B , that is a.e. f “ 1B1 with B1 “

Ş

BPP 1 B. Since P is stable
by countable intersection, we get that B1 belongs to P. Property (i) above on the essential infimum
implies also that B1 Ă B a.e. for all B P P. Thus the set B1 is minimal for P. This provides the
existence of a minimal set for P. �

For a measurable function f , we write µpfq “
ş

f dµ “
ş

Ω
fpxqµpdxq the integral of f with respect

to µ when it is well defined. For p P p1,`8q, the Lebesgue space LppΩ,F , µq is the set of all real-valued
measurable functions f defined on Ω whose Lp-norm, ‖ f ‖p “ µp|f |pq1{p, is finite and where functions
which are a.e. equal are identified. When there is no ambiguity we shall simply write LppΩq or Lp. The
set pLp, ‖ ¨ ‖pq is a Banach space with dual pLq, ‖ ¨ ‖qq, where 1{p ` 1{q “ 1. The duality product is
thus xg, fy “

ş

fg dµ for f P Lp and g P Lq. The Banach space Lp endowed with the usual order f ď g,
that is µptf ą guq “ 0, is a Banach lattice. The positive cone Lp` is the subset of Lp of nonnegative
functions. According to [30, Section 2] and [24, Theorem 5.14, p.94], its closed ideal are the sets:

(2) LpA “ tf P L
p : f1Ac “ 0u ,

where A Ă Ω is measurable.

Let T be an operator on Lp. Thanks to [12, Corollary 1.3], T and its complex extension on the
natural complex extension of Lp have the same Lp-norm. Let A Ă Ω be measurable. We define the
restriction operator of T on A, denoted TA, by:

(3) TA “MA T MA, where the operator MA is the multiplication by 1A,

and, if µpAq ą 0, we denote by T |A the corresponding operator on LppAq, where the set A is endowed
with the trace of F on A and the measure µ|Ap¨q “ µpA X ¨q. When there is no ambiguity on the
operator T , we simply write ρpAq for the spectral radius of TA (and of T |A). In particular, we have
ρpΩq “ ρpT q and ρpAq “ 0 if µpAq “ 0. If the operator T is positive, we also have that:

A Ă B ùñ ρpAq ď ρpBq.

A kernel k is a measurable nonnegative function defined on pΩ2,Fb2q. When possible, we define for
a real-valued measurable function f defined on Ω the function Tkpfq by:

(4) Tkpfqpxq “

ż

Ω

kpx, yqfpyqµpdyq for x P Ω.

When it is well defined as an operator on Lp, we call Tk the kernel operator associated to k.

3. Atomic decomposition of a positive operator

We consider the Lebesgue space Lp “ LppΩ,F , µq with µ a non-zero σ-finite measure and p P
p1,`8q. In this section, we introduce the notion of invariant set, in order to provide different charac-
terizations of the atoms of a positive bounded operator on Lp.

3.1. Invariance and atoms. The ideal-irreducibility of an operator can be described in terms of sets
rather than functions. We follow the presentation of Schwartz [25] (notice µ is assumed to be finite
therein).

Let T be a positive operator on Lp. Let f P Lp and g P Lq be two positive functions (with
1{p` 1{q “ 1). We define the nonnegative function krg,fsT on F2 as, for A,B P F :

k
rg,fs
T pB,Aq “ xg1B , T pf1Aqy “

ż

B

gpxqT pf1Aqpxqµpdxq.

Notice that:

(5) k
rf,gs
T ‹ “ k

rg,fs
T .
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We shall consider the zeros of krg,fsT , that is the set:

(6) ZT “ tpB,Aq P F2 : k
rg,fs
T pB,Aq “ 0u.

Let us stress that the set ZT does not depend on the choice of the positive functions f P Lp and g P Lq;
this is indeed a direct consequence of the following equivalences:

(7) k
rg,fs
T pB,Aq “ 0 ðñ 1BT pf1Aq “ 0 a.e. ðñ T ‹pg1Bq1A “ 0 a.e..

For this reason, as long as we consider the zeros of krg,fsT , when there is no ambiguity, we shall simply
write:

(8) kT “ k
rg,fs
T .

Notice that for any A P F , the maps kT p¨, Aq and kT pA, ¨q on F are σ-additive and nonnegative. We
can now introduce the definition of invariant set.

Definition 3.1 (Invariant and co-invariant sets). Let T be a positive operator on Lp with p P p1,`8q.
A set A is T -invariant or simply invariant if it is measurable and kpAc, Aq “ 0; it is T -co-invariant or
simply co-invariant if Ac is T -invariant. We denote by I the class of the invariant sets.

If A is an invariant set and B “ A a.e., then B also is invariant. Note also that A is T -co-invariant
if and only if A is T ‹-invariant thanks to (5), and that the following equivalences hold:

(9) A is invariant ðñ Dh P Lp`, suppphq “ A, and T phq “ 0 on Ac.

The next lemma is a direct consequence of the σ-additivity of kT .

Lemma 3.2 (Countable union and intersection of invariant sets). Any at most countable union or
intersection of invariant (resp. co-invariant) sets is invariant (resp. co-invariant).

We have the following characterization of invariance using closed ideals.

Lemma 3.3 (Invariant sets and invariant closed ideals). Let T be a positive operator on Lp with
p P p1,`8q, and A a measurable set. The set A is T -invariant if and only if the closed ideal LpA is
T -invariant.

Proof. We first assume that A is invariant. Let h P LpA, that is h P L
p and h1Ac “ 0. Let f 1 P Lp and

g P Lq be positive and set f “ f 1 ` |h|. Since A is invariant, we have krg,fsT pAc, Aq “ 0. This gives:

0 “ xg1Ac , T pf1Aqy ě xg1Ac , T p|h|qy ě xg1Ac , |T phq|y ě 0,

where we used the positivity of T for the inequalities. We get that T phq1Ac “ 0, that is, T phq P LpA.
Thus the ideal LpA is invariant.

We now assume that the ideal LpA is invariant. For f P Lp and g P Lq positive, we have that
g1AcT pf1Aq “ 0. Therefore krg,fsT pAc, Aq “ 0, thus the set A is invariant. This ends the proof. �

Example 3.4 (The Volterra operator). We consider the measured space pΩ “ r0, 1s,F “ Bpr0, 1sq,Lebq,
with F the Borel subsets of r0, 1s and Leb the Lebesgue measure on r0, 1s, and the kernel k on r0, 1s
defined by:

kpx, yq “ 1txěyu for x, y P r0, 1s.
The corresponding kernel operator Tk given by (4) is the so-called Volterra operator (see [4] for some
spectral and compactness properties of Volterra operators). One can see that a measurable set A Ă
r0, 1s is Tk-invariant (resp. Tk-co-invariant) if and only if A “ ra, 1s a.e. (resp. A “ r0, as a.e.) with
a P r0, 1s.

We give an immediate application of Lemma 3.3.

Lemma 3.5 (T and Tn invariant sets). Let T be a positive operator on Lp with p P p1,`8q and
n P N˚. Any T -invariant set is Tn-invariant.

We give another example of invariant sets, that will be useful later on.
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Lemma 3.6 (The support of a nonnegative eigenfunction is invariant). Let T be a positive operator
on Lp with p P p1,`8q and v be a nonnegative right eigenfunction of T . Then the support of v is an
invariant set: supppvq P I.

Proof. Let f P Lp be positive such that f1tvą0u “ v, and g P Lq positive. We have:

k
rg,fs
T psupppvqc, supppvqq “ xg1tv“0u, T pf1tvą0uqy “ xg1tv“0u, T pvqy “ ρpvq xg1tv“0u, vy “ 0,

where we used that f1tvą0u “ v for the second equality and that v is an eigenfunction of T with
eigenvalue ρpvq for the third one. This proves that the set supppvq is T -invariant as the zeros of the
map krg,fsT does not depend on the choice of the positive functions f and g. �

In some cases, invariance is the same for an operator and its resolvent.

Lemma 3.7 (Resolvent of a positive operator). Let T be a positive operator on Lp with p P p1,`8q.
If λ P R satisfies λ ą ρpT q, then the operator λ Id´T is invertible, and its inverse is a positive operator
on Lp. Moreover, the pλ Id´T q´1-invariant sets are exactly the T -invariant sets.

Proof. Since we have λ ą ρpT q, the operator pλ Id´T q is invertible, and its inverse is given by its
Neumann series:

pλ Id´T q´1 “

`8
ÿ

n“0

λ´n´1Tn.

This proves both that the operator pλ Id´T q´1 is positive and, thanks to Lemma 3.5, that its invariant
sets are exactly the T -invariant sets. �

Following [25], we consider the atoms associated to T .

Definition 3.8 (Admissible set and atoms). Let T be a positive operator on Lp with p P p1,`8q. A set
which belongs to the σ-field A “ σpIq generated by the family I of invariant sets is called admissible.
A minimal admissible set with positive measure is called an atom of the operator T or T -atom.

Notice that a set of positive measure A is a T -atom if and only if it is an atom for the measured
space pΩ,A, µq. We denote by A the set of atoms:

A “ tA P A : A is a T -atomu.

Since atoms have positive measure and the measure µ is σ-finite, we deduce that the set A is at most
countable. When there is no ambiguity on the operator T , we shall simply write atom for T -atom. We
present Example 3.9 below where there is no atom, and Example 3.10 where not all measurable sets
are admissible.

Example 3.9 (The Volterra operator). In Example 3.4 on the Volterra operator Tk, the admissible
σ-field is the Borel σ-field on r0, 1s: A “ F . Notice that the operator Tk has no atom: A “ H.

Example 3.10 (A ‰ F). We consider the measured space pΩ “ r0, 1s,F “ Bpr0, 1sq,Lebq, with F the
Borel subsets of r0, 1s and Leb the Lebesgue’s measure on r0, 1s, and the kernel k on r0, 1s defined by:

(10) kpx, yq “ 1txď1{2ďyďx`1{2u ` 1txě1{2u1tyďx´1{2u (see Fig. 1a).

Let A Ă r0, 1s be a measurable set. Then A is Tk-invariant if and only if for a.e. x P Ac X r0, 1{2s,
we have Leb pr1{2, x` 1{2s XAq “ 0 and for a.e. x P Ac X r1{2, 1s, we have Leb pr0, x´ 1{2s XAq “ 0.
Thus, A is Tk-invariant if and only if for a.e. x P Ac X r0, 1{2s, we have r1{2, x` 1{2s Ă Ac a.e.
and for a.e. x P Ac X r1{2, 1s, we have r0, x´ 1{2s Ă Ac a.e.. Thus A is Tk-invariant if and only if
A “ ra, 1{2s Y ra` 1{2, 1s a.e. with a P r0, 1{2s. Therefore the σ-field A of Tk-admissible sets consists
in all the measurable sets which are a.e. equal to A Y pA ` 1{2q where A Ă r0, 1{2s is a Borel set. In
particular, we have A ‰ F . Notice the operator Tk has no atom: A “ H.
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(a) Kernel k defined in (10). (b) Kernel kb2 defined in (15).

Figure 1. Example of some r0, 1s-valued kernels on r0, 1s.

3.2. Future and Past. We now consider the future and past of a set, and refer to Remark 3.17 below
for an epidemiological interpretation. Recall the Definition 2.1 on minimal and maximal set.

Definition 3.11 (Future and past). Let T be a positive operator on Lp with p P p1,`8q. Let A be
a measurable set. We define its future, F pAq, as the minimal invariant set containing A (that is,
the minimal set of P “ tB P I : A Ă B a.e.u) and its past, P pAq, as the minimal co-invariant set
containing A.

We shall use later on the following notation for the future and past of a set A without A:

(11) F˚pAq “ F pAq XAc and P˚pAq “ P pAq XAc.

The next lemma ensures the existence of the future and the past.

Lemma 3.12 (Existence of future and past). Let A P F , then its future and its past exist and are
unique, up to an a.e. equality.

Proof. We only consider the future, as the proof concerning the past is similar. The set P “ tB P

I : A Ă B a.e.u is stable by countable intersection thanks to Lemma 3.2. Lemma 2.2 ensures the
existence of a minimal set for P. The uniqueness is also clear. This provide the existence of the future
of A. �

Let us mention that the “k-closure” of a set for a kernel operator Tk introduced by Nelson [20, p. 714]
correspond to its past (with respect to the invariant sets associated to Tk). Let us gather without proof
a number of elementary facts.

Lemma 3.13 (Basic properties of the future of a measurable set). For any measurable sets A and B,
and for any at most countable family of measurable sets pAiqiPI , the following properties hold:

(i) F pHq “ H a.e. and F pΩq “ Ω a.e..
(ii) A set A is invariant if and only if F pAq “ A a.e..
(iii) If A Ă B a.e., then F pAq Ă F pBq a.e..
(iv) F p

Ť

iPI Aiq “
Ť

iPI F pAiq a.e..
(v) F p

Ş

iPI Aiq Ă
Ş

iPI F pAiq a.e.; the reverse inclusion does not hold in general.
(vi) F pF pAqq “ F pAq a.e..

The properties (i-vi) also hold with F replaced by P .

Futures and pasts are related by the following elementary result; by contrast, note that the inclusion
A Ă F pBq does not imply that B Ă P pAq in general, see Example 3.18.

Lemma 3.14 (Intersection of a future and a past). Let A,B be two measurable sets. We have:

AX P pBq “ H a.e. ðñ F pAq X P pBq “ H a.e. ðñ F pAq XB “ H a.e..
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Proof. If A X P pBq “ H, then A in included in P pBqc. Since the set P pBqc is invariant, we have
F pAq Ă P pBqc by minimality, which means that F pAq X P pBq “ H. The converse is clear since
A Ă F pAq. The second equivalence is proved similarly. �

3.3. Irreducibility. Similarly to Schaefer [24, Definition 8.1], we can define the irreducibility of an
operator in terms of invariance.

Definition 3.15 (Irreducible operators and invariant sets). Let T be a positive operator on Lp with
p P p1,`8q.

(i) The operator T is irreducible if its only invariant sets are a.e. equal to H or Ω.
(ii) The measurable set A is T -irreducible or simply irreducible if it is measurable with positive

measure and if the restricted operator T |A on LppAq is irreducible.

We refer to Lemma 3.30 and Theorem 3.34 for relations between irreducible sets and atoms. See
also Example 3.42 for a comment on the irreducible sets of T and of T 2. We now state explicitly
the relation between invariance and irreducibility from Section 2.2 and from Definitions 3.1 and 3.15.
Recall the definition of the closed ideal in (2).

Lemma 3.16. Let T be a positive operator on Lp with p P p1,`8q. Then the operator T is irreducible
if and only if it is ideal-irreducible.

Proof. It is a direct consequence of Lemma 3.3 and the fact that the closed ideals of Lp are exactly
given by LpA for A measurable, see [30, Section 2] and [24, Theorem 5.14, p. 94]. �

3.4. The countable case and an underlying preorder. We assume in this section only that Ω is
at most countable, and without loss of generality that µptxuq ą 0 for all x P Ω. Let T be a positive
operator on Lp. The the map kT is entirely defined by the values of kT ptxu, tyuq, denoted kT px, yq,
for x, y P Ω. The notions of admissibility, atoms, invariance and irreducibility may in that case be
completely understood by studying a particular binary relation on Ω given in terms of kT . To see this,
we write x ď y if x “ y or if there exists n P N˚ and px “ x0, x1, ..., xn´1, xn “ yq P Ωn`1 such that
śn
i“1 kT pxi´1, xiq ą 0. The relation ď defines a preorder on Ω (that is, a reflexive transitive binary

relation). The relation x „ y ðñ px ď y and y ď xq is then an equivalence relation. The equivalence
classes of „ correspond to atoms of the operator T , and the preorder ď naturally induces a (partial)
order on them: for two atoms A, B, we have A ď B if x ď y for all x P A and y P B. The admissible
sets are the sets A that may be written as unions of atoms (the σ-field A is generated by the set of
atoms). Furthermore, a set A is invariant if and only if the two following conditions hold:

- A is the union of atoms pAiqiPI (in particular, A is admissible),
- The family pAiqiPI is a downset for the order induced by ď on atoms.

For a set A, its future corresponds to the downward closure of A, that is, the smallest downset
containing A, and its future and past are given by:

F pAq “
ď

xPA

ty P Ω : y ď xu and P pAq “
ď

xPA

ty P Ω : x ď yu.

Notice the definition of atoms, invariant sets, future and past of a set depends only on the support
tkT ą 0u Ă Ω2 of the kernel kT .

Remark 3.17 (Epidemiological interpretation). In the epidemiological interpretation where each ele-
ment of Ω is seen as an individual or an homogeneous sub-population and T can be assimilated to the
next generation operator, we have:

- kT px, yq ą 0 means that individual y can directly infect individual x;
- x ď y when there may be a chain of infections from individual y to individual x;
- the set A is invariant if an epidemic started in A stays within A;
- the future F pAq of A is the set of all individuals that might get infected by an epidemic starting
at every individual of A;

- the past P pAq of A is the set of all individuals that might infect an individual of A.
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(a) Matrix on t1, . . . , 6u with ‹ ą 0.
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(b) Associated communication graph.

Figure 2. Matrix and associated communication graph from Example 3.18.

In Section 3.5 we shall consider convex sets, that is, sets A such that A “ F pAq X P pAq. They
have a simple representation when Ω is at most countable. Following the terminology of [6, Section
I.4, p. 7], for x, y P Ω, we define the interval rx, ys “ tz P Ω : x ď z ď yu, and say that a set A Ă Ω is
(order-)convex if:

x, y P A ùñ rx, ys Ă A.

It is easily checked that an order-convex set corresponds to being the union of atoms pAiqiPI where the
family pAiqiPI is order convex, that is, if A is an atom such that Ai ď A ď Ai1 for some i, i1 P I, then
A belongs to the family pAiqiPI .

Example 3.18 (A finite elementary case). We consider the finite case: Ω “ t1, . . . , nu with n P N˚, µ
is the counting measure, LppΩq is identified with Rn and operators on Lp with n ˆ n real matrices.
A matrix M “ pMi,jq1ďi,jďn with nonnegative entries is alternatively represented by the oriented
weighted graph G “ pV,Eq with V “ t1, . . . , nu and with a weight Mi,j to the edge pj, iq P E.

To illustrate, consider the case n “ 6 with the matrix given in Fig. 2a where the ‹ correspond
to positive terms. The corresponding communication graph (an oriented edge is represented for each
positive entry of the matrix) is given in Fig. 2b. The atoms are: t1, 2, 3u, t4u, t5u and t6u. The
invariant sets are: Ω, t4, 5, 6u, t4, 6u, t5, 6u, t6u and H. For example the sets t1, 2, 3u, t1, 2u and t1u
are irreducible, and among those three only the first one is admissible. For example the sets t1, 2, 3, 4u,
t5u and t5, 6u are convex. Even though the set t5uc is admissible, it is not convex.

Let us notice that the inclusion in Lemma 3.13 (v) is not an equality in general; indeed we have:
F pt4u X t5uq “ F pHq “ H whereas F pt4uq X F pt5uq “ t6u. Notice also that t5u belongs to the future
of t1, 2, 3, 4u, but the latter does not belong to the past of t5u.

The countable state space Ω and the above representation of convex sets will guide many definitions
and proofs below. The general case is at the same time more technical (invariant sets are defined up
to an a.e. equality), and more subtle: for example, the union of all atoms may be a strict subset of
the whole space; it may even be empty, as in Example 3.9 where there exists no atom of the Volterra
operator. For this reason we will work only on invariant and co-invariant sets, viewing them intuitively
as down- and up-sets of an underlying order that we will not write down formally.

3.5. Order-convex subsets. By construction of the future and the past, a measurable set A is always
included in F pAq X P pAq. The set A is convex when there is equality.

Definition 3.19 (Order-convex subset). Let T be a positive operator on Lp with p P p1,`8q. A set
A is order-convex for T , or T -convex, if it is measurable and A “ F pAq X P pAq a.e..

When there is no ambiguity on the operator T , we shall simply write convex for T -convex.

Example 3.20 (Convex sets of the Volterra operator). We continue Example 3.4 on the Volterra oper-
ator. Using the description therein of invariant and co-invariant sets, we get that a set A is convex if
and only if A “ ra, bs a.e. with 0 ď a ď b ď 1.
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P˚pAq

A

F˚pAq

A0

The three sets A, F˚pAq and P˚pAq are dis-
joint as A is convex. Let A0 “ pP pAq Y
F pAqqc, so that the four sets A, F˚pAq,
P˚pAq and A0 form a partition of Ω in ad-
missible sets. The possible connections be-
tween the four sets are depicted in the pic-
ture: if there is no arrow from B to C then
kT pC,Bq “ 0.

Figure 3. Past and future for a T -convex set A.

Remark 3.21 (Atoms, irreducibility and convexity coincide for T and T ‹). Notice that the admissible
σ-field is the same for the operator T and its dual T ‹. Thanks to (5), the operator T is irreducible if
and only if T ‹ is irreducible. Thus a set A is a T -atom (resp. T -irreducible, T -convex) if and only if
it is a T ‹-atom (resp. T ‹-irreducible, T ‹-convex).

Remark 3.22 (Convex sets on a countable measurable set). We go back to the framework of subsec-
tion 3.4, where Ω is an at most countable set. Then A is a convex set in the sense of Definition 3.19
if and only if A is order-convex in the sense of the definition of subsection 3.4. Therefore the two
definitions are coherent.

Recall (11), where we set F˚pAq “ F pAq XAc and P˚pAq “ P pAq XAc.

Lemma 3.23 (Characterization of convexity). Let A be a measurable set. The following properties
are equivalent:

(i) A is convex.
(ii) F˚pAq X P˚pAq “ H a.e..
(iii) F˚pAq is invariant.
(iv) P˚pAq is co-invariant.
(v) There exist an invariant set B and a co-invariant set C such that A “ B X C a.e..

As a particular consequence of (v), we get that if A is measurable then F pAq XP pAq is convex. We
illustrate in Fig. 3 the possible connections between the sets A, F˚pAq, P˚pAq and the complementary
of their union, when A is convex.

Proof. Use the definition of convexity and that Point (ii) is equivalent to P pAq X F pAq X Ac “ H to
get that Points (i) and (ii) are equivalent. Clearly Point (i) implies Point (v). The proofs involving (iii)
are similar to the ones involving (iv), so the latter are left to the reader.

We assume Point (ii) and prove Point (iii). As F˚pAq X P˚pAq “ H, the set F˚pAq is a subset of
P˚pAqc. Therefore, the set F˚pAq “ pAY F˚pAqq X pAY P˚pAqqc “ F pAq X P pAqc is invariant as the
intersection of two invariant sets. Thus Point (iii) holds.

Conversely, assuming Point (iii), the set F˚pAq is invariant, so the set P pAq X F˚pAqc is a co-
invariant set containing A and included in P pAq. By minimality of P pAq, this set is equal to P pAq,
thus P pAq Ă F˚pAqc. This gives Point (ii).

Finally let us assume Point (v) and prove Point (i). By assumption, we have A “ B X C with B
invariant and C co-invariant. By minimality, we get that F pAq Ă B and P pAq Ă C, and thus:

A Ă F pAq X P pAq Ă B X C “ A.

This gives that A is convex, that is, Point (i). �

We end this section with an auxiliary result on convexity.
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Lemma 3.24 (Intersection of convex and invariant sets). Let A be a convex set and B an invariant
set. Then the set AXB is convex.

Proof. We have AXB “ P pAq X F pAq XB by definition of convexity. So by Lemma 3.23 it is convex
as the intersection of the co-invariant set P pAq with the invariant set F pAq XB. �

3.6. Properties of the restricted operators. Let Ω1 Ă Ω be a measurable set with positive mea-
sure. Let T be a positive operator on Lp with p P p1,`8q. We start with a result of stability of
invariant/irreducible sets and atoms by restriction. Recall TΩ1 is the restriction of T to Ω1 given by (3).

Lemma 3.25 (Restriction and invariance/irreducibility). Let T be a positive operator on Lp with
p P p1,`8q, Ω1 Ă Ω a measurable set with positive measure, and T 1 “ TΩ1 the restriction of T on Ω1.
We have the following properties.

(i) The set Ω1 is T 1-invariant and T 1-co-invariant.
(ii) Every T -invariant set is T 1-invariant.
(iii) One can replace invariant in (ii) by co-invariant and by admissible.
(iv) The set A Ă Ω1 is T -irreducible if and only if it is T 1-irreducible.
(v) If Ω1 is T -invariant and A Ă Ω1, then A is T -invariant if and only if it is T 1-invariant.

Proof. Since kT 1pΩ1c, ¨q “ kT 1p¨,Ω
1cq “ 0, we obtain Point (i). Recall the definition of ZT , the set of

zeros of kT , given in (6). Since T is positive, we clearly have kT ě kT 1 and thus ZT Ă ZT 1 . This gives
Point (ii) and the co-invariant case in Point (iii). As the invariant sets generates the σ-field of the
admissible sets, we get the admissible case of Point (iii). Point (iv) is immediate. We have for A Ă Ω1:

kT pA
c, Aq “ kT pA

c X Ω1, Aq ` kT pA
c X Ω1c, Aq ď kT 1pA

c, Aq ` kT pΩ
1c,Ω1q.

If Ω1 is invariant, and thus kT pΩ1c,Ω1q “ 0, we deduce that if A is T 1-invariant, then it is T -invariant.
This and Point (ii) give Point (v). �

We now study more the stability of convexity and future by restriction. Let F 1pAq denote the future
of the measurable set A for the operator T 1 “ TΩ1 .

Lemma 3.26 (Restriction and convexity/future). Let T be a positive operator on Lp with p P p1,`8q,
Ω1 Ă Ω be a measurable set with positive measure, and T 1 “ TΩ1 be the restriction of T on Ω1. For any
measurable set A Ă Ω1, the following properties hold.

(i) If A is T -convex then it is T 1-convex.
(ii) We have a.e.:

(12) F pAq “ F pF pAq X Ω1cq Y F 1pAq.

(iii) If Ω1 is T -convex, then we have F 1pAq “ F pAq XΩ1 a.e.. In particular, T 1-invariant subsets of
Ω1 are exactly the trace on Ω1 of T -invariant sets.

Proof. Let A Ă Ω1 be measurable sets. As F pAq is T -invariant, then by Lemma 3.25-(ii), we get that
the set F pAq X Ω1 is T 1-invariant, and similarly the set P pAq X Ω1 is T 1-co-invariant. Since they both
contain A, we deduce by the definition of the future and past of a set, that:

(13) F 1pAq Ă F pAq X Ω1 and P 1pAq Ă P pAq X Ω1.

If A is T -convex, we deduce that A Ă P 1pAq X F 1pAq Ă P pAq X F pAq “ A. This implies that A is
T 1-convex, that is Point (i).

We prove Point (ii). Setting B “ F pAq X Ω1c and C “ F pBq Y F 1pAq, the goal is to prove that
C “ F pAq. We shall first prove that C is T -invariant. Thanks to (13), we have F pAqXpΩ1 X F 1pAqcqc “
pF pAq X Ω1cq Y F 1pAq Ă C, that is:

(14) Cc Ă F pAqc Y
`

Ω1 X F 1pAqc
˘

.
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We deduce that:

kT pC
c, Cq ď kT pC

c, F pBqq ` kT pF pAq
c, F 1pAqq ` kT pΩ

1 X F 1pAqc, F 1pAqq

ď kT pF pBq
c, F pBqq ` kT pF pAq

c, F pAqq ` kT 1pF
1pAqc, F 1pAqq

“ 0,

where we used the additivity and monotonicity of kT and (14) for the first inequality; the monotonicity
of kT , F pBq Ă C, (13) (twice) and the definition of T 1 for the second; that F pBq and F pAq are T -
invariant, and F 1pAq is T 1-invariant for the last equality. Thus, the set C is T -invariant. As A Ă C Ă
F pAq (use A Ă F 1pAq Ă C for the first inclusion, and C Ă F pF pAqq Y F pAq “ F pAq for the second,
see Lemma 3.13 (vi) and (13)), we deduce by minimality of the future that C “ F pAq. This gives
Point (ii).

We now prove Point (iii). Since Ω1 is T -convex, we have:

F pAq X Ω1c “ F pAq X pF pΩ1q X P pΩ1qqc “ F pAq X pF pΩ1qc Y P pΩ1qcq.

Since F pAq Ă F pΩ1q, we deduce that:

F pAq X Ω1c “ F pAq X P pΩ1qc,

which is invariant as intersection of two invariant sets. Now, using (ii), we get that F pAq “ pF pAq X
Ω1cq YF 1pAq. Taking the intersection with Ω1 yields that F pAqXΩ1 “ F 1pAq. This ends the proof. �

3.7. Properties of atoms. We first prove that atoms are convex and irreducible.

Lemma 3.27. Atoms are convex.

Proof. Let A be an atom and set B “ F pAq X P pAq. We consider the family of measurable sets
A1 “ tC P F : C X A “ H a.e. or B Ă C a.e.u. For simplicity we do not write a.e. anymore in this
proof. Let C be an invariant set. As A is a minimal admissible set, we have C XA “ H or A Ă C. In
the latter case, by minimality of F pAq, as C is invariant, we deduce that F pAq Ă C, and thus B Ă C.
In any case, we get that C belongs to A1, and thus A1 contains all the invariant sets, that is I Ă A1.
A similar argument implies that A1 contains all the co-invariant sets, that is the complementary of all
the invariant sets.

It is clear that A1 is stable by countable union and countable intersection. Therefore, by [2, The-
orem 4.2, p. 130], A1 contains the σ-field generated by I, that is A Ă A1. In particular, the set A
belongs to A1. As A is an atom it has positive measure. This gives that B Ă A. As A Ă F pAqXP pAq,
we deduce that B “ A, that is, the set A is convex. �

Lemma 3.28. Atoms are irreducible.

Proof. Let A be an atom. It is convex according to Lemma 3.27. Set T 1 “ TA. Let B Ă A
be T 1-invariant (and thus T |A-invariant), and denote its future with respect to T 1 by F 1pBq. By
Lemma 3.26 (iii), we deduce that B “ F 1pBq “ F pBq XA. This implies that B is T -admissible. Since
A is an atom, we get that B “ A or B “ H. This implies that T |A on LppAq is irreducible, that is, A
is irreducible. �

We then prove that intersections of irreducible sets with admissible sets are trivial.

Lemma 3.29 (Intersection of irreducible and admissible sets). If A is admissible and B irreducible,
then either AXB “ H a.e. or B Ă A a.e..

Proof. Let B be irreducible. Assume first the set A is invariant. According to Lemma 3.25 (i)-(ii)
with Ω1 “ B and Lemma 3.2, the intersection A X B is invariant for the operator TB , and thus also
for the restricted operator T |B on LppBq. Since B is irreducible, we deduce that A X B “ H a.e. or
A X B “ B a.e.. Thus the collection of sets whose intersection with B is trivial, that is, A1 “ tC P

F : C XB “ H a.e. or B Ă C a.e.u, contains all invariant sets.
It is clear that A1 is stable by countable union and complement, so it contains the σ-field A of the

admissible sets which is generated by the invariant sets, that is A Ă A1. Thus the set A belongs to A1
and satisfies AXB “ H or B Ă A. �
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We directly deduce from the previous lemma the following result.

Lemma 3.30 (Irreducibility and atoms I). All irreducible admissible sets are atoms.

We then prove that any irreducible set is a subset of an atom.

Lemma 3.31 (Irreducibility and atoms II). If A is irreducible, then F pAq X P pAq is an atom (which
contains A a.e.).

Proof. Let A be irreducible (and thus measurable with positive measure). Set A1 “ P pAq XF pAq. Let
B Ă A1 be T -invariant. Then by Lemma 3.25 (i)-(ii), we obtain that A X B is TA-invariant, so by
irreducibility of A we have either A Ă B or AXB “ H. If A Ă B, then we have F pAq Ă F pBq “ B Ă
A1 Ă F pAq as B is a T -invariant set contained in A1, so we have B “ A1. If AX B “ H, then the set
P pAqXBc is T -co-invariant and contains A, so we have P pAqXBc “ P pAq which implies that B “ H
as B Ă A1 Ă P pAq by hypothesis. This proves that A1 is irreducible. Since A1 is admissible, we deduce
from Lemma 3.30 that A1 is an atom. �

To end this section we complete the statement of Lemma 3.25 by considering atoms. Recall TΩ1 is
the restriction of T to Ω1 given by (3).

Proposition 3.32 (Restriction and atoms). Let T be a positive operator on Lp with p P p1,`8q,
Ω1 Ă Ω a measurable set with positive measure, and T 1 “ TΩ1 “ the restriction of T on Ω1. Let A Ă Ω1

be measurable.
(i) If A is a T -atom then it is a T 1-atom.
(ii) Assume Ω1 is admissible. Then A is a T 1-atom if and only if it is a T -atom.

Remark 3.33 (Open question). We conjecture the following result, which would imply (ii): if Ω1 is
admissible, then A Ă Ω1 is T 1-admissible if and only if it is T -admissible.

Proof. We first prove Point (i) Let A Ă Ω1 be a T -atom. It has a positive measure, and it is T -
irreducible and T -convex by Lemmas 3.27 and 3.28. It is then T 1-irreducible and T 1-convex (and thus
T 1-admissible) by Lemmas 3.25 (iv) and 3.26 (i). Thus, it is a T 1-atom by Lemma 3.30.

We now prove Point (ii). Let A be a T 1-atom. It has a positive measure, and it is T 1-irreducible. It
is also T -irreducible by Lemma 3.25 (iv). This implies that F pAq XP pAq is a T -atom by Lemma 3.31.
Since Ω1 is admissible and A Ă Ω1, we deduce that F pAqXP pAq Ă Ω1. Thus F pAqXP pAq is a T 1-atom
by Point (i). It contains A, thus it is equal to A. This proves that A is a T -atom. �

3.8. A characterization of atoms. The main goal of this subsection is to prove the following theo-
rem, that links the definitions of atoms, convex and irreducible sets.

Theorem 3.34 (Equivalent definitions of atoms). Let T be a positive operator on Lp with p P p1,`8q.
The following properties are equivalent.

(i) The set A is an atom.
(ii) The set A is a minimal convex set with positive measure.
(iii) The set A is an admissible irreducible set.
(iv) The set A is a maximal irreducible set.

We first gives another link between convexity and irreducibility before proving the theorem.

Lemma 3.35 (Convexity and irreducibility). A minimal convex set with positive measure is irreducible.

Proof. Assume that A is minimal convex. Let B Ă A be a TA-invariant set. By Lemma 3.26 (iii) (with
Ω1 “ A), we have B “ F pBq XA, and thus B is convex by Lemma 3.24. Therefore we have B “ A or
B “ H by minimality. This proves that the set A is irreducible. �

Proof of Theorem 3.34. Assume Point (i), that is, the set A is an atom. By definition it has positive
measure. By Lemma 3.27, it is convex. Since A is a minimal admissible set with positive measure, we
get Point (ii).
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Assume Point (ii), that is, the set A is minimal convex with positive measure. It is irreducible
thanks to Lemma 3.35. As it is also admissible (as a convex set), we get Point (iii).

Notice Point (iii) implies Point (i) by Lemma 3.30.

Assume Point (i) (and thus Points (i)-(iii) by the previous proofs). So the set A is irreducible.
Let us check it is maximal irreducible. Let A1 Ą A be another irreducible set. As the set F pAq is
T -invariant, we get that F pAqXA1 is TA1 -invariant. So by irreducibility of A1, we have F pAqXA1 “ A1

as A Ă F pAq X A1 has positive measure. We deduce that A1 Ă F pAq, and similarly A1 Ă P pAq. This
gives A1 Ă F pAq X P pAq “ A as A is convex. Therefore A is a maximal irreducible set, which proves
Point (iv).

Assume Point (iv), that is A is a maximal irreducible set. Thanks to Lemma 3.31, the set P pAq X
F pAq is an atom and thus irreducible by Lemma 3.28. By maximality of A, we have A “ P pAqXF pAq,
and thus A is an atom. This gives Point (i). �

3.9. An intuitive order on atoms. Nelson [20] introduced an order relation on atoms (therein called
k-components, and which correspond to maximal irreducible sets, therefore to atoms by Theorem 3.34)
using the past of measurable sets (therein k-closures). We rewrite this order relation, using futures
instead of pasts for convenience.

Definition 3.36 (Order relation between atoms). Let T be a positive operator on Lp with p P p1,`8q.
Let A,B be two T -atoms. We denote A ď B if A Ă F pBq a.e. (that is, if F pAq Ă F pBq a.e.).

We write A ă B when A ď B and A, B are not a.e. equal.

In the epidemiological interpretation of Remark 3.17, we have A ď B if A may be infected by
an epidemics starting on B. We first give some equivalent definitions of this relation ď. Recall
F˚pAq “ F pAq XAc and similarly for P˚.

Lemma 3.37 (Equivalent definitions of ď). Let A,B be two atoms such that A and B are not a.e.
equal. The following properties are equivalent.

(i) A Ă F pBq a.e..
(ii) A Ă F˚pBq a.e..
(iii) B Ă P pAq a.e..
(iv) B Ă P˚pAq a.e..

Proof. The equivalences between Points (i) and (ii) and between Points (iii) and (iv) are direct conse-
quences of the fact that two atoms are always equal a.e. or disjoint a.e.. We also have that A Ă F pBq
is equivalent to AX F pBq ‰ H as A is an atom. By Lemma 3.14, as B is also an atom, the property
AX F pBq ‰ H is also equivalent to B Ă P pAq. This ends the proof. �

We can now check that this indeed defines an order relation.

Proposition 3.38 (ď is an order relation). The relation ď is an order relation on the set of atoms.

Proof. The relation ď is clearly reflexive and transitive by definition of ď and by the monotony of the
future, see Lemma 3.13 (iii).

Let A,B be two atoms such that A ď B and B ď A. By definition A Ă F pBq, which implies
F pAq Ă F pBq. A symmetry argument yields F pBq Ă F pAq, so that both are equal. Similarly P pAq “
P pBq. Since A and B are convex, A “ P pAq X F pAq “ P pBq X F pBq “ B, so relation ď is an order
relation. �

3.10. Admissible/irreducible sets and atoms for T and Tn. We end this section with some
comparison between the admissible/irreducible sets and atoms of T and Tn, with n ě 2. We denote
by ApSq the set of S-admissible sets, where S is a positive operator. Let us point out that in the next
lemma, one can replace Tn by eT for example.

Lemma 3.39 (Admissible sets of Tn). Let T be a positive operator on Lp with p P p1,`8q and n P N˚.
(i) Any T -admissible set is Tn-admissible, that is, ApT q Ă ApTnq.
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1 0

˙

(a) Matrix on Ω.

1 2

(b) Associated communication graph.

Figure 4. Example of matrix and associated communication graph on Ω “ t1, 2u for
which the atoms of the matrix and its square are distinct.

(ii) Any T -convex set is Tn-convex.
(iii) If the operator Tn is irreducible, then T is irreducible.

Proof. Lemma 3.5 gives Point (i). If a set A is T -convex, we deduce that A “ F pAq X P pAq. Then
use Lemma 3.5 to deduce that F pAq (resp. P pAq) is Tn-invariant (resp. Tn-co-invariant) and then
Lemma 3.23 (v) to get that A is thus Tn-convex. Point (iii) is immediate using Lemma 3.5. �

We illustrate in the next example that the operator T and its powers may have different atoms.

Example 3.40 (Different atoms of T and T 2). We consider the finite state space Ω “ t1, 2u endowed
with the uniform probability µ, and the kernel operator Tk associated to the kernel (or matrix as the
space is finite), given in Fig. 4a. The operator Tk has only one atom t1, 2u, whereas its square T 2

k

admits two atoms t1u and t2u. The fact that t1, 2u may be partitioned in T 2-atoms is in fact generic,
see Proposition 3.47 below.

The admissible sets of T and its power might differ even if there is no atom.

Example 3.41 (No atoms and ApT q ‰ ApT 2q). We continue Example 3.10. The operator T 2
k is a kernel

operator with a kernel kb2 on r0, 1s, see Fig. 1b, defined by:

(15) kb2px, yq “ px´ yq
`

1tyďxď1{2u ` 1t1{2ďyďxu
˘

.

The T 2
k -invariants sets are a.e. equal to ra, 1{2s Y rb, 1s with a P r0, 1{2s and b P r1{2, 1s, whereas the

Tk invariant sets, see Example 3.10, corresponds to those sets with b “ a` 1{2. Therefore the σ-field
of the T 2

k admissible sets is exactly the Borel σ-field of r0, 1s; it does not coincide with the σ-field of
the Tk admissible sets given in Example 3.10.

We now check that the irreducible sets of T and those of T 2 are not always the same.

Example 3.42 (T 2-irreducibility does not imply T -irreducibility). We consider the measured space
pΩ “ r0, 1s,F ,Lebq, with F the Borel subsets of r0, 1s and Leb the Lebesgue measure on r0, 1s, and the
kernel k on r0, 1s defined by:

(16) kpx, yq “ 1txď1{2ďyu ` 1tyď1{2ďxu (see Fig. 5a).

Then the operator T 2
k is a kernel operator with kernel kb2 given by:

kb2px, yq “ 2´11tmaxpx,yqď1{2u ` 2´11tminpx,yqě1{2u (see Fig. 5b).

Then the set r0, 1{2s is T 2
k -irreducible, T

2
k -admissible (and thus a T 2

k -atom), and T 2
k invariant, but it is

neither Tk-irreducible (as Tr0,1{2s “ 0) nor Tk-admissible (as r0, 1s is a Tk-atom).

For A Ă Ω measurable and S be positive operators on Lp with p P p1,`8q, we denote by SpAq the
support (which is defined a.e.) of Sf , where f P Lp is any nonnegative function whose support is a.e.
equal to A (notice the support of Sf is defined up to an a.e. equivalence). More formally: the class
P “ tB P F : kSpB,Aq “ 0u, where kS is defined in (8), is stable by countable union; thus Lemma 2.2
implies the existence of a maximal set for P; then by definition its complementary is equal to SpAq.
We now state some corresponding preliminary properties in the next two lemmas.

Lemma 3.43 (Basic properties of T pAq). Let T, S be positive operators on Lp with p P p1,`8q, and
A a measurable set. We have the following properties.

(i) supppT pfqq “ T psupppfqq a.e. for any f P Lp`. In particular, if 1A belongs to Lp, then we
have T pAq “ supppT p1Aqq a.e..
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(a) Kernel k defined in (16). (b) Kernel 2 kb2.

Figure 5. Support of some t0, 1u-valued kernels.

(ii) T pSpAqq “ pTSqpAq a.e. and pT ` SqpAq “ T pAq Y SpAq a.e..
(iii) If A Ă B a.e., with B a measurable set, then we have T pAq Ă T pBq a.e..
(iv) Let pAiqiPI be an at most countable family of measurable sets. We have:

T

˜

ď

iPI

Ai

¸

“
ď

iPI

T pAiq a.e. and T

˜

č

iPI

Ai

¸

Ă
č

iPI

T pAiq a.e..

Proof. Let f 1 P Lp such that f 1 ą 0 and 1supppfqf
1 “ f . Then, by (7), we have for any measurable set

B that kT pB, supppfqq “ 0 if and only if BXsupp
`

T
`

1supppfqf
1
˘˘

“ H. This gives Point (i). Point (ii)
is a direct consequence of Point (i) applied to f1A for any positive function f P Lp. Point (iii) is a
direct consequence of the positivity of T .

We now prove Point (iv). Let B be a measurable set. As the map kT pB, .q is non-decreasing and σ-
additive on F , we have kT pB,

Ť

iPI Aiq “ 0 if and only if for all i P I, we have kT pB,Aiq “ 0. Thus the
maximal set B that satisfies kT pB,

Ť

iPI Aiq “ 0 is
Ş

iPI T pAiq
c, that is, T p

Ť

iPI Aiq “
Ť

iPI T pAiq. The
property T p

Ş

iPI Aiq Ă
Ş

iPI T pAiq is a direct consequence of Point (iii). We thus have Point (iv). �

Lemma 3.44 (T kpAq and invariance/irreducibility). Let T be a positive operator on Lp with p P
p1,`8q. Let A be a measurable set, and n P N˚. We have the following properties.

(i) The set A is T -invariant if and only if T pAq Ă A a.e..
(ii) If the set A is Tn-invariant, then for all k P N, the set T kpAq is Tn-invariant.
(iii) If T is a non-zero irreducible operator and µpAq ą 0, then we have µpT pAqq ą 0. Moreover,

we have T pΩq “ Ω a.e..

Proof. By definition the set A is T -invariant if and only if Ac X TA “ H; this gives Point (i). Let the
set A be Tn-invariant and k P N. Then by Lemma 3.43 (ii), we have TnpT kpAqq “ T kpTnpAqq. Since
we have TnpAq Ă A, we deduce that TnpT kpAqq Ă T kpAq. This gives Point (ii).

Assume that T is a non-zero irreducible operator and that µpT pAqq “ 0. The latter condition implies
that A is T -invariant, and by irreducibility of T , that A “ H or A “ Ω. As T is a non-zero operator,
we get the latter case is impossible and thus we have µpAq “ 0. As the set T pΩq is T -invariant with
positive measure, we deduce that T pΩq “ Ω by the previous argument. This gives Point (iii). �

The following corollary provides an interesting link between the future of a set and the exponential
of T .

Corollary 3.45 (Future and eT ). Let T be a positive operator on Lp with p P p1,`8q and A a
measurable set. We have:

eT pAq “
ď

nPN

TnpAq “ F pAq a.e..
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Proof. The first equality is elementary, using the same arguments as for Lemma 3.43 (ii). We prove
the second equality. The set

Ť

nPN T
npAq is clearly T -invariant by Lemma 3.44 (i) and contains A,

we therefore have F pAq Ă
Ť

nPN T
npAq. As F pAq is a T -invariant set, it is a Tn-invariant set for any

n P N by Lemma 3.5. We get that for any n P N, TnpF pAqq Ă F pAq by Lemma 3.44 (i), and thus
Ť

nPN T
npAq Ă

Ť

nPN T
npF pAqq Ă F pAq. This gives the second equality. �

We give the following result on the restriction of Tn on a convex set.

Lemma 3.46 (Power of a restricted operator on a convex set). Let T be a positive operator on Lp for
p P p1,`8q and A a convex set. Then we have pTAqn “ pTnqA for any n P N˚.

For n P N˚, we will thus use the notation TnA for pTAqn “ pTnqA when A is a convex set.

Proof. Let n P N˚. We have:

pTnqA “MAT
nMA “MAT

n´1MATMA `MAT
n´1MF˚pAqTMA “ pT

n´1qA TA,

where we used that T pAq Ă F pAq “ AYF˚pAq for the second equality, and that F˚pAq is T -invariant
(as A is convex, see Lemma 3.23) and thus Tn´1-invariant, so that MAT

n´1MF˚pAq “ 0 for the last.
We conclude by iteration. �

The following result on the decomposition of atoms is also related to [25, Theorem 8] which states
that the eigenvalues of T (when T is compact) whose modulus are equal to the spectral radius of T are
roots of unity. We say that a family of measurable sets pAiqiPI forms an a.e. partition of a measurable
set B if we have: Ai XAj “ H a.e. for any i ‰ j, and B “

Ť

iPI Ai a.e..

Proposition 3.47 (Atoms of powers of T ). Let T be a positive operator on Lp with p P p1,`8q and
n P N˚. We have the following properties.

(i) If A is a Tn-atom, then there exists a T -atom B such that A Ă B.
(ii) Let B be a T -atom. There exists a Tn-atom A Ă B and a divisor d of n such that the family

pAkq0ďkďd´1, where Ak “ T kpAq XB, forms an a.e. partition of A in Tn-atoms.

The second point is slightly more technical; its proof is given in the next section.

Proof of Point (i). Let A be a Tn atom. The family P “ tB P ApT q : A Ă Bu of measurable sets
is clearly stable by countable intersection. Let A1 denote a minimal set for P, given by Lemma 2.2.
Let B P ApT q such that B Ă A1. As B P ApTnq by Lemma 3.39 (i), we get that either A Ă B or
AXB “ H. By the minimality of A1, we deduce in the former case that A1 “ B and in the latter case
that A1 XB “ H, and thus B “ H. This gives that A1 is a T -atom which contains A. �

3.11. Proof of Proposition 3.47 (ii). Thanks to Lemma 3.46 (with A replaced by B), it is enough
to consider the case where Ω is a T -atom, that is, T is irreducible. The case T “ 0 being trivial,
we shall assume in this section only that T is a positive irreducible operator on Lp for p P p1,`8q
and T ‰ 0. In particular, we have T pΩq “ Ω a.e. (see Lemma 3.44 (iii)) and F pAq “ Ω a.e. for any
measurable set A with positive measure. Motivated by Corollary 3.45, we define, for any measurable
set A with positive measure, the quantity:

nA “ inf

#

m P N˚Yt8u :
m´1
ď

j“0

T jpAq “ Ω a.e.

+

.

If A is a Tn invariant set with positive measure, the set
Ťn´1
j“0 T

jA is T -invariant and contains A; by
irreducibility it must be equal to Ω, so nA ď n. It is also elementary to check that if A Ă B a.e. for a
measurable set B, then nA ě nB ě 1.

Let I˚n be the family of Tn-invariant sets with positive measure. This set is non empty as it contains
Ω, and we have n ě nA ě 1 for all A P I˚n . We have the following technical properties.

Lemma 3.48 (Elementary properties). Let n P N˚ and A P I˚n ( i.e., a non trivial Tn-invariant set).
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(i) Let ` P N. We have for k P N˚:
k``´1
ď

j“`

T jpAq “ Ω a.e. ðñ nA ď k.

In particular, we have nT `pAq “ nA.

(ii) Set B “ A
Ş

´

ŤnA´1
j“1 T jpAq

¯

(notice the indices j are positive). We have:

µpBq ą 0 ùñ nB ą nA.

Proof. We prove Point (i). The set B “
Ťk´1
j“0 T

jpAq is Tn-invariant as union of Tn-invariant sets, see
Lemma 3.44 (ii), and thus TnpBq Ă B. If T `pBq “ Ω, then we get, as p`` 1qn´ ` ě 0 and T pΩq “ Ω:

Ω “ T p``1qn´`pΩq “ T p``1qnpBq Ă B,

and thus B “ Ω and nA ď k. On the other hand, if nA ď k, then we have B “ Ω and T `pBq “ Ω.

We prove Point (ii). The set B “ A
Ş

´

ŤnA´1
j“1 T jpAq

¯

is Tn-invariant, and thus belongs to I˚n as

µpBq ą 0. Using B Ă A and thus T jpBq Ă T jpAq for all the terms j ě 0, we get:
nA´1
ď

j“0

T jpBq Ă
nA´1
ď

j“1

T jpAq.

By Point (i) (with ` “ 1), the latter set is not a.e. equal to Ω, which in turns, using Point (i) again
(but with ` “ 0), implies that nB ą nA. �

Let n ě 2. The supremum nmax “ sup tnA : A P I˚nu is less or equal than n and is thus a maximum.
We can directly deduce Proposition 3.47 (ii) from the next lemma.

Lemma 3.49. Let A be a Tn-invariant set with positive measure such that nA “ nmax. We have, with
Ak “ T kpAq for k P N:

(i) nA is a divisor of n.
(ii) TnApAkq “ Ak a.e. for all k P N.
(iii) Ak XA` “ H a.e. for all k ‰ ` in t0, . . . , nA ´ 1u.
(iv) The sets pAkqkPt0,...nA´1u are Tn-atoms.

Proof. Let A be Tn-invariant such that nA “ nmax. Set A˚k “
Ť

jPt0,...,nA´1uztkuAj for k P t0, . . . , nA´
1u (so that Ak Y A˚k “ Ω by definition of nA) and B “ A X A˚0 . The set B is invariant. We assume
that µpBq ą 0. Since B Ă A, we get nB ě nA and thus nB “ nA by maximality of nA. Then,
Lemma 3.48 (ii) implies that µpBq “ 0. By contradiction, we deduce that µpBq “ 0, that is:

AXA˚0 “ H.

Using that T pΩq “ Ω as T is irreducible, we get:

A\A˚0 “ Ω “ T pΩq “ TnApAq YA˚0 .

This implies that A Ă TnApAq. Writing n “ knA ` r with r P t0, . . . , nA ´ 1u, we get:

T rpAq Ă T r`nApAq Ă T r`knApAq “ TnpAq Ă A.

If r ą 0, this would imply that nA ď r. As r ă nA, we thus deduce that r “ 0, that is Point (i), and
then that A “ TnApAq. This gives Point (ii) for k “ 0 and thus for any k, as the Tn-invariant set Ak
is also maximal in the sense that nAk

“ nA “ nmax by Lemma 3.48 (i).
Using again that Ak is maximal and that TnApAjq “ Aj , we can apply the previous argument to get

that Ak XA˚k “ H for all k P t0, . . . , nA ´ 1u. This readily implies that the Ak for k P t0, . . . , nA ´ 1u
are pairwise disjoint, that is, Point (iii).

To conclude, it is enough to check Point (iv) for k “ 0. As A is Tn-invariant, to prove it is a
Tn-atom, it is enough to check that if B Ă A is a Tn-invariant set with positive measure, then B “ A.
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Consider such a set B. Notice that nB is finite (as B P I˚n) and that nB ě nA, that is nB “ nA by
maximality of nA. We thus have:

A\A˚0 “ Ω “ B
ď

˜

nA´1
ď

j“1

T jpBq

¸

Ă B YA˚0 .

This readily implies that A Ă B and thus B “ A. �

4. Atoms and nonnegative eigenfunctions

Until the end of this section, T is a power compact (that is, there exists k P N˚ such that the operator
T k is compact) positive operator on Lp, where p P p1,`8q and pΩ,F , µq is a measured space with µ
σ-finite and non-zero. The purpose of this section is to study the intricate links between the ordered
set of atoms and spectral properties of T . Especially, we study links between atoms and nonnegative
eigenfunctions of T . We also provide some criteria of monatomicity of T . The power compactness
hypothesis opens access to different results, giving the existence and uniqueness under irreducibility of
nonnegative eigenfunctions for a positive operator.

4.1. On positive power compact operators. Recall that ρpT q defined in (1) denote the spectral
radius of the operator T . The algebraic multiplicity of λ P C of T is defined by:

(17) mpλ, T q “ dim

˜

ď

kPN˚

Ker pT ´ λ Idqk

¸

.

The complex number λ P C is an eigenvalue of T when mpλ, T q ě 1, it is simple when mpλ, T q “ 1.
When T is power compact, the multiplicity mpλ, T q is finite for λ P C˚, see [18, Theorem p. 21]. Notice
that for power compact operators the multiplicity of λ P C˚ is also the dimension of the range of the
spectral projection (which is the definition used in [25] and [11]) thanks to [11, Theorems VII.4.5-6].

For a measurable set A Ă Ω, when there is no ambiguity on the operator T , we simply write
ρpAq “ ρpTAq, see Section 2.3, and mpλ,Aq “ mpλ, TAq for the spectral radius and multiplicity of λ for
TA “MATMA, see (3), the operator T restricted to A.

The following lemma proves that the restriction of a power compact operator is also power compact.

Lemma 4.1 (Restriction of a power compact operator). Let T be a positive power compact operator
on Lp. Then there exists k P N˚ such that for any measurable set Ω1, the operator pTΩ1q

k is compact.

Proof. Let n P N˚ such that Tn is compact. We have 0 ď pTΩ1q
n ď Tn. Since Tn is compact, we get

thanks to [3, Theorem 5.13] that pTΩ1q
3n is compact. �

We say that the atom A Ă Ω is non-zero if ρpAq ą 0, and denote by A˚ be the (at most countable)
set of non-zero atoms:

(18) A˚ “ tA P A : ρpAq ą 0u.

Notice that mpλ,Aq “ 0 for all atoms A P AzA˚ and λ P C˚.
We recall in our framework the classical results related to power compact operators.

Theorem 4.2. Let T be a positive power compact operator on Lp with p P p1,`8q.
(i) Krein-Rutman. If ρpT q is positive then ρpT q is an eigenvalue of T , and there exists a

corresponding nonnegative right eigenfunction denoted vT .
(ii) de Pagter. If T is irreducible then ρpT q is positive unless T “ 0 and dimpLpq “ 1, that is, if

A is measurable then either µpAq “ 0 or µpAcq “ 0.
(iii) Perron-Jentzsch. If T is irreducible with ρpT q ą 0, then ρpT q is simple, vT is positive a.e.,

and vT is the unique nonnegative right eigenfunction of T .
(iv) Schwartz. We have for λ P C˚:

(19) mpλ, T q “
ÿ

APA˚

mpλ,Aq and ρpT q “ max
APA˚

ρpAq.
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Remark 4.3. In the Perron-Jentzsch result and in what follows, uniqueness of eigenfunctions is under-
stood up to a multiplicative constant.

Proof. We first recall the vocabulary used by Grobler [14]. For any v P Lp, we denote by Ev the
smallest band (therefore the smallest subspace of the form LpA with A P F) that contains v, that is
Lpsupppvq. We say that v P Lp is quasi-interior if the closure of Ev is equal to Lp, that is if v ą 0 a.e..

Point (i) is given by [14, Theorem 3], and Point (ii) by [14, Theorem 12 (1)]. To prove Point (iii),
by [14, Theorem 12 (1)], since T is irreducible, ρpT q is a simple eigenvalue and the corresponding
eigenfunction is a quasi-interior point of Lp, that is a positive eigenfunction. By [24, Theorem 5.2 (iv),
p. 329] (that can be applied as T is power compact, see Corollary p. 329), ρpT q is the only eigenvalue
related to a nonnegative eigenfunction. As ρpT q is simple, vT is the unique nonnegative eigenfunction
of T .

Point (iv) is an extension of [25, Theorem 7] (stated for µ finite and T compact), and its proof is very
similar. We provide a short proof for completeness. Let h P L1 with 1 ě h ą 0 a.e.; thus the measure
h.µ, defined by h.µpAq “

ş

A
hpsqµpdsq for A P F , is finite. Following the proof of [25, Theorem 7], it is

enough to check that Lemmas 4, 11 and 12 therein also hold by replacing µ by h.µ in their statement
and when the operator T is power compact.

For Lemma 11, the proof given by [25] is also valid when the operator V given therein is power
compact, as every point of SppV qzt0u is isolated and as for any λ ‰ 0, the quantity mpλ, V q is finite,
see [11, Section VII.4]. For Lemma 12, the proof given by [25] holds for any positive operator, and also
holds when we replace µ in the statement by the finite measure h.µ.

Lemma 4 states that if µ is finite and T is a positive compact operator, then for all λ ą 0 there exists
δ ą 0 such that for all measurable set A P F such that µpAq ă δ we have ρpTAq ă λ. An elementary
adaptation of the proof of Lemma 4, gives that the result also holds if µ is σ-finite provided we replace
the condition µpAq ă δ by h.µpAq ă δ. We now assume that the operator T is power compact, and
let k P N˚ be such that the operator T k is compact. For λ ą 0, there exists δ ą 0 such that for all
measurable set A P F with h.µpAq ă δ we have ρppT kqAq ă λk. Since 0 ď pTAq

k ď pT kqA, we deduce
that ρppTAqkq ď ρppT kqAq ă λk, that is ρpTAq ă λ thanks to [18, Theorem p. 21]. This readily gives
the extension of Lemma 4 to µ σ-finite and T positive power compact. This concludes the proof of
Point (iv). �

Let us stress that Theorem 4.2 also applies to T ‹. Indeed, the operator T is irreducible (resp.
positive, resp. power compact) if and only if the operator T ‹ is irreducible (resp. positive, resp.
power compact). By [18, Theorem p. 21], when T is power compact, we have ρpT ‹q “ ρpT q as well as
mpλ, T ‹q “ mpλ, T q for all λ P C˚.

The following result is a direct consequence of Theorem 4.2, as any atom is irreducible by Theo-
rem 3.34. The function vA below will be called the Perron-like eigenfunction of TA.

Corollary 4.4 (Perron-like eigenfunctions for TA). Let T be a positive power compact operator on Lp
with p P p1,`8q and A a non-zero atom. Then ρpAq is a simple positive eigenvalue of TA and there
exists a unique nonnegative right eigenfunction of TA, say vA; furthermore its support is A, that is,
supppvAq “ A a.e., and we have ρpvAq “ ρpAq: TAvA “ ρpAqvA.

For λ ą 0, let Apλq be the set of atoms with spectral radius λ:

(20) Apλq “ tA P A˚ : ρpAq “ λu.

We have the following elementary result, with the convention maxH “ 0.

Lemma 4.5 (Spectral radius of restricted operators). Let T be a positive power compact operator on
Lp with p P p1,`8q.

(i) For any λ ą 0, there exists a finite number of atoms with a spectral radius larger than λ.
(ii) If Ω1 is admissible, then we have:

(21) ρpΩ1q “ max
APA˚, AĂΩ1

ρpAq.
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(iii) If ρpT q is positive, then we have mpρpT q, T q “ cardpApρpT qq.

Proof. By Corollary 4.4, any atom with a spectral radius ρpAq ą 0 satisfies mpρpAq, Aq “ 1. If λ
is positive, then by [11], the set tz P C, |z| ě λ,mpz, T q ‰ 0u is finite (notice that mpz, T q P N by
[18, Theorem p. 21]). Therefore, by Theorem 4.2 (iv), only a finite number of atoms A may satisfy
ρpAq ě λ, that is Point (i). Point (ii) then follows from (19), since the atoms of TΩ1 are precisely the
atoms of T that are included in Ω1, by Proposition 3.32 (ii).

Finally, for any atom A, we have ρpAq ď ρpT q, therefore the only atoms with mpρpT q, Aq ą 0 are
exactly those with ρpAq “ ρpT q. By Corollary 4.4, these atoms satisfy mpλ,Aq “ 1, thus we deduce
Point (iii) from (19). �

We directly deduce from (ii) the following result.

Lemma 4.6 (The operator is quasi-nilpotent outside the non-zero atoms). The restriction TΩ1 of T
to Ω1, the complement set of

Ť

APA˚ A, is quasi-nilpotent, that is, ρpΩ
1q “ 0.

4.2. Nonnegative eigenfunctions. The goal of this section is to describe exactly the set of nonneg-
ative eigenfunctions and prove Theorem 3. We start by two elementary results.

Lemma 4.7. If C is convex, and supppvq Ă F pCq, then we have TCv “ 1CTv.

Proof. Since C is convex, F pCq “ C \ F˚pCq where F˚pCq is invariant by Lemma 3.23. Since
supppvq Ă F pCq, we have v “ v1C ` v1F˚pCq. The statement follows by checking that, by Lemma 3.3,
1CT pv1F˚pCqq “ 0. �

Lemma 4.8 (Nonnegative eigenfunctions on an atom). Let T be a positive operator on Lp for p P
p1,`8q and A a non-zero atom. If v is a nonnegative right eigenfunction with A Ă supppvq Ă F pAq,
then v coincides on A with the Perron like right eigenfunction: 1Av “ cvA for some c ą 0, and
ρpvq “ ρpAq, that is, Tv “ ρpAqv.

Proof. Let λ ě 0 with Tv “ λv. Since supppvq Ă F pAq, we may apply Lemma 4.7 to the atom A,
which is convex by Theorem 3.34, to get TAp1Avq “ TAv “ 1ATv “ λ1Av, that is, 1Av is a nonnegative
eigenfunction of TA. Since A Ă supppvq, we get 1Av is non-zero. By Corollary 4.4, we have λ “ ρpAq
and 1Av “ cvA for some c ą 0, as claimed. �

We need an adaptation of [20, Theorem 4], a result originally stated for kernel operators, and which
concerns subsolutions to the eigenvalue equation, that is, functions f that satisfy:

(22) Tf ď λf.

Proposition 4.9 (Nelson: Nonnegative subsolutions are Perron eigenfunctions). Let T be a positive
power compact irreducible operator on Lp with p P p1,`8q. If f P Lp` satisfies (22) for some λ P
p0, ρpT qs, then we have Tf “ ρpT qf .

Proof. Let f P Lp` be a solution of (22). Without loss of generality we may assume λ “ ρpT q. By the
Perron-Jentzch theorem (Theorem 4.2 (iii)), there exists a nonnegative left eigenfunction h P Lq` with
left eigenvalue ρpT q such that h ą 0 a.e.. Taking the bracket of (22) with the nonnegative function h,
and using the fact that it is a left eigenfunction of T , we get:

ρpT qxh, fy “ xh, Tfy ď xh, ρpT qfy “ ρpT qxh, fy,

where the inequality holds by positivity of T and nonnegativity of f and h. Therefore we have xh, Tfy “
xh, ρpT qfy, so xh, ρpT qf ´ Tfy “ 0. Since ρpT qf ´ Tf is nonnegative and h ą 0 a.e., this implies
Tf “ ρpT qf . �

As a first consequence, we give details on which atoms may appear in the support of a nonnegative
eigenfunction. Recall that, for a non-zero atom A, the Perron like eigenfunction vA is the right eigen-
function of TA given by Corollary 4.4. For v P Lp` a nonnegative eigenfunction of T , we consider the
following subset of the atoms Apρpvqq:

Ampvq :“ tA P A : A Ă supppvq and ρpvq “ ρpAqu.
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Corollary 4.10 (A dichotomy for atoms and nonnegative eigenfunctions). Let T be a positive power
compact operator on Lp with p P p1,`8q. Let v P Lp` be a nonnegative eigenfunction of T with
λ “ ρpvq ą 0.

(i) For any atom A with A Ă supppvq a.e., exactly one of the following holds:
‚ ρpAq ă λ ;
‚ ρpAq “ λ, that is, A P Ampvq, 1Av “ cvA for some c ą 0 and supppvq X P˚pAq “ H a.e..

(ii) The set of atoms Ampvq is a nonempty finite antichain, and:

ρpvq “ ρpsupppvqq.

(iii) If A P Ampvq, B P A and B ă A, then we have ρpBq ă ρpAq.

Proof. We start by proving (i). Let v, λ satisfy the hypotheses, and consider an atom A such that
A Ă supppvq. If ρpAq ă λ we are in the first case and there is nothing to prove. We now assume
λ ď ρpAq. Since T is a positive operator and v is nonnegative, we have:

(23) TApv1Aq “ 1AT pv1Aq ď 1AT pv1Aq ` 1AT pv1Acq “ 1ATv “ λ1Av.

Since λ ď ρpAq, and A is irreducible, Proposition 4.9 applied to T|A implies TAvA “ ρpAqvA. Since
we have A Ă supppvq, vA is not the zero function, thus, by Corollary 4.4, we have λ “ ρpAq and
1Av “ cvA for some c ą 0. Going back to (23), we see that the inequality there is in fact an equality,
so 1AT pv1Acq “ 0. By (7), we thus have kT pA, supppvq X Acq “ 0. By Lemma 3.6, the set supppvq is
invariant, thus by additivity of the kernel we also have:

kT pAY supppvqc, supppvq XAcq “ 0,

so that supppvq X Ac is invariant. We then write F psupppvq X Acq X A “ psupppvq X Acq X A “ H,
which implies by Lemma 3.14 that:

(24) supppvq X P˚pAq “ supppvq XAc X P pAq “ H.

This completes the proof of Point (i)

We now turn to the proof of (ii). If two atoms A and B are in Ampvq, Equation (24) shows that
B cannot be a subset of P˚pAq; symmetrically A cannot be included in P˚pBq. By the alternate
formulation of ď from Lemma 3.37, A and B are not comparable, so Ampvq is an antichain. It is finite
by Lemma 4.5 (i). Moreover, as T pvq “ λv, we get that Tsupppvqpvq “ λv, and thus ρpsupppvqq ě λ.
As the set supppvq is invariant by Lemma 3.6 (and thus admissible), by (21), there exists an atom
A Ă supppvq with ρpAq ě λ, and thus ρpAq “ λ by Point (i). This implies that the finite antichain
Ampvq is not empty.

Finally, if A P Ampvq and B ă A, then we get B Ă F pAq Ă supppvq since supppvq is invariant.
Applying the dichotomy from Point (i), and noting that B cannot be in Ampvq since it is an antichain,
we deduce that ρpBq ă ρpAq “ λ. �

The last statement of Corollary 4.10 motivate the following definition, we refer to Figure 6 for a
pictorial representation.

Definition 4.11 (Distinguished atoms and eigenvalues). Let T be a positive power compact operator
on Lp with p P p1,`8q. A non-zero atom A of T is called right distinguished if ρpBq ă ρpAq for any
atom B such that B ă A.

The set of right distinguished atoms of radius λ ą 0 is denoted by Adistpλq.
An eigenvalue λ is called right distinguished if Adistpλq ‰ H.

One has a similar definition for left distinguished atoms/eigenvalues. When there is no ambiguity,
we shall simply write distinguished for right distinguished.

By Corollary 4.10 (ii), if v is a nonnegative eigenvalue, all atoms in Ampvq are distinguished:

(25) Ampvq Ă Adist.
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Diagram of the ordered set of atoms. Following the classical convention
(see [6, p. 4]), each circle represents an atom A, and is labeled with its
radius ρpAq. An arrow from atom A to atom B signifies that B ă A
and there is no atom in between.
The distinguished atoms are those circled in a thick line.
Note that a family of similar “finite” pictures may always be drawn in
the general case, by considering only atoms with radius larger than a
positive constant λ.

Figure 6. Distinguished atoms

In the other direction, we now show that for any distinguished atom, we may associate a nonnegative
eigenfunction. Recall that, for a non-zero atom A, vA denotes the Perron-like eigenfunction of TA given
by Corollary 4.4.

Proposition 4.12 (Nonnegative eigenfunctions associated to distinguished atoms). Let T be a positive
power compact operator on Lp with p P p1,`8q, and A a non-zero atom. The following statements are
equivalent:

(i) A is a distinguished atom.
(ii) ρpF˚pAqq ă ρpAq.
(iii) There exists a nonnegative eigenfunction wA P L

p
` such that supppwAq “ F pAq and 1AwA “

vA.

If they hold, then we have ρpwAq “ ρpAq.

The condition 1AwA “ vA in (iii) corresponds to a particular choice of normalizing constant, see
Lemma 4.8.

Proof. Suppose that Point (iii) holds, and let wA be a nonnegative eigenfunction with supppwAq “
F pAq. By Lemma 4.8, we have ρpwAq “ ρpAq, so A P AmpwAq, and by (25), it is distinguished.
Therefore Point (iii) implies Point (i).

Suppose that Point (i) holds. By (21), either ρpF˚pAqq “ 0, or there exists an atom B Ă F˚pAq such
that ρpF˚pAqq “ ρpBq. By Lemma 3.37, this B satisfies B ă A. Since A is distinguished, ρpBq ă ρpAq,
so Point (ii) holds.

We now prove that Point (ii) implies Point (iii). Set B “ F˚pAq. By assumption, the invariant
set B satisfies ρpBq ă ρpAq. By Lemma 3.7, the operator pρpAq Id´TBq is invertible and its inverse
is a positive operator. Let wA “ vA ` fB , where fB “ pρpAq Id´TBq

´1p1BTvAq. Note that, by the
expression of pρpAq Id´TBq

´1 as a Neumann series, we have supppfBq Ă B, and thus 1AwA “ vA.
Then we have:

(26) TwA “ TvA ` TfB “ 1ATvA ` 1AcTvA ` TfB .

As supppfBq is a subset of the invariant set B, we know by Lemma 3.3 that TfB “ TBfB . Moreover,
as supppvAq Ă A, we have 1ATvA “ TAvA “ ρpAqvA by definition of vA. Finally, as the set F pAq is
invariant and as we have supppvAq Ă A Ă F pAq, we have 1F pAqcTvA “ 0, thus 1AcTvA “ 1BTvA.
Plugging this in (26) yields:

TwA “ ρpAqvA ` 1BTvA ` ρpAqfB ´ ρpAqfB ` TBfB

“ ρpAqwA ` 1BTvA ´ pρpAq Id´TBqpfBq

“ ρpAqwA
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by definition of fB . So wA is a nonnegative eigenfunction (with ρpwAq “ ρpAq). In particular, supppwAq
is an invariant set that contains A, so F pAq Ă supppwAq. Since supppvAq and supppfBq Ă B are both
subsets of F pAq, we get F pAq “ supppwAq. This proves Point (iii). �

The previous result shows that, to any distinguished λ, we may associate a family pwAqAPAdistpλq

composed of nonnegative eigenfunctions. We now completely describe the set of nonnegative eigen-
functions associated to λ, say V`pλq, as the conical hull of this family (that is linear combinations with
nonnegative coefficients).

Theorem 4.13 (Characterization of nonnegative right eigenfunctions). Let T be a positive power
compact operator on Lp with p P p1,`8q. Let λ ą 0. We have the following properties.

(i) There exists a nonnegative eigenfunction of T associated to λ if and only if λ is a distinguished
eigenvalue.

(ii) The set Adistpλq is a (possibly empty) finite antichain of atoms, and the family pwAqAPAdistpλq

is linearly independent.
(iii) If v is a nonnegative eigenfunction with ρpvq “ λ, then λ “ ρpsupppvqq and:

v “
ÿ

APAmpvq

cAwA with cA ą 0.

So the cone V`pλq is the conical hull of twA : A P Adistpλqu.

Remark 4.14. The last point shows in particular that if w is a nonnegative eigenfunction such that
supppwq “ F pAq, where A is a non-zero atom (see Lemmas 3.6 and 4.8), then A is distinguished,
ρpwq “ ρpsupppwqq “ ρpAq and w “ cwA with c ą 0.

The elementary adaptation of the theorem to nonnegative left eigenfunction is left to the reader.

Proof. If λ is distinguished, then by definition there is an atom A P Adistpλq, and wA provides a nonneg-
ative eigenfunction associated to λ. Conversely, if there is a nonnegative eigenfunction w associated to
λ, then Ampwq is nonempty and consists of distinguished atoms by Corollary 4.10, so λ is distinguished.
This proves Point (i).

Let us prove Point (ii). If A and B belongs to Adistpλq, then ρpAq “ ρpBq, so they are not com-
parable by definition of distinguished atoms. Therefore Adistpλq is an antichain. It is also finite by
Lemma 4.5 (i). To prove the linear independence property, assume that

ř

BPAdistpλq
cBwB “ 0. Mul-

tiplying by 1A for A P Adistpλq yields cAvA “ 0, since for B ‰ A, supppwBq “ F pBq is disjoint from
A. Since vA is positive, cA “ 0. Since this is true for all A, the family pwAqAPAdistpλq is linearly
independent.

We now prove Point (iii). Since the wA are all in the cone V`pλq, their conical hull is included in
V`pλq, so that we only need to prove the reverse inclusion. Let v P V`pλq. By Corollary 4.10, there
is an antichain Ampvq Ă Adistpλq of distinguished atoms of radius λ in the support of w, and all other
atoms in this support satisfy ρpBq ă λ. Define:

B “ supppvq
č

ˆ

ď

APAmpvq

P pAq

˙c

“ supppvq
č

ˆ

ď

APAmpvq

A

˙c

,

where the second equality follows from the fact that supppvq X P˚pAq “ H for all A P Ampvq, by
Corollary 4.10. The first equality shows that B is invariant.

Still following Corollary 4.10, there exist cA ą 0 such that v1A “ cAvA for A P Ampvq. Consider
the function w “ v ´

ř

APAmpvq
cAwA. Since supppwAq “ F pAq Ă supppvq, supppwq is included in

supppvq. Since w vanishes by construction on all atoms A P Ampvq, we have in fact supppwq Ă B.
Now, Tw “ λw since v and the wA are eigenfunctions. Since B is invariant and supppwq Ă B, we get
that TBw “ λw. However, by construction, B cannot contain atoms of radius greater than or equal to
λ, so ρpBq ă λ. Therefore λ cannot be an eigenvalue of TB , and w must be identically zero, so that
v “

ř

APAmpvq
cAwA. Since Ampvq Ă Adistpλq, we get that v is in the conical hull of the pwAqAPAdist

.
This finishes the proof. �
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(a) Graph associated to a kernel operator
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˙

(b) Matrix associated to a kernel operator

Figure 7. Example of associated graph and associated matrix of a kernel operator
on Ω “ t1, 2u

4.3. Monatomic operators: definition and characterization. In this section we shall consider
positive power compact operators having only one non-zero atom, which are calledmonatomic operators
(T is monatomic if cardA˚ “ 1 with A˚ defined in (18)). We give in the next theorem a characterization
of the monatomic positive power compact operators, see Theorem 2.

Theorem 4.15 (Characterization of monatomic operators). Let T be a positive power compact operator
on Lp with p P p1,`8q such that ρpT q ą 0. The following properties are equivalent.

(i) The operator T is monatomic.
(ii) There exist a unique right and a unique left nonnegative eigenfunctions of T with non-zero

eigenvalues, and ρpT q is a simple eigenvalue of T .
(iii) There exist a unique right and a unique left nonnegative eigenfunctions of T with non-zero

eigenvalues, say u and v, and supppuq X supppvq has positive measure.
Furthermore, when the operator T is monatomic, we have ρpuq “ ρpvq “ ρpT q and supppuq X supppvq
is the non-zero atom of T .

Example 4.16 (On the condition ρpT q simple and supppuq X supppvq with positive measure). If T has
a unique right and a unique left eigenfunction, then T is not monatomic in general. Indeed, consider
the example given by Fig. 7 with Ω “ t1, 2u endowed with the counting measure. The positive kernel
operator T associated to the matrix given in Fig. 7b has only one right eigenfunction u “ p0, 1q and
one left eigenfunction v “ p1, 0q, but it is not monatomic, as its non-zero atoms are t1u and t2u. Here,
we have supppuq X supppvq “ H and ρpT q “ 1 is not a simple eigenvalue.

To prove Theorem 4.15, we use the following lemma.

Lemma 4.17 (Existence of minimal distinguished atoms). Let A be a non-zero atom. Then there
exists a right (resp. left) distinguished atom smaller (resp. larger) than A for ď, say B, such that
ρpBq ě ρpAq.

Proof. Recall that T and T ‹ have the same spectral radius and that they share the same atoms, so
we only need to prove the lemma for right distinguished atoms for T , as it will then hold for left
distinguished atoms for T as they are right distinguished atoms for T ‹.

Since A is a non-zero atom, ρpAq is positive. The set:

A “ tC P A˚ : ρpCq ě ρpAq, C ď Au

is finite thanks to Lemma 4.5 (i) and is non empty as it contains A. Thus it has at least one minimal
element for the order ď, say B. If an atom C satisfies C ă B, then C ď A by transitivity, but C cannot
be in A by minimality of B, so ρpCq ă ρpAq. Since B P A, we have ρpBq ě ρpAq, and so ρpCq ă ρpBq.
Since this holds for any C such that C ă B, we obtain the atom B is distinguished. �

Proof of Theorem 4.15. We assume that T is monatomic and prove Point (ii). Let A be the only non-
zero atom. By Lemma 4.5 (iii), as mpρpT q, T q ě 1 and A˚ is reduced to tAu, we get that ρpT q is simple
and ρpAq “ ρpT q by (21).

We now prove the existence and uniqueness of a nonnegative right eigenfunction. Since there is
no other non-zero atom, using directly Definition 4.11 we see that A is distinguished, and is the only
distinguished atom. Still by definition, ρpAq is the only distinguished eigenvalue. By Theorem 4.13,
the set of nonnegative eigenfunctions is the cone R`wA, which proves uniqueness (up to a positive
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multiplicative constant). Applying the same proof to T ‹ gives Point (ii) and the first part of the last
sentence of the theorem.

We assume Point (ii) and prove Point (iii). Since ρpT q ą 0 is simple, we deduce from (19) that
there exists a unique atom, say A, such that ρpAq “ ρpT q. In particular, all other atoms must satisfy
ρpBq ă ρpAq, so that A is right (and left) distinguished. Therefore, by Proposition 4.12, the unique right
(resp. left) nonnegative eigenfunction, whose existence is given by our Assumption, is in fact wA (resp.
the nonnegative eigenfunction w‹A obtained from T ‹). Since supppwAqXsupppw‹Aq “ F pAqXP pAq “ A
by convexity of the atom A, we obtain Point (iii) and the last part of the last sentence of the theorem.

We assume Point (iii) and prove that the operator T is monatomic. Since ρpT q ą 0, there exists
an atom, say A, such that ρpAq “ ρpT q. Looking for a contradiction, we assume there exists an other
non-zero atom B and without loss of generality that it is not smaller than B for ď (that is, either
A ď B or A and B are not comparable), equivalently F pAq X B “ H. By Lemma 3.14, this is also
equivalent to F pAq X P pBq “ H.

Then, using Lemma 4.17, there exists a right (resp. left) distinguished atom A1 (resp. B1) such
that A1 ď A (resp. B ď B1). By Proposition 4.12, the unique non negative right eigenfunction
v must satisfy supppvq “ F pA1q, and similarly the unique non negative left eigenfunction u must
satisfy supppuq “ P pB1q. By construction, we have F pA1q Ă F pAq and P pB1q Ă P pBq, and thus
supppvq X supppuq “ F pA1q X P pB1q Ă F pAq X P pBq “ H. As this is in contradiction with the
assumption of Point (iii), we deduce that A is the only non-zero atom, that is T is monatomic. �

5. Generalized eigenspace at the spectral radius

5.1. Framework and main theorem. The purpose of this section is to restate [17, Theorem V.1
(2)] on the ascent of T in our framework of Lp-spaces, with a shorter proof based on convex sets.

Let us first recall a few classical definitions, see [11] and [18]. For T an bounded operator on a
Banach space and λ P C, we call generalized eigenspace of T at λ, and denote by Kpλ, T q, the linear
subspace:

Kpλ, T q “
ď

kPN

Ker pT ´ λ Idqk.

We now focus on the spectral radius λ “ ρpT q, and write KpT q “ KpρpT q, T q the corresponding
generalized eigenspace. We define the index of a generalized eigenvector u P KpT q, as inftk P N : u P
Ker pT ´ ρpT q Idqku, and, with the convention infH “ `8, the ascent of T at ρpT q as:

αT “ inftk P N : Ker pT ´ ρpT q Idqk “ Ker pT ´ ρpT q Idqk`1u.

Notice that αT is positive if ρpT q is an eigenvalue and that KpT q “ Ker pT ´ ρpT q IdqαT when αT
is finite. When the operator T is power compact, then the ascent αT is finite, see [18, Lemma 1.a.2,
Theorem p. 21] (it is also equal to the descent δT “ inftk P N : ImpT´ρpT q Idqk “ ImpT´ρpT q Idqk`1u).

Let T be a positive power compact operator on Lp with p P p1,`8q, and assume ρpT q ą 0, and
thus αT P N˚. By Lemma 4.5 (iii), KpT q is finite dimensional, and:

dimpKpT qq “ mpρpT q, T q “ cardpAcritq,

where Acrit is the set of critical atoms:

(27) Acrit “ tA P A : ρpAq “ ρpT qu.

By definition of αT , the sequence pdimpKer ppT ´ρpT q Idqkqqq1ďkďαT
is (strictly) increasing, so we have

the following trivial bounds:

(28) dim
`

Ker pT ´ ρpT q Idqk
˘

ě k, for all 1 ď k ď αT ,

and in particular dimpKpT qq “ cardpAcritq ě αT .
The set Acrit may be equipped with the partial order ď. Recall that we write B ă A if B ď A

and B ‰ A. We recall a few classical definitions for posets, that is, partially ordered sets (see e.g. [6,
Section I.3, p. 4]).
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Definition 5.1 (Covering). Let A and B be critical atoms. If B ă A, and if there is no critical atom C
such that B ă C ă A, then A is said to cover B.

For n ě 1, a chain of length n is a sequence pA0, . . . , Anq of elements of Acrit such that Ai`1 ă Ai
for all 0 ď i ă n. The height hpAq of a critical atom A, is one plus the maximum length of a chain
starting at A.

Remark 5.2 (Terminology - off by one). Our definition of length is consistent with [6, Section I.3]. The
“off by one” is due to the fact that height, in [6], is formally defined for posets with a least element. Our
height coincides with Birkhoff’s height on the poset pAcrit \ t0u,ďq where 0 is an additional element
that satisfies 0 ď A for all A P Acrit.

We now restate [17, Theorem V.1 (1, 2)] in our framework; its proof is given in Section 5.2. Recall
vA the Perron-like eigenfunction of TA and the set of critical atoms Acrit from (27).

Theorem 5.3 (A basis of KpT q). Let T be a positive power compact operator on Lp with p P p1,`8q
with a spectral radius ρpT q ą 0. Then there exists a basis W “ pwAqAPAcrit

of KpT q satisfying the
following properties:

(i) For all A, A Ă supppwAq Ă F pAq, and 1AwA “ vA ; moreover if A is distinguished then wA
is the nonnegative eigenfunction introduced in Proposition 4.12.

(ii) If M “ pMA,Bq is the matrix representing, on the basis W, the endomorphism induced on
KpT q by T , then for A,B P Acrit, we have:

MAB “

$

’

&

’

%

0 if B ę A,

ρpT q if A “ B,

ą 0 if A covers B.

(iii) For any A P Acrit, the index of wA is the height hpAq.
Moreover, Properties (ii) and (iii) hold for any basis of KpT q satisfying (i).

Since the ascent is the maximum index of functions in KpT q, we easily get the following result.

Corollary 5.4 (Ascent and maximal height). The ascent of T at its spectral radius ρpT q is equal to
the maximal height of the critical atoms:

αT “ max
APAcrit

hpAq.

5.2. Existence of an adapted basis and proof of Theorem 5.3. We first state a key technical
result.

Lemma 5.5 (Generalized eigenspaces for restrictions). Let A be a convex set and λ P C.
(i) If v P Kpλ, T q and supppvq Ă F pAq, then we have p1A vq P Kpλ, TAq.
(ii) If furthermore A is invariant, and λ ‰ 0, then we have Kpλ, TAq Ă Kpλ, T q.

Proof. If supppvq Ă F pAq, then by Lemma 4.7, we have 1ATv “ TAp1A vq. An easy induction using
the identity pT jqA “ pTAqj from Lemma 3.46 yields 1AT jv “ T jAp1A vq for all j ě 1, and since this
still holds for j “ 0, we get:

(29) 1ApT ´ λ Idqjv “ pTA ´ λ Idqjp1A vq.

This proves the first item.
If pTA ´ λ Idqkv “ 0, the expression p´λqkv “ ´

řk
j“1

`

k
j

˘

p´λqk´jT jAv shows that supppvq Ă A. By
invariance this implies supppT jvq Ă A, so pT ´ λ Idqkv “ 1ApT ´ λ Idqkv. We may now apply (29), as
invariant sets are convex, and get 1ApT ´ λ Idqkv “ pTA ´ λ Idqkv “ 0, which concludes the proof. �

Corollary 5.6. Let A P Acrit, B “
Ť

CPAcrit,CăA C, and Ã “ F pAqzF pBq.

(i) The set Ã contains A, it is convex, F˚pÃq “ F pBq and F pAq “ Ã\ F˚pÃq.
(ii) There exists a nonnegative eigenfunction wÃ of TÃ such that supppwÃq “ Ã, 1A wÃ “ vA, and

ρpwÃq “ ρpT q.
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(iii) If w P KpT q satisfies supppwq Ă F pAq, then there exists c P R such that 1Ãw “ cwÃ.

Proof. The set Ã is convex, since it is the intersection of the invariant set F pAq with the co-invariant
set F pBqc. The set A cannot intersect F pBq, since this would imply A ă A, so Ã contains A. By
definition of F pBq, Ã contains no other critical atoms. Therefore A is distinguished for TÃ, which
yields the existence of wÃ by Proposition 4.12; moreover KpρpT q, TÃq “ VectpwÃq as ρpT q is simple
for TÃ. By Lemma 5.5 (i), the function 1Ã w belongs to KpρpT q, TÃq and is therefore proportional to
wÃ, as claimed. �

We are now in a position to prove Theorem 5.3. We proceed in several steps.

5.2.1. Existence of a basis satisfying (i). We prove the existence of a basis satisfying Theorem 5.3 (i)
by induction on the number of critical atoms of T .

If T has one critical atom A, then A is necessarily distinguished. The nonnegative eigenfunction
wA given by Proposition 4.12 is a non-zero vector in the one-dimensional vector space KpT q, so it is
indeed a basis.

For the induction step, assume that for any positive power compact operator U on Lp with at most n
critical atoms, there exists a basis of KpUq satisfying (i). Let T be a positive power compact operator
on Lp with n` 1 critical atoms.

We first claim that, for each critical atom A of T , there exists wA P KpT q such that A Ă supppwAq Ă
F pAq. Indeed, there are two cases. If TF pAq has n atoms or less, then the induction hypothesis applied
to U “ TF pAq gives the existence of wA P KpUq such that A Ă supppwAq Ă F pAq, 1A wA “ vA,
and by Lemma 5.5 (ii), wA is in fact in KpT q, proving the claim in this case. If TF pAq has n ` 1
atoms, then all critical atoms of T are in the future of A. Notice that ρpTF pAqq “ ρpF pAqq “ ρpT q
and by Lemma 5.5 (ii) KpTF pAqq Ă KpT q. Furthermore, all the critical atoms of T belongs to F pAq
and are thus the critical atoms of TF pAq; this implies that dimpKpTF pAqqq “ cardpAcritq “ dimpKpT qq.
We deduce that KpTF pAqq “ KpT q. Let Ã be defined by Corollary 5.6, and let U “ TF˚pÃq. Let
w P KpT q “ KpTF pAqq. We thus have supppwq Ă F pAq. By Corollary 5.6 (ii)-(iii), if w vanishes
on A, then it must be identically zero on Ã. Therefore we get supppwq Ă F˚pÃq and w P KpUq by
Lemma 5.5 (i), since F˚pÃq is convex. As a consequence, since by Lemma 4.5 (iii), dimpKpT qq “
n` 1 ą n “ dimpKpUqq, at least one element of KpT q is non-zero on A. By Corollary 5.6 (iii) we may
assume without loss of generality that 1Ã w “ wÃ. In particular, 1A w “ vA, and the claim is proved.

Now, a family W “ pwAqAPAcrit satisfying the claim must be linearly independent. Indeed, assume
that

ř

APAcrit
cAwA “ 0. If the cA do not vanish, let B be a maximal element (for ď) among the atoms

for which cB ‰ 0. For any atom A ‰ B, either B ę A and wA is zero on B, or B ă A and cA “ 0
by maximality of B. Therefore 0 “ 01B “ p

ř

A cAwAq1B “ cBwB1B , so cB “ 0, a contradiction.
Therefore all cA must vanish, and the family W is linearly independent.

This independence and the fact that cardpAcritq “ dimpKpT qq ensure that W is a basis: this
completes the induction and proves Point (i).

5.2.2. Proof of (ii): the two-atoms case. We first prove Theorem 5.3 (ii) under the additional assump-
tion that T has only two critical atoms A and B, and that B ă A.

By the trivial bound (28), the ascent is either equal to 1, in which case Ker pT ´ ρpT qq “ KpT q
is two-dimensional, or equal to 2, in which case 1 “ dimpKer pT ´ λ Idqq ă dimpKer ppT ´ λ Idq2qq “
dimpKpT qq “ 2. Let pwA, wBq be a basis of KpT q given by Point (i).

Note that KpT q is stable by T , so there exist four coefficients such that:

TwA “MAAwA `MABwB ,

TwB “MBAwA `MBBwB .

Since B is distinguished, wB is the nonnegative eigenvector given by Proposition 4.12, so MBB “

ρpT q and MBA “ 0.
The support of wA is included in the future of the convex set A, so by Lemma 4.7 we get TAp1AwAq “

TApwAq “ 1ATwA “MAA1A wA, since wB “ 0 on A. Since wA “ vA on A, we see that MAA “ ρpT q.



ATOMS AND ASSOCIATED SPECTRAL PROPERTIES FOR POSITIVE OPERATORS ON Lp 31

We may therefore write:

(30) pT ´ ρpT q IdqwA “MABwB ,

and establishing Theorem 5.3 (ii) in this case consists in proving that MAB is positive. Let v‹B be a
positive Perron eigenvector of T ‹B . Since the future of B for T ‹ is P pBq, we have:

T ‹v‹B “ T ‹Bv
‹
B ` 1P˚pBqT

‹v‹B “ ρpT qv‹B ` 1P˚pBqT
‹v‹B .

Taking the scalar product with v‹B in (30) yields:

MABxv
‹
B , wBy “ xv

‹
B , pT ´ ρpT qqwAy

“ xT ‹v‹B ´ ρpT qv
‹
B , wAy

“ x1P˚pBqT
‹v‹B , wAy

“ xv‹B , T p1P˚pBq wAqy.

By Corollary 5.6, 1P˚pBq wA is nonnegative, and positive on Ã “ F pAqzF pBq, so the last expression is
nonnegative. Since the scalar product xv‹B , wBy is positive, MAB is nonnegative. Assume for a moment
that MAB “ 0, so that xv‹B , T pwA1P˚pBqqy “ 0, and by (7), kT pB, Ãq “ 0. Using the partition Ω “

F pAqc\Ã\B\F˚pBq and the invariance of F pAq, we easily check that kT pBYF pAqc, ÃYF˚pBqq “ 0,
so ÃYF˚pBq is invariant. Since it contains A, it must contain F pAq, and therefore B, a contradiction.
This shows that MAB ą 0, concluding the proof of the two-atoms case. Note that MAB ‰ 0 also shows
that wA R Ker pT ´ ρpT q Idq, so that the ascent is necessarily equal to two.

5.2.3. Proof of (ii): general case. By definition, for all A, we have:

(31) TwA “
ÿ

BPAcrit

MABwB “
ÿ

BPAcrit,BăA

MABwB `MAAwA `
ÿ

BPAcrit,BęA

MABwB .

Since supppwAq Ă F pAq, we have wA P K
`

ρpT q, TF pAq
˘

, so Point (i) applied to TF pAq shows that
MAB “ 0 if B ę A. Then, multiplying (31) by 1A and applying Corollary 5.6 yields ρpT qvA “MAAvA,
so MAA “ ρpT q.

Assume now that A covers B0, and let C be the convex set F pAq X P pB0q: by definition, the only
critical atoms in C are A and B0. For any other atom B, either B ć A and MAB “ 0, or B ă A but
B0 ć B, so F pBq X C “ H, and wB is zero on C. Therefore, multiplying by 1C in (31) yields:

1C TwA “ ρpT q1C wA `MAB01C wB0 .

Using Lemma 4.7, and the fact that 1C wB0 “ 1B0 wB0 “ vB0 , we get TCp1CwAq “ ρpT qp1CwAq `
MAB0

vB0
, so MAB0

is a term of the matrix of TC in the basis p1CwA, vB0
q of KpTC , ρpTCqq, and its

positivity follows from the two-atoms case.

5.2.4. Conclusion. To check that Point (iii) of Theorem 5.3 holds, note that the matrix N of S “
T ´ ρpT q Id on the basis W satisfies NAB “ 0 unless B ă A, and NAB ą 0 if A covers B. Thus, we
get:

pNkqAB “
ÿ

A“A0ąA1¨¨¨ąAk“B

ź

j

NAj ,Aj`1 .

If k ą hpAq, there is no chain of length k starting down from A, so NkwA “ 0. If k “ hpAq, the sum
is non-empty, the only chains appearing in the sum are of maximal length so Aj must cover Aj`1,
the corresponding products are all positive, so NkwA “

ř

B cBwB for some non-zero numbers cB , and
NkwA ‰ 0. Therefore the index of wA is hpAq.

Notice the proof of Points (ii) and (iii) are done under the condition that the basis only satisfies
Point (i). This completes the proof of Theorem 5.3.
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