ATOMS AND ASSOCIATED SPECTRAL PROPERTIES FOR POSITIVE
OPERATORS ON LP

JEAN-FRANCOIS DELMAS, KACEM LEFKI, AND PIERRE-ANDRE ZITT

ABsTrRACT. Inspired by Schwartz, Jang-Lewis and Victory, who study in particular generalizations
of triangularizations of matrices to operators, we shall give for positive operators on Lebesgue spaces
equivalent definitions of atoms (maximal irreducible sets). We also characterize positive power com-
pact operators having a unique non-zero atom which appears as a natural generalization of irreducible
operators and are also considered in epidemiological models. Using the different characterizations of
atoms, we also provide a short proof for the representation of the ascent of a positive power compact
operator as the maximal length in the graph of critical atoms.

1. INTRODUCTION AND MAIN RESULTS

1.1. Setting and main goals. We consider the Lebesgue space L = LP(Q, F, u) with p € (1, +0),
and a state space () endowed with a o-field F and a non-zero o-finite measure p. Let T be a positive
bounded operator on LP. For A € F, we denote by T'(A) the support of T(1,4) (if 14 does not belong
to LP, then one can replace it by f1,4 for any positive function f € LP) which is defined up to sets of
p-zero measure. Then, we say a set A € F is invariant if T(A) c A. A set A is co-invariant if A° is
invariant (or equivalently if A is invariant for the dual operator T*). The collection of admissible sets
corresponds to the o-field A c F generated by the invariant sets. We define the atoms as the minimal
admissible sets with positive measure. An atom is non-zero if T restricted to this atom is non-zero.
An atom is critical if it is non-zero and the spectral radii of T' and of T restricted to this atom are
equal.

Building on works by Schwartz [25] and Jang-Lewis and Victory [17], that study in particular
generalizations of triangularizations of matrices to operators, our aim in this work is threefold:

(1) give several equivalent definitions of atoms,

(2) describe all the nonnegative eigenfunctions of T using distinguished atoms, allowing a charac-
terization of operators T having a unique non-zero atom;

(3) describe all the generalized eigenfunctions of T whose eigenvalue is the spectral radius of T,
and represent the ascent of T as the maximal length in the graph of critical atoms.

Except the characterization of atoms, all our results are proved under the assumption that T is power
compact.
We now give details on each of these aspects, discussing the relevant literature after each statement.

1.2. On atoms. For a measurable set A, we consider its future F(A) (resp. its past P(A)) as the
smallest invariant (resp. co-invariant) set containing A. When 7 is seen as the transmission operator for
an epidemic propagation, see Delmas, Dronnier and Zitt [8], the future F'(A) can be interpreted as the
sub-population of 2 which might be infected by an epidemic starting in A, and P(A) can be interpreted
as the sub-population of 2 which may contaminate the population A. Motivated by the point of view
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of successive infections, we prove the following interpretation of the future in Corollary 3.45, for A € F:

'(A) = | TM(A) = F(A).
neN

We say the operator T on LP is irreducible if its only invariant sets are a.e. equal to ¢J or {2; in
particular F'(A) = P(A) = Q for any measurable set A with positive measure. We say that a set A e F
is irreducible if it has positive measure and the operator T restricted to the set A is irreducible.

Motivated by the example of Volterra operator, see Example 3.20 below for details, and by an
analogy with order theory, we say that an admissible set A is conver if A = P(A) n F(A).

Our first result gives equivalent characterizations of atoms using convex sets and irreducible sets.

Theorem 1 (Equivalent definitions of atoms). Let T be a positive operator on LP with p € (1, +).
The following properties are equivalent.

(i) The set A is an atom.

(ii) The set A is minimal among convez sets with positive measure.
(iii) The set A is an admissible irreducible set.
(iv) The set A is a maximal irreducible set.

Following [25], we also give an at most countable partition of Q in atoms and a (possibly empty)
set Qg such that T restricted to each atom is irreducible; if the operator T" is power compact, then T
is quasi-nilpotent on €.

Remark 1.1 (Related notions and results.). Various definitions and properties of atoms already appear
in the literature. Our definition of invariance and atoms are adapted from Schwartz [25], see also
Victory [27, 28]. The past of a set appears in Nelson [20] (as the closure) and in Jang-Lewis and
Victory [17] (as closure for bands in a Banach lattice). Irreducibility corresponds to ideal-irreducibility
from Schaefer [24]. Maximal irreducible sets appear in [20] and [27] for kernel operators (where they are
called components), and Omladi¢ and Omladi¢ [21] for more general Banach lattices (where they are
called classes). Convexity of atoms is used in the proof of [25, Lemma 12]; the irreducible bands used
in the Frobenius decomposition from Jang and Victory [15] are convex irreducible sets, and the semi-
invariant bands, considered by Bernik, Marcoux and Radjavi [5] are in particular convex. However,
to the best of our knowledge, convexity has not been studied for its own sake in this setting, and the
equivalence provided by Theorem 1 is new.

Finally, the decomposition of the space in atoms and a part where T is quasi-nilpotent is essentially
due to Schwartz [25]. It corresponds, for nonnegative matrices, to the Frobenius normal form introduced
by Victory [29], that is, a block triangularization of the matrix according to the communication classes.
Notice that the triangularization of matrices has been extended to (bounded) operators in Banach
spaces by Ringrose [22] using invariant spaces, see also Dowson [10, Section 2].

1.3. Nonnegative eigenfunctions. From now on we assume that the positive operator T' is power
compact with positive spectral radius p(T') > 0. For a (non-zero) eigenfunction v of T', let p(v) denote
the corresponding eigenvalue: Tv = p(v) v (and similarly for left eigenfunctions).

Let us recall briefly two key results on nonnegative eigenfunctions for positive power compact oper-
ators, see Theorem 4.2. Let m(\,T) denote the algebraic multiplicity of A € C*, that is, the dimension
of Jpen Ker (T — AId)*. Recall that A € C* is a simple eigenvalue if m(\,7) = 1. According to
Krein-Rutman theorem, p(T') is an eigenvalue of T, and there exists corresponding nonnegative right
and left eigenfunctions. Furthermore, if p(T) is positive and if T is irreducible, the Perron-Jentzsch
theorem states that the eigenvalue p(7T') is simple, and the corresponding right and left eigenfunctions
are in fact positive.

Our first result characterizes monatomic operators, that is, operators having a unique non-zero
atom, in terms of nonnegative eigenfunctions.

Theorem 2 (Characterization of monatomic operators). Let T be a positive power compact operator
on LP with p € (1,400) with positive spectral radius. The following properties are equivalent.

(i) The operator T is a monatomic.
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(i) There exist a unique right and a unique left nonnegative eigenfunctions of T related to a non-
zero eigenvalue, and p(T') is a simple eigenvalue of T

(iii) There exist a unique right and a unique left nonnegative eigenfunctions of T related to a non-
zero eigenvalue, say u and v, and supp(u) N supp(v) has positive measure.

Furthermore, when the operator T is monatomic, if u and v denote its unique right and left nonnegative
eigenfunctions, then p(u) = p(v) = p(T) and supp(u) N supp(v) is the non-zero atom.

Remark 1.2 (On monatomicity). Monatomicity is a natural extension of irreducibility, and generalizes
the notion of quasi-irreducibility defined for symmetrical operators, see Bollobas, Janson and Riordan
[7, Definition 2.11]. Monatomic operators naturally appear when studying the concavity property of
the function n — p(T'M,,) where 1 is a [0, 1]-valued measurable function defined on Q and M, the
multiplication by 7 operator defined on LP, see for example Delmas, Dronnier and Zitt [9, Lemma 7.3]
and its discussion for additional references in particular in epidemiology.

More generally, we may characterize nonnegative eigenfunctions in terms of the atoms appearing in
their support. Let us give a few more definitions. Let 2 denote the set of atoms (which is at most
countable and might be empty); and we introduce a (partial) order < and the corresponding strict
order < on this set (see Proposition 3.38): for two atoms A, B, we write B < A if B < F(A)\A. A
family of atoms is an antichain if no two atoms in the family satisfy B < A. For any atom A, let p(A)
be the spectral radius of the restriction of T' to A. Let us say that an atom A is distinguished if, for
any atom B, B < A implies that p(B) < p(A), and that an eigenvalue A is distinguished if there exists
a distinguished atom A with p(A) = A. For A € R}, we consider the (finite but possible empty) set
A(N) of atoms with spectral radius A and the subset 2qist(A) of distinguished atoms associated to A:

AN) ={AeA: p(4A) =2} and Agist(A) = {AeA(N) : A is distinguished} .

To any distinguished atom A, we may associate a unique (up to a multiplicative constant) nonneg-
ative eigenfunction denoted w, such that supp(wa) = F(A) and furthermore p(ws) = p(A) (see
Lemma 4.12 (iii)); and then the following holds.

Theorem 3 (Characterization of nonnegative right eigenfunctions). Let T be a positive power compact
operator on LP with p € (1,+00). Let A > 0. We have the following properties.

(i) There exists a nonnegative eigenfunction of T with eigenvalue A if and only if \ is a distin-
guished eigenvalue.

(ii) The set Aqist(A) is a (possibly empty) finite antichain of atoms, and the family (wa) aey,.. (N
is linearly independent.

(ii) The cone of nonnegative right eigenfunctions of T with eigenvalue X\ is the conical hull of
{wa: A€ Uaist(N)}, and more precisely: if v is a nonnegative eigenfunction with p(v) = A,
then we have:

v = Z CAWA,
AeUaqist (M)
where ca € Ry, and ca > 0 if and only if A < supp(v).

Remark 1.3 (Related results). The theorem is in essence a reformulation of results by Jang-Lewis and
Victory. More precisely, definitions and characterization of distinguished atoms and eigenvalues appear
in [16, 17, 26, 27| ; Point (i) is in [17, Theorem IV.1]| in the more general context of power compact
operators on a Banach lattice with an order continuous norm, and Point (iii) appears in [27, Corollary
1] for power compact kernel operators on LP.

The salient point of our approach is that it leverages the decomposition of the multiplicities of the
eigenvalues given in [25, Theorem 7] and our characterization of atoms from Theorem 1 to provide
simpler and shorter proofs.

1.4. Critical atoms and generalized eigenspace. We now give a particular attention to the atoms
associated to p(T). We define the generalized eigenspace:
K(T) = | ] Ker (T = p(T)1d)* ,
keN
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Following [11] and [18], we define, with the convention inf ¢J = +o0, the ascent of T at its spectral
radius p(T) by:

ar = inf{k e N : Ker (T — p(T)1d)* = Ker (T — p(T)Id)**1}.
It is well-known, see [18], that when the operator T is power compact, the ascent ar is finite.

We say that an atom A is critical when we have p(A) = p(T), and we denote Aeris = A(p(T")) the
set of the critical atoms. For n > 1, a chain of length n is a sequence (Ay, ..., A,) of elements of Uit
such that A;y1 < A; for all 0 < i < n. The height h(A) of a critical atom A is one plus the maximum
length of a chain starting at A.

Our last result is the following.

Theorem 4 (Ascent and maximal height). Let T be a positive power compact operator on LP with
p € (1, +00) with positive spectral radius. Then the ascent of T at its spectral radius p(T) is equal to
the mazimal height of the critical atoms:
= h(A).
or = jopx hA)
This result is also stated in [15, 17] for positive power compact operators on Banach lattices with
order continuous norm. Here also, we provide a shorter proof using properties of convex sets.

1.5. Structure of the paper. After recalling basic notions on Banach spaces in Section 2, we intro-
duce the invariant/admissible sets and the atoms in Section 3, then we define the future and the past
of a set in Section 3.2, the irreducible sets in Section 3.3, the convex sets in Section 3.5 and the order
< in Section 3.9. We then study properties and characterizations of atoms in Sections 3.7 and 3.8, and
we stress some relation between the atoms of T" and 7™ in Section 3.10.

To build intuition, we devote Section 3.4 to the particular case where (2 is countable, and therefore
a union of atoms.

We characterize the cone of nonnegative eigenfunctions with the same eigenvalue for power compact
positive operators in Section 4.2 and prove Theorem 3 (see Theorem 4.13). Section 4.3 is devoted to
the proof of Theorem 2 (see Theorem 4.15) on the characterization of monatomic operators.

Section 5 is devoted to the generalized eigenfunction associated to the eigenvalue p(T") and Theorem 4
(see Theorem 5.3 and Corollary 5.4).

2. NOTATIONS

2.1. Ordered set. Let (E, <) be a (partially) ordered set, also called poset. Whenever it exists, the
supremum of A c E, denoted by sup(A), is the least upper bound of A (formally, sup(A) € E is defined
by: for all z € A, x < sup(A) and if for some z € F one has © < z for all z € A, then sup(A) < z). A
collection (x;);ez of elements of E is an antichain if for all distinct ¢, j € Z, the elements z; and x; are
not comparable for the order relation. A set D c F is a downset if for all x € D,y € E, the relation
y < x implies y € D.

2.2. Banach space and Banach lattice. Let (X,||-||) be a complex Banach space not reduced
to {0}. An operator T on X is a bounded linear (and thus continuous) map from X to itself. Its
operator norm is given by:

[T lx =sup{[T(x)] : e Xst. ||z]=1},
its spectrum by Sp(T) = {A € C: T — A1d has no inverse}, where Id is the identity operator on X,
and its spectral radius (see [23, Theorem 18.9]) by:
(1) p(T) = sup{|A|: e Sp(T)} = lim || T [|3".

n—0o0
By convention we set 70 = Id.
Let X* denote the (topological) dual Banach space of X, that is the set of all the bounded linear
forms on X. For z € X, z* € X*, let (z*,z) denote the duality product. For an operator T, the dual
operator T* on X* is defined by (T*z*,z) = (z*,Tz) for all z € X, 2* € X*.
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If A e Cand v e X\{0} satisfy T'(v) = Av, we say that v is a right eigenfunction of T', A is a
right eigenvalue of T', and, in view of the forthcoming Corollary 4.10, shall write A = p(v). Any right
eigenvalue (resp. eigenfunction) of T™ is called a left eigenvalue (resp. eigenfunction) of T. Unless
there is an ambiguity, we shall simply write eigenvalue and eigenfunction for right eigenvalues and
eigenfunctions.

An ordered real Banach space (X, || -], <) is a real Banach space (X, || - ||) with an order relation <.
For any z € X, we define |z| = sup({z, —x}) the supremum of x and —x whenever it exists. Following
[24, Section 2], the ordered Banach space (X, |- ||, <) is a Banach lattice if:

(1) For any z,y,z € X, X = 0 such that <y, we have z + z < y + z and Az < A\y.
(2) For any x,y € X, there exists a supremum of z and y in X.
(3) For any x,y € X so that |z| < |y|, we have ||z ]| < | y|

Let (X, ]| -]|, <) be a real Banach lattice. A vector subspace Y of X is an ideal if:
veY,yeX, |y <|z] = yeV

Let T be an operator on X. A set Z X is T-invariant or simply invariant when there is no ambiguity,
if T(Z) < Z. An operator T on X is positive if the positive cone X = {x € X : x > 0} is invariant.
The operator T is ideal-irreducible if the only invariant closed ideals of X are {0} and X, see [24,
Definition 8.1].

Any Banach lattice X and any operator T on X admits a natural complex extension. The spectrum
of T will be identified as the spectrum of its complex extension and denoted by Sp(T'), furthermore
by [1, Lemma 6.22], the spectral radius of the complex extension is also given by lim,_,o || 1" H%n
Moreover, by [1, Corollary 3.23], if T is positive (seen as an operator on the real Banach lattice X),
then T and its complex extension have the same norm. If S and T are two operators on X, we write
T < S if the operator S — T is positive. If the operators T,S and S — T are positive, then we have

p(T) < p(S), see [19, Theorem 4.2].

2.3. Lebesgue spaces. Let (2, F, 1) be a measured space with p a o-finite measure such that p(€2) >
0. For any A c F, we denote by o(A) the o-field generated by A. If f,g are two real-valued
measurable functions defined on Q, we write f < g a.e. (resp. f = g a.e.) when pu({f > g}) =0
(resp. p({f # g}) = 0), and denote supp(f) = {f # 0} the support of f. We say that a real-valued
measurable function f is nonnegative when f > 0 a.e., and we say that f is positive, denoted f > 0
a.e., when p({f <0}) =0. If A, B c Q are measurable sets, we write A — B a.e. (resp A = B a.e.)
when 14 < 1p ae. (resp. 14 = 1p a.e.). For the sake of clarity, we will omit to write a.e. in the
proofs. We shall consider the following definition of minimal/maximal sets.

Definition 2.1 (Minimal or maximal set for a property P). Let P < F be a class of measurable sets.
We say that A € F is minimal for P if A € P and for any B € P such that B ¢ A a.e., we have B = (J
a.e. or B = A a.e.. We say that A € F is maximal for P if A¢ is minimal for {B¢: B € P}.

We will usually say “minimal + property set” for a minimal (measurable) set for the corresponding
property. For example, an atom of the measure u is any minimal measurable set with positive measure,
that is, any minimal set of P = {A e F: u(A) > 0}.

Lemma 2.2 (Existence of a minimal set). Let P < F be a class of measurable sets stable by countable
intersection. Then there exists a measurable set minimal for P.

Proof. We recall, see [13, Appendix A.5] (where the result is stated for p a probability measure, but
can be easily extended to a o-finite measure), that if {f; : i € I'} is a (possibly uncountable) family of
[—o0, +0]-valued measurable defined on €, then there exists a [—00, +00]-valued measurable function
f, called the essential infimum of {f; : ¢ € I} such that:

(i) Forallie I, f; = f ae..
(i) If g is another [—oo, +o0]-valued measurable function satisfying (i), then a.e. f > g.
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Furthermore, there exists an at most countable set I’ c I such that a.e. f = inf;cpr f;.

We consider f the essential infimum of {1p : B € P}. Thus, there exists an at most countable set
P’ P such that a.e. f = infpeps 1p, that is a.e. f = 1p with B’ = (\gop B. Since P is stable
by countable intersection, we get that B’ belongs to P. Property (i) above on the essential infimum
implies also that B’ ¢ B a.e. for all B € P. Thus the set B’ is minimal for . This provides the
existence of a minimal set for P. O

For a measurable function f, we write u(f) = § fdu = §, f(x) u(dx) the integral of f with respect
to p when it is well defined. For p € (1, +0), the Lebesgue space LP(2, F, i) is the set of all real-valued
measurable functions f defined on €2 whose LP-norm, || f |, = u(|f |P)1/P | is finite and where functions
which are a.e. equal are identified. When there is no ambiguity we shall simply write LP () or LP. The
set (LP, | -[|,) is a Banach space with dual (L9, ||-|[,), where 1/p + 1/¢ = 1. The duality product is
thus (g, f) = ng dp for f € LP and g € L?. The Banach space LP endowed with the usual order f < g,
that is p({f > g}) = 0, is a Banach lattice. The positive cone L is the subset of L? of nonnegative
functions. According to [30, Section 2| and [24, Theorem 5.14, p.94], its closed ideal are the sets:

(2) LY ={feLl: fla =0},
where A < Q is measurable.

Let T be an operator on LP. Thanks to [12, Corollary 1.3], T" and its complex extension on the
natural complex extension of LP have the same LP-norm. Let A c € be measurable. We define the
restriction operator of 7' on A, denoted T4, by:

(3) Ta=MsT My, where the operator M, is the multiplication by 14,

and, if p(A) > 0, we denote by T'|4 the corresponding operator on LP(A), where the set A is endowed
with the trace of 7 on A and the measure pla(-) = p(A n-). When there is no ambiguity on the
operator T, we simply write p(A) for the spectral radius of T4 (and of T|4). In particular, we have
p(Q) = p(T) and p(A) = 0 if u(A) = 0. If the operator T is positive, we also have that:

AcB = p(A) <p(B).

A kernel k is a measurable nonnegative function defined on (02, F©2). When possible, we define for
a real-valued measurable function f defined on €2 the function Ty (f) by:

(4) Tk(f)(x)=Lk(ﬂf,y)f(y)u(dy) for zeq.

When it is well defined as an operator on LP, we call T} the kernel operator associated to k.

3. ATOMIC DECOMPOSITION OF A POSITIVE OPERATOR

We consider the Lebesgue space LP = LP(Q,F,u) with g a non-zero o-finite measure and p €
(1,400). In this section, we introduce the notion of invariant set, in order to provide different charac-
terizations of the atoms of a positive bounded operator on LP.

3.1. Invariance and atoms. The ideal-irreducibility of an operator can be described in terms of sets
rather than functions. We follow the presentation of Schwartz [25] (notice u is assumed to be finite
therein).

Let T be a positive operator on LP. Let f € LP and g € L? be two positive functions (with

1/p+1/q = 1). We define the nonnegative function kgg’f] on F2 as, for A,Be F:

KB, A) = (glp, T(f14)) = fBg(x) T(f1a)(z) plda).

Notice that:
(5) KL = koI,
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We shall consider the zeros of kg? of ], that is the set:
(6) Zr ={(B,A) e F2: K¥7V(B, A) = 0}.

Let us stress that the set Z7 does not depend on the choice of the positive functions f € LP and g € LY,
this is indeed a direct consequence of the following equivalences:

(7) EWT(B,A) = 0 — 15T(f14) = 0 ae. <= T*(glp)ls = 0 ac..

For this reason, as long as we consider the zeros of k% o ], when there is no ambiguity, we shall simply
write:

8) kr = ki1,

Notice that for any A € F, the maps kr(-, A) and kr(A4,-) on F are o-additive and nonnegative. We
can now introduce the definition of invariant set.

Definition 3.1 (Invariant and co-invariant sets). Let T' be a positive operator on LP with p € (1, +0).
A set A is T-invariant or simply invariant if it is measurable and k(A°, A) = 0; it is T-co-invariant or
simply co-invariant if A€ is T-invariant. We denote by I the class of the invariant sets.

If A is an invariant set and B = A a.e., then B also is invariant. Note also that A is T-co-invariant
if and only if A is T*-invariant thanks to (5), and that the following equivalences hold:
9) Ais invariant <= 3he L, supp(h) = A, and T(h) =0 on A°.
The next lemma is a direct consequence of the o-additivity of k.

Lemma 3.2 (Countable union and intersection of invariant sets). Any at most countable union or
intersection of invariant (resp. co-invariant) sets is invariant (resp. co-invariant).

We have the following characterization of invariance using closed ideals.

Lemma 3.3 (Invariant sets and invariant closed ideals). Let T be a positive operator on LP with
p € (1,+), and A a measurable set. The set A is T-invariant if and only if the closed ideal LY, is
T-invariant.

Proof. We first assume that A is invariant. Let h € L%, that is h € LP and hlse = 0. Let f’ € LP and

g € LY be positive and set f = f’ + |h|. Since A is invariant, we have k£g7f] (Ac; A) = 0. This gives:

0=<91ac, T(f1a)) = {glae, T(|h])) = (glae, |T(R)]) = 0,
where we used the positivity of T for the inequalities. We get that T'(h)14e = 0, that is, T'(h) € L%.
Thus the ideal L% is invariant.
We now assume that the ideal L%, is invariant. For f € LP and g € L? positive, we have that
914<T(f14) = 0. Therefore k:g,f]‘f] (A, A) = 0, thus the set A is invariant. This ends the proof. O
Ezample 3.4 (The Volterra operator). We consider the measured space (2 = [0, 1], F = B([0, 1]), Leb),

with F the Borel subsets of [0, 1] and Leb the Lebesgue measure on [0, 1], and the kernel k on [0,1]
defined by:

k(z,y) = sy formye [0,1].
The corresponding kernel operator Ty given by (4) is the so-called Volterra operator (see [4] for some
spectral and compactness properties of Volterra operators). One can see that a measurable set A ¢
[0,1] is Ty-invariant (resp. Tp-co-invariant) if and only if A = [a, 1] a.e. (resp. A = [0,a] a.e.) with
a € [0,1].

We give an immediate application of Lemma 3.3.

Lemma 3.5 (T and T" invariant sets). Let T be a positive operator on LP with p € (1,+) and
n e N*. Any T-invariant set is T™-invariant.

We give another example of invariant sets, that will be useful later on.



8 JEAN-FRANGOIS DELMAS, KACEM LEFKI, AND PIERRE-ANDRE ZITT

Lemma 3.6 (The support of a nonnegative eigenfunction is invariant). Let T be a positive operator
on LP with p € (1,400) and v be a nonnegative right eigenfunction of T. Then the support of v is an
invariant set: supp(v) € Z.

Proof. Let f € LP be positive such that f1,-0; = v, and g € L? positive. We have:

kg?f] (supp(v)c, Supp(”)) = <gl{v=0}7 T(fl{v>0})> = <gl{v=0}a T(U)> = p(U) <gl{'u=0}7 U> =0,

where we used that fl(,.qy = v for the second equality and that v is an eigenfunction of 7" with
eigenvalue p(v) for the third one. This proves that the set supp(v) is T-invariant as the zeros of the

map kg,‘? 1 does not depend on the choice of the positive functions f and g. O

In some cases, invariance is the same for an operator and its resolvent.

Lemma 3.7 (Resolvent of a positive operator). Let T be a positive operator on LP with p € (1, +0).
If A € R satisfies A > p(T), then the operator AId —T is invertible, and its inverse is a positive operator
on LP. Moreover, the (\1d —T)~!-invariant sets are evactly the T-invariant sets.

Proof. Since we have A > p(T), the operator (AId —T) is invertible, and its inverse is given by its
Neumann series:

+00
(Ad-T7)~' = YAt
n=0

This proves both that the operator (A Id —T')~! is positive and, thanks to Lemma 3.5, that its invariant
sets are exactly the T-invariant sets. O

Following [25], we consider the atoms associated to T'.

Definition 3.8 (Admissible set and atoms). Let T' be a positive operator on LP withp € (1,+0). A set
which belongs to the o-field A = o(Z) generated by the family T of invariant sets is called admissible.
A minimal admissible set with positive measure is called an atom of the operator T or T-atom.

Notice that a set of positive measure A is a T-atom if and only if it is an atom for the measured
space (€2, A, ). We denote by 2 the set of atoms:

A={AeA: Aisa T-atom}.

Since atoms have positive measure and the measure pu is o-finite, we deduce that the set 2l is at most
countable. When there is no ambiguity on the operator T', we shall simply write atom for T-atom. We
present Example 3.9 below where there is no atom, and Example 3.10 where not all measurable sets
are admissible.

Ezample 3.9 (The Volterra operator). In Example 3.4 on the Volterra operator T}, the admissible
o-field is the Borel o-field on [0,1]: A = F. Notice that the operator T} has no atom: A = .

Ezample 3.10 (A # F). We consider the measured space (€ = [0, 1], F = B([0,1]),Leb), with F the
Borel subsets of [0,1] and Leb the Lebesgue’s measure on [0, 1], and the kernel & on [0, 1] defined by:

(10) k(z,y) = Lo<ijo<y<a+1/2y T Los1/2)Ly<ao—1/2y  (see Fig. la).

Let A < [0,1] be a measurable set. Then A is Ty-invariant if and only if for a.e. x € A°n [0,1/2],
we have Leb ([1/2,2 + 1/2] n A) = 0 and for a.e. x € A° n [1/2,1], we have Leb ([0,2 — 1/2] n A) = 0.
Thus, A is Ty-invariant if and only if for a.e. x € A° n [0,1/2], we have [1/2,x +1/2] < A° ae.
and for a.e. x € A° n [1/2,1], we have [0,z — 1/2] € A® a.e.. Thus A is Ty-invariant if and only if
A =[a,1/2) U [a + 1/2,1] a.e. with a € [0,1/2]. Therefore the o-field A of T;-admissible sets consists
in all the measurable sets which are a.e. equal to A U (A + 1/2) where A c [0,1/2] is a Borel set. In
particular, we have A # F. Notice the operator T} has no atom: 2 = .
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(a) Kernel k defined in (10). (b) Kernel k%? defined in (15).

FIGURE 1. Example of some [0, 1]-valued kernels on [0, 1].

3.2. Future and Past. We now consider the future and past of a set, and refer to Remark 3.17 below
for an epidemiological interpretation. Recall the Definition 2.1 on minimal and maximal set.

Definition 3.11 (Future and past). Let T be a positive operator on LP with p € (1,+). Let A be
a measurable set. We define its future, F(A), as the minimal invariant set containing A (that is,
the minimal set of P = {Be€Z: A c B a.e.}) and its past, P(A), as the minimal co-invariant set
containing A.

We shall use later on the following notation for the future and past of a set A without A:
(11) F*(A) = F(A) n A° and P*(A)= P(A)n A°.
The next lemma ensures the existence of the future and the past.

Lemma 3.12 (Existence of future and past). Let A € F, then its future and its past exist and are
unique, up to an a.e. equality.

Proof. We only consider the future, as the proof concerning the past is similar. The set P = {B €
Z: A c Bae.} is stable by countable intersection thanks to Lemma 3.2. Lemma 2.2 ensures the

existence of a minimal set for P. The uniqueness is also clear. This provide the existence of the future
of A. O

Let us mention that the “k-closure” of a set for a kernel operator Ty, introduced by Nelson [20, p. 714]
correspond to its past (with respect to the invariant sets associated to T}). Let us gather without proof
a number of elementary facts.

Lemma 3.13 (Basic properties of the future of a measurable set). For any measurable sets A and B,
and for any at most countable family of measurable sets (A;)ier, the following properties hold:
(i) F(&) = a.e. and F(Q) =Q a.e..
(i) A set A is invariant if and only if F(A) = A a.e..
(iii) If A< B a.e., then F(A) c F(B) a.e..
(iv) F(Uz’e] Ai) = Uie[ F(Al) a.e..
(v) F((Nics Ai) € (Nies F'(Ai) a.e.; the reverse inclusion does not hold in general.
(vi) F(F(A)) = F(A) a.e..
The properties (i-vi) also hold with F' replaced by P.

Futures and pasts are related by the following elementary result; by contrast, note that the inclusion
A < F(B) does not imply that B < P(A) in general, see Example 3.18.

Lemma 3.14 (Intersection of a future and a past). Let A, B be two measurable sets. We have:

AnPB)= ae. < F(A)nP(B) = a.e. —< F(A)nB= a.e.
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Proof. If An P(B) = &, then A in included in P(B)°. Since the set P(B)¢ is invariant, we have
F(A) ¢ P(B)° by minimality, which means that F(A) n P(B) = . The converse is clear since
A < F(A). The second equivalence is proved similarly. O

3.3. Irreducibility. Similarly to Schaefer [24, Definition 8.1], we can define the irreducibility of an
operator in terms of invariance.

Definition 3.15 (Irreducible operators and invariant sets). Let T' be a positive operator on LP with
pe (1,+0).
(i) The operator T is irreducible if its only invariant sets are a.e. equal to & or Q.
(i) The measurable set A is T-irreducible or simply irreducible if it is measurable with positive
measure and if the restricted operator T|a on LP(A) is irreducible.

We refer to Lemma 3.30 and Theorem 3.34 for relations between irreducible sets and atoms. See
also Example 3.42 for a comment on the irreducible sets of 7" and of T2. We now state explicitly
the relation between invariance and irreducibility from Section 2.2 and from Definitions 3.1 and 3.15.
Recall the definition of the closed ideal in (2).

Lemma 3.16. Let T be a positive operator on LP with p € (1,+0). Then the operator T is irreducible
if and only if it is ideal-irreducible.

Proof. Tt is a direct consequence of Lemma 3.3 and the fact that the closed ideals of LP are exactly
given by L for A measurable, see [30, Section 2| and [24, Theorem 5.14, p. 94]. O

3.4. The countable case and an underlying preorder. We assume in this section only that € is
at most countable, and without loss of generality that pu({z}) > 0 for all x € Q. Let T be a positive
operator on LP. The the map kr is entirely defined by the values of kr({z},{y}), denoted kr(zx,y),
for z,y € Q. The notions of admissibility, atoms, invariance and irreducibility may in that case be
completely understood by studying a particular binary relation on €2 given in terms of k7. To see this,
we write z < y if = y or if there exists n € N* and (v = 2,21, ..., Tp_1,7n, = y) € Q"L such that
[1—, kr(zi—1,2;) > 0. The relation < defines a preorder on  (that is, a reflexive transitive binary
relation). The relation z ~ y < (x <y and y < ) is then an equivalence relation. The equivalence
classes of ~ correspond to atoms of the operator T, and the preorder < naturally induces a (partial)
order on them: for two atoms A, B, we have A < B if x < y for all z € A and y € B. The admissible
sets are the sets A that may be written as unions of atoms (the o-field A is generated by the set of
atoms). Furthermore, a set A is invariant if and only if the two following conditions hold:

- A is the union of atoms (4;);es (in particular, A is admissible),
- The family (A;);es is a downset for the order induced by < on atoms.

For a set A, its future corresponds to the downward closure of A, that is, the smallest downset
containing A, and its future and past are given by:

F(A) = U{yeQ: y<z} and P(A)= U{yeQ: x < y}.
zeA zeA

Notice the definition of atoms, invariant sets, future and past of a set depends only on the support
{kr > 0} = Q2 of the kernel k7.

Remark 3.17 (Epidemiological interpretation). In the epidemiological interpretation where each ele-
ment of € is seen as an individual or an homogeneous sub-population and 7" can be assimilated to the
next generation operator, we have:

- kr(z,y) > 0 means that individual y can directly infect individual z;

- = < y when there may be a chain of infections from individual y to individual x;

- the set A is invariant if an epidemic started in A stays within A;

- the future F'(A) of A is the set of all individuals that might get infected by an epidemic starting
at every individual of A;

- the past P(A) of A is the set of all individuals that might infect an individual of A.
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O—(2—)

0~ 0 0 0 O
* 0 « 0 0 0
0~ 0 0 0 O
0~ 0 0 0 O
0~ 0 0 0 O
00 0 = x 0 @
(a) Matrix on {1,...,6} with * > 0. (b) Associated communication graph.

FIGURE 2. Matrix and associated communication graph from Example 3.18.

In Section 3.5 we shall consider convex sets, that is, sets A such that A = F(A) n P(A). They
have a simple representation when () is at most countable. Following the terminology of [6, Section
L4, p. 7], for z,y € Q, we define the interval [z,y] = {z € Q: x < 2z <y}, and say that a set A < Q is
(order-)convez if:

r,ye A = |[z,y] c A

It is easily checked that an order-convex set corresponds to being the union of atoms (A4;);c; where the
family (A;);er is order convex, that is, if A is an atom such that 4; < A < Ay for some i,i' € I, then
A belongs to the family (A;)qer.

Ezample 3.18 (A finite elementary case). We consider the finite case: Q = {1,...,n} with n e N* u
is the counting measure, LP(Q2) is identified with R™ and operators on LP with n x n real matrices.
A matrix M = (M, ;)1<i j<n With nonnegative entries is alternatively represented by the oriented
weighted graph G = (V, E) with V' = {1,...,n} and with a weight M; ; to the edge (j,i) € E.

To illustrate, consider the case n = 6 with the matrix given in Fig. 2a where the * correspond
to positive terms. The corresponding communication graph (an oriented edge is represented for each
positive entry of the matrix) is given in Fig. 2b. The atoms are: {1,2,3}, {4}, {5} and {6}. The
invariant sets are: Q, {4,5,6}, {4, 6}, {5,6}, {6} and &. For example the sets {1,2,3}, {1,2} and {1}
are irreducible, and among those three only the first one is admissible. For example the sets {1, 2, 3,4},
{5} and {5,6} are convex. Even though the set {5}¢ is admissible, it is not convex.

Let us notice that the inclusion in Lemma 3.13 (v) is not an equality in general; indeed we have:
F({4} n {5}) = F(&¥) = & whereas F({4}) n F({5}) = {6}. Notice also that {5} belongs to the future
of {1,2, 3,4}, but the latter does not belong to the past of {5}.

The countable state space €2 and the above representation of convex sets will guide many definitions
and proofs below. The general case is at the same time more technical (invariant sets are defined up
to an a.e. equality), and more subtle: for example, the union of all atoms may be a strict subset of
the whole space; it may even be empty, as in Example 3.9 where there exists no atom of the Volterra
operator. For this reason we will work only on invariant and co-invariant sets, viewing them intuitively
as down- and up-sets of an underlying order that we will not write down formally.

3.5. Order-convex subsets. By construction of the future and the past, a measurable set A is always
included in F(A) n P(A). The set A is convex when there is equality.

Definition 3.19 (Order-convex subset). Let T be a positive operator on LP with p € (1,400). A set
A is order-convex for T, or T-convex, if it is measurable and A = F(A) n P(A) a.e..

When there is no ambiguity on the operator T', we shall simply write convex for T-convex.

Ezample 3.20 (Convex sets of the Volterra operator). We continue Example 3.4 on the Volterra oper-
ator. Using the description therein of invariant and co-invariant sets, we get that a set A is convex if
and only if A = [a,b] a.e. with 0 <a<b< 1.
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The three sets A, F*(A) and P*(A) are dis-
joint as A is convex. Let Ay = (P(A) u
F(A))¢, so that the four sets A, F*(A),
P*(A) and Ap form a partition of Q in ad-
missible sets. The possible connections be-
tween the four sets are depicted in the pic-
ture: if there is no arrow from B to C' then
kr(C,B) = 0.

FIGURE 3. Past and future for a T-convex set A.

Remark 3.21 (Atoms, irreducibility and convexity coincide for 7" and T™). Notice that the admissible
o-field is the same for the operator T and its dual 7*. Thanks to (5), the operator T is irreducible if
and only if T* is irreducible. Thus a set A is a T-atom (resp. T-irreducible, T-convex) if and only if
it is a T*-atom (resp. T*-irreducible, T*-convex).

Remark 3.22 (Convex sets on a countable measurable set). We go back to the framework of subsec-
tion 3.4, where €2 is an at most countable set. Then A is a convex set in the sense of Definition 3.19
if and only if A is order-convex in the sense of the definition of subsection 3.4. Therefore the two
definitions are coherent.

Recall (11), where we set F*(A) = F(A) n A° and P*(A) = P(A) n A°.

Lemma 3.23 (Characterization of convexity). Let A be a measurable set. The following properties
are equivalent:
(i) A is conver.
(i) F*(A) n P*(A) = & a.e..
(i) F*(A) is invariant.
(iv) P*(A) is co-invariant.
(v) There exist an invariant set B and a co-invariant set C such that A= B n C a.e..

As a particular consequence of (v), we get that if A is measurable then F(A) n P(A) is convex. We
illustrate in Fig. 3 the possible connections between the sets A, F*(A), P*(A) and the complementary
of their union, when A is convex.

Proof. Use the definition of convexity and that Point (ii) is equivalent to P(A) n F(A) n A° = &J to
get that Points (i) and (ii) are equivalent. Clearly Point (i) implies Point (v). The proofs involving (iii)
are similar to the ones involving (iv), so the latter are left to the reader.

We assume Point (ii) and prove Point (iii). As F*(A) n P*(A) = J, the set F*(A) is a subset of
P*(A)°. Therefore, the set F*(A) = (AU F*(A)) n (AU P*(A))° = F(A) n P(A)° is invariant as the
intersection of two invariant sets. Thus Point (iii) holds.

Conversely, assuming Point (iii), the set F*(A) is invariant, so the set P(A) n F*(A)° is a co-
invariant set containing A and included in P(A). By minimality of P(A), this set is equal to P(A),
thus P(A) ¢ F*(A)c. This gives Point (ii).

Finally let us assume Point (v) and prove Point (i). By assumption, we have A = B n C with B
invariant and C' co-invariant. By minimality, we get that F'(A) € B and P(A) c C, and thus:

Ac F(A)nP(A) cBnC = A.
This gives that A is convex, that is, Point (i). O

We end this section with an auxiliary result on convexity.
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Lemma 3.24 (Intersection of convex and invariant sets). Let A be a convex set and B an invariant
set. Then the set A n B is convex.

Proof. We have An B = P(A) n F(A) n B by definition of convexity. So by Lemma 3.23 it is convex
as the intersection of the co-invariant set P(A) with the invariant set F(A) n B. O

3.6. Properties of the restricted operators. Let ' <  be a measurable set with positive mea-
sure. Let T be a positive operator on LP with p € (1,4+00). We start with a result of stability of
invariant/irreducible sets and atoms by restriction. Recall Tq is the restriction of T to € given by (3).

Lemma 3.25 (Restriction and invariance/irreducibility). Let T be a positive operator on LP with
p e (1,4m), & < Q a measurable set with positive measure, and T' = Tqs the restriction of T on €Y.
We have the following properties.
(i) The set Q' is T'-invariant and T'-co-invariant.
(i) Every T-invariant set is T'-invariant.
(#ii) One can replace invariant in (ii) by co-invariant and by admissible.
(iv) The set A < Q' is T-irreducible if and only if it is T -irreducible.
(v) If Q' is T-invariant and A < ', then A is T-invariant if and only if it is T'-invariant.

Proof. Since kr/ (¢, ) = kp/(-,2¢) = 0, we obtain Point (i). Recall the definition of Z7, the set of
zeros of kp, given in (6). Since T is positive, we clearly have kp > kps and thus Zp < Zp/. This gives
Point (ii) and the co-invariant case in Point (iii). As the invariant sets generates the o-field of the
admissible sets, we get the admissible case of Point (iii). Point (iv) is immediate. We have for A < ':

kr(A® A) = kr(A° N QY A) + kr(A° n Q¢ A) < k(A% A) + kr(Q°, Q).
If Q' is invariant, and thus kr(2¢, Q) = 0, we deduce that if A is T’-invariant, then it is T-invariant.

This and Point (ii) give Point (v). O

We now study more the stability of convexity and future by restriction. Let F’(A) denote the future
of the measurable set A for the operator TV = Tqy.

Lemma 3.26 (Restriction and convexity/future). Let T be a positive operator on LP with p € (1, +00),
Q' < Q be a measurable set with positive measure, and T' = Tq: be the restriction of T on Q. For any
measurable set A < Q, the following properties hold.

(i) If A is T-convex then it is T'-conver.
(ii) We have a.e.:

(12) F(A) = F(F(A) n Q) U F'(A).

(iii) If Q' is T-convex, then we have F'(A) = F(A) n ' a.e.. In particular, T'-invariant subsets of
Q' are exactly the trace on ' of T-invariant sets.

Proof. Let A c € be measurable sets. As F(A) is T-invariant, then by Lemma 3.25-(ii), we get that
the set F(A) n ' is T’-invariant, and similarly the set P(A) n Q' is T"-co-invariant. Since they both
contain A, we deduce by the definition of the future and past of a set, that:

(13) F'(A)c F(A)nQ and P'(A)c P(A)nQ.

If A is T-convex, we deduce that A ¢ P'(A) n F'(A) < P(A) n F(A) = A. This implies that A is
T’-convex, that is Point (i).

We prove Point (ii). Setting B = F(A) n Q¢ and C = F(B) u F'(A), the goal is to prove that
C = F(A). We shall first prove that C' is T-invariant. Thanks to (13), we have F(A)n(Q n F'(A)¢)" =
(F(A) nQ¢) U F'(A) c C, that is:

(14) C¢c F(A) U (¥ n F'(A)).
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We deduce that:

kr(C¢,C) < kr(C° F(B)) + kr(F(A)¢, F'(A)) + kr(Q n F'(A), F'(A))
<

r(F(B), F(B)) + kr(F(A), F(A)) + ko (F/(A)°, F'(4))
=0,
where we used the additivity and monotonicity of kr and (14) for the first inequality; the monotonicity
of kr, F(B) c C, (13) (twice) and the definition of T” for the second; that F'(B) and F(A) are T-
invariant, and F’(A) is T'-invariant for the last equality. Thus, the set C is T-invariant. As A < C'
F(A) (use A < F'(A) c C for the first inclusion, and C' < F(F(A)) u F(A) = F(A) for the second,
see Lemma 3.13 (vi) and (13)), we deduce by minimality of the future that C' = F(A). This gives
Point (ii).
We now prove Point (iii). Since Q' is T-convex, we have:

F(A)nQ°=F(A) n (F(Q)nP(Q))° =F(A) n (F(Q)° v P)°).
Since F(A) c F(Q), we deduce that:
F(A)nQ°=F(A) nP(Q)S,

which is invariant as intersection of two invariant sets. Now, using (ii), we get that F(A) = (F(A) n
Q'¢) U F'(A). Taking the intersection with Q' yields that F(A) n ' = F'(A). This ends the proof. O

3.7. Properties of atoms. We first prove that atoms are convex and irreducible.

Lemma 3.27. Atoms are convez.

Proof. Let A be an atom and set B = F(A) n P(A). We consider the family of measurable sets
A ={CeF: CnA= Jae or Bc C a.e.}. For simplicity we do not write a.e. anymore in this
proof. Let C be an invariant set. As A is a minimal admissible set, we have Cn A = ZJor Ac C. In
the latter case, by minimality of F'(A), as C is invariant, we deduce that F(A) c C, and thus B c C.
In any case, we get that C' belongs to A’, and thus A’ contains all the invariant sets, that is Z < A’.
A similar argument implies that A’ contains all the co-invariant sets, that is the complementary of all
the invariant sets.

It is clear that A’ is stable by countable union and countable intersection. Therefore, by [2, The-
orem 4.2, p. 130], A’ contains the o-field generated by Z, that is A < A’. In particular, the set A
belongs to A’. As A is an atom it has positive measure. This gives that B < A. As A < F(A) n P(A),
we deduce that B = A, that is, the set A is convex. d

Lemma 3.28. Atoms are irreducible.

Proof. Let A be an atom. It is convex according to Lemma 3.27. Set T = T4. Let B ¢ A
be T’-invariant (and thus T'|s-invariant), and denote its future with respect to 77 by F'(B). By
Lemma 3.26 (iii), we deduce that B = F'(B) = F(B) n A. This implies that B is T-admissible. Since
A is an atom, we get that B = A or B = . This implies that T|4 on LP(A) is irreducible, that is, A
is irreducible. O

We then prove that intersections of irreducible sets with admissible sets are trivial.

Lemma 3.29 (Intersection of irreducible and admissible sets). If A is admissible and B irreducible,
then either An B = a.e. or Bc A a.e..

Proof. Let B be irreducible. Assume first the set A is invariant. According to Lemma 3.25 (i)-(ii)
with Q' = B and Lemma 3.2, the intersection A n B is invariant for the operator Tg, and thus also
for the restricted operator T'|p on L?(B). Since B is irreducible, we deduce that A n B = ¢J a.e. or
A n B = B a.e.. Thus the collection of sets whose intersection with B is trivial, that is, A" = {C €
F: CnB=ae. or Bc (C ae.}, contains all invariant sets.

It is clear that A’ is stable by countable union and complement, so it contains the o-field A of the
admissible sets which is generated by the invariant sets, that is A < A’. Thus the set A belongs to A’
and satisfies An B = & or B c A. O
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We directly deduce from the previous lemma the following result.
Lemma 3.30 (Irreducibility and atoms I). All irreducible admissible sets are atoms.
We then prove that any irreducible set is a subset of an atom.

Lemma 3.31 (Irreducibility and atoms II). If A is irreducible, then F(A) n P(A) is an atom (which
contains A a.e.).

Proof. Let A be irreducible (and thus measurable with positive measure). Set A’ = P(A) n F(A). Let
B < A’ be T-invariant. Then by Lemma 3.25 (i)-(ii), we obtain that A n B is Ts-invariant, so by
irreducibility of A we have either Ac Bor An B = . If Ac B, then we have F(A) c F(B) = B c
A’ c F(A) as B is a T-invariant set contained in A’; so we have B = A’. If A~ B = J, then the set
P(A) n B¢ is T-co-invariant and contains A, so we have P(A) n B¢ = P(A) which implies that B = ¢J
as B < A’ ¢ P(A) by hypothesis. This proves that A’ is irreducible. Since A’ is admissible, we deduce
from Lemma 3.30 that A’ is an atom. O

To end this section we complete the statement of Lemma 3.25 by considering atoms. Recall Tq is
the restriction of T to Q' given by (3).

Proposition 3.32 (Restriction and atoms). Let T be a positive operator on LP with p € (1,+),
Q' < Q a measurable set with positive measure, and T" = T = the restriction of T on Y. Let A < €
be measurable.

(i) If A is a T-atom then it is a T'-atom.
(i) Assume Q) is admissible. Then A is a T'-atom if and only if it is a T-atom.

Remark 3.33 (Open question). We conjecture the following result, which would imply (ii): if Q' is
admissible, then A < €' is T’"-admissible if and only if it is T-admissible.

Proof. We first prove Point (i) Let A < Q' be a T-atom. It has a positive measure, and it is T-
irreducible and T-convex by Lemmas 3.27 and 3.28. Tt is then T”-irreducible and T"-convex (and thus
T’-admissible) by Lemmas 3.25 (iv) and 3.26 (i). Thus, it is a 7"-atom by Lemma 3.30.

We now prove Point (ii). Let A be a T'-atom. It has a positive measure, and it is T'-irreducible. It
is also T-irreducible by Lemma 3.25 (iv). This implies that F(A) n P(A) is a T-atom by Lemma 3.31.
Since € is admissible and A < €, we deduce that F(A) n P(A) < €. Thus F(A) n P(A) is a T'-atom
by Point (i). It contains A, thus it is equal to A. This proves that A is a T-atom. O

3.8. A characterization of atoms. The main goal of this subsection is to prove the following theo-
rem, that links the definitions of atoms, convex and irreducible sets.

Theorem 3.34 (Equivalent definitions of atoms). Let T' be a positive operator on LP with p € (1, +0).
The following properties are equivalent.
(i) The set A is an atom.
(ii) The set A is a minimal convez set with positive measure.
(iii) The set A is an admissible irreducible set.
(iv) The set A is a maximal irreducible set.

We first gives another link between convexity and irreducibility before proving the theorem.
Lemma 3.35 (Convexity and irreducibility). A minimal convex set with positive measure is irreducible.

Proof. Assume that A is minimal convex. Let B ¢ A be a Ts-invariant set. By Lemma 3.26 (iii) (with
Q' = A), we have B = F(B) n A, and thus B is convex by Lemma 3.24. Therefore we have B = A or
B = ¢ by minimality. This proves that the set A is irreducible. O

Proof of Theorem 3.34. Assume Point (i), that is, the set A is an atom. By definition it has positive
measure. By Lemma 3.27, it is convex. Since A is a minimal admissible set with positive measure, we
get Point (ii).
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Assume Point (ii), that is, the set A is minimal convex with positive measure. It is irreducible
thanks to Lemma 3.35. As it is also admissible (as a convex set), we get Point (iii).
Notice Point (iii) implies Point (i) by Lemma 3.30.

Assume Point (i) (and thus Points (i)-(iii) by the previous proofs). So the set A is irreducible.
Let us check it is maximal irreducible. Let A" > A be another irreducible set. As the set F(A) is
T-invariant, we get that F/(A) n A’ is Ty -invariant. So by irreducibility of A’, we have F(A) n A" = A’
as A < F(A) n A’ has positive measure. We deduce that A’ ¢ F(A), and similarly A’ < P(A). This
gives A’ ¢ F(A) n P(A) = A as A is convex. Therefore A is a maximal irreducible set, which proves
Point (iv).

Assume Point (iv), that is A is a maximal irreducible set. Thanks to Lemma 3.31, the set P(A) n
F(A) is an atom and thus irreducible by Lemma 3.28. By maximality of A, we have A = P(A) n F(A),
and thus A is an atom. This gives Point (i). O

3.9. An intuitive order on atoms. Nelson [20] introduced an order relation on atoms (therein called
k-components, and which correspond to maximal irreducible sets, therefore to atoms by Theorem 3.34)
using the past of measurable sets (therein k-closures). We rewrite this order relation, using futures
instead of pasts for convenience.

Definition 3.36 (Order relation between atoms). Let T' be a positive operator on LP with p € (1, +00).
Let A, B be two T-atoms. We denote A< B if A< F(B) a.e. (that is, if F(A) c F(B) a.e.).
We write A < B when A< B and A, B are not a.e. equal.

In the epidemiological interpretation of Remark 3.17, we have A < B if A may be infected by
an epidemics starting on B. We first give some equivalent definitions of this relation <. Recall
F*(A) = F(A) n A° and similarly for P*.

Lemma 3.37 (Equivalent definitions of <). Let A, B be two atoms such that A and B are not a.e.
equal. The following properties are equivalent.
(i) Ac F(B) a.e..
(ii) Ac F*(B) a.e..
(iii) B < P(A) a.e..
(iv) B < P*(A) a.e..

Proof. The equivalences between Points (i) and (ii) and between Points (iii) and (iv) are direct conse-
quences of the fact that two atoms are always equal a.e. or disjoint a.e.. We also have that A ¢ F(B)
is equivalent to A n F(B) # & as A is an atom. By Lemma 3.14, as B is also an atom, the property
A n F(B) # J is also equivalent to B — P(A). This ends the proof. O

We can now check that this indeed defines an order relation.
Proposition 3.38 (X is an order relation). The relation < is an order relation on the set of atoms.

Proof. The relation < is clearly reflexive and transitive by definition of < and by the monotony of the
future, see Lemma 3.13 (iii).

Let A, B be two atoms such that A < B and B < A. By definition A ¢ F(B), which implies
F(A) c F(B). A symmetry argument yields F'(B) c F(A), so that both are equal. Similarly P(A) =
P(B). Since A and B are convex, A = P(A) n F(A) = P(B) n F(B) = B, so relation < is an order
relation. O

3.10. Admissible/irreducible sets and atoms for 7" and T™. We end this section with some
comparison between the admissible/irreducible sets and atoms of T' and 7", with n > 2. We denote
by A(S) the set of S-admissible sets, where S is a positive operator. Let us point out that in the next
lemma, one can replace T™ by e’ for example.

Lemma 3.39 (Admissible sets of T™). Let T be a positive operator on LP with p € (1, +0) and n € N*.
(i) Any T-admissible set is T"-admissible, that is, A(T) < A(T").
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0 1
1o —)
(a) Matrix on Q. (b) Associated communication graph.

FIGURE 4. Example of matrix and associated communication graph on = {1, 2} for
which the atoms of the matrix and its square are distinct.

(ii) Any T-convex set is T™-conver.
(iii) If the operator T™ is irreducible, then T is irreducible.

Proof. Lemma 3.5 gives Point (i). If a set A is T-convex, we deduce that A = F(A) n P(A). Then
use Lemma 3.5 to deduce that F'(A) (resp. P(A)) is T"-invariant (resp. T"™-co-invariant) and then
Lemma 3.23 (v) to get that A is thus T™-convex. Point (iii) is immediate using Lemma 3.5. O

We illustrate in the next example that the operator T" and its powers may have different atoms.

Ezample 3.40 (Different atoms of T and T?). We consider the finite state space 2 = {1,2} endowed
with the uniform probability p, and the kernel operator T}, associated to the kernel (or matrix as the
space is finite), given in Fig. 4a. The operator Ty has only one atom {1,2}, whereas its square T,?
admits two atoms {1} and {2}. The fact that {1,2} may be partitioned in T-atoms is in fact generic,
see Proposition 3.47 below.

The admissible sets of T and its power might differ even if there is no atom.

Ezample 3.41 (No atoms and A(T) # A(T?)). We continue Example 3.10. The operator 77 is a kernel
operator with a kernel k%2 on [0, 1], see Fig. 1b, defined by:

(15) k®2(x, y) = (v —y) (1{y<z<1/2} + 1{1/2<y<z}) .

The TZ-invariants sets are a.e. equal to [a,1/2] U [b, 1] with a € [0,1/2] and b € [1/2, 1], whereas the
T}, invariant sets, see Example 3.10, corresponds to those sets with b = a + 1/2. Therefore the o-field
of the T7 admissible sets is exactly the Borel o-field of [0,1]; it does not coincide with the o-field of
the T} admissible sets given in Example 3.10.

We now check that the irreducible sets of 7' and those of T are not always the same.

Example 3.42 (T?-irreducibility does not imply T-irreducibility). We consider the measured space
(€ = [0, 1], F,Leb), with F the Borel subsets of [0, 1] and Leb the Lebesgue measure on [0, 1], and the
kernel k on [0, 1] defined by:

(16) k(ajay) = 1{a:<1/2<y} + 1{y<1/2<$} (See Flg 5&)

Then the operator T2 is a kernel operator with kernel k%2 given by:

k®2($ay) = 2_11{max(z,y)<1/2} + 2_11{min(x,y)>1/2} (see Fig. 5b).

Then the set [0,1/2] is T¢-irreducible, TZ-admissible (and thus a T7-atom), and T} invariant, but it is
neither Ty-irreducible (as Tjg,1/2) = 0) nor Ty-admissible (as [0, 1] is a Tj-atom).

For A c Q measurable and S be positive operators on LP with p € (1, +o0), we denote by S(A) the
support (which is defined a.e.) of Sf, where f € L? is any nonnegative function whose support is a.e.
equal to A (notice the support of Sf is defined up to an a.e. equivalence). More formally: the class
P ={BeF: ks(B,A) =0}, where kg is defined in (8), is stable by countable union; thus Lemma 2.2
implies the existence of a maximal set for P; then by definition its complementary is equal to S(A).
We now state some corresponding preliminary properties in the next two lemmas.

Lemma 3.43 (Basic properties of T(A)). Let T, S be positive operators on LP with p € (1,4+0), and
A a measurable set. We have the following properties.
(i) supp(T(f)) = T(supp(f)) a.e. for any f € L% . In particular, if 14 belongs to LP, then we
have T(A) = supp(T(14)) a.e..
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(a) Kernel k defined in (16). (b) Kernel 2 k%2

FIGURE 5. Support of some {0, 1}-valued kernels.

(i1) T(S(A)) = (TS)(A) a.e. and (T + S)(A) =T(A) v S(A4) a.e..
(iii) If A< B a.e., with B a measurable set, then we have T(A) c T(B) a.e..
(iv) Let (A;)ier be an at most countable family of measurable sets. We have:

T (U Ai> = UT(Ai) ae. and T (ﬂ A7;> c ﬂT(Ai) a.e..
i€l i€l el el

Proof. Let f’ e LP such that f’ > 0 and lg,,(s)f" = f. Then, by (7), we have for any measurable set
B that kr(B,supp(f)) = 0 if and only if B nsupp (T (1supp(f)f’)) = 5. This gives Point (i). Point (ii)
is a direct consequence of Point (i) applied to f1,4 for any positive function f € LP. Point (iii) is a
direct consequence of the positivity of T

We now prove Point (iv). Let B be a measurable set. As the map k7 (B,.) is non-decreasing and o-
additive on F, we have kr (B, J,.; Ai) = 0 if and only if for all i € I, we have kr (B, A;) = 0. Thus the
maximal set B that satisfies kr (B,|J;c; Ai) = 0is ();o; T(Ai), thatis, T (U,o; Ai) = U,y T(4;). The
property T ((,c; Ai) < iy T(4;) is a direct consequence of Point (iii). We thus have Point (iv). O

Lemma 3.44 (T*(A) and invariance/irreducibility). Let T be a positive operator on LP with p €
(1,400). Let A be a measurable set, and n € N*. We have the following properties.

(i) The set A is T-invariant if and only if T(A) € A a.e..
(ii) If the set A is T"-invariant, then for all k € N, the set T*(A) is T™-invariant.
(i5i) If T is a non-zero irreducible operator and u(A) > 0, then we have u(T(A)) > 0. Moreover,
we have T(Q) = Q a.e..

Proof. By definition the set A is T-invariant if and only if A° " T'A = ¢F; this gives Point (i). Let the
set A be T"-invariant and k € N. Then by Lemma 3.43 (ii), we have T"(T*(A)) = T*(T™(A)). Since
we have T"(A) = A, we deduce that T"(T*(A)) = T*(A). This gives Point (ii).

Assume that T is a non-zero irreducible operator and that pu(T(A)) = 0. The latter condition implies
that A is T-invariant, and by irreducibility of T, that A = ¢ or A = Q. As T is a non-zero operator,
we get the latter case is impossible and thus we have u(A) = 0. As the set T'(2) is T-invariant with
positive measure, we deduce that T'(Q2) = Q by the previous argument. This gives Point (iii). O

The following corollary provides an interesting link between the future of a set and the exponential
of T.

Corollary 3.45 (Future and e’). Let T be a positive operator on LP with p € (1,+) and A a
measurable set. We have:
(A =T =F) ae.

neN
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Proof. The first equality is elementary, using the same arguments as for Lemma 3.43 (ii). We prove
the second equality. The set |, . 7™ (A) is clearly T-invariant by Lemma 3.44 (i) and contains A,
we therefore have F'(A) < |J,cnT™(A). As F(A) is a T-invariant set, it is a T"-invariant set for any
n € N by Lemma 3.5. We get that for any n € N, T"(F(A)) < F(A) by Lemma 3.44 (i), and thus
Unen T"(A) € U,en T (F(A)) < F(A). This gives the second equality. O

We give the following result on the restriction of 7" on a convex set.

Lemma 3.46 (Power of a restricted operator on a convex set). Let T' be a positive operator on LP for
pe (1,+00) and A a convex set. Then we have (Ta)™ = (T™) 4 for any n € N*.

For n € N*, we will thus use the notation T% for (T4)" = (T™)4 when A is a convex set.

Proof. Let n € N*. We have:
(T™)a = MAT"Ma = MAT" "MATMa + MAT" " Mps(a)TMa = (T" ") 4 Ta,

where we used that T(A) ¢ F(A) = Au F*(A) for the second equality, and that F*(A) is T-invariant
(as A is convex, see Lemma 3.23) and thus 7"~ !-invariant, so that MAT”AMF*(A) = 0 for the last.
We conclude by iteration. O

The following result on the decomposition of atoms is also related to [25, Theorem 8] which states
that the eigenvalues of 7' (when 7' is compact) whose modulus are equal to the spectral radius of T" are
roots of unity. We say that a family of measurable sets (A;);c; forms an a.e. partition of a measurable
set B if we have: A; n A; = J a.e. for any i # j, and B = | J,.; 4; a.c..

el
Proposition 3.47 (Atoms of powers of T)). Let T be a positive operator on LP with p € (1,+00) and
n e N*. We have the following properties.

(i) If A is a T™-atom, then there exists a T-atom B such that A c B.
(i) Let B be a T-atom. There exists a T"-atom A € B and a divisor d of n such that the family
(Ap)osk<d_1, where Ay = TF(A) n B, forms an a.e. partition of A in T™-atoms.

The second point is slightly more technical; its proof is given in the next section.

Proof of Point (i). Let A be a T™ atom. The family P = {B € A(T): A c B} of measurable sets
is clearly stable by countable intersection. Let A’ denote a minimal set for P, given by Lemma 2.2.
Let B € A(T) such that B <« A’. As B € A(T™) by Lemma 3.39 (i), we get that either A < B or
An B = . By the minimality of A’, we deduce in the former case that A’ = B and in the latter case
that A’ n B = ¢, and thus B = ¢J. This gives that A’ is a T-atom which contains A. O

3.11. Proof of Proposition 3.47 (ii). Thanks to Lemma 3.46 (with A replaced by B), it is enough
to consider the case where () is a T-atom, that is, T is irreducible. The case T' = 0 being trivial,
we shall assume in this section only that T is a positive irreducible operator on LP for p € (1, +00)
and T # 0. In particular, we have T'(Q2) = Q a.e. (see Lemma 3.44 (iii)) and F(A) = Q a.e. for any
measurable set A with positive measure. Motivated by Corollary 3.45, we define, for any measurable
set A with positive measure, the quantity:

m—1
ny = inf {me N* U{oo} : U TI(A) = Q a.e.}.
§=0

If Ais a T™ invariant set with positive measure, the set U?:_()l T7 A is T-invariant and contains A; by
irreducibility it must be equal to 2, so n4 < n. It is also elementary to check that if A — B a.e. for a
measurable set B, then ny > ng > 1.

Let Z* be the family of T™-invariant sets with positive measure. This set is non empty as it contains
2, and we have n = n4 > 1 for all A e Z*. We have the following technical properties.

Lemma 3.48 (Elementary properties). Let n € N* and A € Z* (i.e., a non trivial T™-invariant set).
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(i) Let £ € N. We have for k € N*:
k=1
U T7(A)=Q ae < mna<k.
j=¢
In particular, we have npeq)y = na.
(ii) Set B = A (Ujﬁl_l TI (A)) (notice the indices j are positive). We have:

wB)>0 = np>ny.

Proof. We prove Point (i). The set B = U?;é T7(A) is T™-invariant as union of T"-invariant sets, see
Lemma 3.44 (i), and thus 7"(B) < B. If T*(B) = Q, then we get, as ({ + 1)n — £ > 0 and T(Q) = Q:

(o T(Z-&-l)n—@(g) _ T(é+1)7z(B> c B,
and thus B = Q and na < k. On the other hand, if n4 < k, then we have B = Q and T*(B) = Q.

We prove Point (ii). The set B = A (U;L;‘fl Tj(A)) is T™-invariant, and thus belongs to Z* as
w(B) > 0. Using B < A and thus T7(B) < T7(A) for all the terms j > 0, we get:
na—1 na—1
U @B < | A,
=0 Jj=1
By Point (i) (with £ = 1), the latter set is not a.e. equal to 2, which in turns, using Point (i) again
(but with £ = 0), implies that ng > nu. O

Let n = 2. The supremum nyax = sup {na : A € I} is less or equal than n and is thus a maximum.
We can directly deduce Proposition 3.47 (ii) from the next lemma.

Lemma 3.49. Let A be a T"-invariant set with positive measure such that ng = nmax. We have, with
Ay = TF(A) for ke N:
(i) na is a divisor of n.
(ii) T"A(Ag) = Ag a.e. for all k € N.
(iii) A N Ap =& a.e. forallk # € in {0,...,n4 —1}.
(iv) The sets (Ax)refo,..na—1} are T"-atoms.

Proof. Let A be T"-invariant such that ng = nmax. Set A} = Uje{o,...,nA—l}\{k} Ajforke{0,...,na—
1} (so that Ay v A¥ = Q by definition of n4) and B = A n A}. The set B is invariant. We assume
that u(B) > 0. Since B < A, we get ng = ny and thus ng = n4 by maximality of ns. Then,
Lemma 3.48 (ii) implies that p(B) = 0. By contradiction, we deduce that p(B) = 0, that is:

An A =0.
Using that T'(Q2) = Q as T is irreducible, we get:
AUA;=Q=T(Q)=T"(A) U A§.
This implies that A < T™4(A). Writing n = kna + 7 with r € {0,...,n4 — 1}, we get:
T"(A) c T™+"4(A) ¢ T"Hema(4) = T™(A) < A.
If r > 0, this would imply that ny < r. As r < na, we thus deduce that r = 0, that is Point (i), and
then that A = T™4(A). This gives Point (ii) for £ = 0 and thus for any &, as the T"-invariant set Ay,
is also maximal in the sense that n4, = n4 = nmax by Lemma 3.48 (i).

Using again that Ay, is maximal and that 774 (A4;) = A,, we can apply the previous argument to get
that Ay n AF = @ for all k € {0,...,n4 — 1}. This readily implies that the Ay for k € {0,...,na — 1}
are pairwise disjoint, that is, Point (iii).

To conclude, it is enough to check Point (iv) for ¥k = 0. As A is T™-invariant, to prove it is a
T™-atom, it is enough to check that if B ¢ A is a T™-invariant set with positive measure, then B = A.
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Consider such a set B. Notice that np is finite (as B € Z*) and that ng > na, that is ng = na by
maximality of n4. We thus have:

na—1
AuAg—Q—BU< U Tj(B)> c Bu A%,
j=1
This readily implies that A € B and thus B = A. O

4. ATOMS AND NONNEGATIVE EIGENFUNCTIONS

Until the end of this section, T is a power compact (that is, there exists k € N* such that the operator
T* is compact) positive operator on LP, where p € (1,+00) and (£, F, 1) is a measured space with p
o-finite and non-zero. The purpose of this section is to study the intricate links between the ordered
set of atoms and spectral properties of T'. Especially, we study links between atoms and nonnegative
eigenfunctions of 7. We also provide some criteria of monatomicity of 7. The power compactness
hypothesis opens access to different results, giving the existence and uniqueness under irreducibility of
nonnegative eigenfunctions for a positive operator.

4.1. On positive power compact operators. Recall that p(T) defined in (1) denote the spectral
radius of the operator T'. The algebraic multiplicity of A € C of T' is defined by:

(17) m(\, T) = dim < | Ker(T - )\Id)k> .
keN*

The complex number A € C is an eigenvalue of T when m(\, 7)) > 1, it is simple when m(\, T) = 1.
When T is power compact, the multiplicity m(, T) is finite for A € C*, see [18, Theorem p. 21|. Notice
that for power compact operators the multiplicity of A € C* is also the dimension of the range of the
spectral projection (which is the definition used in [25] and [11]) thanks to [11, Theorems VII.4.5-6].

For a measurable set A < 2, when there is no ambiguity on the operator T, we simply write
p(A) = p(T4), see Section 2.3, and m(A, A) = m(A, Ty) for the spectral radius and multiplicity of A for
Ty = MATMy, see (3), the operator T restricted to A.

The following lemma proves that the restriction of a power compact operator is also power compact.

Lemma 4.1 (Restriction of a power compact operator). Let T' be a positive power compact operator
on LP. Then there exists k € N* such that for any measurable set S, the operator (To/)* is compact.

Proof. Let n € N* such that T™ is compact. We have 0 < (Tq/)™ < T™. Since T™ is compact, we get
thanks to [3, Theorem 5.13] that (Tq/)3" is compact. O

We say that the atom A <  is non-zero if p(A) > 0, and denote by A* be the (at most countable)
set of non-zero atoms:
(18) A*={AeU: p(A) > 0}.

Notice that m()\, A) = 0 for all atoms A € A\A* and A € C*.
We recall in our framework the classical results related to power compact operators.

Theorem 4.2. Let T be a positive power compact operator on LP with p € (1, +0).

(i) Krein-Rutman. If p(T) is positive then p(T) is an eigenvalue of T, and there exists a
corresponding nonnegative right eigenfunction denoted vr.
(ii) de Pagter. If T is irreducible then p(T) is positive unless T = 0 and dim(LP) = 1, that is, if
A is measurable then either u(A) =0 or u(A°) = 0.
(iii) Perron-Jentzsch. If T is irreducible with p(T) > 0, then p(T) is simple, vr is positive a.e.,
and vr is the unique nonnegative right eigenfunction of T'.

(iv) Schwartz. We have for A € C*:

(19) m(\T) = Z m(\ A) and p(T) = max p(A).
Ael*
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Remark 4.3. In the Perron-Jentzsch result and in what follows, uniqueness of eigenfunctions is under-
stood up to a multiplicative constant.

Proof. We first recall the vocabulary used by Grobler [14]. For any v € LP, we denote by F, the
smallest band (therefore the smallest subspace of the form L, with A € F) that contains v, that is

Lf app(0)* We say that v € L? is quasi-interior if the closure of E, is equal to LP, that is if v > 0 a.e..

Point (i) is given by [14, Theorem 3|, and Point (ii) by [14, Theorem 12 (1)]. To prove Point (iii),
by [14, Theorem 12 (1)], since T is irreducible, p(T') is a simple eigenvalue and the corresponding
eigenfunction is a quasi-interior point of L?, that is a positive eigenfunction. By [24, Theorem 5.2 (iv),
p. 329] (that can be applied as T is power compact, see Corollary p. 329), p(7T') is the only eigenvalue
related to a nonnegative eigenfunction. As p(T) is simple, vp is the unique nonnegative eigenfunction
of T.

Point (iv) is an extension of [25, Theorem 7] (stated for x finite and T' compact), and its proof is very
similar. We provide a short proof for completeness. Let h € L! with 1 > h > 0 a.e.; thus the measure
h.p, defined by h.u(A) = §, h(s)u(ds) for A € F, is finite. Following the proof of [25, Theorem 7, it is
enough to check that Lemmas 4, 11 and 12 therein also hold by replacing i by h.p in their statement
and when the operator T' is power compact.

For Lemma 11, the proof given by [25] is also valid when the operator V' given therein is power
compact, as every point of Sp(V)\{0} is isolated and as for any A # 0, the quantity m(\, V') is finite,
see [11, Section VIL.4]. For Lemma 12, the proof given by [25] holds for any positive operator, and also
holds when we replace p in the statement by the finite measure h.u.

Lemma 4 states that if y is finite and T is a positive compact operator, then for all A > 0 there exists
0 > 0 such that for all measurable set A € F such that pu(A4) < § we have p(T4) < A\. An elementary
adaptation of the proof of Lemma 4, gives that the result also holds if i is o-finite provided we replace
the condition p(A) < d by h.u(A) < 6. We now assume that the operator T' is power compact, and
let k € N* be such that the operator T* is compact. For A > 0, there exists § > 0 such that for all
measurable set A € F with h.u(A) < & we have p((T*)4) < A\*. Since 0 < (Ta)* < (T*) 4, we deduce
that p((Ta)*) < p((T*)4) < A¥, that is p(T4) < A thanks to [18, Theorem p. 21]. This readily gives
the extension of Lemma 4 to p o-finite and T' positive power compact. This concludes the proof of
Point (iv). O

Let us stress that Theorem 4.2 also applies to T*. Indeed, the operator T is irreducible (resp.
positive, resp. power compact) if and only if the operator T* is irreducible (resp. positive, resp.
power compact). By [18, Theorem p. 21|, when T is power compact, we have p(T*) = p(T') as well as
m(\, T*) = m(\, T) for all A e C*.

The following result is a direct consequence of Theorem 4.2, as any atom is irreducible by Theo-
rem 3.34. The function v below will be called the Perron-like eigenfunction of T'4.

Corollary 4.4 (Perron-like eigenfunctions for T4). Let T be a positive power compact operator on LP
with p € (1,+00) and A a non-zero atom. Then p(A) is a simple positive eigenvalue of Ta and there
exists a unique nonnegative right eigenfunction of Ta, say va; furthermore its support is A, that is,
supp(va) = A a.e., and we have p(va) = p(A): Tava = p(A)va.

For A > 0, let 2A(X) be the set of atoms with spectral radius A:
(20) AN) = {AeA*: p(A) = AL
We have the following elementary result, with the convention max ¢ = 0.

Lemma 4.5 (Spectral radius of restricted operators). Let T be a positive power compact operator on
L? with p € (1,400).

(i) For any A > 0, there exists a finite number of atoms with a spectral radius larger than \.

(ii) If Q' is admissible, then we have:

N —
(21) p(&) = aeal® p(A).
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(ii3) If p(T) is positive, then we have m(p(T),T) = card(A(p(T)).

Proof. By Corollary 4.4, any atom with a spectral radius p(A) > 0 satisfies m(p(A4),A) = 1. If A
is positive, then by [11], the set {z € C,|z| = A\, m(z,T) # 0} is finite (notice that m(z,7) € N by
[18, Theorem p. 21]). Therefore, by Theorem 4.2 (iv), only a finite number of atoms A may satisfy
p(A) = ), that is Point (i). Point (ii) then follows from (19), since the atoms of Ty are precisely the
atoms of T that are included in ', by Proposition 3.32 (ii).

Finally, for any atom A, we have p(A) < p(T), therefore the only atoms with m(p(7T), A) > 0 are
exactly those with p(A4) = p(T'). By Corollary 4.4, these atoms satisfy m(\, A) = 1, thus we deduce
Point (iii) from (19). O

We directly deduce from (ii) the following result.

Lemma 4.6 (The operator is quasi-nilpotent outside the non-zero atoms). The restriction Toy of T
to &, the complement set of | J ycqs A, is quasi-nilpotent, that is, p(§') = 0.

4.2. Nonnegative eigenfunctions. The goal of this section is to describe exactly the set of nonneg-
ative eigenfunctions and prove Theorem 3. We start by two elementary results.

Lemma 4.7. If C is convez, and supp(v) < F(C), then we have Tcv = 1cTv.

Proof. Since C is convex, F(C) = C u F*(C) where F*(C) is invariant by Lemma 3.23. Since
supp(v) < F(C), we have v = v1c + vlp#(c). The statement follows by checking that, by Lemma 3.3,
1cT(vlps(cy) = 0. O

Lemma 4.8 (Nonnegative eigenfunctions on an atom). Let T be a positive operator on LP for p €
(1,+0) and A a non-zero atom. If v is a nonnegative right eigenfunction with A  supp(v) < F(A),
then v coincides on A with the Perron like right eigenfunction: 1l v = cva for some ¢ > 0, and
p(v) = p(A), that is, Tv = p(A)v.

Proof. Let A = 0 with Tv = Av. Since supp(v) < F(A), we may apply Lemma 4.7 to the atom A,
which is convex by Theorem 3.34, to get Ta(1av) = Tav = 14Tv = A1 40, that is, 1 4v is a nonnegative
eigenfunction of T4. Since A < supp(v), we get 14v is non-zero. By Corollary 4.4, we have A = p(A)
and 14v = cvy for some ¢ > 0, as claimed. O

We need an adaptation of [20, Theorem 4|, a result originally stated for kernel operators, and which
concerns subsolutions to the eigenvalue equation, that is, functions f that satisfy:

(22) Tf < Af.

Proposition 4.9 (Nelson: Nonnegative subsolutions are Perron eigenfunctions). Let T' be a positive
power compact irreducible operator on LP with p € (1,+w). If f € LY satisfies (22) for some X\ €
(0, p(T)], then we have Tf = p(T)f.

Proof. Let f € L% be a solution of (22). Without loss of generality we may assume X\ = p(T'). By the
Perron-Jentzch theorem (Theorem 4.2 (iii)), there exists a nonnegative left eigenfunction h € L% with
left eigenvalue p(T') such that A > 0 a.e.. Taking the bracket of (22) with the nonnegative function h,
and using the fact that it is a left eigenfunction of T, we get:

IO(T)<h7 f> = <h7 Tf> < <h7 p(T)f> = p(T)<h, f>a
where the inequality holds by positivity of T and nonnegativity of f and h. Therefore we have (h, Tf) =
Chyp(T) [, so Chyp(T)f —Tf) = 0. Since p(T)f — Tf is nonnegative and h > 0 a.e., this implies
Tf=p(T)f. O

As a first consequence, we give details on which atoms may appear in the support of a nonnegative
eigenfunction. Recall that, for a non-zero atom A, the Perron like eigenfunction v, is the right eigen-
function of T4y given by Corollary 4.4. For v € L% a nonnegative eigenfunction of T', we consider the
following subset of the atoms 2(p(v)):

A (v):={AeU: Acsupp(v) and p(v)=p(A4)}.
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Corollary 4.10 (A dichotomy for atoms and nonnegative eigenfunctions). Let T' be a positive power
compact operator on LP with p € (1,40). Let v € L% be a nonnegative eigenfunction of T with
A =p(v) >0.
(i) For any atom A with A < supp(v) a.e., exactly one of the following holds:
(] p(A) <Ay
e p(A) =\, that is, A€ WUy (v), Lav = cvy for some ¢ > 0 and supp(v) N P*(A) = & a.e..
(i) The set of atoms A, (v) is a nonempty finite antichain, and:

p(v) = p(supp(v)).
(iii) If Ae A, (v), BeA and B < A, then we have p(B) < p(A).

Proof. We start by proving (i). Let v, A satisfy the hypotheses, and consider an atom A such that
A < supp(v). If p(A) < A we are in the first case and there is nothing to prove. We now assume
A < p(A). Since T is a positive operator and v is nonnegative, we have:

(23) TA(’UlA) = 1AT('U1A) < 1AT(U1A) + 1AT(’U1Ac) =14Tv = Al v.

Since A < p(A), and A is irreducible, Proposition 4.9 applied to 7}, implies Tyva = p(A)va. Since
we have A < supp(v), va is not the zero function, thus, by Corollary 4.4, we have A = p(A) and
14v = cvy for some ¢ > 0. Going back to (23), we see that the inequality there is in fact an equality,
50 14T (v14c) = 0. By (7), we thus have k7 (A, supp(v) n A°) = 0. By Lemma 3.6, the set supp(v) is
invariant, thus by additivity of the kernel we also have:

kr(A U supp(v)®, supp(v) n A°) = 0,

so that supp(v) n A€ is invariant. We then write F(supp(v) n A°) n A = (supp(v) n A°) n A = &,
which implies by Lemma 3.14 that:

(24) supp(v) N P*(A) = supp(v) n A° n P(A) = .
This completes the proof of Point (i)

We now turn to the proof of (ii). If two atoms A and B are in 2, (v), Equation (24) shows that
B cannot be a subset of P*(A); symmetrically A cannot be included in P*(B). By the alternate
formulation of < from Lemma 3.37, A and B are not comparable, so 2,,,(v) is an antichain. It is finite
by Lemma 4.5 (i). Moreover, as T'(v) = Av, we get that Ty,pp(,)(v) = Av, and thus p(supp(v)) = .
As the set supp(v) is invariant by Lemma 3.6 (and thus admissible), by (21), there exists an atom
A < supp(v) with p(A) = A, and thus p(A) = A by Point (i). This implies that the finite antichain
A (v) is not empty.

Finally, if A € 2,,,(v) and B < A, then we get B c F(A) < supp(v) since supp(v) is invariant.
Applying the dichotomy from Point (i), and noting that B cannot be in 2A,,(v) since it is an antichain,
we deduce that p(B) < p(4) = A. O

The last statement of Corollary 4.10 motivate the following definition, we refer to Figure 6 for a
pictorial representation.

Definition 4.11 (Distinguished atoms and eigenvalues). Let T' be a positive power compact operator
on LP with p € (1,4+0). A non-zero atom A of T is called right distinguished if p(B) < p(A) for any
atom B such that B < A.

The set of right distinguished atoms of radius A > 0 is denoted by Ugist(N).

An eigenvalue X is called right distinguished if Agist(N) # .

One has a similar definition for left distinguished atoms/eigenvalues. When there is no ambiguity,
we shall simply write distinguished for right distinguished.

By Corollary 4.10 (ii), if v is a nonnegative eigenvalue, all atoms in 2l,,,(v) are distinguished:

(25) Q(m(v) c mdist'
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Diagram of the ordered set of atoms. Following the classical convention
(see [6, p. 4]), each circle represents an atom A, and is labeled with its
radius p(A). An arrow from atom A to atom B signifies that B < A
and there is no atom in between.

The distinguished atoms are those circled in a thick line.

Note that a family of similar “finite” pictures may always be drawn in
the general case, by considering only atoms with radius larger than a
positive constant .

FIGURE 6. Distinguished atoms

In the other direction, we now show that for any distinguished atom, we may associate a nonnegative
eigenfunction. Recall that, for a non-zero atom A, v4 denotes the Perron-like eigenfunction of T’y given
by Corollary 4.4.

Proposition 4.12 (Nonnegative eigenfunctions associated to distinguished atoms). Let T be a positive
power compact operator on LP with p € (1,40), and A a non-zero atom. The following statements are
equivalent:

(i) A is a distinguished atom.
(ii) p(F*(A)) < p(A).
(iii) There exists a nonnegative eigenfunction wa € L% such that supp(wa) = F(A) and Lywy =
vA.
If they hold, then we have p(wa) = p(A).

The condition 14w4 = v4 in (ili) corresponds to a particular choice of normalizing constant, see
Lemma 4.8.

Proof. Suppose that Point (iii) holds, and let w4 be a nonnegative eigenfunction with supp(wa) =
F(A). By Lemma 4.8, we have p(wa) = p(A), so A € A,,(wa), and by (25), it is distinguished.
Therefore Point (iii) implies Point (i).

Suppose that Point (i) holds. By (21), either p(F*(A)) = 0, or there exists an atom B < F*(A) such
that p(F*(A)) = p(B). By Lemma 3.37, this B satisfies B < A. Since A is distinguished, p(B) < p(A),
so Point (ii) holds.

We now prove that Point (i) implies Point (iii). Set B = F*(A). By assumption, the invariant
set B satisfies p(B) < p(A). By Lemma 3.7, the operator (p(4)Id—T}p) is invertible and its inverse
is a positive operator. Let wa = va + fg, where fp = (p(A)Id —Tg)1(1pTva). Note that, by the
expression of (p(A)Id —Tg)~! as a Neumann series, we have supp(fg) = B, and thus lawa = va.
Then we have:

(26) Twa=Tva+Tfg=1Tva+1sTvs+Tfp.

As supp(fp) is a subset of the invariant set B, we know by Lemma 3.3 that T'fg = Ts fg. Moreover,
as supp(va) € A, we have LaTva = Tava = p(A)va by definition of v4. Finally, as the set F(A) is
invariant and as we have supp(va) ¢ A © F(A), we have 1p4ycTva = 0, thus 14:Tva = 1Tv4.
Plugging this in (26) yields:
Twa = p(A)va +1Tva + p(A)fe — p(A) f5 + T fB
= p(A)wa + 15Tva — (p(A)1d =TB)(fB)
= p(A)wa
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by definition of fp. So w4 is a nonnegative eigenfunction (with p(wa) = p(A)). In particular, supp(w4)
is an invariant set that contains A, so F'(A) < supp(wa). Since supp(v4) and supp(fg) < B are both
subsets of F(A), we get F(A) = supp(wy4). This proves Point (iii). O

The previous result shows that, to any distinguished A, we may associate a family (wa)seaiy., ()
composed of nonnegative eigenfunctions. We now completely describe the set of nonnegative eigen-
functions associated to A, say V ()), as the conical hull of this family (that is linear combinations with
nonnegative coefficients).

Theorem 4.13 (Characterization of nonnegative right eigenfunctions). Let T be a positive power
compact operator on LP with p € (1, +0). Let A > 0. We have the following properties.

(i) There exists a nonnegative eigenfunction of T associated to A if and only if X is a distinguished
etgenvalue.
(ii) The set Aqist(A) is a (possibly empty) finite antichain of atoms, and the family (wa) aey,., (N
is linearly independent.
(iii) If v is a nonnegative eigenfunction with p(v) = A, then A = p(supp(v)) and:

v = Z cawa with cyq > 0.
A, (v)

So the cone V() is the conical hull of {wa : A€ Aqist(N)}.

Remark 4.14. The last point shows in particular that if w is a nonnegative eigenfunction such that
supp(w) = F(A), where A is a non-zero atom (see Lemmas 3.6 and 4.8), then A is distinguished,
p(w) = p(supp(w)) = p(A) and w = cwy with ¢ > 0.

The elementary adaptation of the theorem to nonnegative left eigenfunction is left to the reader.

Proof. Tf \ is distinguished, then by definition there is an atom A € 2g;st (), and w4 provides a nonneg-
ative eigenfunction associated to A. Conversely, if there is a nonnegative eigenfunction w associated to
A, then 2, (w) is nonempty and consists of distinguished atoms by Corollary 4.10, so A is distinguished.
This proves Point (i).

Let us prove Point (ii). If A and B belongs to gist(A), then p(A) = p(B), so they are not com-
parable by definition of distinguished atoms. Therefore 2gist(A) is an antichain. It is also finite by
Lemma 4.5 (i). To prove the linear independence property, assume that >, Beflyi (V) CBWB = 0. Mul-
tiplying by 14 for A € Agist(A) yields cqva = 0, since for B # A, supp(wp) = F(B) is disjoint from
A. Since va is positive, c4 = 0. Since this is true for all A, the family (wa)aea,,.,(n) is linearly
independent.

We now prove Point (iii). Since the w,4 are all in the cone V, ()), their conical hull is included in
V. (\), so that we only need to prove the reverse inclusion. Let v € V. (A\). By Corollary 4.10, there
is an antichain 2, (v) < qist(N) of distinguished atoms of radius A in the support of w, and all other
atoms in this support satisfy p(B) < A. Define:

s-swp(( U re) —smoN( U 4)
A, (v) A, (v)
where the second equality follows from the fact that supp(v) n P*(A) = ¢ for all A € A, (v), by
Corollary 4.10. The first equality shows that B is invariant.

Still following Corollary 4.10, there exist ¢4 > 0 such that v1ls = cqva for A € 2, (v). Consider
the function w = v — 3] 4o () Cawa. Since supp(wa) = F(A) < supp(v), supp(w) is included in
supp(v). Since w vanishes by construction on all atoms A € 2,,(v), we have in fact supp(w) < B.
Now, Tw = Aw since v and the w4 are eigenfunctions. Since B is invariant and supp(w) ¢ B, we get
that Tgw = Aw. However, by construction, B cannot contain atoms of radius greater than or equal to
A, s0 p(B) < A. Therefore \ cannot be an eigenvalue of Tz, and w must be identically zero, so that
V=2 ca,, (v) CAWA- Since A, (v) < Uaise (A), we get that v is in the conical hull of the (wa)aenty,-
This finishes the proof. O
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1 1
1 1 0
11
(a) Graph associated to a kernel operator (b) Matrix associated to a kernel operator

FIGURE 7. Example of associated graph and associated matrix of a kernel operator
on Q = {1,2}

4.3. Monatomic operators: definition and characterization. In this section we shall consider
positive power compact operators having only one non-zero atom, which are called monatomic operators
(T is monatomic if card A* = 1 with 2* defined in (18)). We give in the next theorem a characterization
of the monatomic positive power compact operators, see Theorem 2.

Theorem 4.15 (Characterization of monatomic operators). Let T be a positive power compact operator
on LP with p € (1,+00) such that p(T) > 0. The following properties are equivalent.

(i) The operator T is monatomic.
(i) There exist a unique right and a unique left nonnegative eigenfunctions of T with non-zero
eigenvalues, and p(T) is a simple eigenvalue of T'.
(iii) There exist a unique right and a unique left nonnegative eigenfunctions of T with non-zero
eigenvalues, say u and v, and supp(u) N supp(v) has positive measure.

Furthermore, when the operator T is monatomic, we have p(u) = p(v) = p(T) and supp(u) N supp(v)
is the non-zero atom of T

Ezample 4.16 (On the condition p(T") simple and supp(u) n supp(v) with positive measure). If T has
a unique right and a unique left eigenfunction, then 7T is not monatomic in general. Indeed, consider
the example given by Fig. 7 with Q = {1,2} endowed with the counting measure. The positive kernel
operator T associated to the matrix given in Fig. 7b has only one right eigenfunction v = (0,1) and
one left eigenfunction v = (1,0), but it is not monatomic, as its non-zero atoms are {1} and {2}. Here,
we have supp(u) nsupp(v) = & and p(T) = 1 is not a simple eigenvalue.

To prove Theorem 4.15, we use the following lemma.

Lemma 4.17 (Existence of minimal distinguished atoms). Let A be a non-zero atom. Then there
exists a right (resp. left) distinguished atom smaller (resp. larger) than A for <, say B, such that

p(B) = p(A).

Proof. Recall that T and T* have the same spectral radius and that they share the same atoms, so
we only need to prove the lemma for right distinguished atoms for T, as it will then hold for left
distinguished atoms for 7" as they are right distinguished atoms for T*.

Since A is a non-zero atom, p(A) is positive. The set:

A={Ced*: p(C) = p(A),C < A}

is finite thanks to Lemma 4.5 (i) and is non empty as it contains A. Thus it has at least one minimal
element for the order <, say B. If an atom C satisfies C' < B, then C' < A by transitivity, but C' cannot
be in A by minimality of B, so p(C) < p(A). Since B € A, we have p(B) = p(A), and so p(C) < p(B).
Since this holds for any C' such that C' < B, we obtain the atom B is distinguished. O

Proof of Theorem 4.15. We assume that T' is monatomic and prove Point (ii). Let A be the only non-
zero atom. By Lemma 4.5 (iii), as m(p(T"),T) = 1 and A* is reduced to {A}, we get that p(T) is simple
and p(A) = p(T) by (21).

We now prove the existence and uniqueness of a nonnegative right eigenfunction. Since there is
no other non-zero atom, using directly Definition 4.11 we see that A is distinguished, and is the only
distinguished atom. Still by definition, p(A) is the only distinguished eigenvalue. By Theorem 4.13,
the set of nonnegative eigenfunctions is the cone R;w,, which proves uniqueness (up to a positive
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multiplicative constant). Applying the same proof to T* gives Point (ii) and the first part of the last
sentence of the theorem.

We assume Point (ii) and prove Point (iii). Since p(T') > 0 is simple, we deduce from (19) that
there exists a unique atom, say A, such that p(A) = p(T'). In particular, all other atoms must satisfy
p(B) < p(A), so that A isright (and left) distinguished. Therefore, by Proposition 4.12, the unique right
(resp. left) nonnegative eigenfunction, whose existence is given by our Assumption, is in fact wa (resp.
the nonnegative eigenfunction w’ obtained from 7). Since supp(wa) nsupp(w?) = F(A)nP(A) = A
by convexity of the atom A, we obtain Point (iii) and the last part of the last sentence of the theorem.

We assume Point (iii) and prove that the operator T' is monatomic. Since p(T') > 0, there exists
an atom, say A, such that p(A) = p(T'). Looking for a contradiction, we assume there exists an other
non-zero atom B and without loss of generality that it is not smaller than B for < (that is, either
A < B or A and B are not comparable), equivalently F(A) n B = . By Lemma 3.14, this is also
equivalent to F'(A) n P(B) = &.

Then, using Lemma 4.17, there exists a right (resp. left) distinguished atom A’ (resp. B’) such
that A’ < A (resp. B < B’). By Proposition 4.12, the unique non negative right eigenfunction
v must satisfy supp(v) = F(A4’), and similarly the unique non negative left eigenfunction v must
satisfy supp(u) = P(B’). By construction, we have F(A’) ¢ F(A) and P(B’) < P(B), and thus
supp(v) n supp(u) = F(A") n P(B') ¢ F(A) n P(B) = . As this is in contradiction with the
assumption of Point (iii), we deduce that A is the only non-zero atom, that is 7' is monatomic. O

5. GENERALIZED EIGENSPACE AT THE SPECTRAL RADIUS

5.1. Framework and main theorem. The purpose of this section is to restate [17, Theorem V.1
(2)] on the ascent of T in our framework of LP-spaces, with a shorter proof based on convex sets.

Let us first recall a few classical definitions, see [11] and [18]. For T an bounded operator on a
Banach space and A\ € C, we call generalized eigenspace of T at A, and denote by K (A,T), the linear
subspace:

KE\T) = | Ker (T — Ald)*.
keN
We now focus on the spectral radius A = p(T'), and write K(T) = K(p(T),T) the corresponding
generalized eigenspace. We define the index of a generalized eigenvector u € K(T), as inf{k e N: u e
Ker (T — p(T)1d)*}, and, with the convention inf (J = +o0, the ascent of T at p(T) as

ar = inf{k € N : Ker (T — p(T)1d)* = Ker (T — p(T)Id)**1}.
Notice that ap is positive if p(T) is an eigenvalue and that K(T) = Ker (T — p(T)Id)** when arp

is finite. When the operator T is power compact, then the ascent ar is finite, see [18, Lemma 1.a.2,
Theorem p. 21] (it is also equal to the descent 07 = inf{k € N : Im(T'—p(T) Id)¥ = Im(T—p(T) Id)**+1}).

Let T be a positive power compact operator on LP with p € (1,+00), and assume p(T) > 0, and
thus ar € N*. By Lemma 4.5 (iii), K(7T) is finite dimensional, and:

dim(K (T)) = m(p(T), T) = card(eri),
where 2., is the set of critical atoms:
(27) et = {AA: p(A) = p(T)}.

By definition of ar, the sequence (dim(Ker ((T'— p(T) I1d)*)))1<k<ar is (strictly) increasing, so we have
the following trivial bounds:

(28) dim (Ker (T — p(T) Id)k) >k, forall 1<k<ar,
and in particular dim(K (7)) = card(™Uerit) = .
The set 2.4 may be equipped with the partial order <. Recall that we write B < Aif B < A

and B # A. We recall a few classical definitions for posets, that is, partially ordered sets (see e.g. [6,
Section 1.3, p. 4]).
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Definition 5.1 (Covering). Let A and B be critical atoms. If B < A, and if there is no critical atom C
such that B < C < A, then A is said to cover B.

For n > 1, a chain of length n is a sequence (Ag, ..., A,) of elements of ., such that A4;11 < A;
for all 0 < i < n. The height h(A) of a critical atom A, is one plus the maximum length of a chain
starting at A.

Remark 5.2 (Terminology - off by one). Our definition of length is consistent with [6, Section 1.3]. The
“off by one” is due to the fact that height, in [6], is formally defined for posets with a least element. Our
height coincides with Birkhoff’s height on the poset (et L {0}, <) where 0 is an additional element
that satisfies 0 < A for all A € At

We now restate [17, Theorem V.1 (1, 2)] in our framework; its proof is given in Section 5.2. Recall
v4 the Perron-like eigenfunction of T4 and the set of critical atoms 2.y from (27).

Theorem 5.3 (A basis of K(T)). Let T be a positive power compact operator on LP with p € (1, +o0)
with a spectral radius p(T) > 0. Then there exists a basis W = (wa) aen.,, of K(T') satisfying the
following properties:

(i) For all A, A c supp(wa) < F(A), and Laws = va ; moreover if A is distinguished then wa
is the nonnegative eigenfunction introduced in Proposition 4.12.
(i) If M = (M4, p) is the matriz representing, on the basis W, the endomorphism induced on
K(T) by T, then for A, B € ey, we have:
0 if BX A,
Map =< p(T) if A= B,
>0 if A covers B.
(iii) For any A € Uy, the index of wa is the height h(A).
Moreover, Properties (ii) and (i) hold for any basis of K(T) satisfying ().
Since the ascent is the maximum index of functions in K(7T'), we easily get the following result.

Corollary 5.4 (Ascent and maximal height). The ascent of T at its spectral radius p(T) is equal to
the mazximal height of the critical atoms:
= h(A).
or =B e
5.2. Existence of an adapted basis and proof of Theorem 5.3. We first state a key technical
result.

Lemma 5.5 (Generalized eigenspaces for restrictions). Let A be a convex set and X € C.
(i) If ve K(\,T) and supp(v) < F(A), then we have (Lav) € K(\,Tx).
(i) If furthermore A is invariant, and X # 0, then we have K(A\,T4) € K(\,T).

Proof. If supp(v) = F(A), then by Lemma 4.7, we have 147v = T4(14v). An easy induction using
the identity (79)4 = (T4)’ from Lemma 3.46 yields 1477y = T%(14v) for all j > 1, and since this
still holds for j = 0, we get:

(29) 1A(T — Md)Y v = (Ta — A1d) (14 0).

This proves the first item. _

If (Ta — A1d)*v = 0, the expression (=\)kv = 722?:1 (];) (=A)*=IT%v shows that supp(v) = A. By
invariance this implies supp(7T7v) c A, so (T — A1d)*v = 14(T — A1d)*v. We may now apply (29), as
invariant sets are convex, and get 14(T — AId)*v = (T4 — A1d)*v = 0, which concludes the proof. [
Corollary 5.6. Let A€ Ueris, B =Joea,,,.c<a Cs and A =F(A)\F(B).

(i) The set A contains A, it is convex, F*(A) = F(B) and F(A) = AL F*(A).

(i1) There exists a nonnegative eigenfunction w; of Tz such that supp(wz) = A, Lawj; = va, and
p(wg) = p(T).
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(i11) If we K(T) satisfies supp(w) < F(A), then there exists c € R such that 1 ;w = cw .

Proof. The set A is convex, since it is the intersection of the invariant set F(A) with the co-invariant
set F(B)°. The set A cannot intersect F(B), since this would imply A < A, so A contains A. By
definition of F(B), A contains no other critical atoms. Therefore A is distinguished for T3, which
yields the existence of wj; by Proposition 4.12; moreover K(p(T'),T5;) = Vect(wz) as p(T') is simple
for T';. By Lemma 5.5 (i), the function 1 ; w belongs to K (p(T),T;) and is therefore proportional to
wj, as claimed. O

We are now in a position to prove Theorem 5.3. We proceed in several steps.

5.2.1. Emistence of a basis satisfying (i). We prove the existence of a basis satisfying Theorem 5.3 (i)
by induction on the number of critical atoms of 7.

If T has one critical atom A, then A is necessarily distinguished. The nonnegative eigenfunction
w4 given by Proposition 4.12 is a non-zero vector in the one-dimensional vector space K(T'), so it is
indeed a basis.

For the induction step, assume that for any positive power compact operator U on LP with at most n
critical atoms, there exists a basis of K (U) satisfying (i). Let T be a positive power compact operator
on LP with n + 1 critical atoms.

We first claim that, for each critical atom A of T', there exists w4 € K(T') such that A < supp(wa) <
F(A). Indeed, there are two cases. If Tp(4) has n atoms or less, then the induction hypothesis applied
to U = Tp(a) gives the existence of wa € K(U) such that A < supp(wa) c F(A), lawa = va,
and by Lemma 5.5 (ii), w4 is in fact in K(T'), proving the claim in this case. If Tp4) has n + 1
atoms, then all critical atoms of 7" are in the future of A. Notice that p(Tra)) = p(F(A)) = p(T)
and by Lemma 5.5 (ii) K(Tr4)) = K(T'). Furthermore, all the critical atoms of 7' belongs to F'(A)
and are thus the critical atoms of Tp(4); this implies that dim (K (Tpa))) = card(Ueric) = dim (K (T')).
We deduce that K(Tp4y) = K(T). Let A be defined by Corollary 5.6, and let U = Tps(4)- Let
w e K(T) = K(Tpa)y). We thus have supp(w) = F(A). By Corollary 5.6 (ii)-(iii), if w vanishes
on A, then it must be identically zero on A. Therefore we get supp(w) ¢ F*(A) and w € K(U) by
Lemma 5.5 (i), since F*(A) is convex. As a consequence, since by Lemma 4.5 (iii), dim(K (7)) =
n+1>n=dim(K(U)), at least one element of K (T') is non-zero on A. By Corollary 5.6 (iii) we may
assume without loss of generality that 1 ; w = w ;. In particular, 14 w = v4, and the claim is proved.

Now, a family W = (wa) Aen.,,, satisfying the claim must be linearly independent. Indeed, assume
that > 4 cawa = 0. If the c4 do not vanish, let B be a maximal element (for <) among the atoms
for which cg # 0. For any atom A # B, either B X A and w, is zero on B, or B < A and ¢4 = 0
by maximality of B. Therefore 0 = 01l = (ZA cawa)lp = cpwplp, so cg = 0, a contradiction.
Therefore all ¢4 must vanish, and the family W is linearly independent.

This independence and the fact that card(Uct) = dim(K(7T)) ensure that W is a basis: this
completes the induction and proves Point (i).

5.2.2. Proof of (ii): the two-atoms case. We first prove Theorem 5.3 (ii) under the additional assump-
tion that T has only two critical atoms A and B, and that B < A.

By the trivial bound (28), the ascent is either equal to 1, in which case Ker (T' — p(T")) = K(T)
is two-dimensional, or equal to 2, in which case 1 = dim(Ker (T' — A1d)) < dim(Ker ((T — A1d)?)) =
dim(K(T)) = 2. Let (wa,wp) be a basis of K(T') given by Point (i).

Note that K(T) is stable by T, so there exist four coefficients such that:

Twa = Maawa + Mapwp,
Twp = Mpawas + Mppwp.

Since B is distinguished, wp is the nonnegative eigenvector given by Proposition 4.12, so Mpp =

p(T) and Mpy = 0.

The support of w4 is included in the future of the convex set A, so by Lemma 4.7 we get Ta(law,) =
Ta(wa) =14Twa = Maalswa, since wp =0 on A. Since wy = v4 on A, we see that M = p(T).
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We may therefore write:
(30) (T - p(T) Id)’LUA = ]\414311}37

and establishing Theorem 5.3 (ii) in this case consists in proving that Mg is positive. Let v} be a
positive Perron eigenvector of T. Since the future of B for T* is P(B), we have:

*Ufg = Té?]% + 1p*(B)T*’Ug = p(T)UE + 1P*(B)T*U*B~
Taking the scalar product with v} in (30) yields:

Maplvp, wp) = (vp, (T — p(T))wa)
= (T"vp — p(T)vp, wa)
= Apx )T vg, wa)
= (g, T(1px(B) wa))-

By Corollary 5.6, 1 px(p) w4 is nonnegative, and positive on A = F(A)\F(B), so the last expression is
nonnegative. Since the scalar product {vj;, wp) is positive, M4 p is nonnegative. Assume for a moment
that Map = 0, so that (v}, T(walpxp))) = 0, and by (7), kr(B, A) = 0. Using the partition Q =
F(A)°UALBLF*(B) and the invariance of F((A), we easily check that kp(BuUF(A)¢, AUF*(B)) = 0,
so AU F*(B) is invariant. Since it contains A, it must contain F(A), and therefore B, a contradiction.
This shows that M4p > 0, concluding the proof of the two-atoms case. Note that M 45 # 0 also shows
that wy ¢ Ker (T' — p(T") Id), so that the ascent is necessarily equal to two.

5.2.3. Proof of (ii): general case. By definition, for all A, we have:

(31) Twy = Z Mipwp = Z Mipwp + Maawa + Z Mipwg.
Beglcrit Bemcrit;B<A BemcrimB%A

Since supp(wa) < F(A), we have wy € K (p(T),TF(A)), so Point (i) applied to Tp(4) shows that
Myp = 0if B < A. Then, multiplying (31) by 14 and applying Corollary 5.6 yields p(T)va = Maava,
SO MAA = p(T)

Assume now that A covers By, and let C' be the convex set F(A) n P(By): by definition, the only
critical atoms in C are A and By. For any other atom B, either B £« A and M5 =0, or B < A but
By « B,so F(B) nC = &, and wg is zero on C. Therefore, multiplying by 1¢ in (31) yields:

lcTwy = p(T)lC wp + MABOJ-C wp,-

Using Lemma 4.7, and the fact that 1o wp, = 1p, wp, = vp,, we get Te(lowa) = p(T)(Lcwa) +
Map,vB,, 50 Map, is a term of the matrix of T in the basis (locwa, vp,) of K(Tc, p(T¢)), and its
positivity follows from the two-atoms case.

5.2.4. Conclusion. To check that Point (iii) of Theorem 5.3 holds, note that the matrix N of § =
T — p(T)1d on the basis W satisfies Ny = 0 unless B < A, and Nap > 0 if A covers B. Thus, we
get:
(Nk)AB - Z HNAijjH'
A=Ap>A1->Ar=B j

If k > h(A), there is no chain of length k starting down from A, so N*w4 = 0. If k = h(A), the sum
is non-empty, the only chains appearing in the sum are of maximal length so A; must cover A;;q,
the corresponding products are all positive, so Nfw4 = >’ g cpwp for some non-zero numbers cp, and
NFw, # 0. Therefore the index of wa is h(A).

Notice the proof of Points (ii) and (iii) are done under the condition that the basis only satisfies
Point (i). This completes the proof of Theorem 5.3.
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