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Highlights
Anisotropic damage state modeling based on harmonic decomposition and discrete simula-
tion of fracture
F. Loiseau,C. Oliver-Leblond,T. Verbeke,R. Desmorat

• This study proposes an anisotropic damage state modeling for quasi-brittle materials.
• It aims at representing around 76 000 (discrete) beam-particle computations of bi-dimensional effective

(damaged) elasticity tensors.
• It proposes a methodology to formulate an anisotropic damage model based on a covariant reconstruction formula

of bi-dimensional orthotropic elasticity tensors.
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A B S T R A C T
This study proposes an anisotropic damage state modeling based on (𝑖) a discrete element
model for quasi-brittle material and (𝑖𝑖) a decomposition of the elasticity tensor in covariants.
A procedure is proposed to measure the evolutions of effective (damaged) elasticity tensors
computed by a beam-particle model. Various multiaxial damaging loadings allow us to constitute
a dataset of around 76 000 effective elasticity tensors. We then identify, in a tensorial manner,
the anisotropic damage state for the whole dataset. A detailed analysis of the dataset, using the
distance to orthotropy as a guideline, justifies representing the induced micro-cracking by a single
second-order damage variable, even in the final stages with strong micro-cracks interaction. To
formulate the damage state coupling, we use a reconstruction formula of orthotropic elasticity
tensors in terms of invariants and (tensor) covariants. Thanks to this formula, some parts of the
effective elasticity tensors �̃� (such as the dilatation part) are modeled exactly from the single
damage variable. Constitutive equations are proposed for the remaining parts of �̃� (such as its
generalized shear modulus and fourth-order harmonic part) using physical assumptions from
micro-mechanics and a sparse data driven approach. The proposed anisotropic damage state
coupling accurately models the damaged elasticity tensors in multiaxial loading, proportional
or non-proportional, up to high damages. The present study firstly highlights the need for an
anisotropic damage model for quasi-brittle materials and, secondly, offers a methodology to
formulate the damage state coupling by explicit formulas introducing at most two dedicated
parameters: the (optional) nonlinear shear-damage coupling parameter 𝑚 and the harmonic
prefactor ℎ.

Introduction1

Predicting the behavior of quasi-brittle materials – such as concrete or mortar – is essential to guarantee the2

integrity of civil engineering structures. When undamaged, these quasi-brittle materials often exhibit an isotropic3

elastic behavior. Severe mechanical loading leads to the nucleation and growth of micro-cracks and the loss of load-4

bearing capabilities (Bažant and Gambarova, 1984; Bažant and Oh, 1985; Landis, 1999). The orientation of the micro-5

cracks due to loading produces induced mechanical anisotropy (Mazars, 1984; Bažant and Prat, 1988a,b; Mazars6

et al., 1990; Ramtani et al., 1992; Lubarda and Krajcinovic, 1993; Fichant et al., 1999). Further increase of the7

loading gradually leads to the concentration and the coalescence of micro-cracks, which result in structural failure8

by macroscopic cracking (Lemaitre, 1992).9

Continuous damage models account for the material mechanical degradation during loading, including damage10

initiation (Lemaitre, 1992; Krajcinovic, 1996; Lemaitre and Desmorat, 2005; Murakami, 2012). The modeling of11

macroscopic damage usually starts with the choice of a thermodynamics variable, the damage variable, which12

represents the micro-cracking state of the material. The tensorial nature of the damage variable has been discussed13

in classical literature (Vakulenko and Kachanov, 1971; Chaboche, 1979; Leckie and Onat, 1981; Chaboche, 1984;14

Lemaitre and Chaboche, 1985; Murakami, 1988) as well as in recent works (Cormery and Welemane, 2010; Desmorat15

and Desmorat, 2016; Dormieux and Kondo, 2016; Fassin et al., 2019; Oliver-Leblond et al., 2021). The main question16

was whether or not the damage state could be represented by a fourth-order tensor (Chaboche, 1978, 1979; Krajcinovic,17

1985; Kachanov, 1993), by two second-order tensors (Ladevèze, 1983, 1995; Desmorat and Desmorat, 2016), or by18

a single second-order tensor (Murakami and Ohno, 1978; Cordebois and Sidoroff, 1980, 1982; Murakami, 1988;19
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Kachanov, 1993; Halm and Dragon, 1996; Papa and Taliercio, 1996; Lemaitre et al., 2000; Lemaitre and Desmorat,20

2005; Desmorat et al., 2018) instead of a scalar variable.21

The simplest modeling choice is the one of a scalar damage variable (Kachanov, 1958; Rabotnov, 1969; Lemaitre,22

1984). Thanks to their simplicity, isotropic damage models are often used to compute the degradation of concrete23

structures (Mazars, 1984; Grassl and Jirásek, 2006; Richard and Ragueneau, 2013). These models assume that the24

material behavior remains isotropic when damaging. In accordance with damage measurements (Ramtani et al., 1992;25

Lemaitre et al., 2000), micro-mechanics studies of micro-cracked media, such as the ones of Chaboche (1984), Lubarda26

and Krajcinovic (1993) and Kachanov (1993), show indeed that damage is not isotropic and has to be represented by27

a damage tensor physically linked to the crack density:28

• a fourth-order tensor in the 3D case,29

• a second-order tensor in the simpler 2D case with lubricated non-interacting cracks.30

We aim to generalize the latter 2D result to the case of strongly interacting micro-cracks, i.e., up to their coalescence,31

to model the total failure of a specimen (an Area Element in the present work). A first possibility would be to use a32

nonlinear homogenization scheme (Kachanov, 1993; Ponte Castañeda and Willis, 1995; Dormieux and Kondo, 2016).33

But these schemes rely on Fracture Mechanics at the microscale. This theory that does not deal with crack initiation,34

nor does accurately represent multiple cracks interaction and coalescence. Following Rinaldi and Lai (2007) and35

Delaplace and Desmorat (2008), we prefer instead to rely on discrete simulations of multiple cracking by lattice models36

(Hrennikoff, 1941; Kawai, 1978; Herrmann and Roux, 1990; Schlangen and van Mier, 1992; Bolander et al., 1996) —37

more precisely, on a beam-particle model (Delaplace, 2008; Vassaux et al., 2016). Indeed, these discrete models are38

based on the brittle failure of beams (at the micro-scale). They allow for both the modeling of micro-cracks initiation39

and the natural representation of micro-cracks coalescence. They represent well the material behavior of quasi-brittle40

materials such as concrete or mortar (Bažant et al., 1990; Delaplace et al., 1996; van Mier et al., 2002; Challamel et al.,41

2015; Oliver-Leblond, 2019).42

We aim at formulating an accurate anisotropic damage state coupling for quasi-brittle materials as a twin modeling43

of discrete (beam-particle) bi-dimensional fracture. The present work is a continuation of the one of Oliver-Leblond44

et al. (2021), who did introduce a suitable macroscopic damage variable with such an approach. But, contrary to45

these authors, who did assess for the representativity of their damage variable in a few loading cases only, we here46

build a large dataset of around 76 000 bi-dimensional effective elasticity tensors. The dataset is constituted of tensors47

from 21 mechanical loadings, proportional or not, and 36 virtual specimens with different micro-structures. Repeated48

computations for different micro-structures allow us to obtain statistically representative results. Performing complex49

multiaxial loadings allow to obtain multiple fracture patterns representative of quasi-brittle specimens. The harmonic50

decomposition of bi-dimensional elasticity tensors (Blinowski et al., 1996; Vianello, 1997) is completed by an analysis51

their harmonic part (Desmorat and Desmorat, 2015) and by computations of their distance to orthotropy. It is used to52

derive a meaningful macroscopic second-order damage variable, as well as its full coupling with the scalar (invariant)53

and tensorial (covariant) components of the elasticity tensor harmonic decomposition.54

Section 1 introduces the harmonic decomposition and the reconstruction of a bi-dimensional elasticity tensor by55

means of its covariants, which serves as the basis of the proposed modeling. It also defines the distance of an elasticity56

tensor to a symmetry class, which will be used to analyze our whole dataset. Section 2 begins with the presentation57

of the considered discrete model, then details a measurement method for the effective elasticity tensors computed58

by discrete virtual testing (of Area Element cracked by severe mechanical loading). This procedure is applied to59

multiple complex mechanical loadings, proportional or not, to constitute a dataset of 76 356 effective (i.e., damaged)60

elasticity tensors. Based on this large dataset, sections 3 and 4 are dedicated to modeling the effect of micro-cracking,61

i.e., of anisotropic damage, on the (invariant) shear modulus 𝜇 and the (covariant) fourth-order harmonic part 𝐇62

of the elasticity tensors. Section 5 summarizes and combines the results from sections 1, 3, and 4 to propose an63

anisotropic damage state coupling by means of only two specific material parameters: the nonlinear shear-damage64

coupling parameter 𝑚 and the harmonic prefactor ℎ. Finally, the proposed coupling is assessed in section 6.65

Notations and definitions66

Let 𝑑 = 2 be the dimension, and O(2) be the orthogonal group. The (left) action of an orthogonal transformation67

𝑄 ∈ O(2) on a second-order tensor 𝐭 or a fourth-order tensor 𝐓 is68

(𝑄⋆ 𝐭)𝑖𝑗 = 𝑄𝑖𝑘𝑄𝑗𝑙𝑡𝑘𝑙, (𝑄⋆ 𝐓)𝑖𝑗𝑘𝑙 = 𝑄𝑖𝑝𝑄𝑗𝑞𝑄𝑘𝑟𝑄𝑙𝑠𝑇𝑝𝑞𝑟𝑠. (1)
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An elasticity tensor is a positive-definite fourth-order tensor 𝐄 having the index symmetries 𝐸𝑖𝑗𝑘𝑙 = 𝐸𝑗𝑖𝑘𝑙 = 𝐸𝑖𝑗𝑙𝑘 =69

𝐸𝑘𝑙𝑖𝑗 . The vector space70

𝔼la(ℝ2) =
{
𝐄 ∣ 𝐸𝑖𝑗𝑘𝑙 = 𝐸𝑗𝑖𝑘𝑙 = 𝐸𝑖𝑗𝑙𝑘 = 𝐸𝑘𝑙𝑖𝑗

}
, (2)

of bi-dimensional elasticity tensors, is of dimension 6. A covariant of a bi-dimensional elasticity tensor 𝐄 is a tensorial71

function 𝐂(𝐄) such that72

𝐂(𝑄⋆ 𝐄) = 𝑄⋆ 𝐂(𝐄), ∀𝑄 ∈ O(2). (3)
An invariant of a 𝑑-dimensional elasticity tensor 𝐄 is a covariant of order zero of 𝐄, i.e., a function 𝐼(𝐄) such that73

𝐼(𝑄⋆ 𝐄) = 𝐼(𝐄), ∀𝑄 ∈ O(2). (4)
A harmonic tensor is a traceless totally symmetric tensor. A second-order harmonic tensor is a so-called deviatoric74

tensor. We denote by ℍ𝑛(ℝ2) the vector space of harmonic bi-dimensional tensors of order 𝑛. Remark that ℍ0(ℝ2) is75

isomorphic to ℝ.76

1. Reconstruction of a bi-dimensional orthotropic elasticity tensor by means of its77

covariants78

1.1. Harmonic decomposition79

The harmonic decomposition of a 2D elasticity tensor 𝐄 is its equivariant decomposition into harmonic tensors80

(Blinowski et al., 1996; Vianello, 1997)81

𝐄 = (𝜇, 𝜅,𝐝′,𝐇), (5)
such that82

𝑄⋆ 𝐄 = (𝜇, 𝜅,𝑄 ⋆ 𝐝′, 𝑄 ⋆𝐇), ∀𝑄 ∈ O(2), (6)
the harmonic components of 𝐄 being the invariants 𝜇, 𝜅 ∈ ℍ0(ℝ2) (the generalized shear and bulk moduli,83

respectively), the second-order covariant 𝐝′ = 𝐝′(𝐄) ∈ ℍ2(ℝ2) and the fourth-order covariant 𝐇 = 𝐇(𝐄) ∈ ℍ4(ℝ2).84

The covariant 𝐝′(𝐄) is the deviatoric part 𝐝′ = 𝐝 − 1
2 (tr 𝐝) 𝟏 of the dilatation tensor85

𝐝 = tr34 𝐄 = 𝐄∶𝟏, (7)
and the covariant 𝐇(𝐄) is the fourth-order harmonic part of 𝐄. We note 𝟏 the second-order identity tensor. The scalar86

components of the harmonic decomposition of 𝐄 are87

𝜇 = 1
8
(2 tr 𝐯 − tr 𝐝) , 𝜅 = 1

4
tr 𝐝, (8)

where 𝐯 = 𝐯(𝐄) is the second-order covariant88

𝐯 = tr13 𝐄. (9)
It is such that 𝐯′ = 𝐝′.89

The scalars90

𝐼2(𝐄) = 𝐼2(𝐝′) = ‖𝐝′‖2 = 𝐝′∶𝐝′, ‖𝐇‖2 = 𝐇∶∶𝐇, and 𝐾3(𝐄) = 𝐝∶𝐇∶𝐝, (10)
are three other invariants of the elasticity tensor (Vianello, 1997).91

A first reconstruction formula of an elasticity tensor 𝐄 by means of its covariant is the explicit harmonic92

decomposition itself,93

𝐄 = 2𝜇𝐉 + 𝜅𝟏⊗ 𝟏 + 1
2
(
𝟏⊗ 𝐝′ + 𝐝′ ⊗ 𝟏

)
+𝐇,

{
𝐈𝐬𝐨 = 2𝜇𝐉 + 𝜅𝟏⊗ 𝟏,
𝐃𝐢𝐥 = 1

2

(
𝟏⊗ 𝐝′ + 𝐝′ ⊗ 𝟏

)
,

(11)

which defines 𝐈𝐬𝐨 as the isotropic part of 𝐄, 𝐃𝐢𝐥 as its dilatation part and 𝐇 = 𝐄− 𝐈𝐬𝐨−𝐃𝐢𝐥 as its fourth-order harmonic94

part. All three tensors 𝐈𝐬𝐨, 𝐃𝐢𝐥 and 𝐇 are fourth-order covariants of 𝐄. The reconstruction formula (11) applies to95

all 2D elasticity tensors, possibly fully anisotropic (i.e., biclinic). In Eq. (11), 𝐈 is the fourth order identity tensor (of96

components 𝐼𝑖𝑗𝑘𝑙 = 1
2 (𝛿𝑖𝑘𝛿𝑗𝑙 + 𝛿𝑖𝑙𝛿𝑗𝑘)) and 𝐉 = 𝐈 − 1

2𝟏⊗ 𝟏 is the fourth-order deviatoric projector.97
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1.2. Harmonic square98

To obtain a reconstruction formula dedicated to orthotropic elasticity tensors, we have to introduce the harmonic99

product 𝐡1∗𝐡2 ∈ ℍ4(ℝ2) of two second-orders harmonic tensors 𝐡1, and 𝐡2. In 2D, it is defined as the fourth-order100

harmonic tensor (see Olive et al. (2017))101

𝐡1∗𝐡2 = 𝐡1 ⊗ 𝐡2 −
1
2
(𝐡1∶𝐡2) 𝐉, 𝐉 = 𝐈 − 1

2
𝟏⊗ 𝟏. (12)

where 𝐉 is the so-called deviatoric projector. Recall then that any 2D fourth-order harmonic tensor 𝐇 ∈ ℍ4(ℝ2) can102

be written as a harmonic square (Desmorat and Desmorat, 2015),103

𝐇 = 2Λ 𝐞∗𝐞, tr 𝐞 = 0, ‖𝐞‖ = 1, (13)
where 𝐞 ∈ ℍ2(ℝ2) is a unit second-order deviatoric eigentensor associated with a non-zero eigenvalue Λ or −Λ of the104

harmonic tensor 𝐇. This is not a so-called reconstruction formula for 𝐇 since 𝐞 is not a covariant of 𝐇.105

A more interesting formula is obtained when 𝐇 = 𝐇(𝐄) is the fourth order harmonic part of an (exactly) orthotropic106

elasticity tensor. We have in that case, in 2D still (Oliver-Leblond et al., 2021),107

𝐇 =
2𝐾3(𝐄)
𝐼22 (𝐄)

𝐝′(𝐄)∗𝐝′(𝐄). (14)

Remark that the covariants —including invariants— involved are covariants of the elasticity tensor, which is108

orthotropic, not of the harmonic tensor 𝐇, which has the square symmetry (Verchery, 1982; Vianello, 1997; Vannucci,109

2005). This means that we have the following reconstruction formula (by means of its covariants) for a 2D orthotropic110

elasticity tensor111

𝐄 = 2𝜇𝐉 + 𝜅𝟏⊗ 𝟏 + 1
2
(
𝟏⊗ 𝐝′ + 𝐝′ ⊗ 𝟏

)
+

2𝐾3

𝐼22
𝐝′∗𝐝′, (15)

where 𝜇, 𝜅, 𝐼2 and 𝐾3 are invariants of the elasticity tensor (defined by Eq. (8) and Eq. (10)), and 𝐝 is a second-order112

covariant of 𝐄 (defined by Eq. (7)). Remark that for this formula to hold, since 𝐼2(𝐝′ = 0) = 0 it is necessary that113

𝐝′ ≠ 0. In other words, it is necessary that the dilatation tensor 𝐝 = 𝐝(𝐄) —which inherits the symmetry of 𝐄, Olive114

et al. (2022)— and therefore 𝐄, are orthotropic.115

1.3. Definition of a tensorial damage variable116

We can furthermore assume that the elasticity tensor 𝐄 of a quasi-brittle material evolves during loading, for117

instance, due to damage, and that it has the initial isotropic value118

𝐄0 = 2𝜇0𝐉 + 𝜅0𝟏⊗ 𝟏. (16)
The initial dilatation tensor is then isotropic (i.e., spherical),119

𝐝0 = 𝐄0∶𝟏 = 2𝜅0𝟏. (17)
A damage variable, noted 𝐃 in the present work, represents the state of micro-cracking of a quasi-brittle material120

(Lemaitre and Chaboche, 1985). It is set as zero when the effective elasticity tensor 𝐄 is the initial elasticity tensor121

𝐄0. The eigenvalues of the damage tensor are usually bounded by 1. The present work aims to determine the general122

coupling with damage 𝐄 = 𝐄(𝐃).123

By Eq. (8), the bulk modulus 𝜅 is exactly reconstructed from the dilatation tensor 𝐝. This has led Oliver-Leblond124

et al. (2021) to define the dimensionless damage variable 𝐃 as the second-order tensor125

𝐃 = 𝟏 − 𝐝
2𝜅0

. (18)

Remark that since the initial dilatation tensor is given by 𝐝0 = tr12 𝐄0 = 2𝜅0𝟏, we have the equalities126

𝐃 = 1
2𝜅0

tr12(𝐄0 − 𝐄) = (𝐝0 − 𝐝) ⋅ 𝐝−10 = 𝐝−10 ⋅ (𝐝0 − 𝐝). (19)
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This mapping provides a bijection between the damage variable 𝐃 and the dilatation tensor 𝐝. Indeed, the latter and127

the bulk modulus are related to 𝐃 as128

𝐝 = 2𝜅0 (𝟏 − 𝐃) , 𝜅 = 1
4
tr 𝐝 = 𝜅0

(
1 − 1

4
tr 𝐃

)
. (20)

1.4. Distance to isotropy – Distance to orthotropy129

A key question is then whether or not the damage of quasi-brittle materials can be represented in 2D by the single130

second-order damage tensor 𝐃. An underlying question is whether or not the damaged elasticity tensor of an Area131

Element (AE) of a quasi-brittle material can be close to orthotropy (since 𝐃 is either isotropic or orthotropic). One will132

also have to check to what extent the initial (elastic) AE is isotropic.133

The determination of the symmetry class of a measured elasticity tensor is a difficult problem (Gazis et al., 1963;134

François, 1995; François et al., 1998; Moakher and Norris, 2006; Diner et al., 2011). A cause is that the measurement135

orientation might not correspond to the principal direction of the expected symmetry class, which prevents direct136

identification by comparison to normal (Kelvin) forms. Furthermore, experimental measurements provide a noised137

approximation of the material’s elastic properties (Roux et al., 1985; Migliori et al., 1993). The measured elasticity138

tensor will generically be biclinic in 2D (and triclinic in 3D).139

Those issues can be mitigated by calculating the distance to the expected elasticity symmetry class, more precisely,140

the distance to the considered symmetry stratum (which is the set of all tensors which have the same symmetry class141

(Auffray et al., 2014; Abramian et al., 2020)). This usually consists, first, in finding elasticity tensor 𝐄∗ in the symmetry142

stratum Σ which is the closest to the measured elasticity tensor 𝐄, and second, in calculating the distance between 𝐄143

and 𝐄∗. The relative distance to the symmetry stratum Σ is then144

ΔΣ(𝐄) = min
𝐄∗∈Σ

‖𝐄 − 𝐄∗‖
‖𝐄‖ . (21)

In the case of isotropy, the harmonic decomposition provides, by orthogonal projection (Vianello, 1997), the closest145

isotropic tensor 𝐄∗ to 𝐄 as its isotropic part 𝐈𝐬𝐨 (defined by Eq. (11)),146

Δso(𝐄) = min
𝐄∗ isotropic

‖𝐄 − 𝐄∗‖
‖𝐄‖ = ‖𝐄 − 𝐈𝐬𝐨(𝐄)‖

‖𝐄‖ , 𝐄∗ = 𝐈𝐬𝐨(𝐄). (22)

The calculation of the distance to 2D elastic orthotropy requires more mathematical development (Vianello, 1997;147

Antonelli et al., 2022). An upper bound of this distance is obtained thanks to the orthotropic reconstruction formula148

(15) (Oliver-Leblond et al., 2021).149

Δrt(𝐄) = min
𝐄∗ orthotropic

‖𝐄 − 𝐄∗‖
‖𝐄‖ ≤ ‖𝐄 − 𝐄up‖

‖𝐄‖ , (23)

where150

𝐄up = 2𝜇𝐉 + 𝜅𝟏⊗ 𝟏 + 1
2
(
𝟏⊗ 𝐝′ + 𝐝′ ⊗ 𝟏

)
+

2𝐾3

𝐼22
𝐝′∗𝐝′. (24)

This upper bound, based on the covariants of the elasticity tensor, is easier to calculate than the exact distance (the151

corresponding formulas are recalled in Appendix A).152

2. Discrete virtual testing153

This part aims at presenting the discrete virtual testing procedure based on discrete simulations of the cracking154

of Area Elements. The discrete model used is a hybrid beam-particle model which combines two types of models155

(Meguro and Hakuno, 1989; Kun and Herrmann, 1996; D’Addetta et al., 2002; Bolander et al., 2021): the lattice156

models (Hrennikoff, 1941; Kawai, 1978; Herrmann and Roux, 1990) and the particular models (Cundall and Strack,157

1979; Bažant et al., 1990). The model, which directly originates from the work of (Delaplace et al., 1996; Delaplace,158

2008), is first presented, followed by the procedure for the systematic measurement of elasticity tensors. Then, the159

evolutions of effective elasticity tensors measured during various loadings allow us to generate a large dataset of160

elasticity tensors.161
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Figure 1: Representation of the mesh of the beam-particle model. (1) is the positioning of the particle centers in the grid.
(2) is the generation of the particle border by the Voronoi tessellation of the particle centers. (3) adds the beam network
based on the Delaunay triangulation of the particle centers.
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Figure 2: Representation of a beam and notations

2.1. Beam-particle model162

The discrete hybrid model considered is the beam-particle one developed by (Vassaux, 2015; Vassaux et al., 2016).163

As shown by Oliver-Leblond (2019), it accurately represents the failure process encountered in quasi-brittle materials.164

For this study, a new linear solver (Davis, 2011) has been incorporated in the implementation. Here, the 2D version of165

the model is used.166

An elementary area is modeled using a beam-particle model. The left part of Figure 1 illustrates the procedure to167

generate the mesh of the model. The beam-particle specimen is composed of a set of rigid particles. Particle centers168

are randomly placed in each cell of a grid with a cell size 𝑙𝑏 which corresponds to the average beam length. Particle169

boundaries are obtained from the Voronoi tessellation of the particle centers. The dual graph of the Voronoi tessellation170

is the Delaunay triangulation. It associates a segment to each pair of neighboring particles. Those segments are used as171

the geometric support for a beam network. This beam network models the cohesion of the material. Each beam (𝑝, 𝑞),172

linking particles 𝑝 and 𝑞, has an Euler-Bernoulli behavior and is parametrized by:173

• its length 𝑙(𝑝,𝑞),174

• its section 𝐴(𝑝,𝑞),175

• its Young modulus 𝐸(𝑝,𝑞), and176

• its coefficient of inertia 𝛼(𝑝,𝑞) = 64𝐼(𝑝,𝑞)𝜋∕𝐴2
(𝑝,𝑞).177
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Name Symbol Value Unit

Average beam length 𝑙𝑏 0.002 m
Young’s modulus 𝐸𝑏 60 GPa
Coefficient of inertia 𝛼𝑏 0.85 -
Scale factor (extension) 𝜆𝜀𝑐𝑟 5.0 × 10−4 -
Scale factor (rotation) 𝜆𝜃𝑐𝑟 2.8 × 10−3 -
Shape factor 𝑘 1.0 -

Table 1
Parameters of beam-particle model

The geometric parameters 𝑙(𝑝,𝑞) and 𝐴(𝑝,𝑞) are obtained from the mesh’s geometry; they thus depend on the beam. Note178

that the cell size of the grid 𝑙𝑏 corresponds to the average beam length. The mechanical parameters 𝐸(𝑝,𝑞) and 𝛼(𝑝,𝑞) are179

chosen equal to 𝐸𝑏 and 𝛼𝑏 for all beams, which are identified to match a cement mortar macroscopic elastic behavior.180

Fracture properties are introduced by adding a brittle failure criterion 𝑃(𝑝,𝑞) to each beam, so beam rupture occurs181

when182

𝑃(𝑝,𝑞) =
𝜀(𝑝,𝑞)
𝜀𝑐𝑟(𝑝,𝑞)

+
|𝜃(𝑝) − 𝜃(𝑞)|
𝜃𝑐𝑟(𝑝,𝑞)

> 1. (25)

where:183

• 𝜀(𝑝,𝑞) =
‖𝒖(𝑝)−𝒖(𝑞)‖

𝑙(𝑝,𝑞)
is the extension of the beam,184

• 𝒖(𝑝) is the displacement of particle 𝑝,185

• 𝜃(𝑝) is the rotation of particle 𝑝,186

• 𝜀𝑐𝑟(𝑝,𝑞) is the breaking threshold in extension of beam (𝑝, 𝑞), and187

• 𝜃𝑐𝑟(𝑝,𝑞) is the breaking threshold in rotation.188

Those quantities are illustrated in Figure 2.189

Delaplace and Desmorat (2008) took the same failure thresholds for all beams. Following (Rossi and Richer, 1987;190

de Arcangelis and Herrmann, 1989; Herrmann et al., 1989; Herrmann and Roux, 1990; D’Addetta et al., 2002; Vassaux,191

2015), random distributions for the failure thresholds are here considered, as they are more suitable for the modeling192

of cement (Schlangen and van Mier, 1992; van Mier et al., 2002).193

Here, both breaking thresholds 𝜀𝑐𝑟(𝑝,𝑞) and 𝜃𝑐𝑟(𝑝,𝑞) are randomly drawn from a Weibull distribution,194

𝑓 (𝑥) = 𝑘
𝜆

(𝑥
𝜆

)𝑘−1
𝑒−

(
𝑥
𝜆

)𝑘
(26)

where 𝜆 is the scale factor and 𝑘 is the shape factor. The spatial variability of the breaking thresholds is supposed to be195

identical for both thresholds: 𝑘𝜀𝑐𝑟 = 𝑘𝜃𝑐𝑟 = 𝑘. This means that the fracture is controlled by three parameters: the shape196

factor 𝑘, the scale factor in extension 𝜆𝜀𝑐𝑟, and the scale factor in rotation 𝜆𝜃𝑐𝑟. Those three parameters are identified197

by fitting the non-linear macroscopic behavior.198

Remark 1. The beam-particle model considered can also represent the microcrack closure effects by adding contact199

and friction between the particles when a beam is broken. Contact and friction are not accounted for in this work.200

The parameters of the beam-particle model, given in Table 1, correspond to a quasi-brittle material such as cement201

with the following properties: a Young modulus 𝐸0 = 36.35 GPa, a Poisson ratio 𝜈0 = 0.22, a tensile strength 𝑓𝑡 = 5202

MPa. Note that the elastic properties are equivalent to a bulk modulus 𝜅0 = 30.0 GPa and a shear modulus 𝜇0 = 19.4203

GPa.204
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Figure 3: Periodic beam-particle mesh where the red boxed particles are guiding particles and green circled ones are guided
particles. Guided particles have the same number as their guiding particle.

2.2. Periodic Boundary Conditions (PBC)205

Periodic Boundary Conditions are used to compute the effective elasticity tensor of a square specimen. The PBC206

are imposed by adding a layer of guided particles on the top and right part of the square mesh, as shown in Figure 3.207

Each guided particle has the same geometry as the associated guiding particle on the bottom and left part of the mesh.208

The movement of a guided particle 𝑞 is constrained to follow its guiding particle 𝑝 through,209

𝒖(𝑞) = 𝒖(𝑝) + εimp
(
𝒙(𝑞) − 𝒙(𝑝)

) (27)
where εimp is the imposed strain. This relation is enforced in the linear system via Lagrange multipliers.210

Remark 2. The linear solver used in the previous versions of the beam-particle model was based on the Cholesky211

decomposition (Chen et al., 2008). When using Lagrange multipliers, the matrix of the linear system is no longer212

definite positive; thus, the Cholesky decomposition is no longer applicable. We use a linear solver based on the QR213

decomposition (Davis, 2011) to circumvent this issue.214

2.3. Measurement of an effective elasticity tensor215

To obtain the effective —i.e., damaged— elasticity tensor of a discrete specimen, the average strain and stress must216

be defined from the particle displacements and forces. Numerous definitions of the average strain tensor in discrete217

media are discussed by Bagi (2006). For the present study, the average strain tensor is defined as218

ε = 1
𝑆

𝑁∑
𝑝=1

(𝒖(𝑝) + 𝒖(𝑝+1)
2

⊙ 𝒏(𝑝,𝑝+1)
)
𝑙(𝑝,𝑝+1) (28)

where 𝑆 is the surface of the space cell system1 proposed by Bagi (1996) (see Figure 1), 𝒖(𝑝) is the displacement219

of the particle 𝑝, 𝒏(𝑝,𝑝+1) is the outward-pointing normal to the beam linking particles 𝑝 and 𝑝 + 1, and 𝑙(𝑝,𝑝+1) is the220

length of the same beam, and where ⊙ is the symmetrized tensorial product. For two vectors 𝑎𝑎𝑎 and 𝑏𝑏𝑏 it is such that221

𝑎𝑎𝑎 ⊙ 𝑏𝑏𝑏 = 1
2 (𝑎𝑎𝑎 ⊗ 𝑏𝑏𝑏 + 𝑏𝑏𝑏 ⊗ 𝑎𝑎𝑎). The sum is carried over the 𝑁 particles on the boundary of the specimen.222

The definition of the average stress tensor is a symmetrization of the definition proposed by (Bagi, 1996),223

σ = 1
𝑆

𝑁∑
𝑝=1

𝒇 (𝑝) ⊙ 𝒙(𝑝) (29)

1The surface of the space cell system is the surface of the specimen that can be deformed; thus, the surface bounded by the lattice network. It
is illustrated on Figure 1.
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where 𝒇 (𝑝) is the force applied to particle 𝑝 and 𝒙(𝑝) is the position of particle 𝑝.224

Remark 3. The assumption that the strain and stress are symmetric tensors is necessary for the present small strain225

framework. Due to the rotation of the particles, the beam-particle model shall be modeled by a generalized continuum.226

Indeed, some studies use higher-order continuum models to represent discrete media (Pradel and Sab, 1998; Ehlers227

et al., 2003; Dos Reis and Ganghoffer, 2012; Rezakhani and Cusatis, 2016).228

Knowing three linearly independent strain tensors ε(𝑖) and the associated stress tensors σ(𝑖), in Kelvin notation,229

[ε(𝑖)] =
⎡⎢⎢⎢⎣

ε
(𝑖)
𝑥𝑥
ε
(𝑖)
𝑦𝑦√
2ε(𝑖)𝑥𝑦

⎤⎥⎥⎥⎦
, [σ(𝑖)] =

⎡⎢⎢⎢⎣

σ
(𝑖)
𝑥𝑥

σ
(𝑖)
𝑦𝑦√

2σ(𝑖)
𝑥𝑦

⎤⎥⎥⎥⎦
(30)

the elasticity tensor in Kelvin notation can be obtained as the symmetrized 3 × 3 matrix product230

[𝐄] =
{[ [

σ(1)] , [σ(2)] , [σ(3)] ] ⋅
[ [

ε(1)
]
,
[
ε(2)

]
,
[
ε(3)

] ]−1}𝑆
. (31)

To obtain three linearly independent strain tensors, elastic periodic strain loadings are applied to the virtual specimen231

[ε(1)imp] =
⎡⎢⎢⎣

𝜀
0
0

⎤⎥⎥⎦
, [ε(2)imp] =

⎡⎢⎢⎣

0
𝜀
0

⎤⎥⎥⎦
, [ε(3)imp] =

⎡⎢⎢⎣

0
0√
2𝜀

⎤⎥⎥⎦
, (32)

where 𝜀 is sufficiently small (chosen such that the loading remains elastic). Algorithm 1 details the procedure to measure232

the evolution of the elasticity tensor during a mechanical loading.

Algorithm 1: Measurement of the evolution of effective elasticity tensor
Generate a virtual specimen (micro-structure);
Apply a damaging loading;
Create an empty list of effective elasticity tensor;
foreach load step do

Extract the cracks;
Add the cracks to uncracked virtual specimen;
foreach measurement loading 𝑖 do

Apply measurement loading [ε𝑖imp];
Compute average strain [𝜺(𝑖)] Eq. (28);
Compute average stress [𝝈(𝑖)] Eq. (29);

end
Compute effective elasticity tensor Eq. (31);
Store effective elasticity tensor in the list;

end

233

2.4. Dataset of 76 356 effective elasticity tensors234

This part is dedicated to generating a large dataset of effective elasticity tensors. To constitute the dataset, 36 virtual235

specimens with different micro-structures (but with the same macroscopic properties) are submitted to 21 mechanical236

loadings, uniaxial or multiaxial. Each specimen (also called Area Element) is a square of 0.2m×0.2m, with an average237

beam length 𝑙𝑏 = 0.002m. Thus, the specimens are composed of 100 × 100 particles. Each mechanical loading is238

discretized into 100 loading steps. The database contains 36×21 = 756 evolutions of elasticity tensors, each containing239

101 elasticity tensors, leading to a total of 76 356 elasticity tensors. Note that some elasticity tensors appear multiple240

times in the dataset (when the specimen is not yet damaged).241

Different types of boundary conditions have been applied to generate this dataset:242
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Figure 4: Illustration of localized cracking patterns in the dataset.

• Kinematic Uniform Boundary Conditions (KUBC), where strain is imposed on the whole boundary of the243

specimen,244

• Periodic Boundary Conditions (PBC) as described in subsection 2.2, and245

• Experimental Boundary Conditions (EXPE), where displacement is imposed on parts of the boundary.246

Loadings are also separated into proportional and non-proportional loadings. The latter lead to a rotation of the principal247

strain/stress directions during the loading. It leads to a misalignment of the loading direction with first-stage micro-248

cracks, and a change of the damaging direction. The names, descriptions and parameters of the applied loadings249

are detailed in Appendix B. Examples of final micro-cracking patterns are provided in Figure 4. The measurement250

procedure is applied for an EXPE bi-tension loading in Figure 5 for illustration purposes.251

Remark 4. Instead of using physical loadings to generate micro-cracks, one could try to create random cracking252

patterns by randomly breaking beams. This method does not account for the interactions of cracks during the loading.253
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𝑡

Damaging loading Cracking
patterns

[
σ(1)] , [ε(1)]

[
σ(2)] , [ε(2)]

[
σ(3)] , [ε(3)]

Measure of elasticity tensor
(loadings and homogenization)

⎡
⎢⎢⎣

49.8 10.3 0.04
10.3 49.8 −0.04
0.04 −0.04 38.5

⎤
⎥⎥⎦

⎡
⎢⎢⎣

34.0 5.83 −0.07
5.83 34.1 0.15
−0.07 0.15 27.9

⎤
⎥⎥⎦

⎡
⎢⎢⎣

6.22 0.22 1.02
0.22 6.33 1.64
1.02 1.64 8.84

⎤
⎥⎥⎦

Elasticity tensor in
Kelvin notation [GPa]

Figure 5: Illustration of the method to measure the evolution of the effective elasticity tensor in the EXPE bi-tension
loading.
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Figure 6: Initial distance to isotropy for each micro-structure in the dataset.

We have preferred to apply true mechanical loadings, as those constrain the micro-cracking patterns to "physically-254

reachable" ones.255

2.5. Isotropy of the initial elasticity tensor 𝐄0256

For the present modeling, we suppose that the undamaged elasticity tensor is isotropic. To check that this is also257

the case for the undamaged (uncracked) elasticity tensors in the dataset, we compute the distance to isotropy, by258

Equation 22, for the 36 micro-structures in the dataset. The results are provided in Figure 6. The mean value of the259

initial relative distance to isotropy is Δmeanso = 0.0102, whereas the standard deviation is Δmeanso = 0.0018. These relative260

distances are all between Δminso = 0.007 and Δmaxso = 0.016. This is sufficient to consider that the elasticity tensors are261

initially isotropic.262
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Figure 7: Histograms of relative distances to symmetry classes over the dataset

2.6. Distances to isotropy and to orthotropy of the effective elasticity tensors263

The distances of the elasticity tensors to isotropy or to orthotropy can also be used to justify the tensorial nature264

of the damage variable (Oliver-Leblond et al., 2021). These distances have been computed for each elasticity tensor in265

the dataset. The corresponding histograms are plotted in Figure 7a and Figure 7b.266

In Figure 7a, the distribution of the relative distance to isotropy (Equation 22) shows that a large part of effective267

elasticity tensors in the dataset is far from being isotropic. This means that a scalar (isotropic) damage variable is268

insufficient to represent the loss of stiffness (due to micro-cracking).269

In the Figure 7b, the distribution of the relative distance to orthotropy (Equation 23) shows that most of the270

tensors in the dataset are close being orthotropic. This means that the effective elasticity tensor can be modeled as271

remaining orthotropic during the mechanical loadings of the whole dataset. From the reconstruction formula (15) and272

in accordance with (Desmorat and Desmorat, 2016), this implies that at most two second-order tensors are required to273

represent the impact of micro-cracking on the bi-dimensional elasticity tensor.274

The question of whether the single second-order tensor 𝐃 within the reconstruction formulas of section 1 is275

sufficient to represent this coupling has to be addressed. By the damage definition in Eq. (18), the bulk modulus276

𝜅 and the deviatoric part of the dilatation tensor are exactly modeled from the anisotropic damage variable 𝐃. To277

fully determine the effective elasticity tensor 𝐄 = 𝐄(𝐃), the shear modulus 𝜇 and the harmonic part 𝐇 of 𝐄 need to278

be modeled as functions of the damage 𝐃. It proves essential to note that each term of the harmonic reconstruction279

formula (11) is orthogonal to each other (see (Blinowski et al., 1996; Vianello, 1997; Desmorat and Desmorat, 2015)).280

From a modeling point of view, this means that the modeling errors associated with each part 𝐈𝐬𝐨, 𝐃𝐢𝐥 and 𝐇 of the281

harmonic decomposition are independent. They can be handled separately. Conversely, this also means that a modeling282

error on the harmonic part cannot be compensated for by the isotropic part 𝐈𝐬𝐨 or by the dilatation part 𝐃𝐢𝐥.283

3. Modeling of the shear modulus–damage state coupling284

We recall first the expression of the generalized shear modulus 𝜇 of the elasticity tensor 𝐄,285

𝜇 = 1
8
(2 tr 𝐯 − tr 𝐝) , 𝐝 = 𝐄∶𝟏, 𝐯 = tr13 𝐄. (33)

To express 𝜇 as a function of damage tensor 𝐃, a relation between the trace tr 𝐯 of the Voigt tensor and the damage286

tensor 𝐃 has to be exhibited.287
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Figure 8: Damage 𝐷𝐯 as a function of the eigenvalues 𝐷1 and 𝐷2 (𝐷2 > 𝐷1) of the damage variable 𝐃 over the dataset.
Each colored point is the value of 𝐷𝐯 for an elasticity tensor of the dataset. The black dots are the projections of the data
points onto the planes (𝐷1, 𝐷𝐯), (𝐷2, 𝐷𝐯) and (𝐷1, 𝐷2).

To ease the modeling process, an intermediate scalar variable 𝐷𝐯 such that tr 𝐯 = tr 𝐯0(1 −𝐷𝐯) is introduced,288

𝐷𝐯 =
tr 𝐯0 − tr 𝐯

tr 𝐯0
. (34)

It can be interpreted as a damage variable based on tr(𝐯). However, since it represents the same micro-cracking pattern289

as 𝐃, it is not assumed to be an additional thermodynamics (internal) variable. It will be modeled as a function of the290

damage variable 𝐃.291

Figure 8 contains a scatter plot of 𝐷𝐯 as a function of the two eigenvalues 𝐷1, 𝐷2 of the damage tensor 𝐃 for each292

elasticity tensor of the dataset. It is observed that the points (𝐷1, 𝐷2, 𝐷𝐯) of the dataset are grouped around a surface.293

Thus,𝐷𝐯 can be modeled as a function of damage by a constitutive equation𝐷𝐯 = 𝐷m
𝐯 (𝐃). In practice, we approximate294

𝐷𝐯 by the linear combination of invariants of 𝐃,295

𝐷m
𝐯 (𝐃) = 𝑐1 𝐼1(𝐃) + 𝑐2 𝐼2(𝐃) , 𝐼𝑘(𝐃) = tr(𝐃𝑘) = 𝐷𝑘

1 +𝐷
𝑘
2 , (35)

where the upperscript m stands for model, 𝐼𝑘(𝐃) are invariants of 𝐃, and 𝑐𝑘 are the parameters of the model. A second296

expression297

𝐷m
𝐯 (𝐃) = 𝑐1 𝐼1(𝐃) + 𝑐2 𝐼2(𝐃) + 𝑐3 𝐼3(𝐃) , 𝐼3(𝐃) =

1
2
(
3𝐼1(𝐃) 𝐼2(𝐃) − 𝐼1(𝐃)3

)
, (36)

will also be studied (but the two-term expansion in Eq. (35) will prove sufficient).298

The modeling process will be carried out in two steps. The first step consists in deriving and justifying some299

physical constraints on the material constants 𝑐𝑘. Those constraints will limit the number of independent parameters300

of the model. The second step consists in identifying the parameters 𝑐𝑘.301

3.1. Physical constraints302

Constraint 1 – Undamaged state. For an undamaged state, the trace of the Voigt tensor keeps its initial value,303

tr 𝐯 = tr 𝐯0,304

𝐷m
𝐯 (𝐃 = 𝟎) = 0 (37)

This constraint is satisfied by both Eq. (35) and (36) since the invariants of 𝐃 vanish (𝐼𝑘(𝐃 = 𝟎) = 0).305

Constraint 2 – Fully damaged state. For a fully damaged state, the effective elasticity tensor is a null fourth-order306

tensor. We have then tr 𝐯 = 0, which implies 𝐷m
𝐯 (𝐃 = 𝟏) = 1 and,307

2
𝑛∑
𝑘=1

𝑐𝑘 = 1, 𝑛 = 2, 3. (38)
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Figure 9: Check of the assumption of total symmetry of the stiffness loss tensor: the dots in black correspond to the value
in the dataset and the red dots correspond to the 𝐷𝐯 computed via Equation 41

Constraints 3 – Diffuse micro-cracking. In the early degradation stage, the micro-cracking is diffuse (in the sense308

that it is not localized within the RAE). In Figure 8, this stage corresponds to the region where the points (𝐷1, 𝐷2, 𝐷𝐯)309

are close to a plane. It corresponds to the assumption of non-interacting cracks (as defined by Kachanov (1992)).310

Kachanov has shown that in 2D and as long as the micro-cracks are not interacting, the gain in compliance is a311

totally symmetric fourth-order tensor. This property is not satisfied anymore when the micro-cracking is localized.312

This observation guided us to check if this property is satisfied by the weakly damaged elasticity tensors of the dataset.313

Assuming in the early damage stage that the stiffness lossΔ𝐄 = 𝐄−𝐄0 is totally symmetric implies tr12
(
𝐄 − 𝐄0

)
=314

tr13
(
𝐄 − 𝐄0

), i.e., tr 𝐝 − tr 𝐝0 = tr 𝐯 − tr 𝐯0. This means that we have, at low damage,315

𝐷𝐯 =
tr 𝐝0 − tr 𝐝

tr 𝐯0
. (39)

Taking the trace of the definition (20), giving tr 𝐝 = 2𝜅0(2 − tr 𝐃), and using the relation between initial properties,316

tr 𝐝0 = 4𝜅0 and tr 𝐯0 = 4𝜇0 + 2𝜅0, we get, at low damage still,317

𝐷𝐯 =
𝜅0

2𝜇0 + 𝜅0
𝐼1(𝐃) , (40)

and318

𝜕𝐷𝐯
𝜕𝐃

||||𝐃=𝟎 =
𝜅0

2𝜇0 + 𝜅0
𝟏 (diffuse micro-cracking assumption). (41)

Figure 9 provides a check of this assumption in the 76 356 elasticity tensors dataset. For small values of the damage319

(tr 𝐃 < 1), the values of 𝐷𝐯 obtained by the diffuse micro-cracking assumption provide an accurate model for the320

values from the dataset.321

For both constitutive equations (35) and (36), the diffuse micro-cracking constraint leads to322

𝜕
𝜕𝐃

||||𝐃=𝟎

( 𝑛∑
𝑘=1

𝑐𝑘𝐼𝑘(𝐃)
)

=
𝜅0

2𝜇0 + 𝜅0
𝟏, i.e., 𝑐1 =

𝜅0
2𝜇0 + 𝜅0

. (42)
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3.2. Parameters 𝑐𝑘323

For the first two-term expression in Eq. (35), the physical constraints leads to324

𝑐1 =
𝜅0

2𝜇0 + 𝜅0
, and 𝑐2 =

1
2
− 𝑐1, (43)

so that,325

𝐷m
𝐯 (𝐃) =

𝜅0
2𝜇0 + 𝜅0

(
𝐼1(𝐃) − 𝐼2(𝐃)

)
+ 1

2
𝐼2(𝐃) . (44)

Note that this first modeling does not introduce any material parameter.326

Applying the physical constraints to the three-term expression in Eq. (36) leads to327

𝑐1 =
𝜅0

2𝜇0 + 𝜅0
, 𝑐2 =

1
2
− 𝑐1 − 𝑐3, (45)

and328

𝐷m
𝐯 (𝐃) =

𝜅0
2𝜇0 + 𝜅0

(
𝐼1(𝐃) − 𝐼2(𝐃)

)
+ 1

2
𝐼2(𝐃) + 𝑐3

(
𝐼3(𝐃) − 𝐼2(𝐃)

)
. (46)

The parameter 𝑐3 is determined via a regression over the whole dataset. We get the small value329

𝑐3 = 0.0973, (47)
to be compared to the particular case 𝑐3 = 0 of the two-term expression in Eq. (44).330

4. Modeling of the harmonic part–damage state coupling331

The relative distance to orthotropy remains small for most elasticity tensors in our large dataset (as shown in332

Figure 7b). We thus make the simplifying assumption that the effective elasticity tensors 𝐄 are orthotropic. By Eq. (14),333

the harmonic part of a 2D orthotropic elasticity tensor can be written as the harmonic square334

𝐇 =
2𝐾3

𝐼22
𝐝′∗𝐝′ = ±‖𝐇‖ 𝐝′∗𝐝′

‖𝐝′∗𝐝′‖ , ‖𝐝′∗𝐝′‖ = 1√
2
𝐝′∶𝐝′ = 1√

2
𝐼2, (48)

depending on the sign of the invariant of the elasticity tensor 𝐾3(𝐄) = 𝐝∶𝐇∶𝐝. Based on this parametrization, the335

modeling of the harmonic part of the elasticity tensors in the dataset can be carried out in two steps: (𝑖) choosing an336

orientation (the sign) and (𝑖𝑖) modeling the harmonic part prefactor ‖𝐇‖ as a function of the tensorial damage variable337

𝐃.338

Remark 5. Note that orientation must be well-predicted when the relative norm of the harmonic part ‖𝐇‖∕‖𝐄‖ is339

large. When the harmonic part is small (when ‖𝐇‖∕‖𝐄‖≪ 1), a misprediction of the orientation has a small effect on340

the predicted elasticity tensor.341

4.1. Orientation of the harmonic part342

A first indicator of the orientation of the harmonic part 𝐇 is the sign of the invariant 𝐾3(𝐄) or, in an equivalent343

manner, the sign of 𝐾3(𝐄)1∕3 (which is in GPa). Figure 10a shows the histogram of the invariant 𝐾3(𝐄)1∕3 over the344

dataset. It shows that the negative values of 𝐾3(𝐄)1∕3 are small in absolute, whereas the positive values of 𝐾3(𝐄)1∕3345

are an order of magnitude higher. However, a large value of 𝐾3 does not mean that the harmonic part is large, whereas346

a small value of 𝐾3 does mean that the harmonic part is small (see Eq. (14) and remark 5).347

Another orientation indicator is the norm of the difference between the normalized harmonic part and the348

normalized harmonic square349

𝑂+(𝐄) =
‖‖‖‖

𝐇
‖𝐇‖ − 𝐝′∗𝐝′

‖𝐝′∗𝐝′‖
‖‖‖‖
2
. (49)

The histogram of the orientation indicator 𝑂+(𝐄) over the dataset is plotted in Figure 10b. It mainly exhibits two350

peaks, one at 0, corresponding to the plus sign in Eq. (48), and one at 4, corresponding to the minus sign. In order to351

decide which sign is the best for our modeling, the data set is split into two colored parts:352
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(b) Stacked histogram of 𝑂+(𝐄) over the data set.
Figure 10: Two indicators for the sign of the harmonic part.

• a blue part when the harmonic part is negligible (‖𝐇‖2∕‖𝐄‖2 lower than 2%),353

• and a red part when the harmonic part is significant (‖𝐇‖2∕‖𝐄‖2 larger than 2%).354

Figure 10b shows that a higher number of elasticity tensors have a significant harmonic part in the positive orientation355

(𝑂+(𝐄) = 0) than in the negative orientation (𝑂+(𝐄) = 4). This observation is consistent with the analysis based on356

the invariant 𝐾3. It also indicates that the preferred orientation is + 𝐝′∗𝐝′
‖𝐝′∗𝐝′‖ (plus sign in Eq. (48)).357

For the remaining of this section, we358

• use the proportionality of the deviatoric part of the dilatation tensor with damage 𝐝′ = −2𝜅0 𝐃′ (by Eq. (20)),359

and360

• model the harmonic part of the effective elasticity tensors with a plus sign,361

by setting (with a slight abuse of notation)362

𝐇 = 𝐇(𝐃) = 𝐻m(𝐃) 𝐃
′∗𝐃′

𝐃′∶𝐃′ , (50)

where 𝐻m =
√
2‖𝐇‖ is a positive function (to be determined) of the tensorial damage variable 𝐃.363

4.2. Modeling of the harmonic part364

To identify the constitutive equation 𝐻m(𝐃), the first step is to check if the norm ‖𝐇‖ of the harmonic part can be365

represented by a function of the tensorial damage variable 𝐃 (through its invariants). Figure 11 shows the harmonic366

part norm ‖𝐇‖ versus the damage invariants 𝐼1(𝐃) = tr 𝐃 and 𝐼2
(
𝐃′) = 𝐃′∶𝐃′. Even if the discrepancy is large,367

especially in the region where 𝐼1(𝐃) > 1, this figure indicates that it should be possible to approximate the norm ‖𝐇‖368

by a function of the two damage invariants 𝐼1(𝐃) = and 𝐼2
(
𝐃′).369

Remark 6. Figure 11 shows that the norm of the harmonic part does not vanish when the damage variable 𝐃 is equal370

to the second-order identity 𝟏. Moreover, for the effective elasticity tensors in the dataset such that 𝐼1(𝐃) ≈ 2 and371

𝐼2
(
𝐃′) ≈ 0, different values of the norm ‖𝐇‖ are associated with the same value of damage. This means that the372

definition (18) of the damage variable is insufficient in these few cases to fully represent the variations of the effective373

elasticity tensor due to highly interacting micro-cracks. To account for those variations, a second (internal) damage374
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Figure 11: Norm of the harmonic part (in GPa) as a function of the damage invariants 𝐼1(𝐃) and 𝐼2(𝐃′) = 𝐃′∶𝐃′.

variable, possibly of higher order, could be used (see (Cormery and Welemane, 2010; Desmorat and Desmorat, 2016)375

for instance). Yet, the gain of accuracy might not be worth the increased modeling complexity.376

As in the previous section, let us frame the state modeling of the function 𝐻m(𝐃) by physical assump-377

tions/constraints. The assumption of initial isotropy imposes that378

𝐻m(𝐃 = 𝟎) = 0. (51)
We also assume that the effective elasticity tensor 𝐄 vanishes when the material is fully damaged. This implies that the379

harmonic part 𝐇 must vanish when the damage grows to 𝐃 = 𝟏,380

𝐻m(𝐃 = 𝟏) = 0. (52)
Figure 11 shows that the harmonic part norm ‖𝐇‖ remains small when the damage invariant 𝐼2

(
𝐃′) is small. We can381

assume that382

𝐻m (
𝐼1(𝐃) , 𝐼2

(
𝐃′) = 0

)
= 0. (53)

This new condition includes both previous assumptions.383

Remark 7. The condition (53) is satisfied when the damage is purely hydrostatic (i.e., when 𝐃 = 1
2 (tr 𝐃) 𝟏). If the384

damage is hydrostatic, both the dilatation part 𝐃𝐢𝐥 and the harmonic part 𝐇 are obtained null (by the formula (11)).385

Thus, the modeled 2D effective elasticity tensor 𝐄(𝐃) is isotropic during a hydrostatic damaging.386

A sparse regression method (the LASSO regression, Tibshirani (1996)) has been applied to a (multivariate)387

polynomial in the damage invariants 𝐼1(𝐃) and 𝐼2
(
𝐃′). This optimization method aims at fitting a parametrized388

function with respect to data while penalizing the number of non-zero parameters. Note that, following Gaines et al.389

(2018), physical assumptions can be accounted for through additional minimization constraints. The constrained390

LASSO regression for the polynomial modeling of the function𝐻m(𝐃) =
√
2‖𝐇(𝐃)‖ (introduced in Eq. (50)) recasts391

as the minimization problem392

min
ℎ𝑛1𝑛2

𝑁ela∑
𝑖=1

(√
2‖𝐇𝑖‖ −

∑
𝑛1,𝑛2

ℎ𝑛1𝑛2𝐼1(𝐃𝑖)
𝑛1𝐼2(𝐃′

𝑖)
𝑛2

)2

+ 𝛼
∑
𝑛1,𝑛2

|ℎ𝑛1𝑛2 |, (54)

where 𝑁ela = 76 356 is the number of elasticity tensors in the dataset, ℎ𝑛1𝑛2 are the coefficients of the sought393

polynomial, i.e., the parameters, and 𝛼 is an arbitrary hyper-parameter of the method. The first term corresponds to a394
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Figure 12: Illustration of the compromise between the precision and the number of non-zero parameters in the constrained
LASSO regression. The dashed line shows the best compromise for us (𝛼 = 0.0043 GPa).

classical regression with a least-square error. The second term (with 𝛼) penalizes the sum of the absolute values of the395

parameters ℎ𝑛1𝑛2 . In practice, the higher 𝛼, the fewer the non-zero parameters. The minimization has been carried out396

for different values of 𝛼. The coefficient of determination of the regression397

𝑟2 = 1 −

∑𝑁𝑒𝑙𝑎
𝑖=1

(√
2‖𝐇𝑖‖ −∑

𝑛1,𝑛2
ℎ𝑛1𝑛2𝐼1(𝐃𝑖)

𝑛1𝐼2(𝐃′
𝑖)
𝑛2
)2

∑𝑁𝑒𝑙𝑎
𝑖=1

(√
2‖𝐇𝑖‖ − mean

(∑
𝑛1,𝑛2

ℎ𝑛1𝑛2𝐼1(𝐃𝑖)
𝑛1𝐼2(𝐃′

𝑖)𝑛2
))2 (55)

is introduced as an indicator of the accuracy of the regression.398

As shown in Figure 12, the best compromise between the model’s accuracy (evaluated via the coefficient of399

determination 𝑟2 and the number of non-zero parameters) has been obtained for the one-parameter polynomial400

expression401

𝐻m(𝐃) = ℎ 𝐼1(𝐃)4 𝐼2
(
𝐃′) , ℎ = ℎ41 = 17 GPa, (56)

where ℎ is the so-called harmonic prefactor. Combined with equations (50) and (12), the previous expression means402

that the harmonic part of the elasticity tensors of our large dataset is well modeled by the simple constitutive equation403

𝐇(𝐃) = ℎ (tr 𝐃)4 𝐃′∗𝐃′, 𝐃′∗𝐃′ = 𝐃′ ⊗ 𝐃′ − 1
2
(𝐃′∶𝐃′) 𝐉, (57)

which expresses the harmonic part of the 2D effective elasticity tensors as a function of the damage variable 𝐃 only.404

Recall that 𝐉 = 𝐈 − 1
2𝟏⊗ 𝟏 is the deviatoric projector.405

4.3. Neglecting the harmonic part406

As an alternative to the polynomial expression (57), it is also worth neglecting the harmonic part 𝐇 and simply407

setting ℎ = 0, i.e.,408

𝐇(𝐃) = 0. (58)
Indeed, as shown in Figure 13, the harmonic part is a small proportion of the effective elasticity tensor in most cases.409

Due to these observations, the harmonic part can often be neglected.410

Remark 8. The modeling assumption ℎ = 0, 𝐇(𝐃) = 0, makes the effective elasticity tensor 𝑟0-orthotropic in the411

sense of (Vannucci, 2002).412
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Figure 13: Proportion of each part of the elasticity tensor for each tensor of the dataset.

5. Summary of the proposed anisotropic damage state coupling413

Let us summarize the constitutive equations obtained in sections 1, 3, and 4. These equations are obtained from414

both the elasticity tensors reconstruction formulas (11) and (15), the performed virtual beam-particle computations,415

and cross-identification over the large effective elasticity tensors dataset. Let us also switch to standard Continuum416

Mechanics notations and mark with a tilde the effective (damaged) quantities, such as the effective elasticity tensor417

�̃� = �̃�(𝐃), the effective generalized shear and bulk moduli �̃� = �̃�(𝐃), �̃� = �̃�(𝐃), the effective harmonic tensor418

�̃� = �̃�(𝐃). We recall and rewrite the state equations obtained by using the relation419

𝐝 = 2𝜅0 (𝟏 − 𝐃) , (59)
between the effective dilatation tensor 𝐝 = �̃�∶𝟏 and the second-order damage variable 𝐃.420

The proposed anisotropic damage coupling is based on the damage dependency of each component of the harmonic421

decomposition422

�̃�(𝐃) = 2�̃�(𝐃) 𝐉 + �̃�(𝐃) 𝟏⊗ 𝟏 − 𝜅0
(
𝟏⊗ 𝐃′ + 𝐃′ ⊗ 𝟏

)
+ �̃�(𝐃), (60)

of the effective bi-dimensional elasticity tensor. The effective shear modulus has been derived as423

�̃�(𝐃) = 1
8
(
2 tr �̃� − tr 𝐝

)
, tr �̃� = tr13 tr �̃� = tr 𝐯0(1 −𝐷m

𝐯 (𝐃)) (61)

with for 𝐷m
𝐯 (𝐃), function of the invariants tr 𝐃, 𝐃∶𝐃 and 𝐼3 = tr(𝐃3), either the no-additional parameter function in424

Eq. (44) or the one-additional parameter function in Eq. (46). Defining the nonlinear shear-damage coupling parameter425

𝑚 = 1
2
(
𝜅0 + 2𝜇0

)
𝑐3, (62)

these two expressions are unified as the first constitutive equation of Table 2, in which are also recalled the expressions426

obtained for �̃�(𝐃) and �̃�(𝐃).427

The corresponding elasticity law coupled with anisotropic damage derives from a thermodynamics potential, the428

Helmholtz free energy density 𝜌𝜓 function of the strain and the damage, as429

σ = 𝜌
𝜕𝜓
𝜕ε

= �̃�(𝐃)∶ε, (63)

where430

𝜌𝜓 = 1
2
ε∶�̃�(𝐃)∶ε = �̃�(𝐃) ε′∶ε′ + 1

2
�̃�(𝐃) (tr ε)2 − 𝜅0 𝐃′∶ε′ tr ε + 1

2
ℎ (tr 𝐃)4 ε′∶(𝐃′ ∗ 𝐃′)∶ε′, (64)
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Quantity Model

Shear modulus �̃�(𝐃) = 𝜇0 −
1
4
𝜅0 tr 𝐃 + 1

4

(
𝜅0 − 2𝜇0

)
𝐃∶𝐃 + 𝑚

(
𝐃∶𝐃 − tr(𝐃3)

)

Bulk modulus �̃�(𝐃) = 𝜅0
(
1 − 1

2
tr 𝐃

)

Dilatation tensor 𝐝 = 2𝜅0 (𝟏 − 𝐃)

Harmonic part �̃�(𝐃) = ℎ (tr 𝐃)4 𝐃′∗𝐃′

Table 2
Summary of the constitutive equations.

Name Symbol Value in GPa

Initial shear modulus 𝜇0 19.4
Initial bulk modulus 𝜅0 30
Nonlinear shear-damage coupling parameter 𝑚 3.35
Harmonic prefactor ℎ 17

Table 3
Summary of the constitutive parameters (and their value for the 76 356 elasticity tensors dataset).

is a polynomial of simple and joint invariants of the state variables, i.e., of the strain and damage tensors. It details as431

𝜌𝜓(ε,𝐃) =
(
𝜇0 −

1
4
𝜅0 tr 𝐃 + 1

4
(
𝜅0 − 2𝜇0

)
𝐃∶𝐃 + 𝑚

(
𝐃∶𝐃 − tr(𝐃3)

))
ε′∶ε′

+ 1
2
𝜅0

(
1 − 1

2
tr 𝐃

)
(tr ε)2 − 𝜅0 𝐃′∶ε′ tr ε + 1

2
ℎ (tr 𝐃)4 ε′∶(𝐃′ ∗ 𝐃′)∶ε′.

(65)

Using definition (12), this state potential can be rewritten as432

𝜌𝜓(ε,𝐃) =
(
𝜇0 −

1
4
𝜅0 tr 𝐃 + 1

4
(
𝜅0 − 2𝜇0

)
𝐃∶𝐃 + 𝑚

(
𝐃∶𝐃 − tr(𝐃3)

)
− 1

4
ℎ (tr 𝐃)4 𝐃′∶𝐃′

)
ε′∶ε′

+ 1
2
𝜅0

(
1 − 1

2
tr 𝐃

)
(tr ε)2 − 𝜅0 𝐃′∶ε′ tr ε + 1

2
ℎ (tr 𝐃)4 (𝐃′∶ε′)2.

(66)

The thermodynamics force associated with the damage is then the symmetric second-order tensor433

𝐘 = − 𝜌𝜕𝜓
𝜕𝐃

=
(1
4
𝜅0𝟏 +

1
2
(2𝜇0 − 𝜅0)𝐃 + 𝑚

(
3𝐃2 − 2𝐃

)
+ ℎ (tr 𝐃)3

(1
2
(tr 𝐃)𝐃′ + (𝐃′∶𝐃′) 𝟏

))
ε′∶ε′

+ 1
4
𝜅0(tr ε)2 𝟏 + 𝜅0 (tr ε)𝐃′ − ℎ (tr 𝐃)4 (𝐃′∶ε′) ε′.

(67)

The parameters of the final model are the initial shear modulus 𝜇0, the initial bulk modulus 𝜅0, the (optional)434

shear-damage coupling parameter 𝑚 = 1
2

(
𝜅0 + 2𝜇0

)
𝑐3 and the harmonic prefactor ℎ. They are summarized, with435

their value for our dataset, in Table 3.436

It is worth pointing out that only one damage variable (the second-order tensor 𝐃) and only two material parameters437

(𝑚 and ℎ) are introduced in this final state coupling for quasi-brittle materials between bi-dimensional elasticity and438

anisotropic damage.439

6. Representativity of the proposed anisotropic damage state coupling440

This section provides assessments over the 76 356 tensors dataset of several modeling choices —summarized in441

the previous section— for the coupling bi-dimensional elasticity-anisotropic damage:442

• simplified modeling with vanishing parameters 𝑚 = 0 and/or ℎ = 0.443
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Percentile (error) 1 % 2 % 5 % 10 %

𝑚 = 0 43.8 % 60.7 % 92.4 % 99.9 %
𝑚 = 3.35 GPa 44.0 % 71.6 % 96.8 % 99.9 %

Table 4
Proportion of tensors with a relative error on the isotropic part below 1%, 2%, 5% and 10% for both value of 𝑚 (results
independent from the harmonic prefactor ℎ).

• full modeling with non zero parameters 𝑚 = 3.35 GPa and/or ℎ = 17 GPa.444

Each computed (micro-cracked) elasticity tensor 𝐄𝑖 from the dataset has an isotropic part 𝐈𝐬𝐨𝑖, a dilatation part 𝐃𝐢𝐥𝑖445

and a harmonic part 𝐇𝑖 (determined by harmonic decomposition (11)). For the assessments, the damage 𝐃 = 𝐃𝑖 is446

taken as equal to the damage variable 𝐃𝑖 = 𝟏 − 𝐝𝑖∕2𝜅0 = 𝟏 − 𝐄𝑖∶𝟏∕2𝜅0 measured for 𝐄𝑖 in the dataset.447

To be quantitative, the error between a tensor 𝐄𝑖 of the dataset and the anisotropic damage modeling �̃� = �̃�(𝐃) is448

defined as449

‖𝐄𝑖 − �̃�(𝐃𝑖)‖ =
√

‖𝐈𝐬𝐨𝑖 − 𝐈𝐬𝐨(𝐃𝑖)‖2 + ‖𝐃𝐢𝐥𝑖 − 𝐃𝐢𝐥(𝐃𝑖)‖2 + ‖𝐇𝑖 − �̃�(𝐃𝑖)‖2 , (68)
where, by the formulas of previous section,450

𝐈𝐬𝐨(𝐃) = 2�̃�(𝐃) 𝐉 + �̃�(𝐃) 𝟏⊗ 𝟏, 𝐃𝐢𝐥(𝐃) = −𝜅0
(
𝟏⊗ 𝐃′ + 𝐃′ ⊗ 𝟏

)
, �̃�(𝐃) = ℎ (tr 𝐃)4 𝐃′∗𝐃′. (69)

Since the fourth-order isotropic (𝐈𝐬𝐨), dilatation (𝐃𝐢𝐥) and harmonic (𝐇) parts are orthogonal, the errors associated451

with each part are uncorrelated. This implies that the parameter 𝑚 influences the isotropic part only (by shear452

modulus expression of Table 2), and that the parameter ℎ influences the harmonic part only (by harmonic part453

expression of Table 2). We point out that the dilatation part has no modeling error (thanks to the equality 𝐃𝐢𝐥(𝐃𝑖) =454

−𝜅0
(
𝟏⊗ 𝐃′

𝑖 + 𝐃′
𝑖 ⊗ 𝟏

)
= 𝐃𝐢𝐥(𝐄𝑖)).455

6.1. Assessment of the isotropic part 𝐈𝐬𝐨(𝐃)456

Let us first analyze the contribution of the isotropic part to the modeling error. A histogram of the relative error457

‖𝐈𝐬𝐨𝑖 − 𝐈𝐬𝐨(𝐃𝑖)‖∕‖𝐄0‖ on the isotropic part 2 is plotted in Figure 14a. The relative error range [0, 1] is discretized in458

500 intervals for this histogram, and all the following ones. It shows that both modeling, with vanishing value 𝑚 = 0459

and with non-zero value 𝑚 = 3.35 GPa, are able to represent well the isotropic part of all micro-cracked tensors in460

the dataset (with a relative error below 10%). Figure 14b provides the Cumulative Distribution Function associated461

with this histogram. The numbers of tensors in each interval are cumulated with the relative error going from 0 to462

1. Afterward, the cumulated number is divided by the total number of tensors to define the Cumulative Distribution463

Function (such that it reaches 1 when the error is 1). This plot shows that most isotropic parts are modeled with an464

error below 10%.465

More quantitative results are provided in Table 4, which focuses on different percentiles of the histogram. Each466

percentile corresponds to a percentage of elasticity tensors 𝐄𝑖 with a modeling error —on the isotropic part— below467

the given threshold. For instance, the 5-percentile gives the proportion of tensors that are modeled with an error below468

5%. This table is obtained from the Cumulative Distribution of the error by fixing the error (in the 𝑥-axis) and reading469

the associated cumulative proportion of tensors (in the 𝑦-axis). The Table 4 shows that the case 𝑚 = 3.35 GPa models470

71.6% of the effective elasticity tensor with less than 2% of error, whereas the case 𝑚 = 0 models only 60.7% of them.471

Thus, the case 𝑚 = 3.35 GPa provides a slightly more accurate model of the isotropic part than the simplified case472

𝑚 = 0. However, it requires the introduction of the additional material parameter 𝑚 = 1
2 (𝜅0 + 2𝜇0) 𝑐3. As the gain in473

accuracy is small compared to the increase of modeling/identification complexity by adding a parameter, we propose474

to retain 𝑚 = 0 (i.e., Eq. (44)) for the modeling of the coupling of the shear modulus with anisotropic damage.475

6.2. Assessment of the harmonic part476

Let us now analyze the contribution of the harmonic part to the modeling error. Figure 15a shows the histogram477

of the relative error ‖𝐇𝑖 − �̃�(𝐃𝑖)‖∕‖𝐄0‖ on the harmonic part. It indicates that the case ℎ = 17 GPa substantially478

2Duplicated tensors during a loading (two successive tensors with no crack growth) are filtered out in this plot. The total number of remaining
tensors is 60 232.
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(b) Cumulative Distribution Function
Figure 14: Histograms and Cumulative Distribution Functions of the relative error on the isotropic part over the dataset
for both values of 𝑚 (results independent from the harmonic prefactor ℎ).
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(b) Cumulative Distribution Function
Figure 15: Histograms and Cumulative Distributions Functions of the relative error on the harmonic part over the dataset
for both values of ℎ (results independent from the parameter 𝑚).

improves the modeling in comparison to neglecting the harmonic part (case ℎ = 0). Note that for ℎ = 17 GPa, the479

contribution of the error on the harmonic part is at the same level as the contribution due to the isotropic part. Figure 15b480

provides the Cumulative Distribution Function of this histogram. It shows that setting ℎ = 17 GPa enables to model481

most harmonic parts of the dataset with an error below 5% whereas it is not the case for ℎ = 0.482

More quantitative results are provided in Table 5, where different percentile of the histogram are given (as in483

Table 4). Once again, a percentile corresponds to percentage of elasticity tensors with a modeling error – on the484

harmonic part – below a given threshold. It shows that setting ℎ = 17 GPa enables the modeling of most harmonic485
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Percentile (error) 1% 2% 5% 10%

ℎ = 0 29.7% 44.7% 72.0% 94.7%
ℎ = 17 GPa 39.3% 65.0% 98.4% 100%

Table 5
Proportion of tensors with an error on harmonic part below 1%, 2%, 5% and 10% for both values of the harmonic prefactor
ℎ.
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Figure 16: Histogram and Cumulative Distribution Functions of the total relative error on the effective elasticity tensors
over the dataset for 𝑚 = 0 and ℎ = 17 GPa.

Percentile (error) 1% 2% 5% 10% 20% 30% 40%

(1 − 𝑑)𝐄0 5.63% 10.6% 21.0% 34.3% 49.0% 70.0% 97.3%
𝐈𝐬𝐨(𝐃) 5.87% 11.3% 21.3% 34.7% 50.3% 74.7% 99.7%
𝐈𝐬𝐨(𝐃) + 𝐃𝐢𝐥(𝐃) 18.9% 27.8% 59.7% 94.1% 100% 100% 100%
�̃�(𝐃) 22.1% 40.1% 85.8% 99.8% 100% 100% 100%

Table 6
Proportion of tensors with a total error below 1%, 2%, 5%, 10%, 20%, 30% and 40%.

parts of the dataset (98.4%) with an error below 5%, which is far higher than in the case for ℎ = 0 (72.0 %). Thus, the486

case ℎ = 17 GPa (using Eq. (56)) clearly improves the accuracy of the modeling.487

6.3. Assessment of the complete elasticity tensor488

Let us complete the previous independent results by analyzing the modeling error on the whole elasticity tensors.489

Below, we gradually add each ingredient of the modeling (the dilatation part, then the harmonic part) up to the complete490

modeling �̃�(𝐃). This allows quantifying the exact contribution of the different parts of the anisotropic damage model.491

Figure 16 shows the histogram and Cumulative Distribution Function of the relative error on the effective elasticity492

tensor for the different modelings. Different percentiles of the histogram are provided in Table 6. The first line of the493

table,494

𝐄0(1 − 𝑑), 𝑑 = ‖𝐄‖∕‖𝐄0‖, (70)
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(b) Cumulative Distribution Function
Figure 17: Histograms and Cumulative Distribution Functions of total error for large values of damage. The histogram and
cumulative distribution of total error over the elasticity tensors in the dataset is also reproduced.

Percentile (error) 1% 2% 5% 10% 20% 30% 40%

(1 − 𝑑)𝐄0 1.66% 4.43% 12.6% 22.5% 31.7% 55.4% 95.9%
�̃�(𝐃) 8.31% 27.1% 79.1% 99.7% 100% 100% 100%

Table 7
Proportion of highly damaged tensors (𝐷max > 0.7) with a total error below 1%, 2%, 5%, 10%, 20%, 30% and 40%.

corresponds to an isotropic model (with scalar damage variable 𝑑) as it can be found in the literature (Mazars, 1984;495

Lemaitre and Chaboche, 1985; Lemaitre, 1992). The second line of the table 𝐈𝐬𝐨(𝐃) corresponds to the isotropic496

part only of the proposed modeling (�̃� = 𝐈𝐬𝐨(𝐃) with 𝑚 = 0). The third line �̃� = 𝐈𝐬𝐨(𝐃) + 𝐃𝐢𝐥(𝐃) (with 𝑚 = 0497

still, and ℎ = 0) adds the modeling of the dilatation part, and the fourth line considers the whole damage model498

�̃� = 𝐈𝐬𝐨(𝐃) + 𝐃𝐢𝐥(𝐃) + �̃�(𝐃) with 𝑚 = 0 and ℎ = 17 GPa.499

Both isotropic models provide a poor estimation of the elasticity tensors of the dataset: the effective elasticity500

tensors of a micro-cracked quasi-brittle material cannot be recovered satisfactorily with an isotropic damage model.501

Adding the dilatation part to the model, i.e., modeling anisotropic damage, clearly improves its accuracy as it enables502

to account for anisotropy induced by micro-cracking. Accounting for the harmonic part (by the second-order damage503

tensor 𝐃 still) improves the modeling, bringing the proportion of the effective elasticity tensors with less than 5% of504

error from 59.7% (for the modeling with ℎ = 0, �̃�(𝐃) = 0) to 85.8% (for ℎ = 17 GPa).505

Let us finally check whether it is possible or not to model the influence of micro-cracking on the elasticity tensor up506

to high levels of damage. This modeling feature is very complicated to gain from a micromechanics homogenization507

approach (Kachanov, 1993; Ponte Castañeda and Willis, 1995; Cormery and Welemane, 2010; Dormieux and Kondo,508

2016).509

In Figure 17, we reproduce the histogram and Cumulative Distribution of relative errors with a filter to keep only510

the elasticity tensors associated with high damage value (i.e., 𝐷max = max(𝐷1, 𝐷2) > 0.7). The differences between511

the filtered and the unfiltered distributions correspond to the relative errors for tensors with low damage (diffuse micro-512

cracking).513

The histogram in Figure 17 shows that an isotropic modeling does not describe well effective elasticity tensors at514

high damage values. Table 6 shows that only 12.5% of highly damaged tensors at 𝐷max > 0.7 are reconstructed with515
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Figure 18: Comparison of the evolutions of elasticity tensors obtained via the two modelings (𝑚 = ℎ = 0 in blue, and
𝑚 = 3.35 GPa, ℎ = 17 GPa in green) with the reference data (𝐄, in red) during a shear→tension loading.

an error below 5% (versus only 21% for the whole dataset). Isotropic damage does not provide an accurate modeling516

in the strong micro-cracks interactions stage.517

The complete anisotropic damage modeling �̃� = 𝐈𝐬𝐨(𝐃) + 𝐃𝐢𝐥(𝐃) + �̃�(𝐃) (with 𝑚 = 0 and ℎ = 17 GPa) is able518

to model 79.1% of the tensors with an error below 5% (and 99.7% of the tensors with an error below 10%). It thus519

provides an accurate damage state coupling for the effective elasticity tensor, even for highly damaged specimens. This520

result emphasizes the strength of the proposed approach based on a beam-particle model of the anisotropic damage of521

quasi-brittle materials.522

6.4. Illustration of the modeling on a multiaxial non-proportional loading523

In order to illustrate the ability of the modeling to represent the anisotropic damage state coupling, let us detail524

both the beam-particle model response and the anisotropic damage �̃� = �̃�(𝐃) response for the PBC shear→tension525

loading of Table 8 of Appendix B. This loading is one of the non-proportional loadings with the largest harmonic part526

in our effective elasticity tensors dataset. Two modelings are compared to the reference data: a first one with 𝑚 = 0527

and ℎ = 0, and a second one with 𝑚 = 3.35 GPa and ℎ = 17 GPa.528

The computed beam particle elasticity tensors 𝐄 and the results of the modeling �̃�(𝐃) are reported in Figure 18.529

As the damage 𝐃 = 𝟏 − 𝐄∶𝟏∕2𝜅0 is known, the bulk modulus 𝜅 and the deviatoric part of the dilatation tensor 𝐝′ are530

exactly modeled. The shear modulus is correctly predicted by both 𝑚 = 0 and 𝑚 = 3.35 GPa cases, close to each other.531

This loading leads to the significant growth of the harmonic part, which is neglected when ℎ = 0. Setting ℎ = 17 GPa532

provides a good modeling of the harmonic part.533

Figure 19 displays the relative errors associated with the isotropic and harmonic parts during this loading. It534

confirms that the dilatation part is exactly modeled. For ℎ = 0, the most significant part of the error is due to the535

modeling of the harmonic part. Note that for ℎ = 17 GPa, the modeling of both the isotropic and the harmonic parts536

contribute at the same level of the total error on the effective elasticity tensor.537
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7. Conclusion538

We have performed 2D beam-particle simulations of Area Elements submitted to various complex loadings and539

have generated a dataset of 76 356 effective (damaged) elasticity tensors. High levels of anisotropic damage have been540

reached. Those correspond to discrete computations with strong micro-cracks interactions and multiple coalescences.541

By analyzing the distance to orthotropy over the whole dataset, we have first shown that (at least) one second-order542

damage variable is necessary to represent the effect of micro-cracking on the effective elastic tensors in our dataset.543

Thanks to a reconstruction formula of the orthotropic elasticity tensor by means of its covariants, we have proposed544

an anisotropic damage state coupling by a single second-order damage tensor. By the proper definition (18) of the545

second-order damage variable 𝐃, the isotropic part associated with the effective bulk modulus �̃� and the effective546

dilatation part 𝐃𝐢𝐥 = 1
2 (𝟏 ⊗ 𝐝′ + 𝐝′ ⊗ 𝟏) are exactly reconstructed from the damage 𝐃 (Table 2). The orthogonality547

property of the isotropic/dilatation/harmonic parts of the harmonic decomposition has allowed us to build independent548

constitutive equations: a scalar one549

�̃�(𝐃) = 𝜇0 −
1
4
𝜅0 tr 𝐃 + 1

4
(
𝜅0 − 2𝜇0

)
𝐃∶𝐃 + 𝑚

(
𝐃∶𝐃 − tr(𝐃3)

)
,550

for the effective shear modulus �̃�, and a tensorial one, polynomial in the damage variable551

�̃�(𝐃) = ℎ (tr 𝐃)4 𝐃′∗𝐃′,= ℎ (tr 𝐃)4
(
𝐃′ ⊗ 𝐃′ − 1

2
(𝐃′∶𝐃′) 𝐉

)
, (71)

for the fourth-order harmonic part of the effective elasticity tensor. In addition to the initial elasticity constants 𝜇0,552

𝜅0, only two material parameters have been introduced: the nonlinear shear-damage coupling parameter 𝑚 (which can553

furthermore be taken equal to zero) and the harmonic prefactor ℎ (identified as ℎ = 17 GPa). The proposed anisotropic554

damage state coupling models 85.8% of the effective elasticity tensors in the dataset with less than 5% of error, including555

those with strong micro-cracks interactions and multiple coalescences.556
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A. Distance to bi-dimensional elastic orthotropy734

This appendix provides a summary of the calculation of the exact distance of a 2D elasticity tensor to orthotropy.735

We refer to (Antonelli et al., 2022) for the details.736

The first step is to parametrize the orthotropic tensors 𝐄∗ from Eq. (23), in Kelvin notation,737

𝐄∗ = 𝑄⋆ 𝐀, 𝑄 =
(
cos 𝜃 − sin 𝜃
sin 𝜃 cos 𝜃

)
, [𝐀] =

⎡⎢⎢⎣

𝐴1111 𝐴1122 0
𝐴1122 𝐴2222 0
0 0 2𝐴1212

⎤⎥⎥⎦
, (72)
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where 𝑄 is a rotation matrix, 𝐀 is the normal form of orthotropic 2D elasticity tensors, and [𝐀] stands for its Kelvin738

notation. With this parametrization, the minimization problem becomes739

𝑑rt(𝐄) = min
𝜃,𝐀

‖𝐄 −𝑄⋆ 𝐀‖, Δrt(𝐄) =
𝑑rt(𝐄)
‖𝐄‖ , (73)

where ‖𝐄‖ =
√
𝐸𝑖𝑗𝑘𝑙𝐸𝑖𝑗𝑘𝑙. By applying the harmonic decomposition to 𝐄 and 𝐀, and using the orthogonality of its740

isotropic/dilatation/harmonic parts, we have741

𝑑rt(𝐄)2 = min
𝜃,𝐀

(‖𝐈𝐬𝐨(𝐄) − 𝐈𝐬𝐨(𝐀)‖2 + ‖𝐃𝐢𝐥(𝐄) −𝑄⋆ 𝐃𝐢𝐥(𝐀)‖2 + ‖𝐇(𝐄) −𝑄⋆𝐇(𝐀)‖2) . (74)
For the isotropic part, the closest isotropic tensor is the isotropic tensor itself, 𝐈𝐬𝐨(𝐀) = 𝐈𝐬𝐨(𝐄) (by Eq. (22)).742

Furthermore:743

• For the dilatation part term, we can introduce the deviatoric part of the dilatation tensor744

𝐝′(𝐄) =
[
𝑑′11 𝑑′12
𝑑′11 −𝑑′11

]
, 𝐝′(𝐀∗) = 𝑑∗

[
1 0
0 −1

]
, 𝑄 ⋆ 𝐝′(𝐀) = 𝑑∗

[
cos 2𝜃 sin 2𝜃
sin 2𝜃 −cos 2𝜃

]
, (75)

where745

𝑑′11 =
1
2
(
𝐸1111 − 𝐸2222

)
, 𝑑′12 = 𝐸1112 + 𝐸2212.746

• For the harmonic part term, we can introduce the harmonic parts (in Kelvin notation)747

[𝐇(𝐄)] =
⎡⎢⎢⎢⎣

𝐻1111 −𝐻1111
√
2𝐻1112

−𝐻1111 𝐻1111 −
√
2𝐻1112√

2𝐻1112 −
√
2𝐻1112 −2𝐻1111

⎤⎥⎥⎥⎦
, [𝐇(𝐀)] = 𝐻∗

⎡⎢⎢⎣

1 −1 0
−1 1 0
0 0 −2

⎤⎥⎥⎦
,

[𝑄⋆𝐇(𝐀)] = 𝐻∗
⎡⎢⎢⎢⎣

cos 4𝜃 −cos 4𝜃
√
2 sin 4𝜃

−cos 4𝜃 cos 4𝜃 −
√
2 sin 4𝜃√

2 sin 4𝜃 −
√
2 sin 4𝜃 −2 cos 4𝜃

⎤⎥⎥⎥⎦
,

(76)

where748

𝐻1111 =
1
8
(
𝐸1111 − 2𝐸1122 − 4𝐸1212 + 𝐸2222

)
, 𝐻1112 =

1
2
(
𝐸1112 − 𝐸2212

)
.749

We have then, by Eq. (11),750

𝑑rt(𝐄)2 = min
𝜃, 𝑑∗,𝐻∗

(‖𝐝′(𝐄) −𝑄⋆ 𝐝′(𝐀)‖2 + ‖𝐇(𝐄) −𝑄⋆𝐇(𝐀)‖2) . (77)
The minimizations with respect to 𝑑∗ and to 𝐻∗ give751

𝑑∗ = 𝑑′11 cos 2𝜃 + 𝑑
′
12 sin 2𝜃, 𝐻∗ = 𝐻1111 cos 4𝜃 +𝐻1112 sin 4𝜃. (78)

The minimization with respect to 𝜃 ends then up to the equation752

𝐴 cos 8𝜃 + 𝐵 sin 8𝜃 + 𝐶 cos 4𝜃 +𝐷 sin 4𝜃 = 0, (79)
where (Antonelli et al., 2022):753

𝐴 = 2(𝐸1111 − 2𝐸1122 − 4𝐸1212 + 𝐸2222)(𝐸1112 − 𝐸2212) = 32𝐻1111𝐻1112,

𝐵 = 4(𝐸1112 − 𝐸2212)2 −
1
4
(𝐸1111 − 2𝐸1122 − 4𝐸1212 + 𝐸2222)2 = 16

(
𝐻2

1112 −𝐻
2
1111

)
,

𝐶 = 2(𝐸1111 − 𝐸2222)(𝐸1112 + 𝐸2212) = 4𝑑′11𝑑
′
12,

𝐷 = 2(𝐸1112 + 𝐸2212)2 −
1
2
(𝐸1111 − 𝐸2222)2 = 2

(
𝑑′ 212 − 𝑑

′ 2
11
)
.

(80)
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Setting 𝜃 = 1
2 arctan 𝑡, we obtain the fourth-order polynomial in 𝑡,754

(𝐴 − 𝐶) 𝑡4 + (2𝐷 − 4𝐵) 𝑡3 − 6𝐴 𝑡2 + (2𝐷 + 4𝐵) 𝑡 + 𝐴 + 𝐶 = 0. (81)
The roots 𝑡𝑘 of the polynomial are obtained by symbolic resolution of the polynomial using (Meurer et al., 2017),755

and then evaluated numerically. The root retained corresponds to either to the solution 𝜃 = 1
2 arctan(𝑡𝑘) or to the756

solution 𝜃 = 1
2 arctan(𝑡𝑘) −

𝜋
2 that minimizes 𝑑rt(𝐄)2. Finally, the distance to orthotropy is obtained by injecting the757

minimizers —𝑑∗ and 𝐻∗ both from Eq. (78), and 𝜃— and taking the square root of Eq. (77).758

B. Damaging loadings759

Table 8 and Table 9 provide a description of the damaging loadings. Each loading is discretized into load steps.760

During KUBC and PBC loadings, the strain is imposed on the whole boundary 𝜕Ω of the Area Element. During EXPE761

loading, a displacement is imposed on the sub-parts of the boundary 𝜕Ω. Each load step adds an increment of strain762

Δε(𝒙), and displacement Δ𝒖(𝒙), to the currently imposed strain, and displacement, respectively. The strain at load step763

𝑖 is764

{
ε0 = 𝟎,
ε𝑖 = ε𝑖−1 + Δε𝑖.

(82)

The displacement at load step 𝑖, on a sub-part of the boundary 𝜕Ω𝒖, is765

∀𝒙 ∈ 𝜕Ω𝒖,

{
𝒖0(𝒙) = 𝟎
𝒖𝑖(𝒙) = 𝒖𝑖−1(𝒙) + Δ𝒖𝑖(𝒙).

(83)

In practice, the boundary 𝜕Ω𝒖 = {𝒙 = (𝑥, 𝑦) ∣ 𝑥 = 0} corresponds to the the layer of particle having their center in the766

rectangle defined by [0, 𝑙𝑏] × [0, 𝐿].767

Remark 9. The rotation of particle is never imposed in those loadings.768
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Type Name Load steps (𝑖) Strain incs Δε𝑖 × 106
Start End 𝜀𝑥𝑥 𝜀𝑦𝑦 𝜀𝑥𝑦

KUBC bi-tension 1 100 6 6 0

shear 1 100 0 0 15

tension 1 100 10 0 0

shear → tension 1 50 0 0 10
50 100 20 0 0

tension → shear 1 50 10 0 0
50 100 0 0 20

tension → tension 1 50 10 0 0
50 100 0 10 0

(Willam et al., 1989) 1 100 4 0 0
100 200 2 1 3

PBC bi-tension 1 100 5 5 0

shear 1 100 0 0 10

tension 1 100 3 0 0

shear → tension 1 50 0 0 10
50 100 40 0 0

tension → shear 1 50 10 0 0
50 100 0 0 20

tension → tension 1 50 6 0 0
50 100 0 6 0

(Willam et al., 1989) 1 100 8 0 0
100 200 4 6 2

Table 8
KUBC and PBC damaging loadings. For PBC loadings, an particle in locked in displacement to prevent rigid body motions.

Name Load steps Displacement incs Δ𝒖𝑖(𝒙) × 106
𝑥 = 0 𝑥 = 𝐿 𝑦 = 0 𝑦 = 𝐿

Start End 𝑢𝑥 𝑢𝑦 𝑢𝑥 𝑢𝑦 𝑢𝑥 𝑢𝑦 𝑢𝑥 𝑢𝑦
bitension 1 100 0 - 1.2 - - 0 - 1.2

tension 1 100 0 - 1 - - - - -

shear 1 100 - 0 - 0.8 0 - 0.8 0

simple shear 1 100 - - - - 0 0 0 4

shear → tension 1 50 - 0 - 1.6 0 - 1.6 0
50 100 0 - 2 - - - - -

tension → shear 1 50 0 - 1 - - - - -
50 100 - 0 - 1.6 0 - 1.6 -

tension → tension 1 50 0 - 1.2 - - - - -
50 100 - - - - - 0 - 1.2

Table 9
EXPE loadings. For most of those loadings, an additional constraint is applied to a particle to prevent rigid body motion.

.
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