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Abstract 27 

Layer-by-layer Hollow fiber Nanofiltration (LbL HF-NF) membranes have shown great 28 

potential in the removal of micropollutants from water. Nonetheless, further research is required 29 

as the number of tested compounds remains limited. In this study, the adsorption and rejection 30 

of 164 micropollutants by two commercial HF-NF membranes with MWCO of 400 and 800 Da, 31 

were investigated. The investigation was conducted by evaluating the influence of 11 32 

physicochemical micropollutants’ properties on the separation performances. Results showed 33 

that highly adsorbed compounds had average log D values above 3, while no or low adsorption 34 

was observed for compounds with negative log D values. Furthermore, adsorption was more 35 

frequently observed for neutral compounds compared to negatively charged ones. 36 

Micropollutants rejection results showed that steric exclusion plays the most important role in 37 

the rejection of micropollutants, and that the charge of micropollutants can also heavily 38 

influence their rejection. Likewise, negatively charged compounds were better rejected than 39 

neutral ones. Finally, the study demonstrated that adsorption and rejection of micropollutants 40 

can be predicted with good accuracy using the random forest algorithm. The prediction 41 

accuracy for adsorption was 80 % and 73 % for the 800 and 400 Da MWCO membranes, 42 

respectively. The RMSE for rejection predictions was 10.6 % and 6 % for the two membranes 43 

respectively. 44 

 45 

 46 

 47 
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1. Introduction  53 

Climate change, droughts and pollution caused by human activities significantly impact the 54 

quality of freshwater resources. Increases in organic matter, microbial activity, algae blooms 55 

and micropollutants (MP) concentration have been widely documented in different parts of the 56 

world [1–3]. Particularly, the presence of MP in freshwater resources can be very problematic 57 

as they may have harmful effects on human health and the environment. Several technologies 58 

can be applied to remove MP from water sources like advanced oxidation processes [4], 59 

activated carbon [5], and membrane filtration [6]–[9]. Among these technologies, membrane 60 

filtration offers certain advantages like lower use of chemicals and high efficiency over a wide 61 

range of MP [6].  62 

Nanofiltration (NF) and reverse osmosis (RO) are considered the most effective filtration 63 

methods for removing MP from water. Lipp et al. [10] studied the rejection of a selected number 64 

of compounds including pesticides, pharmaceuticals, antibiotics and perfluorinated chemicals 65 

by one RO membrane (molecular weight cut off (MWCO) of 100 Da) and three NF membranes 66 

(MWCO equal to 200, 290-360 and 200-300 Da respectively). Rejection values above 90% 67 

were found for most compounds with the four membranes. Interestingly, the rejection for NF 68 

membranes was only slightly lower than the RO membrane. Similarly, Yangali-Quintanilla et 69 

al. [11] worked on the filtration of organic contaminants and found that on average, tight NF 70 

membranes were able to effectively remove 82% of neutral contaminants and 97% of ionic 71 

contaminants. Whereas, RO membranes had an average removal rate of 85% for neutral 72 

contaminants and 99% for ionic contaminants. An analogous comparison was conducted by 73 

Jacob et al., 2012 where they examined the filtration of 30 compounds using RO and tight NF 74 

membranes and observed that 20 of the compounds exhibited similar rejections for both 75 

membranes. 76 

As it requires less energy than RO, less post-treatment, and has a relatively good performance, 77 

the removal of MP by NF has become the focus of many studies and research. For that, the 78 

influence of MP physicochemical properties [8,13–17], organic matter [18], membrane fouling 79 

[19–21] and operating conditions [22] on MP rejection were extensively studied. In regards to 80 

the physicochemical properties specifically, several properties such as charge, molecular 81 

weight, molecular dimensions (length, width, and height), octanol-water partition coefficient 82 

(log Kow or log P), and dipole moment were assessed for their effect on rejection. The charge 83 

was found to have a significant impact on the rejection as negatively charged compounds were 84 
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effectively rejected by negatively charged membranes irrespective of their other properties. 85 

Molecular weight (MW) was found to be positively correlated with rejection, particularly for 86 

neutral compounds [13,14,16]. Likewise, polarity was observed to influence rejection, as 87 

molecules with high dipole moment exhibited lower rejections overall [15,16]. 88 

Furthermore, numerous works found that the adsorption of MP on the membrane material plays 89 

a crucial role in the filtration process. If not accounted for, this adsorption can lead to an 90 

overestimation of the rejection in the filtration process [23]. The adsorption was also found to 91 

be dependent on physicochemical properties [8,14,24], membrane properties [25] and operating 92 

conditions [20,22,26,27]. In brief, the hydrophobicity of MP, typically measured by log P (or 93 

log D, the distribution coefficient), was found to be the most important property. Moreover, the 94 

impact of pH on adsorption was also observed. This impact varies among different compounds 95 

and is dependent on the specific form of each compound at different pH values. 96 

Given the large number of factors that can affect the adsorption and rejection of MP, some 97 

researchers have turned to advanced statistical techniques and artificial intelligence-based 98 

methods to gain a more comprehensive understanding and to make predictions about the MP 99 

rejection [28–33]. Yangali-Quintanilla et al. [28] used principle component analysis and 100 

multiple linear regression to understand the impact of 21 variables on the membrane rejection 101 

and emphasized that the MP size (length, depth and width) alongside the hydrophobicity and 102 

electrostatic repulsion of the membrane are the most affecting factors. However, given that the 103 

models were created using multiple linear regression, it was only possible to get linear relations 104 

between the variables and the rejection and therefore, non-linear relations and 105 

interdependencies between variables were not taken into consideration. Jeong et al [29] were 106 

able to overcome this limitation by using a machine learning method, based on a scalable 107 

decision tree model, to predict the MP rejection. This method considered variables such as zeta 108 

potential of the membrane, MWCO, log P, hydraulic pressure, and compound concentration. 109 

They obtained a mean absolute error of 10.17% and proved that the model's predictions were 110 

primarily based on the size exclusion and electrostatic interactions between the membrane and 111 

the MP. In a similar way, a recent study by Lee and Kim [33] used random forest (RF) model 112 

for predicting NF/RO membrane rejection of emerging organic contaminants using data 113 

collected from multiples studies. They demonstrated that RF model can reliably identify 114 

important features on MP rejection with less effort than using neural network model. 115 

The findings of these studies provide valuable insights on the removal of MP and the 116 

mechanisms behind it. However, these studies have focused on flat-sheet polyamide NF 117 
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membranes. These membranes which are housed in spiral wound modules have limited 118 

hydraulic and chemical cleaning possibilities [34]. Consequently, extensive pre-treatment, like 119 

ultrafiltration (UF) or sand filtration, is necessary to mitigate fouling on the spacers and 120 

membrane surfaces.  This pre-treatment incurs additional operational costs, making it desirable 121 

to explore alternatives [35]. Recent developments in membrane fabrication techniques have 122 

allowed the production of hollow-fiber nanofiltration (HF-NF) membranes through multiple 123 

methods, with the most promising one being the coating of HF-UF membranes by 124 

polyelectrolyte multilayers (PEMs) through a layer-by-layer (LbL) coating technique [36,37]. 125 

These membranes, with their HF structure, offer a larger compacity and better cleaning 126 

capabilities than flat sheet ones, as well as high permeabilities and good selectivity. However, 127 

it is not straightforward to extrapolate results from previous research on polyamide NF 128 

membranes to HF-NF membranes. This is because they are constructed using different 129 

materials and operate at lower pressures. Moreover, the absence of a spacer in HF-NF 130 

membranes eliminates spacer-related fouling but leads to higher concentration polarization 131 

[38]. 132 

Recent studies have tested the efficiency of such membranes for MP rejection and showed 133 

promising results [39–42]. De Grooth et al. [41] synthetized NF membranes based on 134 

Polycation/Polyzwitterion/Polyanion multilayers and obtained high rejections from 50% to 135 

99% for charged compounds with varying performance for different compounds and 136 

membranes. Ilyas et al. [42] also developed PEMs based HF-NF membranes with rejections 137 

ranging between 60% and 80% even for neutral compounds. However, these two studies used 138 

high concentrations of MP in the range of mg/L which is considered as an unrealistic condition. 139 

For that, Abtahi et al. [39] evaluated the performance of the same membranes under more 140 

realistic conditions (concentrations in the µg/L range) and achieved similar rejections (44%-141 

77%) for the four compounds studied. Moreover, they confirmed that the hydrophobicity of 142 

these four compounds is correlated to their adsorption on the membrane surface, and that the 143 

rejection is also correlated to their molecular size.  144 

In this regard, the number of studies on this type of membrane is still relatively scarce, 145 

especially compared to polyamide flat sheet membranes. Additionally, the number of tested MP 146 

is limited. Therefore, further research is necessary to improve the understanding of the 147 

adsorption and rejection of MP by these HF-NF membranes. As a result, this study aims to 148 

investigate the behaviour of MP on HF-NF membranes. To achieve this, the adsorption and 149 

rejection of 164 MP on commercial lab-scale modules (500 cm2) were investigated. Notably, 150 
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the influence of MP physicochemical properties on their adsorption and rejection is highlighted 151 

and discussed. Finally, this study is concluded by an analysis based on random forest in which 152 

the adsorption and rejection of MP are predicted while highlighting the more important features. 153 

2. Materials and methods  154 

2.1. Nanofiltration membranes 155 

Two commercial HF-NF lab-scale membrane modules (500 cm2) denoted dNF40 and dNF80 156 

were purchased from NX Filtration (Netherlands) and used in this study. According to the 157 

manufacturers, membranes of both modules are made from modified polyethersulfone (PES) 158 

and are negatively charged at pH=7. The modification of PES is performed through the LbL 159 

coating technique. Commercial modules operate in an inside-out crossflow filtration mode. 160 

They consist of 120 membrane fibers with an inside diameter of 0.7 mm and have an average 161 

surface area of 500 cm2 (length = 30 cm). The dNF40 has a MWCO of 400 Da, a minimum 162 

MgSO4 rejection of 91% and a measured permeability of 7.9 ± 0.1 L.m-2.h-1.bar-1 (LMHB) at 163 

20°C. The dNF80 has a MWCO of 800 Da, a minimum MgSO4 rejection of 76% and a 164 

measured permeability of 11.6 ± 0.1 LMHB at 20°C.  165 

2.2. Raw water 166 

The experiments were carried out by adding the MP to a groundwater consisting of a mix of 167 

karst water from several permanent springs (Provins, France). The groundwater had a total 168 

organic carbon (TOC) content of 0.46 ± 0.06 mgC/L, UV254nm absorbance equal to 0.003 ± 169 

0.001 cm-1, a turbidity of 0.1 ± 0.02 NTU, a conductivity of 584 ± 87 µS/cm, and a pH equal to 170 

8.00 ± 0.05. 171 

2.3. Micropollutants properties and spiking solution 172 

A mixture of 164 MP which including 144 pesticides and other plant protection products (PPP) 173 

and 20 metabolite (M) was used in this study. The MP mixture was dissolved in a methanol 174 

solution due to water solubility limitations and was diluted in the groundwater (by a factor of 175 

1000) to obtain MP concentrations around 1 µg/L per compound. Among these compounds, 176 

some of them were specifically chosen as metabolites of atrazine and dimethachlor, 177 

metazachlor, bentazone which are the most abundant compounds in France [43]. Information 178 

regarding the compounds present in this mixture along with their physicochemical properties 179 

are given in the supplementary data (Excel sheet).  180 
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As discussed above, the rejection and adsorption of MP by membranes are mostly influenced 181 

by size exclusion, hydrophobicity and electrostatic interactions. For that, the molar mass and 182 

molar volume were used to represent the size of these molecules. The molecular dimensions as 183 

well as the minimum projected area (MPA) were used to further understand the shape of each 184 

molecule. The three dimensions were denoted as L1, L2, and L3, with L1 being the longest side 185 

of the molecule's bounding box, L3 being the shortest, and L2 being the side with the median 186 

length. The octanol-water partition coefficient (log Kow or log P) and the corresponding 187 

dissociation coefficient (log D) are used as a measure of hydrophobicity. The polar surface area 188 

(PSA) is used as a descriptor that quantifies molecular polarity. It represents the ability of a 189 

molecule to form hydrogen bonds with other molecules and therefore is relevant in the context 190 

of contaminants and their interactions with organic matter and membrane surfaces [44]. The 191 

polarizability was used as it may correlate with contaminants rejection and adsorption for the 192 

same reasons as the PSA. Finally, the charge at pH=8 was calculated to reflect the electrostatic 193 

interactions taking place at the membrane surface. The monoisotopic mass, the molar volume, 194 

log P, log D, the polar surface area and the polarizability were based on the calculation of 195 

ACD/Labs. pKa values as well as the charge and the minimum projected area were determined 196 

using Chemicalize by Chemaxon. The molecular dimensions were calculated using jmol 197 

software. It's worth noting that the charge of the compounds was chosen as the determining 198 

factor, rather than pKa, as opposed to previous studies. This is because large organic 199 

compounds can have multiple pKa values, making it impossible to infer the charge from just 200 

one of these values.  201 

2.4. Filtration protocol  202 

For all tests, cross-flow filtration with a transmembrane pressure (TMP) equal to 5 bars and a 203 

cross flow velocity of 0.3 m/s was performed using the MexplorerTM test unit (NX Filtration, 204 

Netherlands). The protocol was divided into two steps: (i) The first step was performed to study 205 

the adsorption of contaminants on the membrane surface and remove its effects before studying 206 

the rejection. In this part, the filtration was conducted while recycling the permeate within the 207 

feed tank for 48 hours. During this step, 10 mL samples of the feed and the permeate were taken 208 

at multiple occasions (t=0h, 4h, 8h, 24h, 32h and 48h) and analysed to determine the 209 

concentrations of every contaminant. Additionally, 100 mL samples of both the feed and 210 

permeate were collected at t=0h and t=48h for various measurements, including TOC, UV254nm 211 

absorbance, turbidity, and pH. (ii) The second step focused on studying the rejection of MP at 212 

different recovery values. In this step, which starts at the end of the 48 hours, the permeate is 213 
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no longer recycled into the feed solution. The TMP remained at 5 bars and permeate samples 214 

were taken at recoveries of 25%, 50% and 75%. They are expressed in terms of the volume 215 

reduction factor (VRF) equal to the initial volume divided by the volume of the concentrate. 216 

The repeatability and stability of the filtration system were evaluated prior to these filtration 217 

tests on a smaller number of MP. The results indicated an average error notably smaller than 218 

the analytical error detailed in section 2.5, rendering it insignificant for consideration. 219 

2.5. Micropollutants analysis 220 

MP were analysed by direct injection of water samples with UHPLC-MS/MS by the laboratory 221 

of Eau de Paris accredited by the COFRAC (French Body of Accreditation). Ultra-high-222 

performance liquid chromatography (UHPLC) was performed on a Shimadzu series Nexera 223 

X40 UHPLC system. Analytes were separated on an C18 BEH (1.7 µm 2.1×100 mm) column 224 

(Waters). Chromatographic separation of analytes was carried out with methanol and ultrapure 225 

water, both with formic acid 0.05% / ammonium acetate 5mM, in an analytical gradient from 226 

2% to 99% methanol lasting 14 min at 0.6 mL/min. The UHPLC system was coupled to a triple-227 

quadrupole mass spectrometer (MS/MS) Shimadzu MS 8060 with electrospray ionization (ESI) 228 

set to positive or negative mode at 350°C depending on the compound. Identification and 229 

quantification were achieved by multi reaction monitoring with 18 deuterated compounds used 230 

as injection internal standard. Analytical uncertainties are expressed as a confidence interval 231 

(α=0.05, k=2) with a mean value of 50% for the concentration between the limit of 232 

quantification (LOQ) and 5×LOQ, 30% between 5×LOQ and 50×LOQ and 20% for values 233 

above 50×LOQ. 234 

2.6. Decision trees and random forests  235 

A decision tree is a type of machine learning algorithm that is used for regression and 236 

classification tasks. The goal of decision trees is to learn the relationships between features and 237 

the target variable and use this information to make predictions. When applying decision trees 238 

to the filtration of MP, the features will consist of the MP physicochemical properties while the 239 

target variables are the adsorption and rejection values. Random forests are an ensemble 240 

machine learning algorithm that operates by aggregating the results of many decision trees. The 241 

concept behind random forests is to train numerous decision trees on random data subsets and 242 

then average their predictions, which results in more accurate predictions. The creation of 243 

random forests was done using RStudio and the R programming language using the “Caret” 244 

[45] and “randomForest” [46] packages. More information about decision trees and random 245 

forests and how to implement them in R can be found in James et al. [47]. 246 
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3. Results and discussion  247 

3.1. Distribution and correlation of physicochemical properties 248 

Before studying the adsorption and rejection of the 164 MP, an assessment of the distribution 249 

of each property and the correlations between different properties was conducted to gain a better 250 

understanding of the data. The findings of both the distribution and correlations are depicted in 251 

figures 1S and 2S. To summarize, the monoisotopic mass ranged from 145 to 507 Da, while the 252 

molar volume varied from 81 to 339 cm3/mol. The log P values ranged from -1.38 to 8.19, and 253 

the log D values ranged from -3.34 to 5.28. Additionally, the polar surface area ranged from 30 254 

to 209 Å2, while the polarizability varied from 12.6 to 45.2 x10-24 cm3. Among the MP assessed, 255 

31 were negatively charged, 131 were neutral, and 2 were positively charged (at pH=8). As 256 

shown in the two figures, several correlations were observed, with the most significant ones 257 

being between the monoisotopic mass, molar volume and polarizability, and as expected 258 

between log P and log D. Good correlations were also found between the minimum projected 259 

area (MPA) and the monoisotopic mass as well as the molecular dimensions. Finally, weaker 260 

correlations were found between the monoisotopic mass and the molecular dimensions. 261 

3.2. Adsorption of micropollutants and influence of physicochemical 262 

properties 263 

As mentioned in section 2.4, in order to evaluate the adsorption of MP, the filtration was 264 

conducted for 48 hours while recycling the permeate and monitoring concentrations in both the 265 

feed and the permeate. By observing the variation in these concentrations, it becomes possible 266 

to understand the adsorption of MP and identify different behaviours among the tested 267 

molecules. Figure 1 illustrates this with three representative molecules, each representing a 268 

different behaviour. They are used as an example as all other compounds exhibited similar 269 

behaviour to one of these three. The first molecule, Atrazine, displayed a significant decrease 270 

in feed concentration (figure 1(a)) dropping from 0.975 µg/L to 0.04 µg/L and had very low 271 

concentration in the permeate as shown in figure 1(b). These variations in concentration suggest 272 

that Atrazine has been fully adsorbed onto the membrane surface. The second molecule, 273 

Metazachlor, exhibited a decrease in feed concentration from 0.92 µg/L to 0.49 µg/L while 274 

having an average rejection of around 75%. This decrease in concentration suggests that a 275 

fraction of Metazachlor was adsorbed on the membrane surface while the other portion 276 

remained in the feed solution. Notably, most of the decrease in concentration occurred within 277 

the first 24 hours, reaching 0.52 µg/L. This indicates that adsorption primarily occurs during 278 
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the initial 24 hours, and a steady state is approached between 24 and 48 hours. Finally, the third 279 

molecule, Dimethachlor CGA, experienced an increase in its concentration in the feed from 280 

1.15 µg/L to 1.33 µg/L, accompanied by an average rejection of 76%. Considering the 281 

decreasing feed volume due to sample taking (260 mL of permeate) and the relatively 282 

unchanged MP mass due to high rejection, an increase in feed concentrations is anticipated, 283 

particularly if adsorption does not occur. Thus, the observed increase in feed concentration 284 

leads to the conclusion that this molecule was not adsorbed onto the membrane surface. 285 

Moreover, the major increase in concentration also occurred during the first 24 hours where the 286 

concentration reached 1.29 µg/L which confirms that a steady state is approached between 24 287 

and 48 hours. It should be noted that Dimethachlor CGA, along with numerous other 288 

compounds, displayed initial concentrations exceeding 1 µg/L. This is attributed to the fact that 289 

the raw water used already contained trace amounts of certain compounds.  290 

 291 

Figure 1: Variation of compounds concentration during the saturation phase in (a) the feed and (b) the permeate 292 
for filtration tests performed on the dNF80 module (Error bars corresponding to 20% confidence intervals). 293 
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Using the same approach as for these three molecules, all 164 MP compounds were classified 294 

into three adsorption categories. The first category contains compounds that showed no or low 295 

adsorption, the second category contains compounds that showed partial adsorption and the 296 

third category contains compounds that showed high or complete adsorption. More precisely, 297 

compounds that exhibited a reduction in concentration greater than 75% over the course of 48 298 

hours were categorized as highly or completely adsorbed. Compounds that demonstrated a 299 

constant or increased concentration were assigned to the no/low adsorption class, while all other 300 

compounds were classified as partially adsorbed. The classification results are shown in the 301 

supplementary data (Excel Sheet) and summarized in table 1, which shows the number of 302 

compounds in each category. Two important points should be highlighted. First, for both 303 

membranes, the adsorption of a few compounds could not be evaluated as their initial 304 

concentrations in the feed were very low, leading to their classification as unknown (N=7 and 305 

N=5 for dNF80 and dNF40, respectively). This low concentration might be attributed to matrix 306 

effects, which can occur when numerous compounds are analysed using LC-MS, resulting in a 307 

loss or increase in response [48]. Secondly, a mass balance calculation was performed, but due 308 

to the low pollutant concentration used, the resulting values fell within the error margins. 309 

Consequently, a qualitative approach to adsorption analysis was favoured. 310 

Table 1: Number of compounds per adsorption category 311 

Adsorption class dNF80 dNF40 

No/Low 

adsorption 

16 (including 7 

metabolites) 

32 (including 10 

metabolites) 

Partial 

adsorption 

39 (including 5 

metabolites) 

59 (including 6 

metabolites) 

High/Complete 

adsorption 

102 (including 7 

metabolites) 

68 (including 4 

metabolites) 

 312 

Upon comparing the adsorption of MP on the two membranes, it becomes evident that a 313 

significant proportion of compounds tend to adsorb more on the dNF80 membrane as compared 314 

to the dNF40 membrane. This observation can potentially be explained by the fact that, in the 315 

case of LbL coated membranes, MP adsorption is believed to occur mainly on the polymeric 316 

PES support membrane rather than on the coated layers, which is attributed to the higher 317 

hydrophobicity of PES compared to the PEMs [39, 49]. This could account for the difference 318 

in adsorption between the two membranes. In fact, as it will be discussed later, the rejection of 319 
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MP is higher for the dNF40 membrane, which might lead to fewer molecules reaching the PES 320 

support, resulting in less adsorption. 321 

Concerning the influence of physicochemical properties, figures 2 and 3S plot the distribution 322 

of MP's physicochemical properties based on each class. The monoisotopic mass (Figures 2(a) 323 

and 2(b)) and molar volume (Figures 3S (a) and (b)) appear weakly related to adsorption as the 324 

three categories of compounds show similar distributions. However, log P (Figures 3S (c) and 325 

(d)) and log D (Figures 2(c) and (d)) exhibit significant differences between each category, 326 

indicating a strong relationship with adsorption. No adsorption was observed for compounds 327 

having negative log D values for both membranes, partial adsorption was seen for log D values 328 

around 1 for the dNF80 and around 2 for the dNF40 and high adsorption was seen for both 329 

membranes when log D values over 3. These observations are in agreement with numerous 330 

published works [14,23,25,39,49,50].  331 

Figures 2(e) and (f) demonstrate that adsorption is related to the polar surface area, with highly 332 

adsorbed compounds having a lower polar surface area than non-adsorbed compounds for both 333 

membranes. For the dNF80 membrane, the highly adsorbed compounds had a median value 334 

equals to 56.5 Å2 while the non-adsorbed compounds had a median value of 86.5 Å2. For the 335 

dNF40 membranes, these values were 52.5 Å2 and 92 Å2 respectively. The relationship between 336 

polar surface area and adsorption is likely due to hydrophilicity. In fact, figure 1S shows that 337 

compounds with a log D value above 1 and that are partially or highly adsorbed have lower 338 

polar surface areas compared to compounds with log D values lower than 1. The polarizability 339 

(Figures 3S (e) and (f)) has a small effect on adsorption, with highly adsorbed compounds 340 

showing slightly higher values than non-adsorbed compounds for both membranes, but the 341 

difference is relatively insignificant. The charge (Figures 2(g) and (h)) also appears to have an 342 

effect on adsorption, with negatively charged compounds exhibiting low adsorption, whereas 343 

neutral compounds display partial and high adsorption, which can be attributed to the repulsion 344 

of negatively charged compounds by the membrane. 345 

 346 
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 347 

Figure 2: Boxplots showing the distribution of (a)-(b) monoisotopic mass, (c)-(d) log D, (e)-(f) polar surface 348 
area and (g)-(h) charge of MP in each adsorption category for dNF80 and dNF40 membranes 349 
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3.3. Influence of membrane MWCO, concentration and physicochemical 350 

properties on micropollutants rejection 351 

In this part of the experiment, the rejection of MP was calculated for both membranes for a 352 

VRF of 1 and 4 (data shown in the excel sheet in supplementary data). For VRF=1, rejection 353 

was determined based on the feed and permeate concentrations measured at t=48h, while for 354 

VRF=4, the concentrations at the end of the experiment (recovery = 75%) were utilized for 355 

calculation. The calculations were made only for those compounds that were not fully adsorbed 356 

onto the membrane after 48 hours of saturation. For that, the rejection of 66 compounds for the 357 

dNF80 membrane and 101 compounds for the dNF40 membrane was determined. 358 

Comparison of the rejection rates of the 66 common compounds demonstrates the significant 359 

impact of membrane MWCO on MP removal. The dNF40 membrane shows higher rejection 360 

values, indicating the importance of size exclusion. Ioxynil, in particular, exhibited a significant 361 

difference in rejection, with a rate of 15.3% for the dNF80 membrane compared to 85.3% for 362 

the dNF40 membrane. However, some compounds such as Clethodim, Metolachlor ESA, and 363 

Metolachlor OXA, which were highly rejected by the dNF80 membrane (>95%), showed either 364 

no change or only a small change in rejection when compared to the dNF40 membrane. 365 

The impact of VRF on rejection was not very clear for both membranes. Most MP showed an 366 

increase in rejection at VRF = 4 (Excel Sheet), however, despite the improvement in rejection, 367 

the concentrations of MP in the permeate at VRF = 4 (75% recovery) were consistently higher 368 

than the initial concentrations (VRF = 1). This suggests that while rejections are improving, the 369 

water quality is slightly worsening. 370 

The correlation between rejection and various physicochemical properties was also examined 371 

as shown in Figures 3, 4 and 4S. To begin, the influence of the charge was assessed for both 372 

membranes (shown in figure 3). In the case of the dNF80 membrane (figure 3(a)), it is evident 373 

that negatively charged compounds tend to be well rejected, with most compounds exhibiting 374 

a rejection rate of over 80%, while the rejection rate of neutral compounds varied from 0.47% 375 

to 99% depending on the compound. For the dNF40 membrane (figure 3(b)), the rejection rate 376 

was relatively high for all compounds regardless of their charge, with only a few exceptions for 377 

certain neutral compounds. The number of positively charged compounds is too low to draw 378 

any conclusions, so they will be disregarded for the remainder of the study. 379 
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 380 

Figure 3: Rejection of MP (VRF=1) function of the charge for the (a) dNF80 membrane and (b) dNF40 381 
membrane 382 

When comparing the rejection in terms of the monoisotopic mass (figures 4(a) and 4(b)), results 383 

show that negatively charged compounds are effectively rejected by the dNF80 membrane at a 384 

monoisotopic mass of 250 Da, while the dNF40 membrane effectively rejects all negatively 385 

charged compounds with a mass as low as 210 Da. One molecule, Ioxynil, stands out as it does 386 

not follow the trend of negatively charged compounds on the dNF80 membrane and has low 387 

rejection. However, this could be due to the fact that Ioxynil is a small 2-dimensional molecule 388 

(Molar volume = 136.7 cm3/mol, L3 = 0 Å) with a large monoisotopic mass resulting from the 389 

presence of two iodine atoms. Neutral compounds are better rejected by the dNF80 membrane 390 

as their monoisotopic mass increases from 145 Da to 380 Da, with rejection rates increasing 391 

from less than 1% to over 90%. The dNF40 membrane effectively rejects neutral compounds 392 

starting at a mass of 200 Da, which is consistent with previous research [51]. Moreover, there 393 

is a notable threshold between 150 and 200 Da, where rejection rates increase rapidly from 394 

approximately 4% to over 80%. Similar conclusions could be drawn regarding the effect of the 395 

molar volume (figure 4S (a) and (b)), which is well-correlated with monoisotopic mass (figure 396 

1S). 397 

Figures 4 (c) and (d) indicate that the relationship between membrane rejection and log D is not 398 

well-established (as well as Log P given the correlation between log P and log D, as shown in 399 

figure 4S (c) and (d)). Negatively charged compounds, which have typically a negative log D, 400 

are effectively rejected by both membranes. For neutral compounds, hydrophobic compounds 401 

with higher log D values seem to be better rejected than hydrophilic ones, but it is uncertain 402 

whether log D is the only factor influencing the rejection, or if other properties also play a role. 403 

For example, Spirotetramat has a log D of 3.79 and a rejection rate of 93.5% (dNF80, VRF=1), 404 

but exhibits also a monoisotopic mass of 373.2 Da much higher than the membrane MWCO. 405 

Additionally, many compounds with log D > 2 for dNF80 and log D > 3 for dNF40 were 406 
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completely adsorbed on the membrane surface, so their rejection rates could not be calculated. 407 

Therefore, the influence of log D and hydrophobicity cannot be confirmed, despite the presence 408 

of some trends. 409 

 410 

Figure 4: Rejection of MP (VRF=1) function of (a)-(b) the monoisotopic mass, (c)-(d) log D and (e)-(f) the polar 411 
surface for the dNF80 and dNF40 membranes 412 

Concerning the polar surface area, the rejection of negatively charged compounds by the dNF80 413 

membrane (figure 4(e)) was higher for compounds having a polar surface area higher than 100 414 

Å2. Apart from that, no effect of polar surface area on rejection was observed for the neutral 415 

compounds on the same membrane. Additionally, like mentioned before, the rejection of most 416 

compounds by the dNF40 membrane (figure 4(f)) was high which made it difficult to notice 417 

any trend in case it existed. For the polarizability (figure 4S (e) and (f)), given that it was highly 418 

correlated with the monoisotopic mass and the molar volume as presented early on, similar 419 

variations were observed.  420 
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The relationship between rejection and molecular dimensions was also examined as displayed 421 

in figure 5S. In contrast to previous studies [31,52,53], no clear association was found between 422 

rejection and any of the dimensions. Nonetheless, on the dNF80 membrane, a moderate 423 

correlation was observed between rejection of neutral compounds and L1 (R
2 = 0.52) as well as 424 

L3 (R2 = 0.67), with rejection rates increasing as L1 and L3 increased. Additionally, while 425 

previous research has reported a strong correlation between rejection and MPA [39, 52], present 426 

results did not reveal any correlation between MPA and rejection for the two membranes, as 427 

shown in Figure 6S (a) and (b). 428 

In summary, the analysis of MP rejection by HF-NF membranes in relation to their 429 

physicochemical properties and membrane MWCO yielded several observations. Steric 430 

exclusion was a crucial factor in rejection, evidenced by higher rejection rates with the dNF40 431 

membrane and the correlation between monoisotopic mass and rejection of neutral compounds 432 

by the dNF80 membrane. MP electrostatic charge also played a significant role, with negatively 433 

charged compounds being generally better rejected than neutral ones. Additionally, some 434 

properties like log D and polar surface area may affect rejection, but further investigation is 435 

needed. Finally, contrary to previous findings, only moderate and weak correlations were found 436 

between rejection and molecular dimensions and no correlation was found with MPA. In the 437 

following, a random forest model was developed to confirm these main features and investigate 438 

the rejection mechanisms of HF-NF membranes. 439 

3.4. Application of random forest on the filtration of micropollutants 440 

Based on the results in sections 3.2 and 3.3, it is possible to say that the adsorption and rejection 441 

of MP are the result of the interplay between various properties related to the MP and the 442 

membrane. For that, given the complexity of these subjects and the impossibility of creating 443 

straightforward guidelines for the adsorption and rejection of MP by HF-NF membranes, the 444 

use of artificial intelligence has become crucial to estimate MP’s adsorption and rejection. In 445 

the following, an attempt to predict the adsorption and rejection of the 164 MP was tested. First, 446 

available data was randomly divided into training and testing data, with the former containing 447 

80% of the total data. Then, random forests were applied on training data and used to predict 448 

the adsorption and rejection of the testing data.  449 

Among the properties studied in this work, four properties were selected to predict the 450 

adsorption and rejection of MP. These properties are the monoisotopic mass, the charge, log D 451 

and the polar surface area. The choice was based on the correlation matrix presented in figures 452 
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1S and 2S and on the observed impact of each property. Specifically, when two properties were 453 

found to be correlated, such as the monoisotopic mass and molar volume, only one was selected. 454 

Conversely, properties that showed no or weak relation to adsorption or rejection, like 455 

molecular dimensions, were disregarded. 456 

The classification of MP into the three adsorption categories by random forests was tested on 457 

the testing data set. A model was created for each membrane (dNF40 or dNF80) and results are 458 

presented in the form of confusion matrices in tables 2 and 3. Table 2 shows the results of the 459 

prediction of the adsorption of 30 compounds on the dNF80 membrane. In this table, 3 460 

compounds correspond to the “No/low” adsorption category, 7 to the “Partial” adsorption 461 

category and 20 to the “Complete/High” category. Out of these compounds 24 were correctly 462 

classified (represented by the grey squares) and thus an 80% accuracy was obtained. Likewise, 463 

for the adsorption on the dNF40 membrane (table 3), 22 compounds out of 30 were correctly 464 

classified resulting in a 73% accuracy. Furthermore, when applying random forests to predict a 465 

certain response it is possible to determine the degree of importance of the variables used to 466 

make the predictions. For the adsorption of MP, log D was found to be the most important 467 

property for both membranes followed by the charge, then the polar surface area and finally the 468 

monoisotopic mass (figure 5). This corresponds well to the conclusions that were deducted in 469 

the previous paragraph (section 3.2). 470 

Table 2: Confusion matrix comparing between the predicted and the observed adsorption behaviour on the 471 
dNF80 membrane 472 

dNF80 
Observed 

No/Low Partial Complete/High 

P
re

d
ic

te
d

 No/Low 2 1 0 

Partial 0 4 2 

Complete/High 1 2 18 

 473 

Table 3: Confusion matrix comparing between the predicted and the observed adsorption behaviour on the 474 
dNF40 membrane 475 

dNF40 
Observed 

No/Low Partial Complete/High 

P
re

d
ic

te
d

 No/Low 4 2 0 

Partial 2 7 2 

Complete/High 0 2 11 
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 476 

Figure 5: Feature importance for adsorption prediction on (a) the dNF80 membrane and (b) the dNF40 477 
membrane 478 

Regarding the rejection of MP, a comparison between the predicted and calculated values is 479 

presented in figure 6. For the dNF80 membrane (figure 6(a)), the rejection was predicted with 480 

a residual mean squared error (RMSE) of 10.6%. Similarly, for the dNF40 membrane (Figure 481 

6(b)), an RMSE of 6% was obtained. In terms of physicochemical properties importance (figure 482 

7), the monoisotopic mass was deemed the most significant property for rejection on both 483 

membranes followed by the charge, log D and the polar surface area respectively. It is worth 484 

mentioning that Ioxynil, despite showing an outlier rejection on the dNF80 membrane, was 485 

included in the training data for the random forest model. This decision was made because the 486 

presence or absence of Ioxynil did not have a significant impact on the results.  487 

 488 

Figure 6: Comparison between the predicted and calculated rejection by (a) the dNF80 membrane and (b) the 489 
dNF40 membrane 490 
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 491 

Figure 7: Feature importance for rejection prediction on the (a) dNF80 membrane and (b) dNF40 membrane 492 

These results demonstrate that the adsorption and rejection of MP can be predicted with a 493 

relatively high degree of accuracy no matter their nature (metabolites or PPP). Nonetheless, it 494 

is essential to recognize that each model is constrained by the specific operating conditions 495 

under which the data is collected. If any parameter is altered, resulting in different rejection and 496 

adsorption outcomes, the random forest model cannot accurately predict these new values, as it 497 

was trained on different data. For instance, variations in pH can lead to changes in some log D 498 

values, affecting the hydrophobicity of the compounds and thereby altering their adsorption 499 

behaviour. The same principle applies to any other influencing factor. To achieve reliable 500 

predictions, it is crucial to either build a new model when the operating conditions change or 501 

incorporate these conditions into the model, whenever possible. Once the model had been 502 

established, it can then be used to predict the behaviour of new compounds with similar 503 

properties. 504 

4. Conclusion 505 

This study investigated the influence of MP physicochemical properties on their adsorption and 506 

rejection by HF LbL coated NF membranes. Two membranes with MWCOs of 400 Da and 800 507 

Da were tested. The experimental procedure involved a two-step filtration test using a mixture 508 

of 164 compounds. The first step evaluated adsorption during a 48-hour saturation period, while 509 

the second step determined rejection at different recoveries. 510 

Based on behaviour during the saturation period, compounds were classified into three 511 

categories, with hydrophobicity (log D) and charge being crucial for adsorption. Compounds 512 

with negative log D values showed little to no adsorption, while highly adsorbed ones had log 513 

D > 3 for both membranes. Moreover, negatively charged compounds were less adsorbed 514 

compared to neutral compounds. Regarding MP rejection, steric exclusion and electrostatic 515 
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repulsion played major roles. The 400 Da MWCO membrane had higher rejection rates for all 516 

compounds than the 800 Da MWCO membrane. Also, negatively charged compounds were 517 

better rejected, while neutral compounds showed varying rejection rates. Additionally, log D 518 

and polar surface area were observed to potentially impact rejection, although additional 519 

research is necessary. In contrast to prior research, rejection showed only moderate and weak 520 

correlations with molecular dimensions, and no correlation was observed with MPA. 521 

Finally, the study demonstrated that artificial intelligence, specifically random forests, could 522 

predict MP adsorption and rejection with relatively good accuracy. The adsorption prediction 523 

accuracy was 80% and 73%, and the rejection prediction RMSE values were 10.6% and 6% for 524 

the dNF80 and dNF40 membranes, respectively. 525 

To further advance the study, future research should aim to investigate the adsorption and 526 

rejection behaviour of the membranes on larger scale modules. The saturation period should be 527 

extended with continuous addition of MP to the feed to better understand the behaviour of 528 

adsorbed compounds during and after saturation. It is possible that some rejection results might 529 

be overestimated if the 48-hour saturation period is not sufficient, hence warranting a more 530 

extended saturation period. Additionally, it is interesting to investigate the individual behaviour 531 

of MP and compare it to their behaviour within mixtures. While testing each of the 164 532 

compounds individually might not be practical, it can be performed on selected molecules. 533 

Besides that, the inclusion of more positively charged compounds can aid in evaluating their 534 

behaviour during the filtration process. And last, it is recommended to explore the effects of 535 

achieving higher recovery values and the influence of operating conditions like the 536 

transmembrane pressure and crossflow velocity. 537 
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