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This tutorial examines the failure theories of Tresca and
von Mises, both of which are crucial for designing metallic
structures. Conventionally, Tresca is regarded as more con-
servative than von Mises from a deterministic perspective.
This tutorial, however, introduces a different viewpoint,
presenting a scenario where von Mises’ theory may appear
more conservative when variability in the mechanical system
parameters is considered. This often overlooked aspect is
not extensively addressed in standard textbooks on solid
mechanics and the strength of materials. The tutorial aims
to shed light on the non-negligible probability where von
Mises’ criterion yields a smaller equivalent stress than
Tresca, thus being more conservative. It underscores the
importance of integrating probabilistic considerations into
stress analyses of solids, offering valuable insights for the
education of structural mechanics.
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1 Introduction
Material failure theory is central to understanding the

conditions under which a solid body (e.g., beams, plates,
shells, machine parts, etc.) fails in response to external
loads [1–6]. There are several failure criteria, each with
specific applicability depending on the mechanical problem
characteristics. For instance, the Tresca and von Mises cri-
teria are often applied in the context of metallic materi-
als, while others like Mohr-Coulomb and Bresler-Pister are
more commonly associated with concrete-made solids and
Drucker–Prager is suited for contexts of plasticity [7–11].

Among these, Tresca and von Mises criteria hold con-



siderable relevance in the context of polycrystalline isotropic
materials, as reflected in their frequent discussion in solid
mechanics and strength of materials textbooks [12–18]. In
a purely deterministic context, the Tresca criterion is more
conservative than von Mises since it defines a smaller region
of elastic behavior in the principal stress state space (Tresca
polyhedron is inscribed in von Mises ellipsoid).

However, this perspective changes when considering the
variability in loading, material properties, or geometric di-
mensions in a mechanical analysis [19–21]. In a structural
analysis problem with uncertainties, it becomes apparent that
the assertion of Tresca always being more conservative is not
an absolute truth. Cases exist where von Mises can yield (in
a probabilistic sense) smaller equivalent stress than Tresca,
making it, in those instances, more conservative [22].

Understanding which theory results in smaller equiva-
lent stress in certain scenarios is crucial, as it affects the ma-
terial’s effective usage and structural safety. This considera-
tion seems to be overlooked in conventional textbooks, sug-
gesting a gap in structural mechanics educational literature.

Addressing this issue, this tutorial aims to shed light
on scenarios where von Mises appears more conservative
when uncertainties in geometric dimensions and force condi-
tions are considered. Our analysis compares Tresca and von
Mises’s failure criteria for a material point of a solid body
experiencing a plane stress state, providing a deeper under-
standing of structural design under uncertainties.

2 Tresca and von Mises failure criteria
To understand the conditions leading to material failure,

we start with the representation of the stress state at a mate-
rial point in a solid body. This is described by a stress tensor,
represented in matrix form as

[[[σσσ]]] =

 σx τxy τxz
τxy σy τyz
τxz τyz σz

 , (1)

where σx, σy, and σz denote the normal stresses, while τxy,
τxz, and τyz represent shear stresses.

The computation of principal stresses and their respec-
tive directions involves solving the eigenvalue problem rep-
resented by

( [[[σσσ]]]−σi[[[III]]] ) vvvi = 000 i = 1,2,3 , (2)

wherein [[[III]]] is the identity tensor and (σi,vvvi) symbolizes an
eigenpair that determines the i-th principal stress and its di-
rection. Due to their invariant nature, the resulting princi-
pal stresses σ1, σ2, and σ3 are integral to defining the most
prevalent failure criteria [23].

Notably, the crux of a failure theory lies in representing
a complex, possibly three-dimensional stress state using an
equivalent, one-dimensional stress state (Fig. 1). The essence
is to create an equivalent stress state that can be compared to

a tensile test’s uni-axial mechanical state. A failure is as-
sumed to occur when the equivalent stress state mirrors the
yielding experienced during the tensile test.

For instance, the Tresca equivalent stress σT , is defined
as half the maximum absolute difference among the principal
stresses

σT =
1
2

max{|σ1−σ2|, |σ1−σ3|, |σ2−σ3|} , (3)

while the von Mises equivalent stress σM , is defined as the
root of half the sum of squares of differences among princi-
pal stresses

σM =

√
(σ1−σ2)

2 +(σ2−σ3)
2 +(σ3−σ1)

2

2
. (4)

The yielding criteria are then established based on these
equivalent stresses

σT <
SY

2
or σM < SY , (5)

with the condition that the material remains elastic when the
equivalent stress is less than the material yield stress SY .

Upon simultaneous application of both the Tresca and
von Mises criteria, four theoretical scenarios (Fig. 2) can
arise:

I σT/SY < 1/2 (elastic) and σM/SY < 1 (elastic);
II σT/SY ≥ 1/2 (plastic) and σM/SY < 1 (elastic);

III σT/SY ≥ 1/2 (plastic) and σM/SY ≥ 1 (plastic);
IV σT/SY < 1/2 (elastic) and σM/SY ≥ 1 (plastic).

They include combinations of elastic and plastic behav-
iors based on the equivalent stresses and yield stress ratio.
The common interpretation of these scenarios is that while
areas I and III represent agreement between the two criteria,
regions II and IV are zones of discrepancy.

In traditional textbooks, discussions generally focus on
the region II scenario, where the Tresca criterion is seen
as more conservative due to its smaller elastic region. Re-
gion IV, representing the theoretical possibility of von Mises’
criterion being more conservative, is overlooked as it is an
empty set in a deterministic context due to mechanical con-
straints.

However, this tutorial highlights that once parametric
uncertainties are accounted for, the possibility of a region
IV scenario arises probabilistically. This often-overlooked
scenario will be demonstrated using two examples (Fig. 3).

3 Stress state under uncertainties
We examine two distinct mechanical systems: a shaft

and a cylindrical pressure vessel. The shaft has a circu-
lar cross-sectional area, with a diameter d = 80 mm, and
it undergoes combined axial-torsional loading (axial load
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Fig. 1. Schematic representation of the conceptual idea of a failure theory: it seeks to represent a three-dimensional stress state by a
uniaxial stress state equivalent to the original state. The failure event is assumed if this equivalent state corresponds to the material’s yield
stress in a tensile test.

Fig. 2. Illustration of the four hypothetical scenarios when the Tresca and von Mises criteria are used together.

P = 25 kN and torsional load T = 8 kNm). This loading
induces a plane stress state at a specific material point in the
shaft, defined by σx = P/A, τxy = (T d)/(2J), and σy = σz =
τxz = τyz = 0. The cross-sectional area is A = πd2/4, and
the polar moment of inertia is J = πd4/32. Simultaneously,
we investigate a cylindrical pressure vessel characterized by
a radius r = 0.5 m and a wall thickness t = 25 mm. It is sub-
jected to an internal pressure p = 10 MPa. This component
provides a contrasting study to the shaft due to its different
geometry and stress conditions, specifically, the stresses in-
duced by internal pressure. Both the shaft and the pressure
vessel are constructed from materials with a yield strength
SY = 210 MPa.

This parallel examination allows a comprehensive ex-
ploration into the stress behaviors and failure criteria of dif-
ferent mechanical components under varied loading condi-
tions and geometries, contributing to our understanding of
the comparative conservativeness between the von Mises and
Tresca criteria under uncertainties in system parameters. No-
tably, in the case of the vessel, the nominal von Mises stress
is observed to be exceedingly close to the yield limit, enhanc-
ing the relevance of a meticulous and thorough examination
of stress conditions and failure criteria in design processes.

We extend our exploration to discern potential outcomes
when the distinct parameters of a shaft and a pressure vessel
are imbued with uncertainties. For the shaft, we scrutinize



Fig. 3. A solid shaft under combined axial-torsional loading (left), resulting in a plane stress state at a selected material point, juxtaposed
with a cylindrical pressure vessel subjected to internal pressure (right), illustrating the differing stress states induced in each component.

the uncertainties in diameter d, axial load P, and torque T .
We assume d to follow a uniform distribution between 78 and
82 mm, while P and T adhere to Gaussian distributions cen-
tered around their nominal values. These parameters can ex-
hibit a coefficient of variation of 5% or 25%. Concurrently,
we assess the uncertainties in the pressure vessel, focusing
on the internal pressure p and the wall thickness t. The inter-
nal pressure p is presumed to follow a Gaussian distribution,
fluctuating around its nominal value. Conversely, the wall
thickness t is ascribed a uniform distribution, ranging from
tmin = 24 mm to tmax = 26 mm, symbolizing the plausible
variations during the manufacturing process. Similar to the
shaft, the pressure loading is subject to coefficients of varia-
tion of 5% or 25%.

In the interest of simplicity and to streamline the com-
parative analysis, we consider all these random parameters
as statistically independent within both mechanical compo-
nents. In a consequence of the variability, the induced equiv-
alent stresses in the shaft and the pressure vessel materialize
as random variables. Their distributions and consequential
statistical moments are estimated using Monte Carlo sim-
ulations [24, 25] with 1024 samples. For this comparative
analysis, samples of the uncertain parameters are generated,
and subsequent equivalent stress samples are calculated us-
ing Eqs. (3) and (4), providing a probabilistic perspective
on the relative conservativeness of the von Mises and Tresca
criteria in diverse mechanical setups (Fig 4).

Figure 5 delineates a comprehensive statistical portrayal
of the stress states and the subsequent equivalent stresses un-
der both Tresca and von Mises criteria for a shaft and a pres-
sure vessel. The figure is structured so that the left column
represents the shaft, and the right column elucidates the pres-
sure vessel under a coefficient of variation of 25%. The first
row displays the failure curves of both theories, juxtaposed
with the stress state samples, providing a comparative insight
into the inherent stresses in the respective components. The
second row showcases the marginal probability distributions
for the non-zero principal stresses, maintaining a uniform ap-
proach to the comparative analysis between the shaft and the
pressure vessel. Transitioning to the third row, the probabil-
ity distributions for the equivalent stresses are demonstrated,

offering a visual representation of the variations and disper-
sions in the equivalent stresses due to uncertainties. The
nominal (deterministic) values are marked by vertical lines,
accentuating the deviations induced by the uncertainties. Fi-
nally, the fourth row illustrates the corresponding probability
distributions for the design safety factors, calculated as the
yielding ratio to equivalent stresses. This row highlights the
variations in the safety margins due to the propagated uncer-
tainties in the mechanical systems.

Design safety factors are pivotal in understanding the
resilience of the mechanical components under operational
loads. Under nominal conditions, the component’s ability to
withstand operational loading varies depending on the crite-
rion applied, with discrepancies becoming more evident as
parameter uncertainties are considered. The varied disper-
sions in equivalent stress values and safety factors, depicted
in Fig. 5, are manifestations of the uncertainties introduced
during manufacturing and loading.

For a dispersion level of 25%, it is observed that some
stress states transition into the plastic regime, introducing an
overlap of samples and consequently highlighting situations
where the classical relation, where Tresca is more conserva-
tive than von Mises, is challenged. This refined approach to
analyzing stress states under uncertainties provides enhanced
insights into the reliability and robustness of design method-
ologies in structural mechanics.

4 Discussion
The observation of von Mises samples surpassing the

Tresca line and the consequent overlapping of distributions
reveal instances in an environment fraught with variability
where von Mises is demonstrably more conservative than
the deterministic value given by the Tresca criterion. While
this occurs infrequently—approximately 4% of the time in
the provided examples—it bears critical implications, espe-
cially in design scenarios where such instances, though rare,
can have serious repercussions (e.g., component failure in
aerospace or nuclear systems).

This illustration is not intended to portray von Mises as
ubiquitously more conservative but seeks to highlight the po-



Fig. 4. Statistical samples of equivalent stresses, derived from Tresca and von Mises criteria, for both the shaft (left) and the pressure
vessel (right), under coefficients of variation of 5% (top) and 25% (bottom). These illustrations provide insights into stress distributions and
variabilities under differing uncertainty levels in mechanical components.

tential pitfalls of an uncritical, blanket application of classi-
cal failure theories. In designs, particularly those prone to
high variability and uncertainty, structural designers might
conventionally favor the Tresca criterion to achieve a more
conservative design. However, in such variable conditions,
reliance on the von Mises criterion could offer enhanced ro-
bustness in system specifications.

Addressing these nuanced aspects of design methodol-
ogy, recent advances in codes governing structures in high
seismic zones indicate a progressive shift. They represent
a movement from allowable stress-based methods toward
semi-probabilistic approaches focusing on “Limit States”
over the past decades [26, 27]. This transition underscores
a recognition of the significance of incorporating probabilis-
tic assessments in structural design procedures, particularly
in scenarios where the consequences of failure are severe.

Integrating probabilistic design tools [19, 28] is crucial
in instances marked by high parametric variability. Doing so
in conjunction with conservative design approaches, such as
limit analysis [29, 30], is paramount to navigating the intri-
cacies of variable environments effectively and avoiding the
potential hazards associated with singular reliance on deter-
ministic methods. Unfortunately, incorporating these prob-
abilistic tools and methodologies is often underemphasized
in most undergraduate textbooks on solid mechanics or the
strength of materials. This lack of emphasis could lead to
a diminished appreciation of the necessity to integrate such
tools within the foundational frameworks for structural anal-

ysis.
While we acknowledge the existence of an undergradu-

ate textbook like Popov [31] that briefly elaborates on prob-
abilistic assessments, we observe a general trend where the
majority do not delve deeply into the comparative analysis of
failure theories from a probabilistic viewpoint. The scarcity
of in-depth treatment of probabilistic tools in undergradu-
ate educational resources underscores a missed opportunity
to foster a comprehensive understanding of design principles
among structural engineers.

In conclusion, our discourse emphasizes the invaluable
role of a balanced approach to design, one that marries deter-
ministic methods with probabilistic considerations, reflect-
ing a holistic understanding of design principles. It is not just
about weighing the probabilities but about comprehending
the profound implications in real-world scenarios and culti-
vating an approach to design that is both robust and nuanced,
ensuring both the safety and efficiency of structures in vari-
able environments.

5 Concluding Remarks
The role of failure theories in structural mechanics is

undeniable, and they represent well-established methodolo-
gies within the field. However, their application in a prob-
abilistic context—where variability is crucial—still appears
to be underrepresented in standard textbooks. To bridge this
gap, our discussion highlighted scenarios where von Mises’



Fig. 5. Comprehensive statistical characterization of the stress states (first and second lines), equivalent stresses (third line), and safety
factors (fourth line) associated with the Tresca and von Mises criteria for a shaft (left) and a pressure vessel (right) under a coefficient of
variation of 25%. Monte Carlo simulation employed 1024 statistical samples.



criterion could be more conservative probabilistically than
the Tresca criterion. We demonstrated this through practi-
cal structural systems in which the probability of von Mises
stress surpassing the nominal design value obtained via the
Tresca criterion is not zero. This underlines the essential role
that uncertainty analysis plays in ensuring the robustness of
structural projects.

Moreover, the gap observed in the literature regarding
this topic suggests the need for a thorough discussion and
potential reevaluation of pedagogical programs concerning
solid mechanics and the strength of materials. We hope to
stimulate this dialogue and contribute to its progression by
underscoring the relevance of probabilistic considerations.
We anticipate that this discussion will prove helpful in in-
forming future revisions of academic curricula and encour-
age a broader appreciation for the role of uncertainty analysis
in structural design.

Code availability
The simulations of this work used a Matlab code dubbed

FAILURE. To facilitate the reproduction of the results, this
code is available for free on GitHub [32].
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