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Abstract This paper analyzes the impact of paramet-

ric uncertainties on the dynamics of bistable energy

harvesters, focusing on obtaining statistical information

about how each parameter’s variability affects the en-

ergy harvesting process. To model the parametric un-

certainties, we use a probability distribution derived

from the maximum entropy principle, while polyno-

mial chaos is employed to propagate uncertainty. Condi-

tional probabilities and probability maps are obtained

to investigate the effect of uncertainty on harvesting

energy. We consider different models of bistable en-

ergy harvesters that account for nonlinear piezoelec-

tric coupling and asymmetries. Our findings suggest a

higher probability of increasing harvested power in the

intrawell motion regime as the excitation frequency in-

creases. In contrast, increasing the excitation amplitude

and piezoelectric coupling are more likely to increase

power in the chaotic and interwell motion regimes, re-

spectively. An illustrative example is presented to em-

phasize the importance of investigating the influence

when all parameters vary simultaneously.
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1 Introduction

The conversion of vibrational energy available in the en-

vironment into electricity has been extensively explored

for powering small electronic components, such as em-

bedded sensors in the Internet of Things (IoT) appli-

cations, microelectromechanical systems (MEMS), and

nanoelectromechanical systems (NEMS) [18, 24, 25, 38].

This technology has proven to be promising, partic-

ularly in minimizing the costs of battery replacement

and disposal, which might potentially have a negative

impact on the environment.

Numerous efforts have been dedicated to nonlin-

ear bistable piezo-magnetic-elastic energy harvesters. In

contrast to their linear counterparts, the nonlinear har-

vesters are powerful to generate electricity at a broad-

band of frequencies. They were first proposed by Cot-

tone et al. [4] and Erturk et al. [11], and have been

explored in a number of publications [3, 9, 15, 17, 23,

26, 32].

In addition to the complexity due to nonlinear be-

havior, evaluating the performance of bistable energy

harvesting systems can still be a significant challenge

when introduced into an environment of uncertainty.

Recently, a global sensitivity analysis (GSA) was car-

ried out on bistable energy harvesters in [31] to ver-

ify which parameters have a high or low impact on

energy harvesting systems under different scenarios of

parametric variability. The findings provided crucial in-

formation for a deeper understanding of the system,

helped to pinpoint the vital parameters that govern
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changes in dynamic behavior, and served as an indis-

pensable tool for further robust design, optimization,

and response prediction of nonlinear harvesters. How-

ever, GSA alone does not inform and explain how the

most sensitive parameter affects power harvesting for

the better or worse. Using a probabilistic uncertainty

quantification (UQ) methodology to model and quan-

tify these impacts due to variability is suitable to com-

prehend how uncertainties affect the system response

quantitatively.

This paper uses UQ analysis to investigate bistable

energy harvesting systems addressing nonlinear elec-

tromechanical coupling and asymmetries. The GSA aids

UQ approaches by serving as a crucial preliminary in-

vestigation that helps to develop a more straightforward

probabilistic model for the system of interest (see [28]).

Therefore, this work continues the investigation into the

effects of uncertainty on bistable energy harvesters that

was started in [31]. The goal of this work is to inves-

tigate the effects of uncertainty in bistable energy har-

vesters, accounting for the nonlinear electromechanical

coupling and asymmetries in the harvester. The analy-

sis provides insights into how uncertainties in the sys-

tem affect power generation and identifies the key pa-

rameters that affect the system’s performance. The re-

sults of this work may help design and optimize bistable

energy harvesters, especially in environments of uncer-

tainty.

The literature provides several studies on uncertainty

quantification for energy harvesters. Ali et al. [1] con-

ducted pioneering research by evaluating the perfor-

mance of piezoelectric energy harvesters when subject

to uncertainties in natural frequency and damping ra-

tio. The authors calculated the power output and ver-

ified the results by comparing them with Monte Carlo

simulations. They also optimized specific parameters

to maximize harvested power in the presence of un-

certainties. Ruiz and Meruane [37] carried out GSA to

examine uncertainty propagation in frequency response

functions for unimorph and bimorph piezoelectric en-

ergy harvesters. Subsequently, Varoto [43] investigated

uncertainties in piezoelectric properties, electrical, geo-

metric, and mechanical boundary conditions. The au-

thor performed extensive Monte-Carlo simulations for

various frequency ranges since the studied device had

multiple natural frequencies.

Various methods have been developed to address

the challenges of uncertainty quantification in energy

harvesting systems while keeping computational costs

manageable. Nanda et al. [29] employed the quadra-

ture method with the maximum entropy principle to

assess the impact of uncertain parameters on linear and

nonlinear energy harvesting systems. Huang et al. [14]

used the Chebyshev polynomial approximation to study

the dynamics of a nonlinear vibration energy harvester

with an uncertain parameter. This method transforms

the stochastic energy harvester into a high-dimensional

equivalent deterministic system via the Chebyshev poly-

nomial approximation. The mean response of the stochas-

tic energy harvester is then analyzed to understand the

stochastic response. The authors found that the ran-

dom factor could lead to multi-period phenomena, pe-

riodic bifurcation behavior, output voltage fluctuation,

and changes in subharmonics and superharmonics. In

the works [20, 22], the authors presented an improved

interval extension based on the 2nd-order Taylor series

as a new method for uncertainty analysis of a monos-

table nonlinear energy harvester. The proposed method

is suitable for quantifying the uncertainty associated

with the excitation frequency. They showed that the

output voltage of the nonlinear monostable system is

more sensitive to frequency than to the excitation force.

Godoy and Trindade [13] studied a cantilever plate with

bonded piezoelectric patches and a tip mass serving as

an energy harvesting device. The authors considered

piezoelectric and dielectric constants of the piezoelec-

tric active layers and the electric circuit equivalent in-

ductance as stochastic parameters.

Optimization studies are also employed in these en-

ergy harvesting systems to address parametric uncer-

tainties. Li et al. [21] developed a robust optimization

method for a nonlinear monostable energy harvester

that considers uncertainties. This approach defines a

range of variations in the mass, capacitance, and elec-

tromechanical coupling coefficient. They obtained an

optimal design by maximizing the output voltage center

point while minimizing its deviation. On the same di-

rection, Cunha Jr [7] presents a robust numerical frame-

work based on the cross-entropy method, which is ca-

pable of obtaining optimal designs even in the presence

of noise.

Machine learning techniques, specifically Gaussian

processes, have been used recently to establish a para-

metric relationship between uncertain parameters and

the harvested power without the need for governing

equations. Chatterjee et al. [2] verified this method via

direct numerical integration combined with Monte Carlo

simulations.

Martins et al. [27] presented two methodologies for

designing cantilever piezoelectric energy harvesters that

account for the presence of uncertain parameters. The

methodologies use deterministic and robust optimiza-

tion to identify optimal designs.

These works in the literature typically focus on car-

rying out the propagation of uncertainties through the

system dynamics, considering joint uncertain effects.
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However, a comprehensive analysis that examines the

specific influence of each uncertain effect on harvester

performance is currently lacking. This gap is partic-

ularly evident when considering a more realistic sce-

nario where all variables are randomly determined. Al-

though valuable for physical comprehension, this limita-

tion highlights the need for more sophisticated statisti-

cal tools to gain a deeper understanding of the phenom-

ena involved in these complex systems. In this work,

we aim to fill this gap by analyzing the effect of the

most sensitive parameters of energy harvesting systems

identified in our previous work [31] in a comprehensive

excitation scenario. We construct a polynomial chaos

expansion to obtain probabilistic maps and uncertainty

propagation of the recovered energy, and we compute

statistics to enhance the energy process. Furthermore,

we present an illustrative example to emphasize the sig-

nificance of calculating probability maps that incorpo-

rate the joint variation of parameters.

The manuscript is organized as follows. Section 2

presents the dynamical systems of interest, and Sec-

tion 3 introduces the probabilistic technique approach.

Section 4 details the numerical experiments conducted

to analyze the uncertainty effect of the harvesters, fol-

lowed by a discussion of the results. Finally, Section 5

presents the main conclusions of this study.

2 Bistable energy harvesters

Figure 1 shows bistable piezo-magneto-elastic energy

harvesting systems studied in this work. The systems

include symmetric and asymmetric configurations with

both linear and nonlinear piezoelectric coupling, which

are described in detail in our previous work [31]. The

system depicted in Fig.1a is a symmetric bistable en-

ergy harvester that consists of a vertically oriented clamped-

free ferromagnetic elastic beam with piezoelectric layers

attached to its highest part and two magnets placed

symmetrically on its lower part. An external periodic

force excites the rigid base, and the piezoelectric lay-

ers convert the kinetic energy into an electrical signal

dissipated in the resistor. The system in Fig.1b is an

asymmetric bistable energy harvester, which is placed

at inclined surface φ with non-identical magnets, intro-

ducing asymmetries on restoring force.

According to [10], although a piezoelectric energy

harvester is commonly modeled with a linear relation-

ship between material strain and the piezoelectric co-

efficient, neglecting the nonlinear effects of piezoelec-

tricity under high deformation conditions can result in

an underestimation of the harvested power. To incorpo-

rate a more accurate model, we considered a piezoelec-

tric nonlinear coupling proposed by [42], which accounts
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Figure 1: Illustration of the two piezo-magneto-elastic

energy harvesting systems: (a) symmetric configura-

tion; (b) asymmetric configuration.

for a piezoelectric coefficient that depends on the ma-

terial strain. The governing equations of motion for the

bistable energy harvesting model, which takes into ac-

count both asymmetries and nonlinear electromechani-

cal coupling as proposed in [31], are expressed as

ẍ+ 2 ξ ẋ− 1

2
x (1 + 2δx− x2)− (1 + β |x|)χ v =

f cos (Ω t) + p sinφ,
(1)
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v̇ + λ v + (1 + β |x|)κ ẋ = 0, (2)

x(0) = x0, ẋ(0) = ẋ0, v(0) = v0 , (3)

where t denotes time; x is the modal amplitude of oscil-

lation; v is the voltage in the resistor; ξ is the damping

ratio; f is the rigid base oscillation amplitude; Ω is the

external excitation frequency; λ is a reciprocal time con-

stant; the piezoelectric coupling terms are represented

by χ, in the mechanical equation, and by κ in the elec-

trical one; δ is a coefficient of the quadratic nonlinearity;

p is the equivalent dimensionless constant of gravity of

ferromagnetic beam; β is the dimensionless nonlinear

coupling term; x0 and ẋ0 are the initial conditions; v0
indicates the initial voltage over the resistor. The upper

dot is an abbreviation for time derivative. All of these

variables are dimensionless. The instantaneous power

output at time t is

P (t) = λv(t)2 . (4)

This bistable oscillator exhibits three distinct steady-

state responses as a result of its nonlinearity. These re-

sponses include oscillation with inter-well motion, which

can be either chaotic or regular (non-chaotic), as well

as intra-well motion with a regular response. They are

primarily determined by external excitation conditions.

Figure 2 provides a visual representation of these behav-

iors, showing typical time series and phase portraits for

the bistable device.

3 Probabilistic approach

To model the parametric uncertainties of the dynami-

cal systems of interest, a probability space (Θ;Σ;P) is

considered, where Θ is a sample space, Σ is a σ-field

over Θ, and P is a probability measure. However, the

probability distribution of random parameters cannot

be arbitrarily chosen without violating physical princi-

ples and creating an inconsistent model. In situations

where there is limited information, it can be challenging

to determine an unbiased probability distribution func-

tion. To address this, the maximum entropy principle

provides a formalism that yields the least biased dis-

tribution consistent with the available information. Ac-

cording to [16], this principle offers a rational approach

to obtain a suitable joint distribution for the uncer-

tain parameters. The principle aims to choose the least

biased distribution, which maximizes entropy while be-

ing consistent with the available information about the

random parameters [6, 40].

The entropy of a random variable X is defined as

S (pX) = −
∫
R
pX(x) ln(pX(x)) dx, (5)
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Figure 2: Typical of dynamic motion by the time-series

for the bistable energy harvesting system. The time se-

ries in (a) has regular steady-state dynamics at a single-

well motion, and in (b) has chaotic steady-state dy-

namics, while in (c) regular steady-state dynamics at a

double-well motion is observed.

where pX is the probability density function (PDF) of

the random variable X. Thus, to specify pX , it is nec-

essary to maximize the entropy S, subject to the con-

straints (known information).

The only known information of the variables for this

problem of interest is their supports, Supp pX = [a, b].

In other words, we assume that we only know mini-

mum (a) and maximum (b) values for each parameter

based on its physical meaning. Thus, the optimization

problem is defined by maximizing Eq. (5) subjected to∫ b
a
pX(x) dx = 1.

The Lagrange multipliers strategy is used for min-

imizing S subject to the constraint. The Lagrangian

function is given by

L(pX , λ0) = −
∫ b

a

pX(x) ln(pX(x)) dx

−(λ0 − 1)

(∫ b

a

pX(x) dx− 1

)
.

(6)
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To obtain the stationary points of L in the function

of pX and λ0, partial derivatives should be zero. In this

way, the extreme conditions are given by

∂L
∂pX

(pX , λ0) = 0 ⇒ pX(x) = 1[a,b](x) e−λ0 , (7)

∂L
∂λ0

(pX , λ0) = 0 ⇒
∫ b

a

pX(x) dx = 1 , (8)

where 1[a,b](x) is a function that returns a value of 1 if

it is within the interval [a, b] and 0 otherwise.

Combining Eqs. (7) and (8) yields∫ b

a

1[a,b](x) e−λ0 dx = 1 ⇒ e−λ0 =
1

b− a
, (9)

hence, X has a uniform distribution on [a, b], i.e.,

pX(x) =
1

b− a
1[a,b](x). (10)

Therefore, without known correlation information

between the random parameters, the maximum entropy

formalism suggests that the parameters are statistically

independent. In such a case, a uniform distribution can

be used as the marginal distribution for each parameter.

Given the available information, this principle ensures

that no prior assumptions lead to unbiased distribution.

The mathematical model that predicts the power

output for an energy harvesting system can be abstracted

as a nonlinear deterministic functional M that maps

the input parameters random vector X into a quantity

of interest Y, where X = (λ, κ, f,Ω, β, δ, φ) represents

the input parameters. Based on the sensitivity analysis

conducted on our previous paper [31], it is worth noting

that the parameters ξ and χ did not influence the power

generation. Consequently, they can be treated as having

constant values. Thus, the low-dimensional probabilis-

tic model can be represented (explicitly showing the

dependence of the random parameters) as follows

Y =M(X). (11)

This generic notation helps explain the inference method-

ology used below.

To estimate the probability distribution of the quan-

tity of interest, which in this case is the output power,

we need to solve an uncertainty propagation problem [6,

40]. This problem involves determining the distribution

of Y given the probabilistic law of X. Several methods

can be used to address this problem, including Monte

Carlo simulation [8, 19] and polynomial chaos expan-

sion [12, 45]. Although both methods are effective, the

polynomial chaos expansion (PCE) is preferred in this

study due to its low computational cost [41, 5, 35]. This

method is also accurate and efficient, especially for non-

linear effects in stochastic analysis [34, 39].

The PCE is written by

Y ≈
∑
α∈A

yαψα(X), (12)

where, ψα are multivariate polynomials of X, mutually

orthonormal with respect to the PDF pX(x); and yα are

unknown deterministic coefficients. The truncation set

A ⊂ NM is determined from possible multi-indices of

multivariate polynomials. The unknown coefficients can

be determined using a non-intrusive least-squares re-

gression technique by taking samples from the dynamic

system response [41, 5, 35].

Due to the orthonormality property of the PCE ba-

sis, and the fact that ψ0 ≡ 1 and E [ψα(X)] = 0 ∀ α 6=
0, the mean value and the variance of the system re-

sponse can be estimated as

E [Y] ≈ y0 , (13)

and

E
[(
Y − E [Y]

)2] ≈∑
α 6=0

α∈A

y2α. (14)

After defining the PCE expansion, k independent

samples of X are drawn from its distribution analyti-

cally and without significative computational cost. Each

sample is given as input to the model M, resulting in

a set of possible realizations for the quantity of interest

Y(1) =M(X(1))

Y(2) =M(X(2))

...
...

Y(k) =M(X(k))

(15)

where Y(k) samples are used to estimate statistics of

Y non-parametrically, i.e., without assumptions about

the shape of its PDF [44]. In this work, due to its sim-

plicity and effectiveness, the technique used to estimate

the probability density function is the kernel density es-

timator [44].

4 Results and discussion

In this study, the numerical results are presented for

three different bistable models: the symmetric bistable

energy harvester with linear piezoelectric coupling, the

same system with nonlinear piezoelectric coupling, and

the asymmetric bistable energy harvesting system. Their

physical parameters are subject to a uniform distribu-

tion, as described in the previous section, with a vari-

ance coefficient of 20% around their nominal values.



6 João Pedro Norenberg et al.

The nominal values for the parameters are assumed to

be as follows: ξ = 0.01, χ = 0.05, λ = 0.05, κ = 0.5,

Ω = 0.8, β = 1, δ = 0.15 and φ = 10◦. For the ex-

citation amplitude, various nominal values are used to

explore different types of dynamic oscillations, such as

the interwell and intrawell motion shown in Fig. 2. Sim-

ilarly to the other variables, the excitation amplitude is

also uniformly varied around its nominal value with a

variance coefficient of 20% in each situation. The same

methodology was applied to each model, allowing for an

objective comparison of the findings. Finally, we provide

an illustrative example to demonstrate the implications

of considering the joint variation of parameters and em-

phasize the importance of calculating probability maps.

4.1 Symmetric bistable energy harvester with linear

piezoelectric coupling

The findings of the symmetric bistable energy harvester

with linear piezoelectric coupling (δ = 0, φ = 0 and

β = 0) are presented in Figure 3, where the histograms

and the PDF of the normalized1 mean output power are

shown for a range of the amplitude of excitation. These

results show a bimodal distribution for low values of f

(< 0.115), indicating smaller mean power values caused

by monostable vibrations. As the amplitude of exci-

tation increases, the second peak (positive values) be-

comes more prominent until a unimodal distribution is

obtained (f > 0.115), where bistable vibrations occur.

The nature of the distribution is highly dependent on

the system’s dynamic behavior and can provide insights

into its underlying characteristics, such as monostable

and bistable oscillations.

Figure 4 displays the contour map of the joint-CDF

(joint cumulative distribution function) of the mean

power conditioned on each parameter of interest un-

der different nominal excitation conditions. This figure

shows the correlation of each parameter with the mean

power when all parameters are random. For low ampli-

tudes of excitation (f = 0.041 and 0.060), the system

exhibits low variability, and the mean power is not sig-

nificantly affected by parametric changes. Only a slight

variation is recorded when Ω is larger than its nominal

value. As the amplitude of excitation increases, the sys-

tem undergoes significant changes, mainly for Ω and f ,

where discontinuities are observed. Additionally, higher

values of κ result in a power increase, while the same

does not hold for λ. When the amplitude of excitation

is high (f = 0.200 and 0.250), the effect of κ becomes

more pronounced, leading to a considerable increase in

1 Normalization here means zero mean and unit standard
deviation.

power, indicating a positive correlation. The same is

observed for λ, but not for f and Ω. Therefore these

results demonstrated the correlation between the vari-

able and the mean power.

Figure 5 shows the conditional probability of in-

creasing mean power by 50% of the nominal power given

a 10% increase in a parameter of interest. This analy-

sis provides insight into the probability of improving

energy harvesting as a quantitative improvement. The

analysis of the obtained results were categorized based

on the dynamic behavior of the system, specifically into

three distinct types: intrawell motion, chaotic motion,

and periodic interwell motion. This dynamic classifica-

tion can be seen in more detail in [31, 32]. In the in-

trawell motion region, increasing Ω by 10% of its nom-

inal value is crucial to achieving over 80% probability

of increasing power. In chaotic motion regions, increas-

ing excitation amplitude yields a 40% probability of in-

creasing mean power, but a high Ω value reduces the

probability of improving energy harvesting. This is be-

cause an increased frequency in chaotic regions leads to

intrawell behavior that generates less energy. In inter-

well motion regions, κ is the key parameter to generate

more energy, as increasing κ generates a 20% chance of

improving the harvesting process.

In order to visualize the time response, Fig. 6 de-

picts the uncertainty propagation of the output power

over time, with a 95% confidence interval. The nomi-

nal output power time series is also displayed for refer-

ence. To demonstrate the diverse behaviors, we present

three cases of dynamic behavior: intrawell (left column),

chaotic (middle column), and interwell (right column).

Each case focuses on the influence of a single random

parameter, aiming to isolate its effect on the electrical

power.

For the intrawell motion, it is observed that λ, κ,

and f do not significantly affect the mean power, re-

sulting in a narrow confidence interval. However, for Ω,

the interval is substantially wider, and higher values of

harvested energy are observed. For the chaotic motion,

all parameters alter the confidence interval due to the

sensitivity of chaotic behavior to small variability. Fi-

nally, for the interwell motion, variations in κ and Ω

affect the power. While the effect of Ω amplifies the en-

velope in the horizontal direction, it has minimal impact

on the amplitude. In contrast, the effect of κ increases

the amplitude of the envelope, resulting in an increase

or decrease in the generated power.
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Figure 3: Probability density function of the normalized mean power for the symmetric energy harvester model

with linear piezoelectric coupling under different excitation amplitudes. The kernel density function is represented

by the blue line.

4.2 Symmetric bistable energy harvester with

nonlinear piezoelectric coupling

Figure 7 shows the histograms and the PDF of the

normalized mean power for a range of excitation am-

plitudes in a bistable energy harvester with nonlinear

coupling (δ = 0, φ = 0 and β 6= 0). A bimodal dis-

tribution is observed for low values of f (< 0.115). As

the amplitude of excitation increases, the second peak

becomes more prominent, resulting in a unimodal dis-

tribution. The observed behavior is similar to that of

the previously analyzed bistable model.

In Figure 8, we present the joint-CDF of the mean

power conditioned on each parameter of interest under

various nominal excitation conditions, for the bistable

energy harvester with nonlinear coupling. The impact

of the parameters on the mean power remains similar

to the case of linear coupling across the explored region.

In particular, for low and mid-range values of the exci-

tation amplitude (f < 0.200), the additional term (β)

does not introduce any significant changes. However,

for high excitation amplitudes (f = 0.200 and 0.250), a

slight positive correlation is observed, where increasing

β leads to a higher mean power.

In Figure 9, we analyze the conditional probability

of increasing the mean power by 50% of the nominal

power, given that one of the parameters of interest in-

creased by 10%. The results show that the effects of the

parameters remain similar to the case of linear coupling

in the checked region, with some nuances.
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Figure 4: Joint-CDF of mean power conditioned on each parameter of interest (λ, κ, f , Ω) under different values

of excitation amplitude for the symmetric model with linear piezoelectric coupling.
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Figure 5: Probability of increasing the nominal mean power by 50% as parameter Xi is increased by 10%, plotted

against the excitation amplitude, for the symmetric model with linear piezoelectric coupling.

For intrawell motion, the increase of Ω is essential

for improving power generation about the probability

of 100%, while the other parameters (λ, κ, and f) do

not have a significant highlight. In chaotic motion, the

increase of excitation amplitude (f) is fundamental to

improving the mean harvested power, while the increase

of Ω is not attractive, consistent with the linear cou-

pling case. In interwell motion, the most critical pa-

rameter for increasing energy generation is κ, with a

20% chance of improving the harvesting process. On the

other hand, the probability of increasing power given a

higher β follows the trend of the other parameters and

presents little relevance. Overall, these results provide

insights into the key parameters that affect the energy

harvesting process and can guide the design and opti-

mization of bistable energy harvesters.

Figure 10 illustrates the uncertainty propagation on

the output power over time for each individual param-

eter. The plot represents the 95% confidence interval

as well as the nominal series. The left column corre-
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(a) f = 0.041 for λ (b) f = 0.091 for λ (c) f = 0.250 for λ

(d) f = 0.041 for κ (e) f = 0.091 for κ (f) f = 0.250 for κ

(g) f = 0.041 for f (h) f = 0.091 for f (i) f = 0.250 for f

(j) f = 0.041 for Ω (k) f = 0.091 for Ω (l) f = 0.250 for Ω

Figure 6: Propagated uncertainty in the output power time series of the symmetric model with linear piezoelectric

coupling is shown under individual parameters: λ (first row), κ (second row), f (third row), and Ω (fourth row).

The columns are divided according to the different motion states of the system: intrawell (left), chaos (middle),

and interwell (right).
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Figure 7: Probability density function of the normalized mean power for the symmetric energy harvester model with

nonlinear piezoelectric coupling under different excitation amplitudes. The kernel density function is represented

by the blue line.

sponds to intrawell motion, where β generates insignifi-

cant variability. Also, λ, κ, and f exhibit slight variation

in the nominal output. In contrast, Ω remains funda-

mental to changing the response, leading to an extensive

region of confidence. The middle column shows the re-

sults for chaotic motion, where all parameters alter the

confidence interval. Finally, in the right column, inter-

well motion, κ, and Ω variations affect the mean power

similarly to the previous model. However, variations of

β generate an envelope primarily for the signal ampli-

tude, with little influence on the harvested power’s in-

crease or decrease. According to Fig. 9, the upper band

part is when β increases.

4.3 Asymmetric bistable energy harvester with

nonlinear piezoelectric coupling

Figure 11 displays the probability density function of

the normalized mean power for an asymmetric bistable

energy harvester with nonlinear coupling (δ 6= 0, φ 6= 0

and β 6= 0) across a range of excitation amplitudes. For

low values of f (< 0.091), the distribution takes the

form of an exponential function. As the amplitude of

excitation increases, a bimodal distribution is observed.

Firstly, the negative peak is higher, but for f > 0.147

the positive peak becomes more prominent, indicating

that the bistable motion occurs frequently. In contrast

to the symmetric model, the distribution also reveals

some regions with low probability that negatively im-
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Figure 8: Joint-CDF of mean power conditioned on each parameter of interest (λ, κ, f , Ω) under different values

of excitation amplitude for the symmetric model with nonlinear piezoelectric coupling.
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Figure 9: Probability of increasing the nominal mean power by 50% as parameter Xi is increased by 10%, plotted

against the excitation amplitude, for the symmetric model with nonlinear piezoelectric coupling.

pact power harvesting, suggesting monostable motions.

If the excitation force were further increased, the nega-

tive peak would disappear, and the distribution would

become unimodal. To obtain a unimodal distribution

with a high mean, it is necessary to increase the exci-

tation force beyond the analyzed range.

Figure 12 displays the joint-CDF of the mean power

conditioned on each parameter of interest under differ-

ent nominal excitation conditions for the asymmetric

bistable energy harvester with nonlinear coupling. The

influence of the asymmetry coefficient (δ) on the mean

power is negligible, while the angle (φ) increases the

mean power as it approaches zero, suggesting that the
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(a) f = 0.041 for λ (b) f = 0.091 for λ (c) f = 0.250 for λ

(d) f = 0.041 for κ (e) f = 0.091 for κ (f) f = 0.250 for κ

(g) f = 0.041 for f (h) f = 0.091 for f (i) f = 0.250 for f

(j) f = 0.041 for Ω (k) f = 0.091 for Ω (l) f = 0.250 for Ω

(m) f = 0.041 for β (n) f = 0.091 for β (o) f = 0.250 for β

Figure 10: Propagated uncertainty in the output power time series of the symmetric model with nonlinear piezo-

electric coupling is shown under individual parameters: λ (first row), κ (second row), f (third row), Ω (fourth

row), and β (fifth row). The columns are divided according to the different motion states of the system: intrawell

(left), chaos (middle), and interwell (right).
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Figure 11: Probability density function of the normalized mean power for the asymmetric energy harvester model

with nonlinear piezoelectric coupling under different excitation amplitudes. The kernel density function is repre-

sented by the blue line.

asymmetry is not fruitful. However, this effect is not ob-

served in regions with high excitation amplitude. The

other parameters exhibit similar effects on the mean

power, as seen in the previous cases analyzed.

To examine the conditional probability, we divide

the analysis into two scenarios: one where the asymme-

try is strong, characterized by high values of φ and δ,

and another where the asymmetry is weak, with φ and

δ close to zero. These situations are detailed in Tab. 1.

Figure 13a displays the conditional probability of in-

creasing the mean power by 50% of its nominal value,

given an increase of 10% in the parameter of interest.

The conditional events are displayed in Tab. 1 as do-

main D1. The objective is to assess the influence of

asymmetry on power generation, both at the poten-

tial coefficient and the angle. In the intrawell motion

region, the increase in excitation frequency generates

an 70% probability of increasing the average power,

while higher values of the asymmetry coefficient and

angle lead to a lower probability of increased power.

Especially the angle has a low probability of enhanc-

ing the mean power. In the chaos region, the impact of

increasing the asymmetry remains low probability, and

increasing the amplitude is the best alternative for gen-

erating more energy. Finally, for the interwell motion

region, the increase in κ provides the highest chance of

increased power, while asymmetry terms remain low.

In Figure 13b, domain D2 from Tab. 1 is used to

evaluate when the asymmetric system approximates the

symmetrical conditions. The result indicates that the
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Figure 12: Joint-CDF of mean power conditioned on each parameter of interest (λ, κ, f , Ω, δ, φ) under different

values of excitation amplitude for the asymmetric model with nonlinear piezoelectric coupling.

probability of increasing the mean power is higher for

φ and δ when the system has a low asymmetry con-

dition. However, the effect is not superior to the ones

brought by frequency, excitation amplitude, and piezo-

electric coupling in the intrawell, chaos, and interwell

regions.

Table 1: Conditional event for each parameter when the

system has a strong level of asymmetry (D1) and a weak

level of asymmetry (D2).

Domain D1 Domain D2

D̄λ Xλ ≥ 1.1 X̄λ Xλ ≥ 1.1 X̄λ

D̄κ Xκ ≥ 1.1 X̄κ Xκ ≥ 1.1 X̄κ

D̄f Xf ≥ 1.1 X̄f Xf ≥ 1.1 X̄f

D̄Ω XΩ ≥ 1.1 X̄Ω XΩ ≥ 1.1 X̄Ω

D̄δ |Xδ| ≥ 0.1 |Xδ| ≤ 0.1

D̄φ
∣∣Xφ∣∣ ≥ 10◦

∣∣Xφ∣∣ ≤ 10◦

Figure 14 shows the uncertainty propagation for the

output power over time for each parameter individu-

ally, considering the 95% confidence interval and the

nominal series. In the left column for intrawell motion,

the parameters λ, κ, f , and Ω behave similarly to the

previous model. The asymmetric parameters, δ, and φ,

generate a significant confidence interval, especially the

latter. They also suggest a high amplitude of harvested

power, as expected for conditions with small values of

φ, as visualized in Fig. 13. At the chaotic motion, all pa-

rameters drastically alter the confidence interval, with

the transient regime for φ variations exhibiting the most

significant effect. The asymmetries again indicate a sub-

stantial interval of confidence. In the right column for

interwell motion, λ, κ, f , and Ω affect the mean power

in the same way as the previous models at the same

condition. However, δ and φ generate lower energy har-

vesting values, demonstrating undesirable behavior, as

shown in Figure 13.

4.4 Importance of probabilistic maps insights

To highlight the significance of studying conditional

probabilities and emphasize the findings of this research,

this section provides a concise comparison of results.

Specifically, it examines the scenario where all variables

vary simultaneously versus the case where only one vari-

able varies while the others remain constant. For this

analysis, we employ the nonlinear harvesting system

investigated in [36]. While that study offered valuable

insights into the influence of system parameters using

perturbation techniques, it primarily focused on indi-

vidual variations of the parameters. Consequently, to
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Figure 13: Probability of increasing the nominal mean power by 50% as parameter Xi is increased by 10%, plotted

against the excitation amplitude, for the asymmetric model with nonlinear piezoelectric coupling.

illustrate the complexity of this situation and demon-

strate the potential divergence in conclusions, we cal-

culate the resulting variations in harvested power for

both joint and individual parameter changes.

Figure 15 illustrates the uncertainty confidence band

of the root mean square of the power as a function of the

excitation frequency ratio. The gray band represents

the power response of the system when all variables

are considered stochastic, considering joint variations.

The other bands depict the power response when only

the indicated parameter is varying, representing the in-

dividual variations. The confidence bands for the pa-
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(a) f = 0.041 for λ (b) f = 0.091 for λ (c) f = 0.250 for λ

(d) f = 0.041 for κ (e) f = 0.091 for κ (f) f = 0.250 for κ

(g) f = 0.041 for f (h) f = 0.091 for f (i) f = 0.250 for f

(j) f = 0.041 for Ω (k) f = 0.091 for Ω (l) f = 0.250 for Ω

(m) f = 0.041 for δ (n) f = 0.091 for δ (o) f = 0.250 for δ

(p) f = 0.041 for φ (q) f = 0.091 for φ (r) f = 0.250 for φ

Figure 14: Propagated uncertainty in the output power time series of the asymmetric model with nonlinear piezo-

electric coupling is shown under individual parameters: λ (first row), κ (second row), f (third row), Ω (fourth

row), Ω (fifth row), and φ (sixth row). The columns are divided according to the different motion states of the

system: intrawell (left), chaos (middle), and interwell (right).
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Figure 15: Confidence band of 95% of the root mean square of the recovered power as a function of the excitation

frequency ratio when the excitation force is 0.1. The model used to derive these numerical results is described in

detail in the work [36]. The magenta band is the response when the parameter α (ratio of time constant) is varied

uniformly in the range [0.025 0.075] while the other is fixed in their nominal values. The brown band corresponds to

parameter κ2 (linear electromechanical coupling) varying between [0.01 0.2]. The blue band represents parameter δ

(coefficient of cubic nonlinearity) in the range [0.25 0.75]. The green band represents parameter r (potential shape

coefficient) ranging from [1.1 2]. The red band depicts parameter ξ (damping ratio) varying between [0.025 0.075].

Lastly, the gray band shows the combined effect of all parameters simultaneously varying.

rameters α, κ2, δ, and ξ exhibit a similar pattern. They

indicate a comprehensive band in low-frequency regions

and narrower at higher frequencies. On the other hand,

the confidence band for the parameter r is wide across

all frequencies, with a noticeable peak around Ω/ωn
equal to 1.2. This behavior resembles the gray confi-

dence band, where all parameters vary simultaneously.

This similarity suggests a high sensitivity of power to

the parameter r. But comparing the solution region, the

joint effect results in a larger domain than the green

band. This suggests that the variation of all parame-

ters, when combined, also exerts a significant influence.

It further implies that the sensitivity of joint parameters

can be pronounced. In other words, when all parameters

are varying, the system becomes more sensitive to their

combined effects. Considering this effect, the calcula-

tion of conditional probabilities and the formulation of

probability maps presented in this work prove fruitful

in demonstrating the influence of each parameter when

the other parameters are also varying.

5 Conclusions

This paper presented a comprehensive uncertainty quan-

tification analysis of the most sensitive parameters on

several bistable energy harvesting systems. The analy-

sis considered asymmetries and nonlinear piezoelectric

coupling, and determined the probability density func-

tion of mean power for several excitation situations. The

most sensitive parameters were treated as uniformly

distributed random variables to obtain the joint CDF of

mean power conditioned for each parameter of interest,

which was then used to check the correlation between

them and the mean power. The PDF was estimated

using a kernel density estimator, and the conditional

probability for increasing the mean power was also cal-

culated.

The analysis results suggest that there is a spe-

cific parameter that has a consistently positive impact

on the energy harvested, regardless of the model be-

ing considered. When it comes to intrawell motion, in-

creasing the excitation frequency increases the proba-

bility of generating more power. On the other hand, in

chaotic regimes, increasing the excitation amplitude is

the preferred option for enhancing energy harvesting.

For interwell motion, increasing the piezoelectric cou-

pling offers a higher chance of increasing the power.

However, in asymmetric systems, there are exceptions

where changes in the plane angle can be favorable or

unfavorable to the harvesting performance. Notably,

weaker levels of asymmetry are advantageous, while

stronger asymmetry values can be harmful. The config-

uration of asymmetry and excitation conditions plays

a crucial role in determining performance, highlighting

the complexity of nonlinearity. Additionally, some pa-

rameters exhibit heightened influence during the tran-

sient regime, despite having low sensitivity. Lastly, the
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uncertainties associated with the most sensitive param-

eters result in a confidence interval solely in the mag-

nitude of output power, except for the excitation fre-

quency.

This work presents important information about the

uncertainty influence in the nonlinear energy harvest-

ing processes and describes when and how each param-

eter’s uncertainty can impact the harvesting process.

The findings of this work are consistent with the sen-

sitivity study reported in [31], demonstrating that the

most sensitive parameters can increase or decrease the

electrical power. In summary, the contributions of this

work provide valuable insight into the uncertainties of

nonlinear energy harvesting systems, which can guide

the design and optimization of these systems.

Acknowledgements

The authors gratefully acknowledge the insightful dis-

cussions on the results presented in this paper with

Professors Grzegorz Litak (Lublin University of Tech-

nology) and Marcelo Savi (Federal University of Rio de

Janeiro).

Funding

This research was financially supported by the Brazilian

agencies Coordenação de Aperfeiçoamento de Pessoal

de Nı́vel Superior (CAPES) under Finance Code 001,

Conselho Nacional de Desenvolvimento Cient́ıfico e Tec-

nológico under the grants 306526 /2019-0 and 305476

/2022-0, and the Carlos Chagas Filho Research Foun-

dation of Rio de Janeiro State (FAPERJ) under grants

210.167/2019, 211.037/2019, and 201.294/2021.

Code availability

The simulations presented in this paper were performed

using the computational code STONEHENGE - Suite

for Nonlinear Analysis of Energy Harvesting Systems

[33], which is available for free on GitHub [30].

Declarations

Conflict of Interest

The authors declare they have no conflict of interest.

Disclaimer

This manuscript has undergone a comprehensive revi-

sion utilizing artificial intelligence-powered tools, such

as Grammarly and ChatGPT, to enhance its grammat-

ical accuracy and clarity. However, the authors assume

full responsibility for the original language and phrasing

used in the manuscript.

References

1. Ali, S.F., Friswell, M.I., Adhikari, S.: Piezoelec-

tric energy harvesting with parametric uncertainty.

Smart Materials and Structures 19(10), 105010

(2010). DOI 10.1088/0964-1726/19/10/105010

2. Chatterjee, T., Karlicic, D., Adhikari, S., Friswell,

M.: Parametric amplification in a stochastic non-

linear piezoelectric energy harvester via machine

learning. In: Proceedings of the Society for Ex-

perimental Mechanics Series (2022)

3. Costa, L.G., da Silva Monteiro, L.L., Pacheco,

P.M.C.L., Savi, M.A.: A parametric analysis of

the nonlinear dynamics of bistable vibration-based

piezoelectric energy harvesters. Journal of Intelli-

gent Material Systems and Structures 32(7), 699–

723 (2021). DOI 10.1177/1045389X20963188

4. Cottone, F., Vocca, H., Gammaitoni, L.: Nonlinear

energy harvesting. Phys. Rev. Lett. 102, 080601

(2009). DOI 10.1103/PhysRevLett.102.080601
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