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The widespread inability to replicate research results has been largely attributed to misinterpretations of p-values and even to null hypothesis significance testing itself. As a result, a wide variety of alternatives to p-values have been proposed. Toward the Bayesian end of the spectrum is the local false discovery rate, the posterior probability that the null hypothesis is true. While easy to interpret, it by definition requires a nonzero prior probability of the null hypothesis. Alternatives without that requirement include Bayes factors, local false sign rates, and local false region rates. As these alternatives gain traction, they call for a reconsideration of multiple testing adjustments. This paper proposes a general method of adjusting p-values and alternative quantities for simultaneous claims about multiple parameters of interest. This rationale for accounting for multiple testing differs from the traditional rationale of controlling frequentist error rates. The proposed rationale is compatible with, but does not require, the shrinkage present in empirical Bayes and hierarchical Bayesian methods. The rationale leads to a very simple method of adjustment: add up the p-values or alternative quantities corresponding to the simultaneous claim. The sum puts an upper bound on the approximate posterior probability that the claim is false.

Introduction

The simultaneous testing of multiple null hypotheses, each corresponding to a different parameter of interest, led to the adjustment of p-values to control frequentist error rates [START_REF] Dudoit | Multiple Testing Procedures with Applications to Genomics[END_REF][START_REF] Cui | Handbook of Multiple Comparisons[END_REF]. For example, p-values adjusted by the Bonferroni correction guarantees that the family-wise error rate will be no greater than the specified level of statistical significance. While those adjustments do not apply to posterior probabilities or other quantities complying with the likelihood principle [START_REF] Berger | The Likelihood Principle[END_REF], hierarchical Bayesian and empirical Bayes models borrow strength across data structures that involve multiple hypotheses of interest, and the resulting shrinkage has been interpreted as the Bayesian version of multiple testing [START_REF] Efron | Large-Scale Inference: Empirical Bayes Methods for Estimation, Testing, and Prediction[END_REF][START_REF] Bickel | Genomics Data Analysis: False Discovery Rates and Empirical Bayes Methods[END_REF][START_REF] Stephens | The Bayesian lens and Bayesian blinkers[END_REF] even though its rationale is completely different from the frequentist rationale.

Recent developments call for a reconsideration of multiple testing adjustments and their rationales. The perception of a replication crisis largely caused by the misinterpretation of p-values [START_REF] Wasserstein | Moving to a world beyond "p < 0.05[END_REF][START_REF] Benjamini | The ASA president's task force statement on statistical significance and replicability[END_REF] has been driving accelerating trends toward calibration of p-values by Bayes factors [START_REF] Foulley | Three recommendations for improving the use of p-values[END_REF][START_REF] Quatto | Beyond p < .05: a critical review of new Bayesian proposals for assessing the p-value[END_REF][START_REF] Campbell | Bayes factors and posterior estimation: Two sides of the very same coin[END_REF][START_REF] Kelter | How to choose between different Bayesian posterior indices for hypothesis testing in practice[END_REF] and the interpretation of p-values in terms of local false sign rates [START_REF] Stephens | False discovery rates: a new deal[END_REF][START_REF] Bickel | Null hypothesis significance testing interpreted and calibrated by estimating probabilities of sign errors: A Bayes-frequentist continuum[END_REF][START_REF] Stephens | The Bayesian lens and Bayesian blinkers[END_REF][START_REF] Rice | Three-decision methods: A sensible formulation of significance tests -and much else[END_REF], raising the question of how to adjust those quantities for multiple testing.

This paper proposes a general method of adjusting p-values and such alternative quantities for simultaneous claims about multiple parameters of interest. This rationale for accounting for testing multiple null hypotheses differs from the traditional rationales of controlling frequentist error rates.

The rationale is compatible with, but does not require, the shrinkage present in empirical Bayes and hierarchical Bayesian methods of borrowing strength across data corresponding to the hypotheses.

Example 1. Student SAT scores recorded at each of 8 exam sites are summarized by its estimated mean difference between students in and outside a training program and by its estimated variance [START_REF] Rubin | Estimation in parallel randomized experiments[END_REF]. The z -statistics, the ratios of those 8 estimated means and 8 standard deviations, are 1.91, 0.78, -0.17, 0.62, -0.07, 0.06, 1.73, and 0.69, and the respective p-values for the twosided z -test are 0.06, 0.44, 0.87, 0.54, 0.95, 0.96, 0.08, and 0.49. Even without a Bonferroni-type adjustment of the p-values, none is less than the conventional 0.05 level. What can be learned from the data depends on the assumptions and goals. The following two settings illustrate the proposed rationale for multiple testing adjustments.

First, suppose it is known that the training program has some effect on the mean score at every site and that the only question is whether there is enough evidence to conclude that the mean increased (positive sign) or to conclude that it decreased (negative sign). The estimated signs from the z -statistics are +, +, -, +, -, +, +, and +. The posterior probability that a given estimated sign is false is, under broad conditions, approximately half of its two-sided p-value, as will be seen.

Focusing on the two lowest p-values, the probability that the first estimated sign is false is about 3%, and the probability that the seventh estimated sign is false is about 4%. Since probability that the first and/or the seventh estimated sign is false can then be no more than about 7%, the posterior probability that both estimated signs are true is at least 93%. The additive nature of the 7% upper bound on the disjunction (and/or) probability suggests adjusting the p-values by addition, so that when the two lowest p-values are considered, 0.06 + 0.08 = 0.14 would be the adjusted p-value of the seventh site. Then dividing it by two recovers the approximate 7% upper bound of the probability that one or both of the two estimated signs is false. Now suppose instead that there is some unknown prior probability that, for each of the exam sites, the training program has no effect on the mean score and that what is of interest for each site is not the sign but rather whether or not the training program had an effect. This setting suggests the use of the Bayes factor, which is the ratio of the posterior odds of the truth of a null hypothesis to the prior odds, unknown in this case. A widely applicable lower bound on the Bayes factor is -e p i ln p i if p i < 1/e [START_REF] Sellke | Calibration of p values for testing precise null hypotheses[END_REF][START_REF] Benjamin | Three recommendations for improving the use of p-values[END_REF], where p i is the i th of the 8 p-values. For p 1 = 0.057 and p 7 = 0.083, those Bayes factor bounds are 0.44 and 0.56, each about 1/2, indicating that the posterior odds would be about half of the prior odds. Since the posterior probability that the first and/or seventh null hypothesis is true is no greater than the sum of the two marginal posterior probabilities, the posterior probability that both are false is at least 100% minus that sum. For that reason, it will be seen that the Bayes factor bounds may be adjusted additively, like the suggested p-value adjustment, if they are sufficiently small. Then the adjusted Bayes factor bound would be 0.44 + 0.56 = 1.00 when considering the conclusion that the evidence supports the falsity of both the first and the seventh null hypotheses, without requiring knowledge of the prior probabilities. Since a Bayes factor of 1 means the posterior probability is equal to the prior probability, the data do not support the conclusion that both null hypotheses are false. ▲

The example considered posterior probabilities of two disjunctions: 1. the event that one or two estimated signs is false; 2. the event that one or two null hypotheses is false. Those posterior probabilities and their upper bounds are generalized to any number of parameters of interest, each of which may have its own p-value, and to any disjunctions involving those null hypotheses in Section 2. The rest of the paper treats these special cases of particular relevance to data analysis, in order of increasing conceptual difficulty:

• The simplest case is that of testing multiple hypotheses for whether or not they are true (Section 3), as seen in the second scenario of Example 1. The first result is that the posterior probability of the falsity of at least one null hypothesis in a subset of interest is bounded from above by the sum of the corresponding local false discovery rates. Relaxing its requirement that the prior probability be known or estimated, the second result is that sufficiently small Bayes factors are adjusted for multiplicity by their sum over such a subset.

• Building on the first of those results and given scalar (real-valued) parameters of interest, Section 4 finds that the posterior probability of at least one false sign in a subset of interest is bounded from above by the sum of the corresponding local false sign rates. For many settings in which the prior probability of a point null hypothesis is 0, that sum reduces to half the sum of the two-sided p-values, as used in the first scenario of Example 1.

• To extend those results to vector parameters of interest, Section 5 generalizes the event of a false sign to the event of a false region, the event that the true value of a parameter of interest lies outside the largest confidence region that excludes the null hypothesis. The result is that the posterior probability of at least one false region among those in a subset of interest is bounded from above by the sum of the corresponding local false region rates. In spite of the conceptual complexity involved, the case of 0 prior probability yields the simple result that the upper bound is approximately equal to the sum of the p-values corresponding to the subset. That confirms the intuition of adding up the lowest two p-values in Example 1.

Disjunction posterior probability and total posterior probability

With N as the number of parameters of interest, let Θ i denote a vector space, and let θ i , representing the i th unknown parameter of interest, denote a random vector with values in Θ i for each i = 1, . . . , N . A statement about θ i relative to a θ null i ∈ Θ i is a proposition denoted by S θ i , θ null i or by S i for short. A statement S i may be called a null hypothesis if it does not depend on y i , the observed sample corresponding to the i th parameter of interest. For example, S 2 : θ 2 = 0 and S 5 : θ 5 > 1/2 could be considered null hypotheses. The classical multiple comparison procedures involve simultaneously testing N null hypotheses [START_REF] Dudoit | Multiple Testing Procedures with Applications to Genomics[END_REF].

A conjunction of statements is true if and only if all of them are true. For example, the conjunction of S 2 and S 5 , abbreviated by S 2 ∧ S 5 , is true if both S 5 and S 5 are true and is false otherwise.

A disjunction of statements is true if and only if at least one of them is true. For an index set I ⊂ {1, . . . , N }, the disjunction of the statements corresponding to I is written as i∈I S i . Then i∈I S i is the proposition that there is an i ∈ I such that S i . For example, the disjunction of the statements corresponding to {2, 5} is i=2,5

S i = S 2 ∨ S 5 ,
which is true if S 2 is true and/or if S 5 is true.

Theorem 1. For any non-empty I ⊂ {1, . . . , N },

Pr (∃ i∈I S i ) = Pr i∈I S i ≤ i∈I Pr (S i ) ,
where Pr is any posterior probability distribution of (θ 1 , . . . , θ N ). (1)

The claim is true for j = 1 since, denoting the sole member of I 1 by i ′ ,

Pr i∈I 1 S i = Pr   i∈{i ′ } S i   = Pr (S i ′ ) = i∈{i ′ } Pr (S i ) = i∈I 1
Pr (S i ) .

If equation ( 1) holds for a j = 1, . . . , |I | -1, then, denoting by i j +1 the member of I j +1 such that

I j +1 = I j ∪ {i j +1 }, Pr   i∈I j +1 S i   = Pr   S ij +1 ∨ i∈I j S i   = Pr S ij +1 + Pr   i∈I j S i   -Pr   S ij +1 ∧ i∈I j S i   ≤ Pr S ij +1 + Pr   i∈I j S i   ≤ Pr S ij +1 + i∈I j Pr (S i ) = i∈I j +1 Pr (S i ) ,
implying that equation (1) also holds for j +1. It follows that equation (1) holds for j = |I |, completing this proof by induction.

For each i = 1, . . . , N , the i th improbable index set, denoted by I (S i ), is the index set corresponding to statements with probabilities no greater than that of S i :

I (S i ) = {j = 1, . . . , N : Pr (S j ) ≤ Pr (S i )} .
The disjunction probability with respect to S i is

Prob ∨ i = Pr   j ∈I (S i ) S j   .
Similarly, the total probability with respect to S i is

Prob + i = min   j ∈I (S i ) Pr (S j ) , 1   .
Corollary 1. For every i = 1, . . . , N ,

Prob ∨ i ≤ Prob + i .
Proof. This is a special case of Theorem 1.

3 Testing multiple null hypotheses of known and unknown prior probabilities

Disjunction and total false discovery rates

Consider N null hypotheses with S i : θ i = θ null i as the i th null hypothesis for i = 1, . . . , N . In classical Bayesian hypothesis testing, each null hypothesis has a non-zero prior probability π 0 of truth, ideally estimated by meta-analysis [START_REF] Benjamin | Redefine statistical significance[END_REF][START_REF] Habiger | Publication policies for replicable research and the community-wide false discovery rate[END_REF]. In most empirical Bayes testing, the posterior probability of the i th null hypothesis is conditional on its test statistic [START_REF] Efron | Large-Scale Inference: Empirical Bayes Methods for Estimation, Testing, and Prediction[END_REF][START_REF] Bickel | Genomics Data Analysis: False Discovery Rates and Empirical Bayes Methods[END_REF], or, equivalently, the observation that its p-value P i is equal to the observed p-value p i . Since that posterior probability is the probability of making an error in rejecting the null hypothesis, it is called the local false discovery rate [START_REF] Efron | Large-Scale Inference: Empirical Bayes Methods for Estimation, Testing, and Prediction[END_REF] to distinguish it from the frequentist false discovery rate pioneered by [START_REF] Benjamini | Controlling the false discovery rate: A practical and powerful approach to multiple testing[END_REF]. By Bayes's theorem, the local false discovery rate is

fdr i = Pr θ i = θ null i | P i = p i = 1 + B i π 0 1 -π 0 -1 -1 , (2) 
where B i is the Bayes factor defined as a ratio of conditional probability densities:

B i = f p i |θ i = θ null i f p i |θ i ̸ = θ null i .
The posterior probability that there is at least one i ∈ I such that θ i = θ null i is true is

Pr i∈I θ i = θ null i | P i = p i . By Theorem 1, that satisfies Pr ∃ i∈I θ i = θ null i | P i = p i = Pr i∈I θ i = θ null i | P i = p i ≤ i∈I fdr i . (3) 
In this approach to multiple testing, the i th improbable index set

I θ i = θ null i
is the index set corresponding to statements with local false discovery rates no greater than that of θ i = θ null i :

I θ i = θ null i = {j = 1, . . . , N : fdr j ≤ fdr i } . (4) 
Then the disjunction posterior probability with respect to

θ i = θ null i is fdr ∨ i = Pr    j ∈I (θi=θ null i ) θ j = θ null j | P j = p j    ,
called the disjunction false discovery rate. By Corollary 1, an upper bound of fdr ∨ i is the total posterior probability with respect to θ i = θ null i :

fdr + i = min    j ∈I (θi=θ null i ) fdr j , 1    ,
called the total false discovery rate.

Example 2. For a study of treating blood clots [START_REF] Neuhaus | Improved thrombolysis in acute myocardial infarction with front-loaded administration of alteplase: results of the rt-PA-APSAC patency study (TAPS)[END_REF], the p-values for tests of N = 15 null hypotheses are 0.0001, 0.0004, 0.0019, 0.0095, 0.0201, 0.0278, 0.0298, 0.0344, 0.0459, 0.3240, 0.4262, 0.5719, 0.6528, 0.7590, and 1.000 [START_REF] Benjamini | Controlling the false discovery rate: A practical and powerful approach to multiple testing[END_REF]. Since p-values are approximately uniformly distributed between 0 and 1 under their null hypotheses, the probability density function of

Z i = Φ -1 1 - P i 2
is approximately 2ϕ on non-negative values under θ i = θ null i , where Φ and ϕ are the standard normal cumulative distribution function and probability density function, respectively. Under the alternative hypothesis that θ i ̸ = θ null i , assume the probability density function of Z i is 2ϕ σ on non-negative values, where ϕ σ is the probability density function of the normal distribution with 0 mean and standard deviation σ. Also making the usual assumption of the independence of the p-values [START_REF] Pawitan | Bias in the estimation of false discovery rate in microarray studies[END_REF][START_REF] Muralidharan | An empirical Bayes mixture method for effect size and false discovery rate estimation[END_REF][START_REF] Yang | Parametric estimation of the local false discovery rate for identifying genetic associations[END_REF], the likelihood function of π 0 and σ is

N i=1 2 (π 0 ϕ (z i ) + (1 -π 0 ϕ σ (z i ))) ,
where (Bickel, 2019, chapter 7). In empirical Bayes terminology [START_REF] Efron | Large-Scale Inference: Empirical Bayes Methods for Estimation, Testing, and Prediction[END_REF]), this is an example of a two-group model using a theoretical null hypothesis. Maximizing the likelihood function under the constraint that π 0 ≥ 1/2 yields π 0 = 1/2 and σ = 2.54 as the constrained maximum likelihood estimates. By substitution, the Bayes factor is then estimated to be human subjects, 25 of whom had acute myeloid leukemia, and 47 of whom had acute lymphoblastic leukemia (Mias, 2018, §3.7.4). The data for each human subject consists of measurements reflecting the amount mRNA expressed by each of 3571 genes. For each gene, the Wilcoxon rank-sum test of each null hypothesis that there is no location difference in expression between disease conditions yields a total of 3571 p-values (Mias, 2018, §6.2), the lowest 4 of which were discarded for being too close to 0 for the following maximum likelihood procedure. The two-group model of Example 2 was used except that the prior probability was constrained to π 0 ≥ 9/10, following [START_REF] Bickel | Small-scale inference: Empirical Bayes and confidence methods for as few as a single comparison[END_REF].

z i = Φ -1 (1 -p i /2)
B i = 2ϕ (z i ) 2ϕ σ (z i ) = ϕ (z i ) ϕ σ (z i ) .
The maximum likelihood estimates π 0 = 9/10 and σ = 3.72 resulted in the estimates of the local false discovery rates and of their total false discovery rates that are displayed in the right-hand plot of Figure 1. ▲

Disjunction and total Bayes factors

If the Bayes factors of all the null hypotheses considered are small enough, the methods of Section 3.1 may be used without specifying the prior probability π 0 , provided that it is neither 0 nor 1. As the first step toward that, Bayes's theorem is applied to the Pr ∃ i∈I θ i = θ null i | P i = p i of equation

(3) to obtain, in analogy with equation (2),

Pr i∈I θ i = θ null i | P i = p i = 1 + B (I ) π 0 1 -π 0 -1 -1
, where the constant B (I ) is called the Bayes factor of index set I .

Lemma 1. Let ε = i∈I B i . If ε < 1 and 0 < π 0 < 1, then, for any non-empty I ⊂ {1, . . . , N },

B (I ) ≤ i∈I B i +O ε 2 .
Proof. Let ω 0 = π 0 / (1 -π 0 ). Using equation ( 2) for substitution into a Taylor expansion,

B (I ) = Pr i∈I θ i = θ null i | P i = p i / 1 -Pr i∈I θ i = θ null i | P i = p i π 0 / (1 -π 0 ) ≤ i∈I fdr i / 1 -i∈I fdr i ω 0 = 1 ω 0 i∈I fdr i 1 -i∈I fdr i = 1 ω 0 i∈I 1 + (ω 0 B i ) -1 -1 1 -i∈I 1 + (ω 0 B i ) -1 -1 = 1 ω 0 i∈I ω 0 B i +O B 2 i 1 -i∈I ω 0 B i +O B 2 i = 1 ω 0 ω 0 i∈I B i +O ε 2 1 -i∈I ω 0 B i +O (ε 2 ) = i∈I B i +O   i∈I B i 2   = i∈I B i +O ε 2 .
The next result, needed for the Bayes factor analogs of fdr ∨ i and fdr + i , involves the special case of I first encountered in equation (4).

Lemma 2. If 0 < π 0 < 1, then the i th improbable index set is

I θ i = θ null i = {j = 1, . . . , N : B j ≤ B i } .
Proof. Since the prior probability is neither exactly 0 nor exactly 1 (0 < π 0 < 1), equation (2) implies that the local false discovery rate fdr i is strictly monotonic increasing with the Bayes factor B i . Since the orderings of the false discovery rates and Bayes factors are therefore equivalent, the index set of equation ( 4) is as claimed. In analogy with fdr ∨ i and fdr + i , define the disjunction Bayes factor as

B ∨ i = B I θ i = θ null i
and the total Bayes factor as

B + i = j ∈I (θi=θ null i ) B j .
By Lemma 1,

B ∨ i ≤ B + i + O B + i 2 if B + i < 1 and 0 < π 0 < 1.
The practical implication is that B + i may be used as an approximate upper bound for B ∨ i when the Bayes factors involved are sufficiently small.

Example 4. The p-values of Example 2 may be simultaneously considered using -e p i ln p i as a lower bound of the Bayes factor B i [START_REF] Sellke | Calibration of p values for testing precise null hypotheses[END_REF][START_REF] Benjamin | Three recommendations for improving the use of p-values[END_REF] instead of the more complex two-group model and the constraint on the prior probability π 0 . Figure 2 suggests that the first 7 of the 9 total Bayes factors are sufficiently small for the application of Lemma 1. ▲ 4 Probabilities of sign errors for multiple parameters of interest

Disjunction and total false sign rates

For the i th of N scalar (real-valued) parameters of interest θ 1 , . . . , θ N , consider the scalar θ null i , which is a special case of the null hypothesis vector defined in Section 3.1, and a scalar point estimate θ i . Then

s i = sign θ i -θ null i =                -1 if θ i < θ null i 0 if θ i = θ null i +1 if θ i > θ null i ,
the sign of the i th parameter of interest, may be estimated by

s i = sign θ i -θ null i =                -1 if θ i < θ null i 0 if θ i = θ null i +1 if θ i > θ null i .
A false sign occurs whenever s i ̸ = s i , which is an example of a statement S i that, depending on the data, is not a hypothesis. In analogy with the local false discovery rate, the local false sign rate [START_REF] Stephens | False discovery rates: a new deal[END_REF] is the posterior probability of a false sign:

fsr i = Pr ( s i ̸ = s i | P i = p i ) .
In fact, it is related to the local false discovery rate by

fsr i = Pr θ i = θ null i | P i = p i Pr s i ̸ = s i | P i = p i , θ i = θ null i + Pr θ i ̸ = θ null i | P i = p i Pr s i ̸ = s i | P i = p i , θ i ̸ = θ null i = fdr i Pr s i ̸ = 0| P i = p i , θ i = θ null i + (1 -fdr i )    Pr θ i < θ null i | P i = p i , θ i ̸ = θ null i Pr s i ̸ = -1| P i = p i , θ i < θ null i + Pr θ i > θ null i | P i = p i , θ i ̸ = θ null i Pr s i ̸ = +1| P i = p i , θ i > θ null i    fsr i =                fdr i + (1 -fdr i ) Pr θ i > θ null i | P i = p i , θ i ̸ = θ null i if s i = -1 (1 -fdr i ) Pr θ i ̸ = θ null i | P i = p i , θ i ̸ = θ null i if s i = 0 fdr i + (1 -fdr i ) Pr θ i < θ null i | P i = p i , θ i ̸ = θ null i if s i = +1
.

That can be simplified using p < i and p > i , one-sided p-values that have θ i < θ null i and θ i > θ null i as their respective alternative hypotheses, if

p < i . = Pr θ i > θ null i | P i = p i , θ i ̸ = θ null i (5) p > i . = Pr θ i < θ null i | P i = p i , θ i ̸ = θ null i , (6) 
approximations that hold very generally under diffuse prior distributions [START_REF] Casella | Reconciling Bayesian and frequentist evidence in the one-sided testing problem[END_REF][START_REF] Dudley | Asymptotic normality with small relative errors of posterior probabilities of half-spaces[END_REF][START_REF] Shi | Reconnecting p-value and posterior probability under one-and two-sided tests[END_REF], and if, as should be the case,

s i = -1 =⇒ p < i < p > i s i = +1 =⇒ p < i > p > i .
Under those broad conditions, the local false sign rate is approximately

fsr i =        (1 -fdr i ) (p i /2) if s i = 0 fdr i + (1 -fdr i ) (p i /2) if s i ̸ = 0 , (7) 
where

p i = 2 min (p < i , p > i )
, the two-sided p-value that has that has θ i ̸ = θ null i as its alternative hypothesis [START_REF] Bickel | Null hypothesis significance testing interpreted and calibrated by estimating probabilities of sign errors: A Bayes-frequentist continuum[END_REF]. Adding the condition that the prior probability π 0 = 0, the posterior probability fsr i = 0 as well, yielding

fsr i =        Pr θ i > θ null i | P i = p i if s i = -1 Pr θ i < θ null i | P i = p i if s i = +1
since in that case s i ̸ = 0, and yielding

fsr i = p i /2 (8) 
as the approximate fsr i [START_REF] Bickel | Null hypothesis significance testing interpreted and calibrated by estimating probabilities of sign errors: A Bayes-frequentist continuum[END_REF].

The posterior probability that there is at least one false sign corresponding to an index in I is

Pr i∈I s i ̸ = s i | P i = p i . By Theorem 1, that satisfies Pr (∃ i∈I s i ̸ = s i | P i = p i ) = Pr i∈I s i ̸ = s i | P i = p i ≤ i∈I fsr i .
In this context, the i th improbable index set I ( s i ̸ = s i ) is the index set corresponding to statements with local false sign rates no greater than that of s i ̸ = s i :

I ( s i ̸ = s i ) = {j = 1, . . . , N : fsr j ≤ fsr i } .
Then the disjunction posterior probability with respect to s i ̸ = s i is

fsr ∨ i = Pr    j ∈I (θi=θ null i ) s i ̸ = s i | P j = p j    ,
called the disjunction false sign rate. By Corollary 1, an upper bound of fsr ∨ i is the total posterior probability with respect to s i ̸ = s i :

fsr + i = min   j ∈I ( si ̸ =si ) fsr j , 1   ,
called the total false sign rate and approximated by fsr

+ i = min   j ∈I ( si ̸ =si ) fsr j , 1   .
In the case of π 0 = 0 and two-sided p-values, that reduces to

fsr + i = min   1 2 j ∈I ( si ̸ =si ) p j , 1   (9)
according to equation (8). That suggests adjusting p i by adding up the p-values of indexes in 5 Probabilities of region errors for multiple parameters of interest

I ( s i ̸ = s i ),

Disjunction and total false region rates

For i = 1, . . . , N and a significance level α, an approximate (1 -α) 100% confidence region for θ i , the i th parameter of interest, is

R i (1 -α) = θ null ∈ Θ i : p i θ null > α ,
where p i θ null is a p-value testing the null hypothesis that θ i = θ null . For example, if Θ 2 is the real line, then R 2 (95%) is an approximate 95% confidence interval for θ 2 , a scalar parameter of interest.

The i th central region, denoted by R i , is the largest approximate confidence region that excludes θ null i , the null hypothesis value introduced in Section 3.1:

R i = R i 1 -inf α : θ null i / ∈ R i (1 -α) .
That is the set of parameter vectors with p-values greater than that of θ null i :

R i = R i 1 -p i θ null i = θ null ∈ Θ i : p i θ null > p i θ null i . ( 10 
)
Consider the statement S i : θ i / ∈ R i , that there is a false region, defined as the proposition that the i th parameter of interest falls outside its central region. Accordingly, in analogy with the local false discovery rate and the local false sign rate, the i th local false region rate is the posterior probability that the i th central region is false:

frr i = Pr θ i / ∈ R i | P i θ null i = p i θ null i ,
where P i θ null i , the random p-value testing the i th null hypothesis, has p i θ null i as its observed value.

Lemma 3. For i = 1, . . . , N , the local false region rate is

frr i = Pr p i (θ i ) ≤ p i θ null i | P i θ null i = p i θ null i . (11) 
Proof. From equation ( 10),

frr i = Pr θ i / ∈ θ null ∈ Θ i : p i θ null > p i θ null i | P i θ null i = p i θ null i = Pr θ i ∈ θ null ∈ Θ i : p i θ null ≤ p i θ null i | P i θ null i = p i θ null i .
The right-hand side of equation 11 indicates that the local false region rate is an explanatory value in the sense of [START_REF] Bickel | The p-value interpreted as the posterior probability of explaining the data: Applications to multiple testing and to restricted parameter spaces[END_REF].

The posterior probability that there is at least one false region corresponding to an index in I is Pr i∈I θ i / ∈ R i | P i = p i . By Theorem 1, that satisfies

Pr (∃ i∈I θ i / ∈ R i | P i = p i ) = Pr i∈I θ i / ∈ R i | P i = p i ≤ i∈I frr i .
The corresponding i th improbable index set I (θ i / ∈ R i ) is the index set corresponding to statements with local false region rates no greater than that of θ i / ∈ R i :

I (θ i / ∈ R i ) = {j = 1, . . . , N : frr j ≤ frr i } . ( 12 
)
Then the disjunction posterior probability with respect to θ i / ∈ R i is

frr ∨ i = Pr    j ∈I (θi=θ null i ) θ i / ∈ R i | P j = p j    ,
called the disjunction false region rate. By Corollary 1, an upper bound of frr ∨ i is the total posterior probability with respect to θ i / ∈ R i :

frr + i = min   j ∈I (θi / ∈Ri ) frr j , 1   , (13) 
called the total false region rate. Some special cases follow.

Total integrated p-values

Simplifications can be made if, conditional on the falsity of the point null hypotheses, certain posterior probabilities are approximate p-values. A generalization of approximations ( 5)-( 6) to vector parameters of interest (de Bragança Pereira andStern, 1999, 2022) is that p i (θ i ) is approximately uniformly distributed between 0 and 1 in the sense that

Pr p i (θ i ) ≤ α| P i θ null i = p i θ null i , θ i ̸ = θ null i . = α (14) 
for 0 ≤ α ≤ 1 [START_REF] Bickel | The p-value interpreted as the posterior probability of explaining the data: Applications to multiple testing and to restricted parameter spaces[END_REF].

Theorem 2. For each i = 1, . . . , N , if approximation (14) holds, then the i th local false region rate, to the same order of approximation, is

frr i = fdr i + (1 -fdr i ) p i θ null i . (15) 
Proof. By Lemma 3,

frr i = Pr θ i = θ null i | P i θ null i = p i θ null i Pr p i (θ i ) ≤ p i θ null i | P i θ null i = p i θ null i , θ i = θ null i + Pr θ i ̸ = θ null i | P i θ null i = p i θ null i Pr p i (θ i ) ≤ p i θ null i | P i θ null i = p i θ null i , θ i ̸ = θ null i . = fdr i × 1 + (1 -fdr i ) p i θ null i .
The form of equation ( 15) suggests calling frr i the i th integrated p-value. It is also known as the "fdr i -calibrated ξ-value" [START_REF] Bickel | The p-value interpreted as the posterior probability of explaining the data: Applications to multiple testing and to restricted parameter spaces[END_REF]. Substituting frr i into equations ( 12) and ( 13), the i th approximate improbable index set is defined by 

I (θ i / ∈ R i ) = j =

Total p-values

Assuming π 0 = 0, the posterior probability fdr i = 0 and thus frr i = p i θ null i by Theorem 2.

That recovers the approximate equality between the evidence value or e-value and the p-value (de Bragança Pereira andStern, 1999, 2022) and may help interpret the p-value [START_REF] Bickel | The p-value interpreted as the posterior probability of explaining the data: Applications to multiple testing and to restricted parameter spaces[END_REF].

Making substitutions into equation ( 16) and ( 17), the i th approximate improbable index set is called the total p-value and denoted by p + j . It is also known as the "approximate ξ-value" [START_REF] Bickel | The p-value interpreted as the posterior probability of explaining the data: Applications to multiple testing and to restricted parameter spaces[END_REF].

I (θ i / ∈ R i ) = j =
In the special case of scalar parameters of interest and two-sided p-values, that is double the approximate total false sign rate:

frr + i = p + j = 2 fsr + i
by equation ( 9), assuming frr + i < 1. That relation between the approximations of the false region rate and the local false sign rate reflects the fact that the first of these claims is stronger than the second:

1. The parameter of interest is in the largest two-sided confidence interval that excludes the null hypothesis.

2. The parameter of interest has the sign in the direction of that confidence interval. 

  Proof. Let I |I | = I , where |I | is the cardinality of I . For each j = 1, . . . , |I | -1, let I j denote a proper subset of I j +1 such that |I j | = j . For each j = 1, . . . , |I |, consider the claim that

Figure 1 :

 1 Figure 1: Total false discovery rates as functions of local false discovery rates as estimated by maximum likelihood. The number N of points is 15 (each for a treatment test of Example 2) in the left-hand plot and 3567 (each for a gene of Example 3) in the right-hand plot.

Figure 2 :

 2 Figure 2: Estimates of total Bayes factors without specifying π 0 (left-hand plot) and total false discovery rates assuming π 0 = 1/2 (right-hand plot) using the -e p i ln p i bound of the Bayes factors as estimates based on the lowest 9 p-values.

  as anticipated in Example 1. That suggestion will be confirmed in Section 5.3 by interpreting the sum of those p-values in terms of confidence intervals.Example 5. If the prior probability π 0 = 0, then the methods of Examples 2 and 4 do not apply.Fortunately, their p-values may be adjusted for multiplicity using the concept of the local false sign rate (Figure3). ▲ Example 6. Example 3, continued. Since the p-values are in this case two orders of magnitude less than the corresponding estimates of the local false discovery rate, the approximate local false sign rates are approximately equal to the estimated local false discovery rates according to equation (7), assuming s i ̸ = 0. For that reason, the right-hand plot of Figure1may be interpreted as a plot of the approximate total false sign rate as a function of the approximate local false sign rate. ▲

Figure 3 :

 3 Figure 3: The total p-value j ∈I ( si ̸ =si ) p j and the approximate total false sign rate fsr + i for the lowest 9 of the 15 blood-clot p-values. The right-hand plot is the log-log version of the left-hand plot.

Figure 4 :

 4 Figure 4: Total integrated p-values (approximate total false region rates), based on Theorem 2 and the local false discovery rate estimates from Example 2.

.

  1, . . . , N : p j θ null j ≤ p i θ null i

Example 8 .

 8 Example 5, continued. The total p-values plotted in Figure 3 may now be interpreted as approximate total false region rates. That supports the addition of p-values seen in Example 1.

▲
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