
HAL Id: hal-04245259
https://hal.science/hal-04245259v1

Preprint submitted on 23 Oct 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Tips for making the most of 64-bit architectures in
langage design, libraries or garbage collection

Benoît Sonntag, Dominique Colnet

To cite this version:
Benoît Sonntag, Dominique Colnet. Tips for making the most of 64-bit architectures in langage design,
libraries or garbage collection. 2023. �hal-04245259�

https://hal.science/hal-04245259v1
https://hal.archives-ouvertes.fr

Tips for making the most of 64-bit architectures in
langage design, libraries or garbage collection

Benoît Sonntag∗
Benoit.Sonntag@lisaac.org
Université de Strasbourg

Strasbourg, France

Dominique Colnet
Dominique.Colnet@loria.fr

Université de Lorraine
Nancy, France

Abstract
The 64-bit architectures that have become standard today of-
fer unprecedented low-level programming possibilities. For
the first time in the history of computing, the size of address
registers far exceeded the physical capacity of their bus. Af-
ter a brief reminder of the possibilities offered by the small
size of addresses compared to the available 64 bits, we de-
velop three concrete examples of how the vacant bits of these
registers can be used. Among these examples, two of them
concern the implementation of a library for a new statically
typed programming language. Firstly, the implementation of
multi-precision integers, with the aim of improving perfor-
mance in terms of both calculation speed and RAM savings.
The second example focuses on the library’s handling of
utf-8 character strings. Here, the idea is to make indexing
easier by ignoring the physical size of each utf-8 charac-
ters. Finally, the third example is a possible enhancement of
garbage collectors, in particular the mark & sweep for the
object marking phase.

Keywords: 64 bits architecture, address bus, large integer,
UTF-8 strings, GC marking bit

1 The revenge of address registers
Several times in its history, in the competition to increase the
power of computers, we’ve seen the emergence of tricks to
first increase the size of the address bus before questioning
the whole architecture.
For example, the mythical Z80 processor, with its 8-bit

data bus and 16-bit addressing bus, should have been limited
to 64 KB of RAM. But, with its two-memory bank access
principle, the Amstrad 6128 extends its memory to 128KB,
doubling the capacity of its predecessor, the 464.

As part of the 8086 family with its 16-bit address register
architecture, this processor has been equipped with a 20-bit
address bus thanks to the addition of segment registers. The
address is made up of a pair of registers {segment,offset}. The
offset provides access to a contiguous 64KB range in memory.
As for the segment registers, they allow memory jumps in
16-byte steps. Thus, the segment registers provide the 4 bits
of high address required to reach the megabyte of RAM (1
MB). The final address calculation is given by:

∗Both authors contributed equally to this research.

𝐴𝑑𝑑𝑟𝑒𝑠𝑠 = 𝑅segment × 16 + 𝑅offset
After a brief appearance of 24-bit processors with the

80286, came the 32-bit 80386 architecture, with a bus capable
of addressing 4 GB of memory. But again, in the last years
of his reign, with a clever combination of segmentation and
pagination, the limit of this architecture has been pushed
back to 36-bit addressing.
Then came 64-bit architecture, which for the first time

in the history of computing has address registers that can
go far beyond the memory capacities currently physically
available. The astronomical number of 16 Eio (264 = 1.8𝑒19
bytes) that such a register could theoretically address is so
far out of reach, even in the distant future, that designers
preferred to truncate the logical address to 48 bits. In this ap-
parently arbitrary choice, the number of indirections needed
to manage pagination must also be taken into account. In
fact, with 4 KB pages, we have the 12 least significant bits
addressable contiguously, then 4 indirection tables of 9 bits
each must be consulted to reach a 48-bit physical address1.
So, quite surprisingly, this 48-bit logical address leaves

a 16-bit high-order range unused for each address pointer
location. In addition, we can observe that memory allocators
always allocate structures aligned at least with the machine
word size. So, if we consider a structure address, we also have
the 3 least significant bits, which are always 0. Interestingly,
on a 64-bit architecture, all structure pointers have only 45
significant bits. However, their use requires a few precautions
before considering them as pointers. It’s worth noting that
using a mask with a binary-and (&) or a 3-bit binary shift to
the left (<<) are manipulations that have a marginal cost at
runtime. For each address, we therefore have 16 high-order
bits at our disposal, and potentially 3 low-order bits that are
free for other uses!

The thread running through this article is how best to use
these insignificant bits in addresses to store precise informa-
tion in a given context. This practice is already widely used
in the design of architectures and operating systems. For
example, in a pagination indirection table, each page address
is aligned on 4 KB, so the 12 least significant bits are ignored
when the MMU reads the page address. These 12 unused bits
contain other indicators, such as the right to write in this

1512 entrées par table d’indirection de 4KB: 29 × 64 bits = 4KB.

Benoît Sonntag and Dominique Colnet

very memory page. There are also other indicators defined
and used solely by the operating system.
Further away from hardware and operating systems, we

also find this kind of approach at the software level, or more
precisely at the language and compilation level in [1]. In
Bonds et al (1992), Tracking bad apples: Reporting the origin
of null and undefined value errors, the proposal is to internally
replace the Null value of a source program with deliberately
invalid pointers to encode information. Here, the information
is used to trace the origin of the Null in the event of an
application crash.

Let’s now look at how we can take advantage of all these
findings concerning address format, starting with the man-
agement of numbers without overflow.

2 Towards integers that don’t overflow
For the vast majority of programming languages, built-in
integer types are limited to a certain size. For example, Java’s
int type is limited to 32 bits. A few rare cases of overflow
are sometimes detected by the Java compiler only when the
values are statically determinable. In all cases, no overflow
test is performed at runtime. In this way, a positive value of
type int can be made negative by simply incrementing by 1.
This is often surprising, especially for novice programmers.

Another example from a more recent language is Rust,
which notes this type i32 or u32 for the unsigned version. In
addition to the more appropriate type name, Rust in debug
mode only, offers overflow control. In release mode, over-
flow control is not performed. As you might expect, Rust’s
objective is to take full advantage of the processor’s power.
There are even specialized functions to bypass overflow prob-
lems regardless of the compilation mode2. For large numbers
without overflow, Rust also offers types such as BigInt or
BigUint.
Historically, Smalltalk was the first language to natively

integrate the concept of an integer that never overflows.
This choice is perfectly understandable in terms of comfort
for programmers and for people unfamiliar with hardware
constraints. For Python, which is also interpreted, the choice
is similar to Smalltalk: no possiblle overflow and numbers
that can grow in memory size as and when required. In
our opinion, there are two major drawbacks to this choice:
slowness and the impossibility of easily taking hardware
into account.

2.1 Hardware limited types and flexible general type
In the Smalltalk language virtual machine, each 32-bit word
representing an object is split into two parts[2]. The first
part stores the information in 30 bits, the remaining two bits
being the object’s basic type. We therefore have 4 internal

2u32.wrapping_add, u64.wrapping_add, u64.wrapping_add_signed,
u64.wrapping_sub, etc.

object categories, one of which is reserved for a small 30-
bit integer. At runtime, if a calculation exceeds 30 bits, the
small integer becomes a complex object with a pointer to
model a larger integer via a real object which uses an array.
Smalltalk’s object architecture was particularly well thought-
out for its time, in the context of a 32-bit architecture and
a pure, non-statically typed object environment. However,
we can only note a 30-bit address limit representing only 1
GB of accessible memory. We’ve taken inspiration from this
type of partitioning in the context of 64-bit architecture on
a compiled language with static typing.
A good programming language needs to offer both pro-

gramming comfort and full hardware speed. The choice of
the Rust language, which makes it possible to preserve types
that can exactly match the characteristics of the hardware,
must be maintained (i.e. built-in types i8, i32 and i64 for
signed and built-in types u8, u32 and u64 for unsigned).
Rather than resorting to general types specialized in han-
dling numbers without overflow, we propose a hybrid so-
lution that allows, according to variations in calculations,
to retain almost all the power of the small, limited num-
bers that exist natively. In fact, depending on the evolution
of calculations, for example, two very large numbers that
are subtracted from each other can return to the 32-bit rep-
resentation interval. In such a case, it’s interesting to get
closer to the performance of native types for the result of
this operation.

Unlike Smalltalk, which is completely and uniquely typed
at runtime, we’re working with a statically typed language.
For our proposal, it doesn’t matter whether the typing is
explicit or based on type inference. Knowing that a given
variable can only contain signed integers means that we can
reuse the Smalltalk implementation idea with less variability
in the entities represented. So, unlike Smalltalk, and thanks
to static typing, we have the whole machine word to best
encode our integer. In the following, we’ll assume that the
programming language offers a native type for handling
signed integers, which we’ll call Z. The idea is to always use
a 64-bit machine word for any variable of type Z.

Internally, and completely transparently to the user, there
are three possible representations for the Z type. The aim is
to make the most of 64-bit and get the best performance out
of it. The choice between these 3 representations is directly
related to the size of the integer you need to model. Figure
1 illustrates the following explanations of our 3 encoding
formats for integers.

2.2 Tiny int: 𝑛 ≤ 63 𝑏𝑖𝑡𝑠 - see top of figure 1
The first encoding format, Tiny, is for a small integer that
can be encoded on 63 bits, that is in two’s complement the
range from (−262) to (262 − 1). This format is distinguished
from the other two by the last bit 63 being set to 0. Unsur-
prisingly, the use of the other 63 least significant bits stores
our integer. With a barely perceptible increase in computing

Tips for making the most of 64-bit architectures

Figure 1. The 3 integer encoding formats of the new Z type.

time compared to using a 64-bit raw machine word, it en-
ables fast management of small integers. As with Smalltalk,
when this capacity is exceeded, we dynamically migrate the
integer to the second format we named Large.

2.3 Large int: 64𝑏𝑖𝑡𝑠 ≤ 𝑛 ≤ 220 𝑏𝑖𝑡𝑠 - middle of figure 1
The second format for the Z type, which we’ve named Large,
is the most complex and is particularly compact. It can en-
code integers requiring a maximum of 16384 × 64 bits (i.e.
an integer of 131 072 bytes or 1 Mbits). Thanks to its already
particularly wide range, it’s more than sufficient for most ap-
plications. The 64-bit machine word representing the integer
stores 3 pieces of information:
• The address of a contiguous memory area containing
the integer using word of 64 bits.
• The maximum capacity of this memory area. If neces-
sary, the memory area is reallocated with a capacity
twice that of the previous one3.
• The size actually used in the memory area. In other
words, the number of machine words needed to rep-
resent the integer in binary form.

The distribution of information within the 64 bits is as
follows:

63 Set to 1 to avoid being identified as a Tiny encoding.
59-62 The capacity in power of 2. This 4-bit number can

be used to encode capacities ranging from 20 to 214.
Setting the 4 bits to 1 (215) is forbidden, and we reserve
this value to identify the Huge encoding format. We
therefore have an array with a maximum capacity of
16384 64-bit cells.

3The well-known heuristic of doubling the capacity of a dynamic array is
especially relevant to our use case. In this case, the multiplication of two
𝑛-bit integers uses 2 × 𝑛 bits.

45-58 This 14-bit range encodes the exact size actually used,
from 1 to 16384.

0-44 A 45-bit range representing the address of the corre-
sponding allocated area. As this area is 64-bit aligned,
a 3-bit left shift gives the exact 48-bit valid address.

2.4 Huge int: 220 < 𝑛 < whole memory - bottom fig. 1
The last format for type Z is shown at the bottom of figure
1 and is of a more standard design. It is identified by the
presence of 1 on all bits from 59 to 63. The least significant
part of the first 48 bits is an address to a standard object
structure. The corresponding object contains a capacity,
size and storage field for the usual implementation of a
dynamic size array containing our Huge integer4.

2.5 Integer decoding pseudo-code
Algorithm 1 illustrates in pseudo-code the decoding of differ-
ent formats of the type Z. In this algorithm𝑊 is the machine

Algorithm 1 Reading an integer format Tiny, Large or Huge
if (𝑊 ≥ 0) then
// Format TINY
𝐼𝑁𝑇 ← ((((𝑠𝑖𝑔𝑛𝑒𝑑64)𝑊) << 1) >> 1)

else
𝑐𝑎𝑝 ← (𝑊 ≫ 58) & Fℎ
if (𝑐𝑎𝑝 = 1111𝑏) then

// Format HUGE
𝑎 ←𝑊 & FFFF FFFF FFFFℎ
𝑏𝑢𝑓 ← 𝑎.storage
𝑠𝑖𝑧 ← 𝑎.size
𝑐𝑎𝑝 ← 𝑎.capacity

else
// Format LARGE
𝑏𝑢𝑓 ← (𝑊 & 1FFF FFFF FFFFℎ) ≪ 3
𝑠𝑖𝑧 ← ((𝑊 ≫ 44) & 3FFFℎ) + 1
𝑐𝑎𝑝 ← 1 ≪ 𝑐𝑎𝑝

end if
𝐼𝑁𝑇 ← tab(𝑏𝑢𝑓 , 𝑠𝑖𝑧, 𝑐𝑎𝑝)

end if

word representing the integer encoded in one of the 3 for-
mats, and 𝐼𝑁𝑇 represents bit access to the integer. Note that
when using a small integer of less than 64 bits, the extra
cost compared to the standard 64-bit basic type is just sign
detection (or the position of bit 63) and a jump.

Note also that our representation is deliberately canonical.
Depending on its size in number of bits, a given number
has to be represented in just one of the three categories,
Tiny, Large or Huge. This makes it easy to compare numbers
with each other. In particular, the comparison between two

4This representation is named ArrayList in the Java library. In C++ this
data structure is also known as std::vector.

Benoît Sonntag and Dominique Colnet

numbers Tiny is made with the usual machine instruction
for comparing two memory words.

3 String indexing in utf-8 format
The use of the utf-8 format for strings has become wide-
spread. The main advantage is its compatibility with the
standard ascii format. It also offers compact encoding of
unicode characters strings, with variable character sizes. Its
encoding allows a string to be read in both directions, which
means that many older, highly efficient string processing
algorithms remain applicable. The penalizing management
of utf-16 in native as in Java is no longer desirable. Today,
the development of a new programming language clearly
suggests native management of utf-8.

Compared with ascii and despite its advantages, handling
utf-8 remains difficult and rather unnatural due to the vari-
able character size. The conversion of an utf-8 character
into unicode contained in an array of bytes is performed by
the standard algorithm 2. Processing and calculating a string

Algorithm 2 Standard utf-8 to unicode conversion.
if 𝑝𝑡𝑟 [0] < 80ℎ then
𝑢𝑐𝑜𝑑𝑒 ← 𝑝𝑡𝑟 [0]

else if (𝑝𝑡𝑟 [0] & E0ℎ) = 𝐶0ℎ and
(𝑝𝑡𝑟 [1] & C0ℎ) = 80ℎ then
𝑢𝑐𝑜𝑑𝑒 ← ((𝑝𝑡𝑟 [0] & 1Fℎ) ≪ 6) | (𝑝𝑡𝑟 [1] & 3Fℎ)

else if (𝑝𝑡𝑟 [0] & F0ℎ) = E0ℎ and
(𝑝𝑡𝑟 [1] & C0ℎ) = 80ℎ and
(𝑝𝑡𝑟 [2] & C0ℎ) = 80ℎ then
𝑢𝑐𝑜𝑑𝑒 ← ((𝑝𝑡𝑟 [0] & 0Fℎ) ≪ 12) |
((𝑝𝑡𝑟 [1] & 3Fℎ) ≪ 6) | (𝑝𝑡𝑟 [2] & 3Fℎ)

else if (𝑝𝑡𝑟 [0] & F8ℎ) = F0ℎ and
(𝑝𝑡𝑟 [1] & C0ℎ) = 80ℎ and
(𝑝𝑡𝑟 [2] & C0ℎ) = 80ℎ and
(𝑝𝑡𝑟 [3] & C0ℎ) = 80ℎ then
𝑢𝑐𝑜𝑑𝑒 ← ((𝑝𝑡𝑟 [0] & 07ℎ) ≪ 18) |
((𝑝𝑡𝑟 [1] & 3Fℎ) ≪ 12) | ((𝑝𝑡𝑟 [2] & 3Fℎ) ≪ 6) |
(𝑝𝑡𝑟 [3] & 3Fℎ)

else
print "Invalid UTF-8 sequence"

end if
Output 𝑢𝑐𝑜𝑑𝑒

index is much trickier. A number of libraries are currently
available (ICU, UTF8-CPP, libunistring, libiconv,. . .) and
are essentially based on two approaches to the treatment of
utf-8.
The first approach is to provide an interface for convert-

ing from utf-8 to unicode and vice versa. Thus, the string
translated into unicode is made up of 32-bit words, i.e. one
32-bit word for each character. With the exception of very
large strings, processing becomes as easy as in the days of
the ascii format. The disadvantages of this technique are, of

course, the translation from one format to another, and the
fact that in the vast majority of cases, memory representation
is quite costly.

The second approach to managing utf-8 strings is to offer
the user high-level functions that don’t require indexes. Its
principle is based on the use of regular expressions similar
to those found in grep, sed ou awk. It’s a good choice in
many situations. However, these are complex mechanisms
and their intensive use can quickly become a drag in terms
of performance. Furthermore, the programmer can quickly
become frustrated at not having direct and easy access to the
internal structure of the string via character-by-character
indexing.

We propose a different approach to virtualize the notion of
index. Our technique is necessarily slightly more expensive
than a simple ascii string, but no more expensive than a
standard implementation of utf-8 string management. The
programmer can use indexes to consider a character jump
as always being a single logical step. The corresponding
physical step in memory is variable, but remains transparent
to the user.
Our library is based on a single object type StrIdx mod-

eled by a single 64-bit word. The idea is to represent the
logical index and the physical index in the same word, split
into two parts of 32 bits each. In the example shown in figure
2, the logical index of the first letter ’n’ is 4 and its physical
index is 5, due to the presence of the letter ’ç’ before it. With

Figure 2. Type StrIdx includes both logical and physical
index encoding. All in 64-bit memory.

this representation, in the worst case, the ratio between a
utf-8 character and its memory occupancy is one to 4. With
an arbitrary division of 32 bits for the physical part and 32
bits for the logical part, we can process contiguous strings
of 1 to 4 billion characters.
So, with a single 64-bit word, both the logical index and

the corresponding physical index are stored. Note that if idx
is of type StrIdx, the expression (idx ≫ 32) gives access to
the logical index. The physical index is obtained with the
(idx & FFFF FFFFℎ) expression. Algorithm 3 calculates the
next StrIdx index from a given StrIdx index. Moving back
one character is also easy to calculate (see algorithm 4). It’s

Tips for making the most of 64-bit architectures

Algorithm 3 Move idx of type StrIdx one step forward.
code← str.at((int32)idx)
idx← idx + 1 0000 0001ℎ
if (code & 80ℎ) then
repeat
code← code ≪ 1
idx← idx + 1

until (code & 40ℎ = 0)
end if
Output idx

Algorithm 4 Move idx of type StrIdx one step backward.
idx← idx − 1 0000 0001ℎ
while (str.at((int32)idx) & 80ℎ) do
idx← idx − 1

end while
Output idx

worth noting that there’s no extra cost involved in managing
our index compared to what’s usually done when handling
the utf-8 format. With advanced languages capable of defin-
ing binary operators, it is possible to facilitate the use of the
two preceding algorithms. With the definition of a ’+’ and
’-’ operator taking as receiver an index of type StrIdx and
as parameter an integer, we can move the index by simple
arithmetic operation by any number of characters, regardless
of their size. Finally, we propose Algorithm 5, which is an

Algorithm 5 Move forward and compute unicode skipped.
ucode← str.at((int32)idx)
idx← idx + 1 0000 0001ℎ
if (ucode & 80ℎ) then
msk← 40ℎ
repeat
ucode← (ucode ≪ 6) | (str.at((int32)idx) & 3Fℎ)
msk← msk ≪ 5
idx← idx + 1

until (ucode & msk = 0)
ucode← ucode & (msk − 1)

end if
Output ucode, idx

optimized version of Algorithm 2, enabling a very frequent
operation: calculate the current unicode and advance the
index to the next character.

4 The marking bit for the garbage collector
Among programming languages, the mark-and-sweep al-
gorithm is still the most widely used for automatic memory
management [3], [4], [5]. Without going into detail, this al-
gorithm stops the program in progress, and performs two
distinct phases:

1. Starting with the objects directly accessible at time
𝑡 (stack, global variables) during program execution,
the marking phase consists of recursively traversing
these objects and marking them with a flag as being a
live object.

2. In a second step, a linear memory run frees unmarked
objects and cancels the marking of other objects.

After these two phases, the program can resume execution
until the garbage collector is triggered again. Many variants
of this algorithm exist, in particular to avoid program inter-
ruption, but the use of a marking bit is still required for its
implementation.
The question for any language designer intending to im-

plement this type of garbage collector is where to store this
marking bit without polluting the structure of each allocated
object. In many cases, this is not such a problem: adding
an attribute within the object structure is easy to do. The
waste-conscious designer may be sensitive to the systematic
allocation of 64 bits for each object, when only one bit is nec-
essary. But that’s not the only reason to dwell on this issue.
In low-level programming, it’s not uncommon for a criti-
cal section of an application to be made up of objects with
a frozen, hardware-imposed structure. Low-level program-
ming is not incompatible with high-level object-oriented
languages like Lisaac [6], [7]. If this is the case, there’s no
question of shamelessly adding a field to the structure for
memory management.

In [8],[9] we see that it is possible to specialize themarking
code according to the type of the object. This work focuses
on how to recursively traverse the object graph. Here, our
aim is to perform a specialization to change the value of this
marking bit. With this specialization, we can find a specific
place for each category or type of object.

Our idea is to find one or more unused bits in each struc-
ture representing a given type. In the following, we present
several places where you can easily find this space.

4.1 Use an attribute that references another object
It’s very common for the structure of an object to have at-
tributes that are references to other objects. We therefore
have the 16 most significant bits which are not used by the
corresponding pointer. So, for example, the most significant
bit can be used as the marking bit for garbage collection.
Algorithm 6 shows how and where you can specialize the

Algorithm 6 Setting the mark bit during the mark phase.
mark_type_name(obj) ←
ptr← obj.attribute
if (ptr & 8000 0000 0000 0000ℎ = 0) then
obj.attribute← ptr | 8000 0000 0000 0000ℎ
mark_attribute.type_name(ptr)
...Handling of other attributes...

end if

Benoît Sonntag and Dominique Colnet

marking routine to further specialize the code in [8]. To
avoid complicating the code unnecessarily, we’ve assumed
that the attribute type is monomorphic. Of course, the most

Algorithm 7 Clearing the mark bit during sweep phase.
sweep_type_name(obj) ←
if (obj.attribute & 8000 0000 0000 0000ℎ) then
obj.attribute← obj.attribute &7FFF FFFF FFFF FFFFℎ

else
free(obj)

end if

significant bit of the pointer in question must be cleared
during the sweep phase (see algorithm 7).

4.2 Use the dynamic dispatch identification field
If an object’s type is subject to polymorphic calls, there is a
hidden attribute at the beginning of its structure to identify
its type. This field is necessary to handle dynamic dispatch in
polymorphic calls. Without going into the details described
in [10], this identifier is a simple integer with a maximum
size directly related to the number of polymorphic types
to be discriminated. In the optimization context described
in [11], even if we globalize this identifier to the number of
types possible in a given application, this number very rarely
exceeds 8 bits. We therefore have all the space we need to

Algorithm 8 The marking bit inside the dynamic dispatch
information field.

ptr← obj.attribute
id← ptr.id
if (id & 8000 0000 0000 0000ℎ = 0) then
ptr.id← id | 8000 0000 0000 0000ℎ
dispatch_and_mark(id, ptr)
...Handling of other attributes...

end if

install the marking bit at this point, always using specialized
methods. However, it is important to note that it is necessary
to take into account this bit potentially marked during the
first phase of the recursive path (see algorithm 8).

4.3 Use the re-alignment space in the data structure
Finally, if none of the above is possible, we can consider
re-alignment zones. An attribute with a size of less than 64
bits will be compile-aligned to a 64-bit word. By adding a
one-byte attribute at this precise location, the overall size of
the structure is not increased at all. This byte can then be
used as a marker bit.

In the example below, the two structures obj_A and obj_B
are both 16 bytes long. Figure 3 illustrates the alignment and
memory representation of the obj_B structure.

struct obj_A { struct obj_B {
int att0; int att0;
long att1; char flag;

} long att1;
}

Figure 3.Memory representation of the obj_B structure.

As we’ve shown, it’s very often possible to find enough
unused space. These free slots can be perfectly used for more
complex variants of themark-and-sweep requiring more than
one marking bit. This technique is particularly well suited
to garbage collectors whose code is specialized at compile
time.
This free space can also be used for the implementation

of monitors. Like Java’s synchronized blocks, for example.
In fact, it’s usually easy to find 8 or even 16 bits within an
object. This value can then be used as an index in a global
table of pointers to the corresponding threads.

5 Conclusion
We’ve known since its emergence that 64-bit architectures
tend to make executables and data structures mechanically
larger than 32-bit architectures. Many bits are indeed wasted,
often due to allocation alignments. But this wastage is also
present in the fact that a pointer is limited to 48 bits, whereas
it is represented in memory by a 64-bit word.

As part of the library implementation of a new language,
we present here three very interesting uses for these wasted
bits.

First, we give different physical representations of a multi-
precision integer taking advantage of 64-bit architectures to
gain performance in section 2.
In section 3, we look at a new approach to utf-8 string

manipulation by index virtualization using a 64-bit word.
Finally, section 4 shows how to optimize storage of the

marking bit required in the implementation of the mark &
sweep garbage collector algorithm.

References
[1] Michael D. Bond, Nicholas Nethercote, StephenW. Kent, and Samuel Z.

Guyer. Tracking bad apples: Reporting the origin of null and undefined
value errors. In In 22th Annual ACM Conference on Object-Oriented Pro-
gramming Systems Languages and Applications (OOPSLA’2007), pages
405–422. ACM Press, 2007.

[2] Adele Goldberg and David Robson. Smalltalk-80: the language and its
implementation. Addison-Wesley, 1983. ISBN 0201113716, 1366 pages.

[3] Paul R. Wilson. Uniprocessor Garbage Collector Techniques. Interna-
tional Workshop on Memory Management (IWMM’92), 1992.

[4] Richard Jones and Rafael Lins. Garbage Collection. Wiley, 1996.
[5] Richard Jones, Antony Hosking, and Eliot Moss. The Garbage Collec-

tion Handbook: The Art of Automatic Memory Management. Taylor &
Francis, 2011.

Tips for making the most of 64-bit architectures

[6] Benoit Sonntag, Dominique Colnet, and Olivier Zendra. Dynamic
inheritance: a powerful mechanism for operating system design. In
5th ECOOP Workshop on Object-Orientation and Operating Systems -
ECOOP-OOOSWS’2002, Lecture Notes in Computer Science, page 5 p,
Malaga, Espagne, June 2002. Springer Verlag. Colloque avec actes et
comité de lecture. internationale.

[7] Benoit Sonntag andDominique Colnet. Lisaac: The power of simplicity
at work for operating systems. International Conference on Technology
of Object-Oriented Languages and Systems, Sydney, Australia, 2002.

[8] Dominique Colnet, Philippe Coucaud, and Olivier Zendra. Compiler
Support to Customize the Mark & Sweep Algorithm. In ACM SIGPLAN
International Symposium on Memory Management - ISMM’98, pages
154–165, Vancouver, British Columbia, Canada, 1998. ACM Special

Interest Group on Programming Languages (SIGPLAN), ACM Press.
Colloque avec actes et comité de lecture.

[9] Dominique Colnet and Benoit Sonntag. Exploiting array manipulation
habits to optimize garbage collection and type flow analysis. Software:
Practice and Experience, pages 1639–1657, 2014.

[10] Olivier Zendra, Dominique Colnet, and Suzanne Collin. Efficient
Dynamic Dispatch without Virtual Function Tables. The SmallEiffel
Compiler. In In 12th Annual ACM Conference on Object-Oriented Pro-
gramming Systems Languages and Applications (OOPSLA’97), pages
125–141. ACM Press, 1997.

[11] Benoit Sonntag and Dominique Colnet. Efficient compilation strategy
for object-oriented languages under the closed-world assumption.
Software: Practice and Experience, 44(5):565–592, 2013.

	Abstract
	1 The revenge of address registers
	2 Towards integers that don't overflow
	2.1 Hardware limited types and flexible general type
	2.2 Tiny int: n 63bits - see top of figure 1
	2.3 Large int: 64 bits n 220bits - middle of figure 1
	2.4 Huge int: 220 < n < whole memory - bottom fig. 1
	2.5 Integer decoding pseudo-code

	3 String indexing in utf-8 format
	4 The marking bit for the garbage collector
	4.1 Use an attribute that references another object
	4.2 Use the dynamic dispatch identification field
	4.3 Use the re-alignment space in the data structure

	5 Conclusion
	References

