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Abstract 39 

 40 

Background and Aims: Soil properties and climate influence leaf chemical traits producing 41 

intraspecific variation in plants. Studies evaluating their importance in the South American 42 

Temperate Forest (STF) species are scarce. This study aimed to evaluate the intraspecific 43 

differences in five evergreen species of the rainforest considering two contrasting areas, 44 

linking soil and climate with plants traits.  45 

 46 

Methods: Soil properties (Corg%, N%, C/N, δ13C, δ15N, pH and temperature), climate 47 

variables (mean annual precipitation and temperature [MAP; MAT]) and leaf chemical 48 

traits (C%, N% and P%, C/N, N/P, δ13C and δ15N) were measured and compared between 49 

two areas in the Northern Patagonia (42°- 44°S). In addition, the relationship of leaf 50 

chemical traits with soil and climate was assessed. 51 

 52 

Results: Significant differences were found in soil (Corg%, C/N and pH; p <0.05) and 53 

climate (p <0.05), with MAP identified as the most common factor controlling soil 54 

properties (Corg%, C/N and δ15N). Intraspecific differences in leaf chemical traits were 55 

found between areas, but not in all traits. The most common leaf chemical trait with 56 

significant differences was C%. Higher mean C% values were found in the island in plants 57 

and soils. High number of correlations (n=13 correlations; p<0.05) were found between 58 

leaf chemical traits. On the other hand, only MAP was a significant predictor of δ13C in the 59 

leaves. 60 

 61 

Conclusion: The leaf chemical traits variability suggests a species-specific response to the 62 

soil and climate conditions, with important influence of precipitation as the most common 63 

predictor of soil properties and δ13C in the leaves. 64 
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1. Introduction 67 

 68 

Forest ecosystems have been recognized as one of the most important terrestrial carbon 69 

sink due to their absorption capacity of carbon dioxide (CO2), and their maintenance is 70 

essential to mitigate climate change (Bonan 2008; Murdiyarso et al. 2015). However, 71 

forests are threatened by climatic events (e.g. drought) (Bréda et al. 2006; Schlesinger et 72 

al. 2016), because climate can alter the photosynthetic capacity of the leaves and 73 

therefore leaf traits.  Among leaf traits, the most studied are the elemental concentration in 74 

Carbon (C), Nitrogen (N) and Phosphorous (P). C is the main structural element of leaves 75 

(i.e., lignin and cellulose) (Mooney 1972), and its content is related to temperature, 76 

affecting photosynthesis and the assimilation of CO2 (Qaderi et al. 2006; Slot and Winter 77 

2017; Dusenge et al. 2019). In addition, δ13C in leaves is related to stomatal conductance 78 

and water use efficiency (Farquhar and Richards 1984; Roussel et al. 2009), both 79 

precipitation and temperatures sensitive processes (Du et al. 2015).  N is involved in the 80 

production of proteins (Schrader 1984; Tegeder and Masclaux-Daubresse 2018) and P in 81 

all the energy molecules (ATP, NADPH) (Lambers and Plaxton 2015; Lambers 2022). 82 

Precipitation can affect N and P availability for plants an therefore the leaf concentration, 83 

and even the δ15N in the leaves depending on the chemical form of N uptake (Santiago et 84 

al. 2004; Giese et al. 2011; Yan et al. 2020).  85 

 86 

Not only individual elements can change with climate, also the ratio between elements 87 

(C/N and N/P) in the leaves. These ratios are key chemical leaf traits (Hobbie and Werner 88 

2004; Craine et al. 2015), because plants use these elements in strict proportions to 89 

synthesize the biomolecules required for their metabolism (Sterner and Elser 2017).  The 90 

fact that climatic conditions play an important role in shaping leaf chemical traits (Sardans 91 

et al. 2016; Abdala-Roberts et al. 2018; Dong et al. 2020; Du et al. 2020) make useful the 92 
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measurement of these traits. It allows predicting the forest outcome in response to climate 93 

change (Yu and Gao 2011; Trugman et al. 2019) with direct management and 94 

conservation implications (Hong et al. 2021).  95 

 96 

To date, leaf chemical traits have been mainly studied interspecifically (i.e. among plant 97 

species) at different spatial scales (Poorter and Bongers 2006; Abdala-Roberts et al. 98 

2018). Global trends have been proposed like N content increases as a function of leaf 99 

mass at higher temperatures and lower precipitation (Wright et al. 2005). Nevertheless, 100 

intraspecific variation has been shown to be very high (Siefert et al. 2015; Bloomfield et al. 101 

2018; Tautenhahn et al. 2019) and explains even more than interspecies variation 102 

considering species turnover along communities (Luo et al. 2016). Then, the lack of 103 

information at an intraspecific level likely restricts the use of predictive models trying to 104 

understand the fate of forest to climate (Westerband et al. 2021).  105 

 106 

In temperate forest, most studies and reviews evaluating intraspecific variablitily in leaf 107 

chemical traits have been developed with data of Northern Hemisphere forest, and 108 

consider temperature and precipitation as the main environmental factors influencing plant 109 

characteristics (Ordoñez et al. 2009; Madani et al. 2018; Hecking et al. 2022).  The 110 

Northern temperate forest (NTF) differs from the Southern temperate forest, because the 111 

distribution of the first is affected by enhanced anthropogenic N deposition (Hedin et al. 112 

1995; Holland et al. 1999). On the other hand, climatic conditions are also different, with 113 

more continentality hence extreme temperature ranges and with more needle-leaved (not 114 

broad-leaved) evergreen species in the North than in the South (Armesto et al. 2001). 115 

Therefore, information on plants outside the Northern Hemisphere is urgently needed to 116 

understand how different forest ecosystems will respond to climate change in these under 117 

investigated geographical areas. 118 
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Extreme climatic events have been observed in the STF over the last years, such as a 119 

severe mega drought (2010-2018) with an annual rainfall deficit ranging between 25% and 120 

45% (Boisier et al. 2016; Garreaud et al. 2017, 2019), and an increase in the mean annual 121 

air temperature (Aranda et al. 2021). This drought has been observed to reduce tree 122 

growth in STF (Venegas-González et al. 2019, 2022), and such trend threatens to 123 

continue in the coming years (Matskovsky et al. 2021). Changes in precipitation and 124 

temperature are expected to occur also in northern Patagonia, of the STF in the evergreen 125 

rainforest, south Chile (Araya-Osses et al. 2020).  126 

 127 

However it is required to consider that many others environmental conditions are affecting 128 

plants in natural habitats, e.g. their geographical distribution (latitude, longitude, altitude), 129 

the radiation levels (Hultine and Marshall 2000; Yang et al. 2016; Abdala-Roberts et al. 130 

2016; Sedej et al. 2020), as well as evolutionary process (Flores et al. 2014).  It has to be 131 

highlighted that soil properties, like soil type (Pensa and Sellin 2003), soil nutrient 132 

availability (Ordoñez et al. 2009) also affect the leaf chemical traits. Moreover, some 133 

studies have reported that soil properties are more important than climate conditions 134 

regarding their influence leaf chemical shifts in plants (Luo et al. 2021). A great influence 135 

of the soil properties on leaf chemical traits is especially expected in the STF due to the 136 

limited nutrient availability for plants (Borie and Rubio 2003; Redel et al. 2008); attributed 137 

to high N loss by leaching in the watershed (Hedin et al. 1995) and the formation of stable 138 

complexes between P, Al and Fe attributed to the volcanic origin of soils (Redel et al. 139 

2016). Soil nutrient availability is also dependent on climate, as it can affect soil properties 140 

like microbial biomass in charge of mineralization, even in the same type of forest (Jafarian 141 

et al. 2023). The microbial soil biomass is partly responsible for nutrient availability 142 

(Miransari 2011) and is thus considered as crucial for plant species of the temperate forest 143 

(Herrera et al. 2020). 144 
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Previous studies in this forest have found that intraspecific variability accounted for a large 145 

proportion of community-level variation in leaf traits (Fajardo and Siefert 2018). STF has a 146 

complex orography (Luebert and Pliscoff 2006) and at 42º S begins to fragment in its 147 

coastal area, with the larger island called Chiloe island. Most of the studies reporting leaf 148 

chemical trait are derived from Chiloe island, because this is a place with scarce 149 

anthropogenic disturbances and because large fragments of primary forest still exist 150 

(Chacón and Armesto 2006). However previous studies in the area were conducted mainly 151 

in litter (Pérez et al. 1991, 1998, 2010; Vann et al. 2002). It is now essential to complete 152 

the available data for leaf chemical traits by working directly on leaves from different plant 153 

species and by considering the intraspecific variability in the primary forest. It is also 154 

needed to extended the geographic coverage of such dataset in the mailand to better 155 

reflect the large variability of the environmental conditions in the area.  156 

 157 

The aim of this study was to evaluate potential intraspecific differences of leaf chemical 158 

traits in five evergreen species collected along the Chiloe island and mainland (Fig. 1), 159 

covering a broad latitudinal zone (42°- 44°S) in the STF. We hypothesized that there will 160 

be differences between the leaf chemical traits comparing island and mainland, because 161 

these two areas hold different climate conditions with warmer and moderate precipitation 162 

in the Chiloe island than in the mainland. We expect to find higher C, N and P content with 163 

lower C/N values in leaves for the individuals from the island than for those from the 164 

mainland. Such higher C contents may be related to the fact that environmental conditions 165 

are less harsh for plant physiology in the island. Regarding the higher N and P, climatic 166 

conditions in the island might promote mineralization and therefore enhance nutrient 167 

availability (N and P) for the plants. At each sampling site the C, N and P contents of the 168 

leaves as well as the 13C and 15N stable isotope composition (δ13C and δ15N, respectively) 169 

were measured.  Precipitation and atmospheric temperature data were determined and 170 
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bulk soil properties (mean soil particle size, pH, organic C and N content, δ13C and δ15N) 171 

were also measured. This allowed a detailed investigation of the influence of soil 172 

properties and climate variables on the leaf chemical traits along the northern Patagonia 173 

rainforest. 174 

 175 

 176 

2. Methodology 177 

 178 

2.1 Sampling  179 

 180 

Sampling was performed in January 2018 (austral summer) in the evergreen rainforest of 181 

the STF between 42º-44º S and 72º-74º W in Chile (Fig.1). The landscape orography is 182 

fragmented in two main terrestrial areas: the Chiloe Island and the mainland, with similar 183 

elevation (between 25 to 238 masl). Ten sampling sites (n= 5 in the island and n= 5 in the 184 

mainland) were considered because continuous temperature record in soils is available 185 

(Tidbit loggers). In each of the ten sites and near the areas where the Tidbit loggers are 186 

located (1m), a census of plant species and their abundance was conducted, following a 187 

line transect of 100 m length. Based on the census information, the most common species 188 

were chosen, accounting a total of five species Nothofagus dombeyi, Amomyrtus luma, 189 

Chusquea sp. Amomyrtus luma and Drimys winteri (Table 1). 190 
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 191 

Fig. 1  a) Location of the study area in Chile. b) Map of the sampling sites. I: island (blue 192 

circles) and M: mainland (pink circles) 193 

Table 1. Characteristics of the species studied of the evergreen Rainforest. Leaf life span 194 

as L-life spa 195 

Division/Family/Species Life form 
growth 

Maximum life 
span (years) 

L- life span 
(years) 

Sites 
sampled  

Individuals 
sampled  

Magnoliophyta      
   Nothofagaceae 
         Nothofagus dombeyi 

 
Tree 

 
600* 

 
3.5** 

 
2 

 
9 

   Poaceae 
         Chusquea sp. 

 
Bamboo 

 
>10** 

 
NA 

 
8 

 
39 

   Mirtaceae 
         Amomyrtus luma 

 
Tree 

 
200* 

 
3.5* 

 
6 

 
22 

   Winteraceae 
         Drimys winteri 

 
Tree 

 
250* 

 
3.5* 

 
2 
 

 
11 

Pinophyta      
   Podocarpaceae 
        Saxegothaea conspicua 

 
Tree 

 
>750** 

 
4.2*** 

 
4 

 
21 

    Total  n= 102 
L-life span: Lusk and Contreras, (2001)*; Hevia, (1991)**; Lusk (2001). Maximum life span: Lusk, (1996)** Lusk 196 
and Pozo, (2002)*; Gonzalez and Donoso, (1998)**.  197 

 198 
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At each site, at least three individual per species were collected. All of them were mature 199 

individual plants to prevent variability due to different ontogeny stages. The samples were 200 

taken with a tree pruner from bottom of the canopy vertical layer of the forest at 6 m aprox.  201 

Fully expanded, mature leaves exposed to indirect sun (shade leaves) were selected, 202 

stored in kraft paper bags and dried at 50 °C. Superficial soil samples were collected near 203 

(0.5 meters) to the ten sites where the temperature records were obtained. The litter layer 204 

and biological crust was first removed from the soil. Within each site, three soils replicas 205 

were taken, and each individual replica consisted of five subsamples in an area of 1 m2 at 206 

a depth of 5 cm. The soil samples were frieze-dried (-80°C) and later sieved (<2 mm), 207 

removing roots and debris.  208 

 209 

2.2 Plant and soil measurements 210 

The leaves were grounded into a fine powder in an electrical grinder (RM 200; Retsch) 211 

before chemical analysis. Total Corg and N contents (%) (basis dry weight leaf) were 212 

measured via dry combustion using EA/IRMS (Thermo Fisher Scientific Delta V 213 

Advantage). Total P elemental content was determined by ICP/MS (Agilent 7500-CX) after 214 

hot-plate acid digestion (HF, HNO3 and HClO4) in Polytetrafluoroethylene (PTFE) vessels. 215 

Carbon and nitrogen isotope values (δ13C and δ15N) are expressed in delta notation (‰) 216 

relative to the Vienna Pee Dee Belemnite standard (V-PDB) and air, respectively. All leaf 217 

analyses were performed at the Alyses platform (IRD – Bondy - France). 218 

 219 

For soil C and N elemental and isotope analysis, the soil was weighed into silver capsules 220 

and fumigated with 12M HCl.  Once dry, they were wrapped in tin and measured using EA 221 

coupled to our Delta Plus XP IRMS (Costech 4010) with carbon and nitrogen isotope 222 

values expressed in delta notation (‰) relative to the Vienna Pee Dee Belemnite standard 223 
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(V-PDB) and air, respectively. The analysis was performed at the Large Lakes 224 

Observatory, University of Minnesota-Duluth. 225 

 226 

Soil pH was determined using a pH meter in soil/water ratio of 1:5. Particle size distribution 227 

in soils was analyzed using laser diffraction (Mastersizer 3000) and then soil was classified 228 

based on the Wentworth scale (Wentworth 1922). Soil temperature data from tidbit loggers 229 

(located at 5 cm depth) were used to calculate the mean annual soil temperature (MAST), 230 

considering the twelve months before sampling (January 2017 to January 2018). Mean 231 

annual precipitation (MAP) and mean annual air temperature (MAAT) were estimated from 232 

a monthly reanalysis product available online from the Center for Climate and Resilience 233 

Research (CR2), with a climatological grid of 0.05° horizontal resolution, considering 234 

available data of the 2018 year for MAP and 2017 for MAAT.  235 

 236 

2.3 Statistical analyses  237 

Before any statistical analysis, the data were transformed if needed to obtain normality and 238 

homogeneity of the residuals. The mean and standard deviation of soil properties, climate 239 

and leaf chemical traits were calculated. A t-student test was performed to evaluate 240 

differences between areas (island versus mainland), considering each plant species 241 

separately. Then, we conducted a multivariable analysis, through a principal component 242 

analysis (PCA), to evaluate multivariate similarities between island and mainland based on 243 

soils properties and climate. Data were first centered and standardized (mean=0 and 244 

Standard Deviation=1). Another PCA was carried out for leaf chemical traits in order to 245 

assess differences among species. To evaluate the influence of MAP and soil properties 246 

(pH, MAST, mean grain size) on the soil elemental and isotopic values, a multiple linear 247 

regression (MLG) using the stepwise method was conducted. For the MLG a 248 

multicollinearity variance inflation factor (VIF) was used considering VIF<10. Then, to 249 
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understand the correlation among all the leaf chemical traits, independently of the species 250 

and considering the whole set of individual plant leaf chemical traits (n=101), a Spearman 251 

correlation analysis was performed. In addition, a MLG was conducted considering the 252 

mean values of leaf chemical traits by species, to evaluate the relationship between the 253 

leaf chemical traits and soil and climatic condition. All statistical analyses were performed 254 

using R Studio 1.3.1093 (Rstudio 2020) 255 

 256 

3. Results 257 

 258 

3.1 Soil properties and climate variables 259 

The soil variables (pH, MPS, MAST and precipitation) differed between the Chiloe island 260 

and mainland (p <0.01) (Table 2). The mean annual temperatures were higher in the 261 

island (MAST=10.2 ºC; MAT=10.6 °C) than in the mainland (MAST=9.9 ºC; MAT=8.3 ºC). 262 

In contrast, the pH and MAP were lower in the island (MAP=1709 mm; pH=4.2) than in the 263 

mainland (MAP=3201; pH=4.8), respectively (Table 2).  Regarding soil elemental 264 

properties, Corg% and C/N showed significant differences between areas (p<0.01; p<0.001, 265 

respectively) (Table 2), with mean higher values in the island (Corg% =32.9 and C/N=23.71) 266 

than in the mainland (Corg%=14.8; C/N=14.16). Mean values of N%, δ13C (‰) and δ15N 267 

(‰) did not present significant differences between the two areas.  268 

 269 

Table 2. Mean and standard deviation (SD) of the soil properties and climatic parameters 270 

in the two areas: island and mainland. Values of the t-student test between the areas are 271 

provided. Significant values (p<0.05) are shown in bold. MAST: mean annual soil 272 

temperature consider the mean annual record measured directly in soils and MAT: mean 273 

air annual temperature. 274 



14 
 

 

Variables 

Island 

Mean ± SD 

Mainland 

Mean ± SD 

 

t/U 

 

P 

Climate     

MAT (°C) 10.6 ± 0.3 8.3 ± 0.4 0 <0.001 

 MAP (mm) 1717 ± 230 3201 ± 450 5.83 <0.001 

Soil properties     

MAST (°C) 10.2 ± 0.5 9.2 ± 0.52 3.23 <0.01 

pH 4.2 ± 0.6 4.8 ± 0.5 2.85 <0.01 

 Mean particle  

size (µm) 

 149. 5  90.5   

Carbon (%) 32.9 ± 16.2 14.8 ± 9.9 3.57 <0.01 

Nitrogen (%) 1.3 ± 0.6 1.0 ± 0.6 1.47 0.15 

C/N 23.7 ± 6.5 14.2 ± 3.1 4.95 <0.001 

δ13C (‰) -29.3 ± 2.7 - 28.7 ± 0.6 0.83 0.4 

δ15N (‰) 0.8  ± 1.9 -0.6 ± 2 1.89 0.06 

 275 

The PCA multivariate analysis based on the environmental variables (soils and climate), in 276 

the two areas showed that the first two axes of the PCA explain 67.15 % of the total inertia 277 

of the dataset (Fig. 2). The first axis explains 46.52% of the total inertia, with similar and 278 

higher contributions of Corg%, N% and MPS (Table 3). Samples from the island and 279 

mainland are well separated along this axis. The second axis explains 20.53% of the 280 

variability of the dataset, with a predominant effect of δ15N, δ13C and pH.  281 
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 282 

Fig. 2 PCA ordination of the island and mainland sites based on soil properties and 283 

climatic parameters 284 

 285 

Table 3. Loadings of soil properties and MAP on the first two axes of principal component 286 

analysis of the island and mainland sites based on soil properties and climatic parameters. 287 

MAST: mean annual soil temperature, MPS: mean particle size. Variables with loading 288 

higher than the mean on a given PC are shown in bold.  289 

Variable PC1 PC2 

Corg (%) -0.44 -0.04 

N (%) -0.32 -0.17 

C/N -0.40 -0.002 

δ13C (‰) 0.09 -0.56 

δ15N (‰) -0.05 -0.59 

pH 0.32 -0.41 

MPS -0.41 0.02 
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MAST (°C) -0.30 0.12 

MAP (mm) 0.38 0.32 

 290 

The assessment of the possible effect of MAP and soil properties into the elemental and 291 

isotopic values of soil, according to the stepwise multiple regression, showed that MAP is 292 

the most common significant predictor of soil dependent variables (Table 4). The 293 

regressions of C/N (R2= 0.74) and Corg% (R2= 0.67), have the highest determination 294 

coefficients. For C/N, MAP and MAST were the best predictors (p<0.001) and for  Corg% it 295 

was MAP (p<0.5) and MPS (p<0.01). For all the other elemental and isotopic variables, 296 

only one variable was the best predictor: MPS for N% (p <0.001), pH for δ13C (p <0.01), 297 

and finally MAP for δ15N (p <0.01). 298 

 299 

Table 4. Best regression models for multiple regression analyses with the stepwise 300 

method for elemental and isotopic C and N values in soils. The independent variables 301 

were MAP, MAST, pH (water) and MPS. Data transformation are shown as subscript and 302 

partial beta coefficients (p < 0.05*, p < 0.01** and p < 0.001***) considered as significant 303 

are shown in bold.  304 

   

Variable 

Beta coefficient 

Intercept      MAP           MAST       pH           MPS 

 

R2           F         p< 

Corg% (Cochrane-Orcutt) 23.26    -0.006*     0.14*** 0.67 26.4 0.001 

N% (Cochrane-Orcutt) -1.72       0.008*** 0.49 11.6 0.001 

C/N 86.5***   -0.005*** -7.001*** -2.46   0.74 23.1 0.001 

δ13C (‰) (Johnson) -3.35*   -0.0003   0.95**   0.31 5.76 0.01 

δ15N (‰) (Cochrane-

Orcutt) 

0.66   -0.001**   0.89   0.36 7 0.01 

 305 

 306 



17 
 

3.2 Leaf chemical traits 307 

The Corg% is higher than 50% in all species, D. wintery presenting the highest values and 308 

Chusquea sp. the lowest (Table 5). Three of the five species showed significantly different 309 

Corg content between the island and mainland, with higher values in the mainland than in 310 

the island for D. wintery (t=4.69; p <0.01) and lower ones for Chusquea sp. (t=4.49; 311 

p<0.001) and S. conspicua (t=-6.08; p <0.001). The N% is higher than 1% for all the 312 

species, with Chusquea sp. presenting the highest values (~3%). S. conspicua is the only 313 

species presenting significant N% values between the mainland and the island (t=2.9; p 314 

<0.05). The P% is around 0.1% for all species, with high CV% in comparison with the other 315 

elements (see Table 5 for details). Only A. luma present significant differences in P 316 

contents between the mainland and the island (t=-4.72; p <0.001). 317 

 318 

Whatever the species, the C/N ratio presented higher values in the island than in the 319 

mainland. Nevertheless, this difference was only significant for two of the five species: 320 

Chusquea sp. (t=2.90; p <0.01) and S. conspicua (t=-3.91; p <0.01). Significant differences 321 

in N/P between the island and the mainland were only observed for A. luma (t=5.87; p 322 

<0.001). The δ13C values present a consistent pattern, with higher values in the island than 323 

in the mainland for all species, even though such differences were only significant for 324 

Chusquea sp. (t=2.76; p <0.01) and S. conspicua (t=-2.39; p <0.05). Finally, there was no 325 

specific trend for δ15N values when considering the different species or sampling location 326 

(island vs. mainland).  327 

 328 

Table 5. Mean, standard deviation (SD) and variation coefficient (CV) of the leaf chemical 329 

traits of five species: A. luma (Amomyrtus luma), D. wintery (Drymis wintery), N. dombeyi 330 

(Nothofagus dombeyi), Chusquea sp., S. conspicua (Saxegothaea conspicua) in the two 331 

sampling areas (island and mainland). The p values of the t-student or U for Mann Whitney 332 
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test and the significant values (p <0.05) are shown in bold, from the comparison between 333 

the values of the different variables in the island and mainland. 334 

 Island 

 Mean        SD        CV(%) 

Mainland 

   Mean        SD    CV(%) 

 

   t/U           p 

A. Luma          

C % 58.47 2.61 4.47 59.11 0.73 1.24 65 0.9 

N % 1.23 0.25 20.56 1.40 0.31 22.14 -1.38 0.18 

P % 0.08 0.02 30.87 0.13 0.03 23.16 -4.72 <0.001 

C/N ratio 49.10 9.15 18.65 44.33 10.53 23.75 1.13 0.27 

N/P ratio 16.65 2.78 16.67 10.77 1.82 16.93 5.87 <0.001 

δ13C (‰) -30.94 1.53 4.95 -31.41 0.82 2.61 0.89 0.38 

δ15N (‰) -3.17 3.87 122.22 -4.27 3.42 80.12 0.70 0.48 

D. wintery         

C% 62.37 0.59 0.94 64.74 1.05 1.63 4.69 <0.01 

N % 1.21 0.30 25.25 1.21 0.24 20.13 0.01 0.99 

P % 0.12 0.03 27.27 0.10 0.04 43.13 -0.54 0.60 

C/N ratio 54.56 14.50 26.57 55.70 12.92 23.19 0.13 0.89 

N/P ratio 10.85 2.57 23.67 14.07 6.94 49.37 1.05 0.32 

δ13C (‰) -32.19 1.50 -4.67 -30.70 1.38 4.51 1.70 0.12 

δ15N (‰) -7.19 1.57 21.88 -8.44 2.43 28.79 -1.02 0.33 

N. dombeyi         

C% 62.21 1.36 2.19 61.22 0.58 0.94   1.35    0.24 

N% 1.50 0.18 11.89 1.51 0.26 17.11 -0.03 0.97 

P% 0.13 0.04 27.96 0.10 0.03 29.24 1.22 0.26 

C/N ratio 41.87 4.60 11.00 41.64 7.30 17.53 0.05 0.95 
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N/P ratio 11.92 2.58 21.66 14.96 2.10 14.02 -1.9 0.10 

δ13C (‰) -30.21 1.14 3.76 -32.03 1.48 4.61 2.09 0.07 

δ15N (‰) -4.43 3.49 78.73 -0.93 1.32 142.49 -1.90 0.13 

Chusquea 

sp. 

        

C % 55.24 2.19 3.97 51.97 2.40 4.61 4.49 <0.001 

N % 2.75 0.64 23.31 3.11 0.56 18.15 -1.85 0.07 

P % 0.16 0.05 31.72 0.17 0.05 32.10 136 0.38 

C/N ratio 21.26 6.01 28.28 17.18 2.84 16.52 2.90 <0.01 

N/P ratio 18.01 3.84 21.35 19.77 7.76 39.25 186 0.71 

δ13C (‰) -29.67 1.67 5.63 -30.86 0.96 3.12 2.76 <0.01* 

δ15N (‰) -2.46 2.92 118.45 -0.45 4.13 908.76 150 0.18 

S. conspicua         

C % 64.31 1.07 1.66 61.68 0.92 1.49 -6.08 <0.001 

N % 1.09 0.09 8.33 1.31 0.14 10.74 2.9 <0.05 

P % 0.09 0.02 22.54 0.10 0.02 22.13 0.84 0.41 

C/N ratio 59.91 6.2 10.41 47.53 5.14 10.82 -3.91 <0.01 

N/P ratio 14.23 1.32 9.26 13.84 2.31 16.66 -0.3 0.76 

δ13C (‰) -29.56 0.87 2.93 -30.82 1.45 4.69 -2.39 <0.5 

δ15N (‰) -5.97 4.37 73.17 -1.50 1.01 67.31 2.02 0.13* 

 335 

The first two axes of the PCA of the leaf chemical traits of all the species explained 69.5% 336 

of the variation of the data (Fig. 3). The first axis explained 51.8% of the total inertia of the 337 

data, with the four tree species separated from the Chusquea sp. bamboo along this axis. 338 

The variables having a predominant effect along this axis were N%, C/N and C% (Table 339 
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6). The second axis explained 17.8% of the variation of the data, with N/P and P% as the 340 

main contributors of the axis. 341 

 342 

 343 

Fig. 3 PCA ordination of five plants species Amomyrtus luma, Drimys winteri, Chusquea 344 

sp., Nothofagus dombeyi and Saxegothaea conspicua on the basis of seven leaf chemical 345 

traits 346 

 347 

Table 6. Loadings of leaf chemical traits for the five plant species along the first two axes 348 

of the PCA. Variables with loadings higher than the mean on a given PC are shown in 349 

bold. 350 

Variable PC1 PC2 

C (%) -0.43 -0.10 

N (%) 0.50 -0.06 

P (%)  0.37 -0.55 

C/N  -0.50 -0.01 
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N/P  0.22 0.74 

δ13C (‰)  0.09 0.34 

δ15N (‰) 0.30 -0.45 

 351 

Bivariate correlations between leaf chemical traits of the five species were observed (Fig. 352 

3). High significant correlations were obtained between N% and C/N (r=-0.99), P% and 353 

C/N (r=-0.76), C% and N (r=-0.69), N and P (r=0.76) and C% and C/N (0.75). Only δ13C 354 

values were not correlated significantly with any other leaf chemical trait. 355 

 356 

Multiple linear regression models between the different leaf chemical traits on the one 357 

hand and soil and climatic properties on the other hand were tested (Table A.1). Only δ13C 358 

values gave a significant model where MAP was the only significant predictor [δ13C (‰) = -359 

28.72 -0.0008MAP; F=10.1, p<0.001, R2=0.3]. 360 

 361 

 362 
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Fig. 4 Correlogram among leaf chemical traits for all the individuals (n=101) of the five 363 

species: Amomyrtus luma, Drimys winteri, Chusquea sp., Nothofagus dombeyi and 364 

Saxegothaea conspicua. The correlation values are indicated in the circles and the 365 

significant values (p <0.05) are shown in bold 366 

 367 

4. Discussion  368 

 369 

4.1 Soils of the evergreen STF 370 

 371 

STF is the second largest temperate forest of the world (Donoso 1993). This 372 

biogeographical unit that includes the rainforest is a significant carbon sink (Urrutia-373 

Jalabert et al. 2015; Perez-Quezada et al. 2018). In addition, the STF has a high plant 374 

endemism due to several geographical barriers (Villagrán and Hinojosa 2005), but 375 

unfortunately is highly deforested, especially in its northern and central areas (Echeverria 376 

et al. 2006; Heilmayr et al. 2016). Forest soils highly contribute to the distribution and 377 

abundance of plant species (Mangan et al. 2010), and are considered as essential to 378 

predict future suitable areas for plant species existence (Zuquim et al. 2020). In the STF, 379 

most of the information on soils are provided by one organization (Centro de Información 380 

de Recursos Naturales - CIREN) related to agricultural activities and working principally in 381 

the central area of the STF. In contrast, the physico-chemical properties of the soils in the 382 

south of the STF, in the rainforest and in natural areas (i.e. native forest area), are 383 

generally unknown, with the few available information obtained by modelling (Padarian et 384 

al. 2017). However, Corg%, N and P contents as well as the C/N and pH values reported in 385 

this study (Table 2) are similar to those reported in previous studies within the northern 386 

(Aravena et al. 2002; Perez-Quezada et al. 2021b) and central (Pérez et al. 2005, 2009, 387 
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2010; Bannister et al. 2021) parts of the island. In the mainland part, almost no information 388 

on soils is available (Casati et al. 2019). 389 

 390 

4.1.1 Soil properties between sites 391 

 392 

Corg % content in soils of other temperate rainforests are similar (Sun et al. 2004) to those 393 

found in this study, even though a high Corg% was found in the island (Table 2; Fig. 2a). 394 

Plant litter input in soils can contribute, at least partly, to such a difference in Corg% 395 

contents and C/N between soils of the island and the mainland, because litter affects the 396 

soil chemistry (Xu et al. 2013; Bowden et al. 2014). Plant species studied here are the 397 

main source of litter in the soil, and the Corg% and C/N in their leaves was higher in the 398 

island than in the mainland, similarly to what was observed in soils (Table 5). Litter quality 399 

is one of the main factors influencing litter decomposition (i.e. physical breakdown of the 400 

material). The C/N value is considered as an indicator of the litter quality. High C/N values 401 

are reported for Chiloe litter (Pérez et al. 2010), suggesting low litter decomposition rates 402 

that may promote C accumulation in the area (Perez-Quezada et al. 2021a). Besides, in 403 

Chiloe Corg stock in soils has been related to photosynthetically active radiation (PAR) and 404 

canopy openness rather than to climatic factors (Perez-Quezada et al. 2021a). The 405 

conjuction of litter quality, PAR and canopy openness could explain the high total Corg% for 406 

Chiloe island soils that has been reported in this study and previous ones, with contents 407 

reaching values > 40% (Zarin et al. 1998; Vann et al. 2002; Muñoz Pedreros 2008; Perez-408 

Quezada et al. 2021a).  In addition, even if mainland and island sites share part of the 409 

species composition, the plant communities inhabiting these two areas are not totally 410 

similar, which can also affect the litter and soil C content (Hättenschwiler 2005; Vesterdal 411 

et al. 2013).  A trend towards a higher N% content in the island than in the mainland was 412 

also observed, consistent with higher atmospheric N fixation in northern areas of Chile 413 
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(Staelens et al. 2005). In general the N% values in the region are high compared to other 414 

temperate forests (Perakis and Sinkhorn 2011), which has been attributed to low N 415 

mineralization rates reported in the area (Perez et al.1998). 416 

 417 

Environmental conditions on the island (Table 2) seem more favorable to soil 418 

mineralization because of the higher C/N ratio and soil temperatures and the more 419 

moderate precipitation (Breuer et al. 2002; Szukics et al. 2010). However the C/N ratio 420 

cannot be systematically considered as a reliable qualitative indicator of soil organic matter 421 

mineralization (Piñeiro et al. 2006; Ostrowska and Porębska 2015). Some studies reported 422 

significant positive correlations between C/N and  the abundance of bacterial communities, 423 

responsible for mineralization in soils (Luo et al. 2016; Liu et al. 2020). Nevertheless, the 424 

microbial abundance is also influenced by pH, with low community composition and 425 

biomass at low pH (Bååth and Anderson 2003; Aciego Pietri and Brookes 2009; Ni et al. 426 

2021).  In this study a lower pH was observed in soils from the island than in those from 427 

the mainland, which could at least partly explain the differences in Corg% contents and why 428 

the expected differences in nutrient avaibility attributed to mineralization were not found.  429 

 430 

4.1.2 Linking soil to climate 431 

In the multiple regression models predicting the soil elemental and isotope properties, 432 

MAP was the most common variable followed by MGS (Table 4). MAP was related to C/N, 433 

Corg% and δ15N (‰) and is a key variable affecting the soil properties in the evergreen 434 

rainforest. When forests are studied, precipitation is often considered as an indirect 435 

measure of water availability for plants (Guswa et al. 2007). However, precipitation is also 436 

related to soil moisture (Zhu et al. 2014; Jin et al. 2018) and affects the physical breakup 437 

of the soil aggregates (Zhang et al. 2018) and the decomposition of litter and detritus 438 

above the soil (Li et al. 2007; Zhou et al. 2018). It can, thus, also influence the soil nutrient 439 
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availability for plants. Another important soil variable was mean particle size. This was a 440 

significant predictor of soil Corg% and N%, as previously observed in other types of forest  441 

(Hughes et al. 2002). Effects of particle size are important for soil functioning because it 442 

affects aeration capacities, the water content (Manns et al. 2014) and other physico-443 

chemical processes that are related to soil organic matter degradation (Grandy et al. 444 

2009). As MPS is a significant predictor for soil elemental properties in the present work, it 445 

implies that it could be better to work with textural classes in future studies. This is 446 

supported by previous worked, which showed that  various soil classes tend to be 447 

differently related to soil carbon content (Augustin and Cihacek 2016). 448 

 449 

A negative relationship was observed between soil Corg% and MAP (Table 4). Thus, the 450 

projected decrease in precipitation in the area (Araya-Osses et al. 2020) might affect the C 451 

cycling, with an increase in the Corg amount in soils from both areas. High C storage by 452 

lower litter decomposition rates and higher chemical recalcitrance of organic matter at 453 

lower precipitation were reported (Campo and Merino 2016). However, the C cycle was 454 

shown to be strongly influenced by the season, with C sink in winter and C release in 455 

summer (Perez-Quezada et al. 2018). Models project shorter winters and longer summers 456 

in the region (Araya-Osses et al. 2020). In addition, the investigated area is considered as 457 

relatively pristine in comparison with the other parts of the STF. The Chiloe Island has a 458 

long history of logging (Aravena et al. 2002) and hence increased erosion. Then the 459 

synergistic effect of seasonality, climate change and human sourced changes can highly 460 

impact the carbon cycling within the forest, especially in the island. More studies on the 461 

carbon cycling are needed, as until now previous works in the area mainly focused in the 462 

nitrogen cycle (Pérez et al. 1998, 2010; Dixon et al. 2011). 463 

 464 

4.2 Leaf chemical traits 465 
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4.2.1 Intraspecific variability of leaf chemical traits in the island and mainland. 466 

As presented earlier, we found significant differences in leaf traits between sites, but only 467 

in some of the traits like C% and C/N,  where higher values characterized four of the five 468 

species in the island in comparison with the mainland.  High C% in leaves relates to low 469 

nutritional leaf quality and may act as a defense strategy against insects. This is critical for 470 

evergreen species: this strategy could be used for the individuals of the island, which is an 471 

area with less precipitation than in the mainland and where usually insect defoliation is 472 

higher (Ward and Aukema 2019; Fang et al. 2021).  The high production of nonstructural 473 

carbohydrates like starch in response to low water availability may also explain the high 474 

C% in leaves, as observed in agricultural plants and woody plants (AbdElgawad et al. 475 

2020; Du et al. 2020). It should be noted that differences in C/N ratio between the island 476 

and the mainland is likely driven by changes in Corg%, as the N% is similar between the 477 

two sites in the different plants (Table 5).   The N% was similar in plants but high values 478 

characterized the mainland. The contrary was observed in soils, with high values 479 

dominating island soils. This opposite trend could be explained by the fact we measured 480 

total N% and not available N%. δ13C shows similar patterns for the five plant species, with 481 

more negative values in the island than in the mainland. This similar pattern  may reflect 482 

the differences in MAP between both areas (Guo and Xie 2006), because δ13C values in 483 

leaves has been related to water used efficiency (Cao et al. 2020). C3 plants living in poor 484 

water conditions are supposed to be enriched in δ13C, in comparison with individuals of the 485 

same species living in optimal water conditions (Farquhar and Richards 1984). Less 486 

negatives values of δ13C (‰) with precipitation were also reported in several forests (Van 487 

de Water et al. 2002; Kohn 2010; Ma et al. 2012), as observed in this study.  488 

It is important to mention that N/P is species-dependent both on the island and mainland. 489 

Mean values of N/P were almost all >12.5, consistent with values reported for other plant 490 

species in the STF (Seaman et al. 2015); nevertheless, no differences between the island 491 
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and the mainland were observed (Table 5). The N/P ratio is considered as an indicator of 492 

P limitation over N (Tessier and Raynal 2003; Richardson et al. 2004). Even though soils 493 

of temperate forests are regularly considered as being N-limited, a previous work in the 494 

Chiloe Island (Hedin 1995) showed that there is a strong biotic control of N (Perez et al. 495 

2003). In contrast it is assumed that the STF is not P-limited, due to the recent soil 496 

geological origin, the inorganic P content, necessary for plant growth, is limited (Redel et 497 

al. 2008). This is related to the volcanic origin of the soils (Borie and Rubio 2003). Thus, 498 

considering N/P results of the species under study, it is highly recommended to include 499 

soil P analyses in further studies in the area.  500 

 501 

4.2.2 Leaf traits among species 502 

 503 

Leaf chemical traits differed from one species to another (Table 5). S. conspicua showed 504 

the highest number of differences (n traits = 4), followed by Chusquea sp. (n traits = 3), A. 505 

luma (n traits = 2), D. wintery (n traits = 1), without any significant difference for N. 506 

dombeyi. All the investigated species are evergreen, even though S. conspicua is the only 507 

gymnosperm species and the only species of the genus, characterized by a narrow spatial 508 

distribution compared with the four others trees (Rodriguez et al. 2018). S. conspicua also 509 

has the highest mean leaf life span (Lusk 2001) among the other species (Table 1). 510 

Species with higher leaf life span are characterized by their high leaf toughness (high fiber 511 

content and high dry mass to area ratio) (Reich et al. 1991; Onoda et al. 2011; Kitajima et 512 

al. 2012). S. conspicua characteristics correspond to those of tough leaves as it exhibited 513 

higher C% than those observed for the angiosperm species in this study. Species with 514 

longer leaf life span as S. conspicua has more time to invest in their carbon for tissue 515 

construction than species with shorter leaf life span (Chabot and Hicks 1982). S. 516 

conspicua also presents low N% values as previously observed in other conifers of the 517 
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SFT (N= ~ 1%) (Gallardo et al. 2012). Plant species highly sensitive to environmental 518 

changes can be used as biomonitoring species (Karmakar et al. 2021). In the rainforest, S. 519 

conspicua can typically be considered as an appropriate species for monitoring early plant 520 

responses to changes in environmental conditions. In addition, N. dombeyi is the species 521 

with the wider environmental distribution and without significant differences in leaf 522 

chemical traits between the mainland and the island (Table 5). Besides N. dombeyi 523 

showed similar N% and P% values to those reported further north at 37° S (Hevia et al. 524 

1999) and at 40ºS (Soto et al. 2017). The absence of significant differences between the 525 

island and the mainland can be due to the fact that this species has been reported as a 526 

plastic species and is able to inhabit in a wide range of soil conditions (Soto et al. 2014). In 527 

addition, Nothofagus species form ectomycorrhizal mutualistic interactions, which help it to 528 

survive in soils with low nutrient amounts (Alvarez et al. 2009; Godoy and Marín 2019). 529 

However, it is important to consider that morphological leaf traits in N. dombeyi have 530 

shown significant differences between nearby sites characterized by contrasting MAP 531 

(Diaz et al. 2022). This evergreen species is sensitive to extreme climate conditions with 532 

drought-induced mortality reported in the east part of the STF (Suarez et al. 2004). 533 

 534 

Among all the species tested here, Chusquea sp. is the most abundant understory species 535 

in the STF (Veblen et al. 1977). Furthermore, it is important for the biodiversity of the forest 536 

because their leaves are used as material for the nest of many vertebrates (Honorato et al. 537 

2016) and as food for rodent (Milesi et al. 2017). The Chusquea spp is largely contributing 538 

to the biogeochemical recycling of elements within the forest, as their litter represents 539 

between 12- 23% of the total litter in old forest of the STF (Gonzalez and Donoso 1999; 540 

Vivanco and Austin 2008). When the species studied are compared, the multivariate 541 

analysis of leaf chemical traits showed a spatial discrimination between tree species on 542 

the one hand and the understory species Chusquea sp. on the other hand (Fig. 3). The 543 
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latter is positively correlated with N% and negatively with C/N and C% (Table 6). The high 544 

N content and low C content can be explained by the thickness of the palisade-leaf 545 

mesophyll (Wright and Westoby 2002) and fast growth (Poorter et al. 1990). Chusquea sp.  546 

fulfills this condition with leaves that have low blade thickness (Guerreiro et al. 2013).  C%, 547 

N% and P% were quantified in the litter of some Chusquea species of the STF and the N% 548 

was reported to be low (1.17% and 0.5%) and the C/N to be high (43.5) (Veblen 1982; 549 

Austin and Marchesini 2012) making the litter derived from these leaves a low quality one. 550 

However, in this study, the amount of N in fresh leaves of Chusquea sp. is two to three 551 

times higher than for the other species, leading to low C/N ratios. The differences in the 552 

elemental properties of the fresh leaves and litter of Chusquea sp. might be due to nutrient 553 

transport from old leaves prior to abscission (Killingbeck 2004). The resorption strategy is 554 

typical in species like those in this study to obtain nutrient in new leaves in soils with poor 555 

nutrient conditions (Huang et al. 2008; See et al. 2015) as in the rainforest. Such a 556 

hypothesis is consistent with the positive relationship observed between nutrient resorption 557 

and latitude (Vergutz et al. 2012). High resorption of the plant species of the evergreen 558 

rainforest located at 42-44°S can thus be expected.  559 

 560 

4.3 Leaf traits and envirormental relationships 561 

 562 

Even though elemental composition of leaves is one of the most typical leaf traits 563 

measured worldwide, this is not the case in the rainforest of the STF, where more 564 

information is available on physiological leaf traits related to light intensity (Lusk and Pozo 565 

2002; Lusk et al. 2008; Lusk and Corcuera 2011; Gianoli and Saldaña 2013). Only a few 566 

studies have been interested in the effects of other environmental factors on leaf traits 567 

(Fajardo and Siefert 2018, 2019). Here, MAP was shown to be the only and best predictor 568 

of δ13C in leaves. Nevertheless, the regression model between MAP and δ13C of this study 569 
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reaches a moderate explanation of the data (R2=0.3). The low R2 imply that other others 570 

environmental factors than MAP not considered in this study could contribute to carbon 571 

stable isotopes composition of the leaves, like the CO2 concentration (Caemmerer and 572 

Evans 1991). The biochemical processes involved in leaf chemical traits are known to be 573 

influenced by variables like temperature and water stress (Niinemets 2001; Meng et al. 574 

2015; Zhang et al. 2020). The lack of influence of soil properties and climate variables on 575 

the leaf chemical traits in this study differs from results reported in a more global study 576 

(Maire et al. 2015) and in a work dealing another type of forests ( Meng et al. 2015; Gong 577 

et al. 2020). Environmental variables should not be enterally discarded, and we highly 578 

recommend to include soil P, based on our results (N/P >12.5), as it is a limiting nutrient 579 

for the plants. Other variables that might be considered in this type forest are textural 580 

classes and other mineral soil compounds, that probably are more important for plants 581 

than precipitation as was reported in other temperate forest (Meier and Leuschner 2008). 582 

Also in this type of forest with low P availability soil micorrizal fungi are really important for 583 

the rainforest, then soil microorganisms may also have a crucial implicaction in leaf 584 

chemical traits.  Moreover, even that plant species are subjected to different environmental 585 

conditions, they develop adaptation mechanisms to multiple stresses (Raza et al. 2020). 586 

Then the contrasting environmental, does not necessarily have a significate effect on the 587 

leaf chemical traits, like was found for the set of species evaluated (Table A.1).  As was 588 

said earlier, N. dombeyi inhabits a wide range of soils whereas S. conspicua and A. luma 589 

are considered to have lower distribution (Rodriguez et al. 2018). This could explain why 590 

soil properties were not found to be significant predictors of leaf chemical traits for all the 591 

species.  592 

 593 

However, several significant correlations between leaf chemical traits (Fig. 4) and 594 

environmental parameters. The C/N ratio was part of several of the highest correlation 595 
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among leaf chemical traits (Fig. 4). The relation between C and N of these two elements 596 

are directly linked to the plant metabolism, because to synthetize organic molecules like 597 

starch (carbon product) or proteins (nitrogen products), organic carbon and energy (He et 598 

al. 2006) are required. This high correlation between leaf chemical traits and the low effect 599 

of environmental variables on leaf chemical traits reinforce de idea of high biological 600 

control in this two areas and a possible great capacity of   acclimation or adaptations 601 

mechanisms of the individuals of the STF, that fot the moment sufficient to hold the 602 

different environmental contrasting conditions in the study area.  603 

 604 

 605 

5. Conclusion  606 

This study showed 607 

that                                                                                                                                                                                                                                                           608 

in the Chiloe Island and in the mainland soil properties (Corg%, C/N, pH, MPS) and 609 

environmental conditions (MAT and MAP) differ, even when they are separated for no 610 

more than 50 km and share similar plant species. Soil between both areas present 611 

significant differences in their elemental composition (Corg% and C/N mainly). In addition, 612 

MAP is the most common environmental factor found controlling the soil properties (Corg%, 613 

C/N and δ15N ‰), thus supporting the importance of precipitation in the biogeochemical 614 

cycle of the rainforest. However, the study found different and opposite trends considering 615 

the same leaf trait between some plants and areas, a contrasting result from global studies 616 

building general trends. Therefore, this study highlights the importance of developping 617 

studies at local and regional scales. In addition, the differences above appear to be 618 

species-specific with some species, showing differences in one trait and/or another trait(s), 619 

with C% as the trait that present most significant differences in the species. Climatic and 620 

soil properties were not good predictors of leaf chemical traits however, leaf chemical traits 621 
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have a strong correlation between them, especially in their elemental content, suggesting 622 

an important biological control on the STF compared to another type of forest. Finally, 623 

carbon isotopic values (δ13C) present a negative relation with MAP.   624 

 625 
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