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NULL-CONTROLLABILITY OF THE GENERALIZED BAOUENDI-GRUSHIN

HEAT LIKE EQUATIONS

PHILIPPE JAMING AND YUNLEI WANG

Abstract. In this article, we prove null-controllability results for the heat equation associated to
fractional Baouendi-Grushin operators

∂tu+
(

−∆x − V (x)∆y

)s
u = 1Ωh

where V is a potential that satisfies some power growth conditions and the set Ω is thick in some
sense. This extends previously known results for potentials V (x) = |x|2k.

To do so, we study Zhu-Zhuge’s spectral inequality for Schrödinger operators with power growth
potentials, and give a precised quantitative form of it.
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1. Introduction

The aim of this paper is to prove null-controllability and observability from equidistributed subsets
of Rd for heat equations associated to Baoeundi-Grushin type operators

LV (x, y) = −∆x − V (x)∆y , x ∈ R
n and y ∈ R

m or T
m

where the potential V has a power growth c1|x|β1 ≤ V (x) ≤ c2|x|β2 and an upper bound on the
gradiant (for precise assumptions on V , see Assumptions A1-A2 below). Let us now make this more
precise.

1.1. Null-controllability, observability and spectral inequalities. First recall that null-control-
lability is defined as follows:

Definition 1.1 (Null-controllability). Let P be a closed operator on L2(Rd) which is the infinitesimal
generator of a strongly continuous semigroup (e−tP )t≥0 on L2(Rd), T > 0 and Ω be a measurable
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subset of Rd. The equation

(1.1)

{
(∂t + P )u(t, x) = h(t, x)1Ω(x), x ∈ Rd, t > 0,
u|t=0 = u0 ∈ L2(Rd),

is said to be null-controllable from the set Ω in time T > 0 if, for any initial datum u0 ∈ L2(Rd), there
exists h ∈ L2((0, T )×Rd), supported in (0, T )×Ω, such that the mild (or semigroup) solution of (1.1)
satisfies u|t=T = 0.

By the Hilbert Uniqueness Method, see [Co07, Theorem 2.44] or [Li88, TW09], the null controlla-
bility of the equation (1.1) is equivalent to the (final state) observability of the adjoint system

(1.2)

{
(∂t + P ∗)v(t, x) = 0, x ∈ Rd, t > 0,
v|t=0 = v0 ∈ L2(Rn),

where P ∗ stands for the L2(Rd)-adjoint of P . This notion of observability is defined as follows:

Definition 1.2 (Observability). Let T > 0 and Ω be a measurable subset of Rd. Equation (1.2) is
said to be observable from the set Ω in time T > 0 if there exists a positive constant CT > 0 such that,
for any initial datum v0 ∈ L2(Rd), the mild (or semigroup) solution of (1.2) satisfies

∫

Rd

|v(T, x)|2 dx ≤ CT

T∫

0

( ∫

Ω

|v(t, x)|2 dx
)
dt.

Null-controllability/observability problems of heat equations associated to elliptic operators on do-
mains is a an old and vast subject (see [Co07, Li88, TW09] and references therein). More recently,
following the seminal work by K. Beauchard, P. Cannarsa and R. Guglielmi [CBG13], research about
null-controllability properties of heat equations associated to degenerate hypo-elliptic operators of the
Baouendi-Grushin type have attracted a lot of attention (see e.g. [FrMu16, Koe17, DK20, DKR22,
BMM15, BDE20, ABM21, Lis22]).

In another direction, there has been a lot of recent activity on null-controllability/observability
problems for operators P defined on the whole space Rd and sets ω satisfying various thickness condi-
tions. The first result in this direction concerns the heat equation on Rd (P = ∆), and observability
from so-called thick sets. To define this notion, let us introduce the following notation: we denote by
Br(z) the Euclidean ball with radius r centered on z and Br = Br(0). We write Qr = [−r/2, r/2]d and
Qr(z) = z + Qr denotes the cube with side length r centered on z. The Lebesgue measure of a set
E ⊂ Rd will be denoted by |E|.
Definition 1.3. Let γ ∈ (0, 1) and ℓ > 0. A set ω ⊂ R

d is said to be γ-thick (at scale ℓ > 0) if, for
every z ∈ Rd,

|ω ∩ (z +Qℓ)| ≥ γ|Qℓ|.
We will say that ω is thick, if it is γ-thick at scale ℓ for some γ ∈ (0, 1) and ℓ > 0.

It is easy to check that the notion of thickness does not depend on the norm used to define it, in
particular cubes may be replaced by balls. In other words, ω is thick if and only if there is a γ′ ∈ (0, 1)
and an ℓ′ > 0 such that, for every z ∈ Rd, |ω ∩ (z + Bℓ′)| ≥ γ′|Bℓ′ |.

It was then proven in [EV18] and independently in [WWZZ19] that the heat equation on Rd is
controllable/observable from a set ω if and only if ω is thick:

Theorem 1.4 (Egidi & Veselić [EV18], Wang, Wang, Zhang & Zhang [WWZZ19]). Let ω ⊂ Rd and
T > 0. Then the following are equivalent:

(i) Ω is thick;
(ii) Observability: there exists a constant C > 0 such that, for every f ∈ L2(Rd),

∥∥e−T∆f
∥∥2
L2(Rd)

≤ C

∫ T

0

∥∥e−t∆f
∥∥2
L2(Ω)

dt.;



NULL-CONTROLLABILITY OF THE GENERALIZED BAOUENDI-GRUSHIN HEAT LIKE EQUATIONS 3

(iii) Controllability: For every u0 ∈ L2(Rd) there exists h ∈ L2
(
(0, T )× Ω

)
such that the solution

of the heat equation ∂tu −∆xu = h(t, x)1Ω(x) with initial condition u(0, x) = u0(x) satisfies
u(T, x) = 0.

Soon after, the case of heat equations associated to some Schrödinger operators

P = HV := −∆x + V (x), x ∈ R
d,

started to be investigated. For V = |x|2, P is the harmonic oscillator and observability inequalities
from different kinds of ω were established, see [BPS18, BJPS21, ES21, MPS22, DSV23]. For V = |x|2k,
null controllability and observability inequalities were established for P = HV in [AS23, Alp20, MPS22,
Mi09, Ma22]. Very recently, in [AS23], P. Alphonse and A. Seelman extended some of those results to
Baouendi-Grushin operators P = L|x|2k . Our aim here is to pursue this line of research by extending
the class of potentials V .

All those results require various restrictions on ω. Apart from thick sets that we already defined, we
now need to introduce two further classes. The first one was introduced in control theory in [RMV13]
and consists of a particular class of thick sets and are those one would naturally consider if one wants
to construct such sets:

Definition 1.5. Let γ ∈ (0, 1) and 0 ≤ σ < 1.

(i) A set ω ⊂ Rd is said to be γ-equidistributed or simply equidistributed if there exists a set of
points {zk}k∈Zd ⊂ R

d such that, for every k

ω ∩ (k +Q1) ⊃ Bγ(zk).

Since [RMV13], a larger class has appeared:
(ii) ω is (γ, σ)-distributed if there exists a set of points {zk}k∈Zd ⊂ Rd such that, for every k ∈ Zd,

zk ∈ k +Q1 and ω ∩ (k +Q1) ⊃ Bγ1+|k|σ (zk).

Note that a (γ, 0)-distributed set is
√
γ-equidistributed.

Next, thanks to the famous Lebeau-Robbiano method introduced in [LR95] (see also [TT11, BPS18,
NTTV20, GST20]), the mentioned results are based on some form of Spectral Inequality. To be more
precise, recall that a spectral inequality for a nonnegative selfadjoint operator P in L2(Rd) takes the
form

(1.3) ‖φ‖2L2(Rd) ≤ κ0e
κ1λ

ζ‖φ‖2L2(ω), ∀φ ∈ EP (λ), λ ≥ 0,

where ω is a measurable subset of Rd, EP (λ) are the spectral sets associated to P , and κ0, κ1, ζ are
constants. Such an inequality is a quantitative version of a unique continuation property (i.e., f = 0
on ω implies f = 0 on Rd).

In the case of P = −∆ being the Laplacian on Rd, this inequality is a reformulation of Kovrijkine’s
sharp version of the Logvinenko-Sereda Uncertainty Principle [Kov01] and is valid if (and only if) ω
is γ-thick for some γ > 0. The strategy of proof of Kovrijkine is very powerfull and the authors of
several of the results mentionned so far have managed to implement this strategy in different settings.

Alternative strategies are based on Carleman estimates and allow for potentials V that are less
regular at the price of having slightly more regular sets ω. In this direction, Dicke, Seelmann and
Veselić [DSV22] recently considered the Schrödinger operator with power growth potentials and a set
ω that is (γ, σ)-distributed. Precisely speaking, they establish the spectral inequality (1.3) when the
potential V ∈W 1,∞

loc (Rd) has suitable power growth.
Shortly after, Zhu and Zhuge [ZZ23] improved the exponent of λ in (1.3) for a slightly larger class

of potentials (thus positively answering to the questions asked in [DSV22]), namely those satisfying
the following assumption:

Assumption A. V ∈ L1
loc(R

d) is real valued and there are constants c1, c2 > 0 and 0 < β1 ≤ β2 such
that

(i) for every x ∈ Rd,

(1.4) c1(|x| − 1)β1

+ ≤ V (x).

where (a)+ := max {a, 0};
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(ii) we can write V = V1 + V2 with

|V1(x)| + |∇V1(x)|+ |V2(x)|
4
3 ≤ c2(|x| + 1)β2

for every x ∈ Rd.

The main result of Zhu and Zhuge [ZZ23] is then that, when P = HV := −∆+V with V satisfying
assumption A and ω a (γ, σ)-distributed set,

(1.5) ‖φ‖2L2(Rd) ≤ κ0

(
1

γ

)κ1λ
ζ

‖φ‖2L2(ω), ∀φ ∈ EP (λ), λ ≥ 0,

where ζ =
2σ + β2
2β1

(thus improving the exponent ζ =
3σ + 2β2

3β1
in [DSV22]). Note for future use that

[ZZ23, DSV22] do not provide estimates of the constants κ0, κ1 in (1.3) in terms of c1, c2 that we will
need here. We will thus revisit their proofs in Theorem 3.1 below in order to obtain those estimates.

Also, in view of the results by L. Miller [Mi09] and J. Martin [Ma22], one should expect to be able to
improve those results when β1 > 2 by taking much smaller sets ω (in the case of the Baouendi-Grushin
operator, ω can be any open set). We do not pursue in this direction here.

1.2. Generalized Baouendi-Grushin operator. Let us now move to the focus of this article. We
will here consider observability/controllability properties of evolution equations

∂tu+ Pu = 0

where P is an operator of Baouendi-Grushin type associated to a real-valued potential V ,

P =

{
LV := −∆x − V (x)∆y x ∈ Rn, y ∈ Rm

LV,p := −∆x − V (x)∆y x ∈ Rn, y ∈ Tm

where T = R/2πZ (by abuse of notation, we will write LV for both operators).
The potential V will satisfy some assumptions which are a bit stronger then Assumption A that

covers both the Grushin operator

∆G = L|x|2 := −∆x − |x|2∆y

and the Baouendi-Grushin operator

∆k = L|x|2k := −∆x − |x|2k∆y, k a positive integer.

The first assumption we will consider is satsified in the above case V (x) = |x|2k, k ∈ N∗ and more
generally when V (x) = |x|β , β > 1 and is defined as follows:

Assumption A1. V ∈ L∞
loc(R

n) and there exist positive c1, c2, β1, β2 > 0 such that, for every x ∈ Rn,

c1|x|β1 ≤ V (x) and |V (x)|+ |∇V (x)| ≤ c2|x|β2 .

Next we notice that V (x) = |x|β does not satisfy this assumption when 0 < β ≤ 1 and we will
replace Assumption A1 with the following weaker one:

Assumption A2. V ∈ L∞
loc(R

n) and there exist positive c1, c2, β1, β2 > 0 such that the following two
conditions are satisfied:

(i) for every x ∈ Rn,

(1.6) c1|x|β1 ≤ V (x).

(ii) We can write V = V1 + V2 such that for every x ∈ R
n,

|V1(x)|+ |∇V1(x)| + |V2(x)|
4
3 ≤ c2(|x|+ 1)β2 .

Remark 1.6. Notice that, as c1 > 0, V = 0 is excluded.
Further, if V satisfies Assumption A1, then setting V1 = V and V2 = 0 we obtain that V also

satisfies Assumption A2. As expected, our results will be stronger under Assumption A1 than under
Assumption A2.

On the other hand, let us consider the standard case V = |x|β with 0 < β ≤ 1. Take a smooth cut-off
function η such that η = 1 in B1 and η = 0 in R

n\B2 and write V1 = |x|β(1−η(x)) and V2(x) = |x|βη(x),
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then we see that V satisfies Assumption A2. This is the main reason for introduction of Assumption
A in [ZZ23].

Also it should be noted that in [ZZ23] the original Assumption A is different from Assumption A2
only in (1.4), in which the lower bound is c1 (|x| − 1)

β1

+ instead of c1|x|β1 in (1.6). This will play a key
role in order to obtain a lower bound of the first eigenvalue of the Schrödinger operator −∆+ V (x)
with suitable dependence on the parameter c1 (see Subsection 2.1 for details).

Our main result gives conditions for null-controllability of the heat equation associated to
(
−∆x −

V (x)∆y

)s
from sets of the form ω × Rm, ω being γ-equidistributed.

Theorem 1.7. Let γ ∈ (0, 1/2), σ ≥ 0, s, T > 0, c1, c2, β1, β2 > 0. Take V ∈ L∞
loc(R

n) satisfying

Assumption A2 with parameters c1, c2, β1, β2. Let s∗ =
β1 + 2

3
.

Let ω ⊂ Rn be a γ-equidistributed set. Then the fractional Baouendi-Grushin heat equation associ-
ated to V

(EBG,s)





∂tu(t, x, y) +
(
−∆x − V (x)∆y

)s
u(t, x, y) = h(t, x, y)1ω×Rm(x, y)

for t > 0, (x, y) ∈ R
n × R

m,

u(0, x, y) = u0(x, y) for (x, y) ∈ Rn × Rm

with initial condition u0 ∈ L2(Rn ×Rm) is exactly null-controllable from ω ×Rm in any time T > 0 if
β2 = β1 and s > s∗.

If V further satisfies Assumption A1, then the same holds with the critical power s∗ =
β1 + 2

4

instead of
β1 + 2

3
.

Our second result is that, in the presence of a second potential, the set ω can be sparser. More
precisely, we have the following:

Proposition 1.8. Let γ ∈ (0, 1/2), σ ≥ 0, T > 0, c1, c2, β1, β2 > 0 and s >
β2 + 2σ

2β1
. Take V, Ṽ ∈

L∞
loc(R

n) satisfying Assumption A2 with parameters c1, c2, β1, β2. Let s∗ =
β1 + 2

3
. Let ω ⊂ Rn be a

(γ, σ)-distributed set. Then the fractional Baouendi-Grushin-Schrödinger heat equation associated to

V and Ṽ

(EBGS,s)





∂tu(t, x, y) +
(
−∆x − V (x)∆y + Ṽ (x)

)s
u(t, x, y) = h(t, x, y)1ω×Rm(x, y)

for t > 0, (x, y) ∈ R
n × R

m,

u(0, x, y) = u0(x, y) for (x, y) ∈ Rn × Rm

with initial condition u(0, ·, ·) = u0 ∈ L2(Rn × Rm) is exactly null-controllable in any time T > 0 if
β2 = β1 and s > s∗.

If V further satisfies Assumption A1, then the same holds with the critical power s∗ =
β1 + 2

4

instead of
β1 + 2

3
.

Finally, we also obtain a result on Rn×Tm, that is, when the equation is periodic in the y variable.
Here the sets ω need again to be γ-equidistributed, but there is a relaxation on the potential as the
upper bound can now be of a different order than the lower bound (β2 > β1):

Theorem 1.9. Let γ ∈ (0, 1/2), σ ≥ 0, s, T > 0, c1, c2, β1, β2 > 0. Take V ∈ L∞
loc(R

n) satisfying

Assumption A2 with parameters c1, c2, β1, β2. Let s∗ =
β1 + 2

3
.

Let ω ⊂ Rn be a γ-equidistributed set. Then the semi-periodic fractional Baouendi-Grushin heat
equation associated to V

(EpBG,s)





∂tu(t, x, y) +
(
−∆x − V (x)∆y

)s
u(t, x, y) = h(t, x, y)1ω×Rm(x, y)

for t > 0, (x, y) ∈ R
n × T

m,

u(0, x, y) = u0(x, y) for (x, y) ∈ Rn × Tm
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with initial condition u(0, ·, ·) = u0 ∈ L2(Rn × Tm) is exactly null-controllable in any time T > 0 if
s > s∗.

If V further satisfies Assumption A1, then the same holds with the critical power s∗ =
β1 + 2

4

instead of
β1 + 2

3
.

Remark 1.10. For the sake of this last theorem, the main difference between the Baouendi-Grushin
operator on Rn × Rm and Rn × Tm is that L2(Tm) has an orthonormal basis of eigenvectors of the
Laplace operator on Tm. The same result would be true e.g. if Tm is replaced by any compact
Riemannian manifold S and ∆y the Laplace-Beltrami operator on S.

Our proof does not extend to controllability from (γ, σ)-distributed sets mainly because 0 is an
eigenvalue. This difficulty no longer arises when adding a second potential Ṽ satisfying the same
assumption as V and considering

∂tu(t, x, y) +
(
−∆x − V (x)∆y + Ṽ (x)

)s
u(t, x, y) = h(t, x, y)1ω×Tm(x, y)

t > 0, (x, y) ∈ R
n × T

m,

instead of (EpBG,s).

The results have been recasted in the synthetic Table 1, Section 5 where we will show the corre-
sponding obsevability inequalities.

Remark 1.11. In the standard case of V (x) = |x|β , the null-controllability from sets of the form
ω̃ = ω × Rm resp. ω̃ = ω × Tm of the evolution equation

(Eβ,s)
∂tu(t, x, y) +

(
−∆x − |x|β∆y

)s
u(t, x, y) = h(t, x, y)1ω×Tm(x, y)

t > 0, x ∈ R
n, y ∈ R

n resp. T
m,

with initial condition u(0, ·, ·) = u0 ∈ L2(Rn×Rm) (resp. L2(Rn×Tm)) is summarized in the following
picture:

2

3

s

β

s =
(β

+ 2)/
3

s = (β + 2)/4

1

Exactly null-controllable

(1,
3

4
)

Figure 1. The standard case

Our results thus partially recover those of Alphonse and Seelmann [AS23]. There are two main
losses compared to their results: one is that our control sets are a bit less general, and another is that
we are not able to obtain the null-controllability of equations for the critical case s = s∗. The main
gain is that our potentials are more general.

Further, when β = 2k and s = (β + 2)/4, Alphonse and Seelmann [AS23, Theorem 2.17] show
that the evolution equation is never exactly null-controllable from any control support ω ⊂ Rn × Tm

satisfying ω ∩ {x = 0} = ∅. This implies s = (β + 2)/4 is the critical value for β = 2k ≥ 2. Based on
our results, it is reasonable to conjecture that it is the critical value for all β ≥ 1 under Assumption A1
and β = β1 = β2.
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For the case 0 < β < 1, it seems that the critical value may be a little worse. Indeed, we only obtain

exactly null-controllability results up to s =
β + 2

3
>
β + 2

4
. One of the possible reasons may be the

wilder behavior of V = |x|β around 0.
Our results presented above are in line with articles devoted to the study of null-controllability

of (Eβ,s) in bounded domains, see [CBG13, ABM21, BDE20, BMM15, DKR22, DK20, Koe17]. All
results in these articles give a fact that the null-controllability of (Eβ,s) is governed by minimal time in
the critical case s = (β1+2)/4. Note that we have a larger critical point s = (β1+2)/3 in Theorem 1.7
under Assumption A2. It is worthy to mention that in [Lis22, Theorem 1.2] the author considers the
case of dimension n = m = 1, β = 2 and s = 1, and then proved the equation (Eβ,s) is never exactly
null-controllable from any control support of the form R× ω whenever ω 6= R.

1.3. Strategy of proof and outline of the work. Our strategy of proof is near to the one developped
in Alphonse and Seelmann’s work in [AS23] and based on an earlier idea of Beauchard, Cannarsa and
Guglielmi [CBG13]. To avoid technicalities, we concentrate on the non-fractional case (s = 1).

We observe that the operator −∆x + V (x)∆y is self-adjoint when V is real valued so that null-
controllability is equivalent to observability. The first step consists in taking a partial Fourier transform
in the y-variable of u:

uλ(t, x) =

∫

Rm

u(t, x, y)e−i〈y,λ〉 dy

so that we are lead to observability of the heat equation associated to Schrödinger operator

∂tu
λ −∆xu

λ − λ2V (x)uλ = 0.

We can then use results on the observability of this equation, in particular those of Zhu-Zhuge [ZZ23].
Note that the potential Vλ = λ2V (x) now depends on the frequency parameter λ. The main difficulty
is precisely to deal with this parameter. This has been done by Alphonse and Seelmann when V is a
power function and is more difficult here and requires two key differences in the proof:

(1) We use a different kind of spectral inequality, which we call Zhu-Zhuge’s inequality given in
[ZZ23, Theorem 1]. However, the original form of this theorem cannot be used directly, since
it does not provide explicit dependence of the cost constant on the parameters in Assumptions
A1-A2. Our first task is thus to convert Zhu-Zhuge’s proof into a more quantitative one which
leads us to an explicit form of the cost constant in the spectral inequality in terms of the
parameters. This is vital for our proofs in order to invert the partial Fourier transform in the
y-variable. This allows to take into account the frequency parameter λ.

(2) The lowest eigenvalue of the Schrödinger operator −∆ + V is easily obtained in the case
V = c|x|2k, k ∈ N by the rescaling approach. It does not work for our general potentials under
Assumption A1 or A2. To overcome this difficulty, we do not calculate the exact value of
the lowest eigenvalue, instead we just calculate a lower bound which satisfies our needs. This
allows us to deal with more general potentials.

In Theorem 1.7 the set ω is (γ, 0)-distributed rather than a sparser (γ, σ)-distributed set. This comes
from the fact that the spectral multiplier associated to −∆y, namely |λ|2 degenerates at λ = 0. This
singularity is erased when adding a second potential as in Proposition 1.8 and explains why sparser
sets are allowed there.

The remaining of the paper is organised as follows:
Section 2 is devoted to the spectral theory of Schrödinger operators HrV = −∆ + rV where V ∈

L∞
loc(R

n) with a polynomial growth V (x) ≥ c|x|β , c, β > 0 and a scaling parameter r > 0. In the
Section 2.1, we provide a lower bound of the lowest eigenvalue of HrV in terms of the scaling parameter
while in the Section 2.2 we then provide a more quantitative version of the localization property of
eigenfunctions of HV first established in [DSV22, Theorem 1.4] and [ZZ23, Proposition 3].

Section 3 is then devoted to the precised form of Zhu-Zhuge’s Spectral Inequality (1.5) in which we
clarify the dependence of the constant κ1 appearing there in terms of the parameters c1, c2 (and β1, β2).
This allows us in Section 3.2 to obtain precised version of (1.5) in which κ1 is estimated in terms of
the scaling parameter r of the potential i.e. when applying (1.5) to HrV instead of HV . In Section
3.3, we conclude this section by computing an observability constant of HrV from (γ, σ)-distributed
sets and then bound this constant when r varies over ]0, 1[ or [1,+∞).
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Section 4 is devoted to well-posedness of the considered equations and also introduces some notation
for the last section.

Finally, we prove Theorem 1.7, Proposition 1.8 and their y-periodic counterparts in Section 5 by
establishing the corresponding observability inequalities. In the simplest cases, we also provide an
explicit form of the observability constants.

Throughout the paper, we will write A(x) . B(x) to say that there is a constant C that does not
depend on the parameter x such that A ≤ CB. At times, it will be more convenient to make the
constants appear explicitely and in this case, they may change from line to line and still be called with
the same letter.

2. Eigenfunctions of the Schrödinger operator

Let V be a real valued, non-negative function on Rn with V ∈ L∞
loc(R

n) and

lim
|x|→+∞

V (x) = +∞

but for some integer m,

lim
|x|→+∞

xmV (x) = 0

and consider the associated Schrödinger operator

HV f(x) = −∆f(x) + V (x)f(x).

This operator is well defined on S(Rn) and extends to an (unbounded) self-adjoint operator on L2(Rn).
Further it is positive since, for every f ∈ S(Rn),

〈HV f, f〉 =
∫

Rn

|∇f(x)|2 + V (x)|f(x)|2 dx ≥ 0

The following is well-known (see e.g. [BS91]):

Theorem 2.1. Let c, β > 0 and V ∈ L∞
loc(R

n) be such that V (x) ≥ c|x|β. Then there exists a sequence
(λk)k∈N, with 0 ≤ λ0 ≤ λ1 ≤ · · · and |λk| → +∞ and an orthonormal basis (φk)k∈N of L2(Rn)
consisting of eigenvectors of HV , φk ∈ H1(Rn) and HV φk = λkφk. Moreover, there exists a, C > 0
such that, for every x,

|φk(x)| ≤ C exp(−a|x|1+ β
2 ).

Notation 2.2. We will write EV (λ) = EHV (λ) for the spectral set associated to HV , that is

EV (λ) = span{φk : k s.t. λk ≤ λ}.

In the remaining of this section, we assume that the potential V ∈ L∞
loc(R

n) satisfies a global
estimate

V (x) ≥ c|x|β

which is common to Assumptions A1 and A2. We first compute a lower bound of the lowest eigen-
value λ0(V ). We then give a detailed decay estimate of linear combinations of eigenfunctions for the
Schrödinger operator in terms of the parameters c, β.

2.1. Lower bound of the first eigenvalue. We start with the estimate of the first eigenvalue.

Proposition 2.3. Let V ∈ L1
loc(R

n) and assume that there are c, β > 0 such that V ≥ c|x|β . Let
λ0(V ) be the lowest eigenvalue of the operator HV = −∆x + V (x). Then we have

(2.1) λ0(V ) ≥ µ∗ := c
2

β+2λ∗

where λ∗ is a positive constant and depends only β and n.

The proof is based on the following result by Barnes, Brascamp and Lieb:
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Theorem 2.4 (Barnes, Brascamp and Lieb, [BBL76]). For all a > 0, define

IV (a) =

∫

Rn

e−aV (x) dx

and assume that, for every a > 0, IV (a) < +∞. Then we have

λ0(V ) ≥ sup
t>0

t

[
n+

n

2
ln
π

t
− ln IV

(
1

t

)]
.

Now we finish the proof of Proposition 2.3.

Proof of Proposition 2.3. In the case of V (x) = c|x|β , a change into polar coordinates and then a
change of variable s = acrβ shows that

Ic|x|β (a) =

∫

Rn

e−ac|x|β dx = σn

∫ +∞

0

e−acrβrn−1 dr = σn

∫ +∞

0

e−s
( s
ac

)n
β ds
βs

=
σn

β(ac)n/β
Γ

(
n

β

)

where σn =
2πn/2

Γ (n/2)
is the surface measure of the unit ball in Rn, and Γ(z) =

∫ ∞

0

tz−1e−t dt is the

Gamma function. It follows that

λ0
(
c|x|β

)
≥ sup

t>0
t


n− ln

2

β

Γ
(

n
β

)

Γ
(
n
2

) − n

(
1

β
+

1

2

)
ln t+

n

β
ln c


 .

The maximum is attained when

n− ln
2π

n
2

β

Γ
(

n
β

)

Γ
(
n
2

) − n

(
1

β
+

1

2

)
ln t+

n

β
ln c = n

(
1

β
+

1

2

)

so that

λ0(c|x|β) ≥ n
β + 2

2β
exp

(
β − 2

β + 2

)
 β

2π
n
2

Γ
(

n

2π
n
2

)

Γ
(

n
β

)




2β
n(β+2)

c
2

β+2 := λ∗c
2

β+2 .

Note that, by definition, λ∗ depends only on β and n.
Finally, if V (x) ≥ c|x|β , it is obvious that IV (a) ≤ Ic|x|β (a). Hence we obtain

λ0(V ) ≥ λ0(c|x|β) ≥ λ∗c
2

β+2

as claimed. �

From this, we immediately obtain the following:

Corollary 2.5. Let V ∈ L1
loc(R

n) and assume that there are c, β > 0 such that V (x) ≥ c|x|β for every
x ∈ Rn. Let r > 0 HrV = −∆x + rV (x). Then, for every f ∈ L2(Rn) and every s, t > 0,

∥∥∥e−tHs
rV f

∥∥∥
L2(Rn)

≤ e−tr
2s

β+2 µ∗‖f‖L2(Rn).

where µ∗ is defined in (2.1) and is thus a positive constant that depends only c, β and n.

2.2. Localization property of eigenfunctions. In this section we still assume that V (x) ≥ c|x|β
and prove the following localization (or decay) property of eigenfunctions which is adapted from
[DSV22, Theorem 1.4] and [ZZ23, Proposition 3] but with more precise quantitative estimates.

Proposition 2.6. Assume that V ∈ L∞
loc(R

n) is such that V (x) ≥ c|x|β and let HV = −∆+ V . Let
λ > 0 and φ ∈ EV (λ) then

‖φ‖L2(Rn) ≤ 2‖φ‖
L2(Bρ(0)) and ‖φ‖H1(Rn) ≤ 2‖φ‖

H1(Bρ(0))

with

(2.2) ρ = Ĉ

((
n

β
+
n+ 2

2

)
log+

λ+ 1

c
+
n+ 2

2
log+ c+

(
λ+ 2

c

)1/β

+ 1

)
.

and Ĉ depending only on n.
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Before the proof of Proposition 2.6, we give several lemmas.

Lemma 2.7. Let V ∈ L∞
loc(R

n) be such that V (x) ≥ c|x|β. Let φ be an eigenvector of HV = −∆+ V
with eigenvalue λk and let Rk = max {(λk + 2)/c, 1}. Then we have

(2.3) ‖e|·|/2φk‖2L2(Rn) ≤ 7eR
1/β
k +1‖φk‖2L2(Rn)

and

(2.4) ‖e|·|/2∇φk‖2L2(Rn) ≤ CeR
1/β
k ‖φk‖2L2(Rn)

where C > 0 is a constant that depends on n only.

The first part is [DSV22, Proposition 2.3]. For the second part, we first prove a local Caccioppoli
inequality:

Lemma 2.8. Under the notation of Lemma 2.7: for every ρ > 0 there exists a positive constant C(ρ)
depending on ρ only such that, for every z ∈ Rn,

‖∇φk‖2L2(Bρ(z))
≤ C(ρ) (1 + λk) ‖φk‖2L2(B2ρ(z))

.

Proof of Lemma 2.8. Choose a cutoff function η ∈ C∞
c

(
B2ρ(z)

)
and η = 1 in Bρ(z) and |∇η| < 2

ρ . Let

ψk = η2φk, then
∫

B2ρ(z)

∇φk(x) · ∇ψk(x)dx = −
∫

B2ρ(z)

ψk(x)∆φk(x)dx = −
∫

B2ρ(z)

ψk(x)
(
V (x) − λk

)
φk(x)dx.

Further
∫

B2ρ(z)

|η(x)∇φk(x)|2 dx =

∫

B2ρ(z)

η(x)2∇φk(x) · ∇φk(x)dx

= −
∫

B2ρ(z)

2η(x)
(
∇η(x) · ∇φk(x)

)
φk(x)dx−

∫

B2ρ(z)

η(x)2
(
V (x)− λk

)
φk(x)

2 dx

≤
∫

B2ρ(z)

4

ρ
|η(x)∇φk(x)| |φk(x)| dx−

∫

B2ρ(z)

V (x)|η(x)φk(x)|2 dx+ λk‖φk‖2L2(B2ρ(z))

≤
∫

B2ρ(z)

4

ρ
|η(x)∇φk(x)| |φk(x)| dx+ λk‖φk‖2L2(B2ρ(z))

(2.5)

since V ≥ 0. Note that
∫

B2ρ(z)

4

ρ
|η(x)∇φk(x)| |φk(x)| dx =

∫

B2ρ(z)

2

∣∣∣∣
1√
2
η(x)∇φk(x)

∣∣∣∣

∣∣∣∣∣
2
√
2

ρ
φk(x)

∣∣∣∣∣dx

≤ 1

2

∫

B2ρ(z)

|η(x)∇φk(x)|2 dx+
8

ρ2

∫

B2ρ(z)

|φk(x)|2 dx

so that (2.5) implies
∫

B2ρ(z)

|η(x)∇φk(x)|2 dx ≤ 1

2

∫

B2ρ(z)

|η(x)∇φk(x)|2 dx+
8

ρ2
‖φk‖2

L2(B2ρ(z))
+ λk‖φk‖2

L2(B2ρ(z))

≤
(
1 +

8

ρ2

)
(1 + λk)‖φk‖2L2(B2ρ(z))

.

As η = 1 on Bρ(z) we conclude that

‖∇φk‖2L2(Bρ(z))
≤ C(ρ)(1 + λk)‖φk‖2L2(B2ρ(z))

with C(ρ) = 1 +
8

ρ2
. �

We can now complete the proof of Lemma 2.7.
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Proof of (2.4) in Lemma 2.7. First we fix z ∈ Rn and apply Lemma 2.7 with ρ = 1 to obtain

‖∇φk‖2L2(B1(z))
≤ A(1 + λk)‖φk‖2L2(B2(z))

where A = C(1) is a numerical constant (A = 9 with the previous proof). Further, as for x ∈ B2(z),

e−1e|z|/2 ≤ e|x|/2 ≤ ee|z|/2

we get

‖e|·|/2∇φk‖2L2(B1(z))
≤ e2e|z|‖∇φk‖2L2(B1(z))

≤ e2Ae|z|(1 + λk)‖φk‖2L2(B2(z))

≤ e4A(1 + λk)‖e|·|/2φk‖2L2(B2(z))
.

We then cover Rn with a family of balls Rn =
⋃

i∈N
B1(zi) such that the balls {B2(zi)} have a finite

covering number i.e. such that N := maxz∈Rn #{i : z ∈ B2(zi)} < +∞. Then

‖e|·|/2∇φk‖2L2(Rn) ≤
∑

i∈N

‖e|·|/2∇φk‖2L2(B1(z))
≤ e4A(1 + λk)

∑

i∈N

‖e|·|/2φk‖2L2(B2(z))

≤ e4AN(1 + λk)‖e|·|/2φk‖2L2(Rn)

≤ e4AN(1 + λk)7e
R

1/β
k +1‖φk‖2L2(Rn)

with (2.3). As N depends on n only, we obtain (2.4) with C = e5AN . �

Define

N(λ) := # {λk|λk ≤ λ} .
Note that, from

N(λ) ≤
N(λ)∑

k=1

(λ + 1− λk)

and the lower bound V (x) ≥ c|x|β , the right hand side can be estimated explicitly by means of the
classic Lieb-Thirring bound from [LT01, Theorem 1]. More precisely, for λ > 0 we have

N(λ)∑

k=1

(λ+ 1− λk) .n

∫

Rn

max {λ+ 1− V (x), 0}n/2+1 dx

≤
∫

B0(((λ+1)/c)1/β)
(λ+ 1)n/2+1 dx

≤ κn
(λ+ 1)

n
β +n+2

2

c
n
β

with κn depending on n only. It follows that

(2.6) N(λ) ≤ κnc
n+2
2

(
λ+ 1

c

)n
β +n+2

2

We are now in position to prove the main result of this section.

Proof of Proposition 2.6. Let us write

(2.7) φ =
∑

k≤N(λ)

ψk where ψk = ckφk, ck ∈ C.

For every ρ > 0, we have

(2.8)
‖φ‖2

H1(Rn\Bρ(0))
= ‖φ‖2

L2(Rn\Bρ(0))
+ ‖∇φ‖2

L2(Rn\Bρ(0))

≤ e−ρ
(
‖e|·|/2φ‖2L2(Rn) + ‖e|·|/2∇φ‖2L2(Rn)

)
.
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Moreover, using the expansion (2.7) and Cauchy-Schwartz, we obtain

(2.9) ‖e|·|/2φ‖2L2(Rn) ≤




N(λ)∑

k=1

‖e|·|/2ψk‖L2(Rn)




2

≤ N(λ)

N(λ)∑

k=1

‖e|·|/2ψk‖2L2(Rn)

as well as

(2.10) ‖e|·|/2∇φ‖2L2(Rn) ≤ N(λ)

N(λ)∑

k=1

‖e|·|/2∇φk‖2L2(Rn).

Taking (2.9) and (2.10) into (2.8), we obtain

(2.11) ‖φ‖2H1(Rn\Bρ(0))
≤ e−ρN(λ)




N(λ)∑

k=1

‖e|·|/2ψk‖2L2(Rn) +

N(λ)∑

k=1

‖e|·|/2∇ψk‖2L2(Rn)


 .

Taking (2.3), (2.4) and (2.6) into (2.11) we obtain

‖φ‖2H1(Rn\Bρ(0))
≤ Ce−ρc

n+2
2

(
λ+ 1

c

)n
β+n+2

2
N(λ)∑

k=1

eR
1/β
k ‖ψk‖2L2(Rn)

where Rk = max {(λk + 2)/c, 1} and C is a constant depending only on n. As the ψk’s are orthogonal
and Rk ≤ R := max {(λ+ 2)/c, 1}, we get

‖φ‖2H1(Rn\Bρ(0))
≤ Ce−ρ

(
λ+ 1

c

)n
β+n+2

2

c
n+2
2 eR

1/β‖φ‖2L2(Rn)

We now chose Ĉ large enough so that

ρ = Ĉ

((
n

β
+
n+ 2

2

)
log+

λ+ 1

c
+
n+ 2

2
log+ c+

(
λ+ 2

c

)1/β

+ 1

)

satisfies

ρ ≥ log 2 + logC +

(
n

β
+
n+ 2

2

)
log

λ+ 1

c
+,

n+ 2

2
log+ c+R1/β + 1.

Note that Ĉ depends on C only so that it depends only on n. With this choice,

‖φ‖2
L2(Rn\Bρ(0))

+
1

2
‖∇φ‖2

L2(Rn\Bρ(0))
≤ ‖φ‖2

H1(Rn\Bρ(0))

≤ 1

2
‖φ‖2L2(Rn) =

1

2
‖φ‖2

L2(Rn\Bρ(0))
+

1

2
‖φ‖2

L2(Bρ(0))
.

This yelds

‖φ‖2
L2(Rn\Bρ(0))

≤ ‖φ‖2
H1(Rn\Bρ(0))

≤ ‖φ‖2
L2(Bρ(0))

and finally ‖φ‖2L2(Rn) ≤ 2‖φ‖2
L2(Bρ(0))

as well as ‖φ‖2H1(Rn) ≤ 2‖φ‖2
H1(Bρ(0))

. �

3. Spectral inequality for the Schrödinger operator

3.1. Precised form of Zhu-Zhuge’s spectral inequality. The aim of this section is to prove the
following precised form of [ZZ23, Theorem 1] :

Theorem 3.1 (Zhu-Zhuge, precised form). Let V ∈ L∞
loc(R

n) be such that Assumption A2 is satisfied.
Let σ ≥ 0, γ ∈ (0, 1/2) and ω ⊂ Rn be a (γ, σ)-distributed set. Then there exists a constant C
depending only on n such that for every λ ≥ λ0(V ) and every φ ∈ EV (λ),

‖φ‖L2(Rn) ≤
(
1

γ

)CJV (λ)

‖φ‖L2(ω),
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where

(3.1)

JV (λ) := J (c1, c2, λ) = J(c1, λ)
2σ/β2 Ĵ(c1, c2, λ),

with J(c1, λ) =

(
1 +

(
λ+ 2

c1

)1/β1

+
n+ 2

2
log+ c1

) β2
2

and Ĵ(c1, c2, λ) = λ
1
2 + c

1
2
2 J(c1, λ).

The main difference with Zhu & Zhuge’s result is that the exponent J depends explicitely on the
parameters c1 and c2 in Assumption A2. Recall that those are given by V = V1 + V2 ∈ L∞

loc(R
n) and

V (x) ≥ c1|x|β1 , |V1(x)| + |∇V1(x)|+ |V2(x)|4/3 ≤ c2(|x| + 1)β2 .

To obtain this result we follow step by step the proof in [ZZ23]. This starts with two kinds of
three-ball inequalities that are already given in a quantitative form sufficient for our needs. Then, we
follow the strategy in [DSV22, ZZ23] to prove the spectral inequality.

Let us start with some notation:

Notation 3.2. Given L > 0, recall that QL :=

[
−L
2
,
L

2

]n
, Br(x) ⊂ Rn is the ball with radius r and

center x. We denote by Br(x) the ball in Rn+1 centered at x and radius r.
Let δ ∈ (0, 12 ), b = (0, · · · , 0,−bn+1) ∈ R

n+1 and bn+1 = δ
100 . Define

W1 =

{
y ∈ R

n+1
+ : |y − b| ≤ 1

4
δ

}
, W2 =

{
y ∈ R

n+1
+ : |y − b| ≤ 2

3
δ

}
,

so that W1 ⊂W2 ⊂ Bδ(b). Write ΛL := QL ∩ Z
n and define

Wj(zi) := (zi, 0) +Wj , j = 1, 2.

as well as
Pj(L) =

⋃

i∈ΛL

Wj (zi) , j = 1, 2 and Dδ(L) =
⋃

i∈ΛL

Bδ(zi).

Define R = 9
√
n and

X1 = QL × [−1, 1] and X̃R = QL+R × [−R,R].
The first three-ball inequality in Rn+1 we need is the following:

Lemma 3.3 ([ZZ23, Lemma 1]). Let δ ∈ (0, 12 ). There exist 0 < α < 1 and C > 0, depending only on
n such that, if v is the solution of

{−(∆x + ∂2xn+1
)v(x, xn+1) + V (x)v(x, xn+1) = 0 x ∈ Rn, xn+1 ∈ R

v(x, 0) = 0 x ∈ Rn

then

(3.2)
∥∥v
∥∥
H1(P1(L)) ≤ δ−α exp

(
C
(
1 + G(V1, V2, 9

√
nL
)) ∥∥v

∥∥α
H1(P2(L))

∥∥∥∥
∂v

∂yn+1

∥∥∥∥
1−α

L2(Dδ(L))
,

where

(3.3) G (V1, V2, L) = ‖V1‖
1
2

W 1,∞(QL) + ‖V2‖
2
3

L∞(QL).

Remark 3.4. Under Assumption A2, G (V1, V2, L) ≤ c
1/2
2 (1 + L)β2/2.

The second inequality is:

Lemma 3.5 ([ZZ23, Lemma 2]). Let δ ∈ (0, 12 ). There exist C > 0 depending only on n, 0 < α < 1
depending on δ and n such that, if v is the solution of

{−(∆x + ∂2xn+1
)v(x, xn+1) + V (x)v(x, xn+1) = 0 x ∈ Rn, xn+1 ∈ R

v(x,−y) = −v(x, y) x ∈ Rn, y ∈ R

then

(3.4)
∥∥v
∥∥
H1(X1)

≤ δ−2α1 exp
(
C
(
1 + G

(
V1, V2, 9

√
nL
)))∥∥v

∥∥1−α1

H1(X̃R)

∥∥v
∥∥α1

H1(P1(L)),
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where G(V1, V2, L) is given by (3.3). Further, α1 can be given in the form

(3.5) 0 < α1 =
ǫ1

| log δ|+ ǫ2
< 1

with positive constants ǫ1 and ǫ2 depending only on n.

Now let φ ∈ Eλ(H) and define

Φ(x, xn+1) =
∑

0<λk≤λ

αkφk(x)
sinh(

√
λkxn+1)√
λk

.

Then Φ(x, xn+1) satisfies the equation

(3.6) HΦ := −∆Φ+ V (x)Φ = 0, (x, xn+1) ∈ R
n+1.

We need to mention that ∆ = ∆x + ∂2n+1 with ∆x =

n∑

j=1

∂2j in (3.6). It is easy to check that

∂n+1Φ(x, 0) = φ(x) and Φ(x, 0) = 0.
The following estimate for Φ is standard and can be found in [ZZ23, Lemma 3].

Lemma 3.6. Let φ ∈ EV (λ) and Φ be given in (3.6). For any ρ > 0, we have

2ρ
∥∥φ
∥∥2
L2(Rn)

≤
∥∥Φ
∥∥2
H1
(
Rn×(−ρ,ρ)

) ≤ 2ρ

(
1 +

ρ2

3
(1 + λ)e2ρ

√
λ

)∥∥φ
∥∥2
L2
(
Rn
).

To use Proposition 2.6, we need to extend it from φ to Φ. Indeed, we have the following corollary:

Corollary 3.7. Given the same condition as in Proposition 2.6, we have

(3.7) ‖Φ‖2
H1(Rn×(−1,1))

≤ 2‖Φ‖2
H1(Br×(−1,1))

.

Proof. Since Φ(·, xn+1) ∈ Eλ(H), by Proposition 2.6 we obtain

(3.8) ‖Φ(·, xn+1)‖2H1(Rn) ≤ 2‖Φ(·, xn+1)‖2H1(Br(0))
.

Since ∂n+1Φ(·, xn+1) ∈ Eλ(H), we obtain

(3.9) ‖∂n+1Φ(·, xn+1)‖2L2(Rn) ≤ ‖∂n+1Φ(·, xn+1)‖2H1(Rn) ≤ 2‖∂n+1Φ‖2L2(Br(0))
.

Then we have
∥∥Φ
∥∥2
H1(Rn×(−1,1)) =

∫ 1

−1

∥∥Φ(·, xn+1)
∥∥2
L2(Rn)

dxn+1 +

∫ 1

−1

n∑

j=1

∥∥∂jΦ(·, xn+1)
∥∥2
L2(Rn)

dxn+1

+

∫ 1

−1

∥∥∂n+1Φ(·, xn+1)
∥∥2
L2(Rn)

dxn+1

≤
∫ 1

−1

∥∥Φ(·, xn+1)
∥∥2
H1(Rn)

dxn+1 +

∫ 1

−1

2
∥∥∂n+1Φ(·, xn+1)

∥∥2
L2(Br(0))

dxn+1

with (3.9). Using (3.8) we then obtain

∥∥Φ
∥∥2
H1(Rn×(−1,1)) ≤

∫ 1

−1

2
∥∥Φ(·, xn+1)

∥∥2
H1(Br(0)) dxn+1 +

∫ 1

−1

2
∥∥∂n+1Φ(·, xn+1)

∥∥2
L2(Br(0)) dxn+1

=2
∥∥Φ
∥∥2
H1(Br(0))

as claimed. �

We can now prove Theorem 3.1:

Proof of Theorem 3.1. Let L = 2 ⌈r⌉+1, where r is given in Proposition 2.6 and ⌈a⌉ means the largest
integer smaller than a+ 1. Then we have Br(0) ⊂ QL. Moreover, we can decompose QL as

QL =
⋃

k∈ΛL

(
k +

[
−1

2
,
1

2

]n)
.
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For each k ∈ ΛL, we have |k| ≤ √
n ⌈r⌉. As γ ∈ (0, 12 ), we get

δ := γ1+(
√
n⌈r⌉)σ ≤ γ1+|k|σ , ∀k ∈ ΛL ∩ Z

n.

Now we show an interpolation inequality. Note that Φ is odd in xn+1, so taking v = Φ, we combine
(3.2) in Lemma 3.3 and (3.4) in Lemma 3.5 with δ and L defined above to get

‖Φ‖H1(X1) ≤ δ−2α1 exp
(
C
(
1 + G(V1, V2, 9

√
nL)

))∥∥Φ
∥∥1−α1

H1(X̃R)

∥∥Φ
∥∥α1

H1(P1(L))

≤ δ−2α1−αα1 exp
(
C
(
1 + G(V1, V2, 9

√
nL)

))∥∥Φ
∥∥αα1

H1(P2(L))

∥∥∥∥
∂Φ

∂yn+1

∥∥∥∥
α1(1−α)

L2(Dδ(L))

∥∥Φ
∥∥1−α1

H1(X̃R)

≤ δ−3α1 exp
(
C
(
1 + G(V1, V2, 9

√
nL)

))∥∥φ
∥∥α̂
L2
(
Dδ(L)

)∥∥Φ
∥∥1−α̂

H1(X̃R),

where α̂ = α1(1 − α) and we have used the facts P2(L) ⊂ X̃R and
∂Φ

∂yn+1
(·, 0) = φ. Here and below,

the symbol C may represent different positive constants depending on n.
Recall α1 in (3.5), we have α1 ≈ α̂ ≈ 1

| log δ| for any δ ∈ (0, 12 ). Hence δ−3α1 ≤ C and then

(3.10)
∥∥Φ
∥∥
H1(X1)

≤ exp
(
C
(
1 + G(V1, V2, 9

√
nL)

))∥∥φ
∥∥α̂
L2(ω∩QL)

∥∥Φ
∥∥1−α̂

H1(X̃R)
,

where we have also used the fact Dδ(L) ⊂ ω ∩ QL.
Substituting L = 2 ⌈r⌉+ 1 and (2.2) into G(V1, V2, L) and by Assumption A2, we have

G(V1, V2, 9
√
nL) . c

1
2
2 (2 ⌈r⌉+ 2)

β2
2 . c

1
2
2

(
n+ 4

2β1
log+

λ+ 1

c1
+

(
λ+ 2

c1

)1/β1

+
n+ 2

2
log+ c1 + 1

)β2
2

. c
1
2
2

(
+

(
λ+ 2

c1

)1/β1

+
n+ 2

2
log+ c1 + 1

) β2
2

:= c
1
2
2 J(c1, λ)

where J(c1, λ) was defined in (3.1). We can then write (3.10) as

(3.11)
∥∥Φ
∥∥
H1(X1)

≤ exp
(
Cc

1
2
2 J(c1, λ)

) ∥∥φ
∥∥α̂
L2(ω∩QL)

∥∥Φ
∥∥1−α̂

H1(X̃R).

We now bound
∥∥Φ
∥∥2
H1(Rn×(−ρ,ρ)) from above and below by respectively taking ρ = R and ρ = 1 in

Lemma 3.6. This gives
∥∥Φ
∥∥2
H1(Rn×(−R,R))∥∥Φ
∥∥2
H1(Rn×(−1,1))

≤ R

(
1 +

R2

3
(1 + λ)

)
exp

(
2R

√
λ
)
≤ exp

(
C2

√
λ
)
.

With the aid of (3.7) and Br(0) ⊂ QL, we get

(3.12)

∥∥Φ
∥∥
H1(Rn×(−R,R)) ≤ exp

(
1

2
C2

√
λ

)∥∥Φ
∥∥
H1(Rn×(−1,1))

≤
√
2 exp

(
1

2
C2

√
λ

)∥∥Φ
∥∥
H1(QL×(−1,1)).

Recall that X1 = QL × (−1, 1), substituting (3.12) into (3.11) we obtain
∥∥Φ
∥∥
H1(Rn×(−R,R)) ≤ exp

(
C3Ĵ(c1, c2, λ)

)∥∥φ
∥∥α̂
L2(ω∩QL)

∥∥Φ
∥∥1−α̂

H1(X̃R)

where Ĵ(c1, c2, λ) was defined in (3.1). Since X̃R ⊂ Rn × (−R,R), it follows that
∥∥Φ
∥∥
H1(Rn×(−R,R)) ≤ exp

(
α̂−1C3Ĵ (c1, c2, λ)

) ∥∥φ
∥∥
L2(ω∩QL)

.

Recall that

α̂−1 ≈ α−1
1 ≈ | log δ| ≈ | log γ|J 2σ

β2
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we obtain

∥∥Φ
∥∥
H1(Rn×(−R,R)) ≤

(
1

γ

)CJ

2σ
β2 Ĵ ∥∥φ

∥∥
L2(ω∩QL)

.

Finally, using the lower bound in Lemma 3.6 with ρ = R, we obtain

∥∥φ
∥∥
L2(Rn)

≤
(

1

2R

) 1
2 ∥∥Φ

∥∥
H1(Rn×(−R,R)) ≤

(
1

γ

)CJ

2σ
β2 Ĵ ∥∥φ

∥∥
L2(ω)

where C is a positive constant depending only on n. �

3.2. Scaling the potential. The aim of this section is to consider the “scaled” Schrödinger operator

(3.13) HrV = −∆x + rV (x), r > 0

and to evaluate the influence of r on the exponent J in Theorem 3.1. This will be slightly different
according to when V satisfies Assumption A1 or A2.

First, we assume that V in (3.13) satisfies Assumption A1. Then the potential rV satisfies Assump-
tion A1 but replacing c1, c2 with rc1, rc2 respectively, while β1, β2 are unchanged. We thus need to
estimate

J 1(r, λ) := JrV = J (rc1, rc2, λ)

for λ ≥ λ0(rV ).
On the other hand, if we assume that V in (3.13) satisfies Assumption A1. Then the potential rV

satisfies Assumption A1 by replacing c1, c2 with rc1, r4/3c2 respectively, and the same β1, β2. We thus
need to estimate

J 2(r, λ) := J (rc1, r
4/3c2, λ)

for λ ≥ λ0(rV ).

Further, according to Proposition 2.3, λ0(V ) ≥ c
2

β1+2

1 λ∗ where λ∗ depends on β1 and n only. Thus

λ0(rV ) ≥ r
2

β1+2 c
2

β1+2

1 λ∗ := r
2

β1+2µ∗. Recall that µ∗ depends only on c1, β1, n.
The estimates of J 1,J 2 we need are given in the following proposition:

Proposition 3.8. Fix σ ≥ 0, γ ∈ (0, 1/2) and let ω ⊂ Rn be a (γ, σ)-distributed set. Fix c1, c2, β1, β2 >
0 and let V ∈ L∞

loc(R
n) be such that one of Assumptions A1-A2 is satisfied with parameters c1, c2, β1, β2.

Let ζ =
β2 + 2σ

2β1
and ε > 0.

Then there exists a constant CV,ω ≥ 1 depending on n, c1, c2, β1, β2, σ and ε such that, for every
r > 0 and for every φ ∈ ErV (λ)

(3.14) ‖φ‖L2(Rn) ≤
(
1

γ

)CV,ωJrV (λ)

‖φ‖L2(ω),

with

(3.15) JrV (λ) =

{
ra− + rb−λζ if 0 < r < 1

ra++ε + rb++ελζ if r ≥ 1

where a−, b−, a+, b+ are given as follows:

(i) if V satisfies Assumption A1, then

a− =
1

2
− ζ ≤ 0, b− =

1

2
− ζ ≤ 0,

a+ =
1

2
, b+ =





1− σ − 2ζ

β1 + 2
≤ 0 if (β1 − β2)σ = 0

max

(
1

2
− σ

β1 + 2
,

1

β1 + 2

)
− 2ζ

β1 + 2
if (β1 − β2)σ 6= 0

.

(ii) If V satisfies Assumption A2 with β∗ := 3β2 − 4β1 − 2 ≤ 0, then
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a− =
2

3
− ζ, b− =





−
(
σ

β1
+

β2 − β1
(β1 + 2)β1

)
≤ 0 if β∗σ = 0

min

(
2

3
− β2

2β1
− σ

β1 + 2
,

1

β1 + 2
− σ

β1

)
− 2ζ

β1 + 2
< 0 if β∗σ 6= 0

,

a+ =
2

3
, b+ = − σ

β1 + 2
+

2

3
− β2

2β1
− 2ζ

β1 + 2
.

(iii) If V satisfies Assumption A2 with β∗ > 0, then

a− =
2

3
− ζ, b− = −

(
β∗

2(β1 + 2)
+

σ

β1 + 2
+

2ζ − 1

β1 + 2

)
< 0,

a+ =
2

3
, b+ =





− β2 − β1
(β1 + 2)β1

≤ 0 if σ = 0

max

(
2

3
− σ

β1 + 2
,

1

β1 + 2

)
− 2ζ

β1 + 2
if σ 6= 0

.

Remark 3.9. The separation of cases at r = 1 in (3.15) is arbitrary and can be replaced with

JrV (λ) =

{
ra− + rb−λζ if 0 < r < α

ra++ε + rb++ελζ if r ≥ α

for any α > 0. This only influences the constant CV,ω in (3.14) but not the exponents a±, b± and ζ.

Remark 3.10. Note that if V, Ṽ both satisfy either Assumption A1 or Assumption A2 with same
exponents β1, β2 and (without loss of generality) same coefficients c1, c2, then rV + Ṽ satisfy the same
assumption, still with exponents β1, β2, but with parameters (r+1)c1, (r+1)c2 in case of Assumption
A1 and (r+1)c1, (r

4/3 +1)c2. As (r4/3 +1) . (1+ r)4/3, we get that JrV +Ṽ satisfies the same bounds
but with r replaced by r + 1 ≥ 1.

Proof. Recall that J (c1, c2, λ) is given in (3.1). As λ0(rV ) ≥ r
2

β1+2µ∗ we may write λ = r
2

β1+2µ with

µ & 1. We thus want to estimate J 1(r, λ) = J (rc1, rc2, r
2

β1+2µ).
As µ & 1, We will use that, for a, b, c, d ∈ R, α, β ≥ 0

(ra + rbµα)(rc + rdµβ) = ra+c + ra+dµβ + rb+cµα + rb+dµα+β

.

{
ra+c + rmin(a+d,b+c,b+d)µα+β when 0 < r < 1

ra+c + rmax(a+d,b+c,b+d)µα+β when r ≥ 1

when δ := (b− a)β − (d− c)α 6= 0. Here we use that µ & 1 to absorb µα, µβ into µα+β and then keep
only the smallest power of r when r < 1 and the largest one otherwise.

When δ = (b − a)β − (d − c)α = 0, one can improve this as follows: observe that for t ≥ 0,

tα, tβ ≤ max(1, tα+β) so that (1 + tα)(1 + tβ) ≤ 3(1 + tα+β). Thus, with t = r
b−a
α µ = r

d−c
β µ we get

(ra + rbµα)(rc + rdµβ) = ra+c
(
1 +

(
r

b−a
α µ

)α)(
1 +

(
r

d−c
β µ

)β)

. ra+c

(
1 +

(
r

b−a
α µ

)α+β
)

. ra+c + rb+dµα+β .

Now

J(rc1, r
2

β1+2µ) .

(
r

2
β1+2µ+ 1

rc1

) β2
2β1

+
(
log+ rc1

) β2
2 + 1 . 1 + (log+ r)

β2
2 + r−

β2
2β1 + r

− β2
2(β1+2)µ

β2
2β1
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with the implied constants depending on β1, β2 and c1, as well as

J(rc1, r
2

β1+2µ)2σ/β2 .

(
r

2
β1+2µ+ 1

rc1

) σ
β1

+ (log+ r)
σ + 1 . 1 + (log+ r)

σ + r−
σ
β1 + r−

σ
β1+2µ

σ
β1

.

{
r
− σ

β1

(
1 + (r

2
β1+2µ)

σ
β1

)
if 0 < r < 1(

1 + r−
σ

β1+2µ
σ
β1

)
logσ(r + 1) if r ≥ 1

(3.19)

with the implied constants depending on σ, β1, β2 and c1.
On the other hand

Ĵ(rc1, rc2, r
2

β1+2µ) = r
1

β1+2µ1/2 + r1/2c
1/2
2 J(rc1, r

2
β1+2µ)

. r
1

β1+2µ1/2 + r1/2 + r1/2(log+ r)
β2
2 + r−

β2−β1
2β1 + r

1
2−

β2
2(β1+2)µ

β2
2β1

. r1/2 + r1/2(log+ r)
β2
2 + r

− β2−β1
2β1 +

(
r

1
β1+2 + r

1
2−

β2
2(β1+2)

)
µ

β2
2β1

where, in the last line, we used that µ & 1 and
β2
2β1

≥ 1

2
so that µ

1
2 . µ

β2
2β1 . The implied constant

here depends on σ, β1, β2 and c1, c2. Now note that β2 ≥ β1 implies

1

β1 + 2
≥ 2− (β2 − β1)

2(β1 + 2)
=

1

2
− β2

2(β1 + 2)
.

It follows that

(3.20) Ĵ(rc1, rc2, r
2

β1+2µ) .




r
− β2−β1

2β1

(
1 + (r

2
β1+2µ)

β2
2β1

)
if 0 < r < 1(

r
1
2 + r

1
β1+2µ

β2
2β1 + r

1
2

)
log

β2
2 (r + 1) if r ≥ 1

.

For 0 < r < 1, we multiply (3.19) with (3.20) by using (3.17) and obtain

(3.21) JrV (r, λ) . r−
σ
β1

− β2−β1
2β1 (1 + (r

2
β1+2µ)

β2+2σ
2β1 ), 0 < r < 1.

For r ≥ 1, we take a = 0, b = − σ
β1+2 , c =

1
2 , d = 1

β1+2 , α = σ
β1
, β = β2

2β1
and then obtain

δ = (b − a)β − (d− c)α =
(β1 − β2)σ

2(β1 + 2)β1
.

Then δ = 0 if and only if β1 = β2 or σ = 0. Multiplying (3.19) and (3.20) and using (3.18) when δ = 0
(resp. (3.16) when δ 6= 0) we obtain

(3.22) JrV (r, λ) .





(
r

1
2 + r

− σ
β1+2+

1
β1+2µ

β2+2σ
2β1

)
logσ+

β2
2 (r + 1) if (β1 − β2)σ = 0

(
r

1
2 + rb̃+µ

2σ+β2
2β1

)
logσ+

β2
2 (r + 1) if (β1 − β2)σ 6= 0

, r ≥ 1

where

b̃+ := max

(
1

2
− σ

β1 + 2
,

1

β1 + 2

)
≥ 1

β1 + 2
− σ

β1 + 2
.

Replacing µ in (3.21) and (3.22) by r−
2

β1+2λ, and absorbing the log term in the power with the help
of ε we obtain the claimed inequality.

To estimate JrV under Assumption A2, the main difference is that we need to estimate

Ĵ(rc1, r
4/3c2, r

2
β1+2µ) = r

1
β1+2µ1/2 + r2/3c

1/2
2 J(rc1, r

2
β1+2µ)

. r
2
3 + r

2
3−

β2
2β1 + r

1
β1+2µ1/2 + r

2
3−

β2
2(β1+2)µ

β2
2β1 + r

2
3 (log+ r)

β2
2

. r
2
3 + r

2
3−

β2
2β1 +

(
r

1
β1+2 + r

2
3−

β2
2(β1+2)

)
µ

β2
2β1 ++r

2
3 (log+ r)

β2
2 .

There are now two cases to be distinguished since

1

β1 + 2
≤ 2

3
− β2

2(β1 + 2)
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if and only if 3β2 ≤ 4β1 + 2 or equivalently
1

2
≤ β2

2β1
≤ 2

3
+

1

3β1
.

So assume first that 3β2 ≤ 4β1 + 2, then

(3.23) Ĵ(rc1, r
4/3c2, r

2
β1+2µ) .




r

2
3−

β2
2β1 + r

1
β1+2µ

β2
2β1 if 0 < r < 1(

r
2
3 + r

2
3−

β2
2(β1+2)µ

β2
2β1

)
log

β2
2 (r + 1) if r ≥ 1

.

For 0 < r < 1, we take a = − σ

β1
, b = − σ

β1 + 2
, c =

2

3
− β2

2β1
, d =

1

β1 + 2
, α =

σ

β1
and β =

β2
2β1

so

that

δ := (b− a)β − (d− c)α) =
(2 + 4β1 − 3β2)σ

6(β1 + 2)β1
.

Hence δ 6= 0 if and only if 3β2 < 4β1 + 2 and σ 6= 0. Using (3.16) and (3.18) when δ 6= 0 and δ = 0
respectively to multiply (3.19) and (3.23), we obtain

(3.24) JrV (r, λ) .

{
r

2
3−

β2+2σ

2β1 + r
1−σ
β1+2µ

β2+2σ

2β1 if (2 + 4β1 − 3β2)σ = 0

r
2
3−

β2+2σ
2β1 + rb̃−µ

β2+2σ
2β1 if (2 + 4β1 − 3β2)σ 6= 0

, 0 < r < 1

where

b̃− := min

(
2

3
− β2

2β1
− σ

β1 + 2
,

1

β1 + 2
− σ

β1

)
≤ 1

β1 + 2
− σ

β1 + 2
.

For r ≥ 1, we take a = 0, b = − σ

β1 + 2
, c =

2

3
, d =

2

3
− β2

2β1
, α =

σ

β1
, β =

β2
2β1

and then obtain

δ := (b− a)β − (d− c)α) = 0.

Using (3.18) to multiply (3.19) and (3.23), we obtain

(3.25) JrV (r, λ) . r
2
3 + r

− σ
β1+2+

2
3−

β2
2β1 µ

β2+2σ
2β1 , r ≥ 1.

Replacing µ in (3.24) and (3.25) by r−
2

β1+2λ, we obtain the claimed inequality.

On the other hand, if 3β2 > 4β1 + 2, then

(3.26) Ĵ(rc1, r
4/3c2, r

2
β1+2µ) .




r

2
3−

β2
2β1 + r

2
3−

β2
2(β1+2)µ

β2
2β1 if 0 < r < 1(

r
2
3 + r

1
β1+2µ

β2
2β1

)
log

β2
2 (r + 1) if r ≥ 1

.

For 0 < r < 1, we take a = − σ

β1
, b = − σ

β1 + 2
, c =

2

3
− β2

2β1
, d =

2

3
− β2

2(β1 + 2)
, α =

σ

β1
, β =

β2
2β1

and then obtain
δ := (b− a)β − (d− c)α = 0.

Using (3.18) to multiply (3.19) and (3.23), we obtain

(3.27) JrV (r, λ) . r
2
3−

β2+2σ
2β1 + r

− σ
β1+2+

2
3−

β2
2(β1+2)µ

β2+2σ
2β1 , 0 < r < 1.

For r ≥ 1, we take a = 0, b = − σ

β1 + 2
, c =

2

3
, d =

1

β1 + 2
, α =

σ

β1
, β =

β2
2β1

and then obtain

δ := (b− a)β − (d− c)α = − (3β2 − 4β1 − 2)σ

6(β1 + 2)β1
≤ 0.

Hence δ 6= 0 if and only if σ 6= 0. Using (3.16) and (3.18) when δ 6= 0 and δ = 0 respectively to
multiply (3.19) and (3.26), we obtain

(3.28) JrV (r, λ) .





(
r

2
3 + r

1
β1+2µ

β2
2β1

)
log

β2
2 (r + 1) if σ = 0

(
r

2
3 + rb̃+µ

β2+2σ

2β1

)
logσ+

β2
2 (r + 1) if σ 6= 0

, r ≥ 1

where

b̃+ = max

(
− σ

β1 + 2
+

2

3
,

1

β1 + 2

)
≥ 1

β1 + 2
− σ

β1 + 2
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Absorbing the log term in the power with the help of ε, we again conclude by replacing µ in (3.27)

and (3.28) by r−
2

β1+2λ. �

3.3. From the spectral inequality to observability of scaled Schrödinger operators. We can
now prove observability inequalities for “scaled” Schrödinger operators HrV = −∆x + rV (x) on Rn in
which we give an explicit dependence on r. To do so, we will use the following result from [NTTV20]
that allows to go from a spectral inequality to an observability inequality. (see [BPS18, Theorem 2.1]
for a similar result in which constants are less explicit).

Theorem 3.11 ([NTTV20, Theorem 2.8]). Let P be a non-negative selfadjoint operator on L2 (Rn),
s > 0 and ω ⊂ Rn be measurable. Suppose that there are α0 ≥ 1, α1 ≥ 0 and 0 < ζ < s such that, for
all λ ≥ 0 and φ ∈ Eλ(P ),
(3.29) ‖φ‖2L2(Rn) ≤ α0e

α1λ
ζ‖φ‖2L2(Ω).

Then there exist positive constants κ1, κ2, κ3 > 0 depending only on n, ζ and s, such that for all T > 0
and g ∈ L2(Rn) we have the observability estimate

‖e−tP s

g‖2L2(Rn) ≤
Cobs

T

∫ T

0

‖e−tP s

g‖2L2(ω) dt,

where the positive constant Cobs > 0 is given by

Cobs = κ1α
κ2
0 exp

(
κ3α

s
s−ζ

1 T− ζ
s−ζ

)
.

In [NTTV20], the theorem is stated with s = 1, but this form follows directly from the transfor-
mation formula for spectral measures (see [Sch12, Proposition 4.24]), for all s > 0 and λ ≥ 0 we
have

Eλ(P s) = E
λ

1
s
(P ).

We can now prove the following:

Proposition 3.12. Let r > 0 and V ∈ L1
loc(R

n) satisfying one of Assumptions A1-A2, with corre-
sponding constants c1, c2, β1, β2. Let HrV = −∆+ rV be the Schrödinger operator associated to rV .
Let 0 < γ < 1 and σ ≥ 0 and ω ⊂ R

n be a (γ, σ)-distributed set. Let a±, b± and ε be defined in

Proposition 3.8. Let ζ = β2+2σ
2β1

and s > ζ.

For T > 0 and g ∈ L2(Rn) we have

‖e−THs
rV g‖2L2(Rn) ≤

Cobs(T, s, rV, ω)

T

∫ T

0

‖e−tHs
r g‖2L2(ω) dt

where the positive constant Cobs is given by

(3.30)





C0 exp

[
C1 log

(
1
γ

)
ra− + C2T

− ζ
s−ζ log

s
s−ζ

(
1

γ

)
r

s
s−ζ b− − C3Tr

2s
β1+2

]
for 0 < r < 1

C0 exp

[
C1 log

(
1
γ

)
ra++ε + C2T

− ζ
s−ζ log

s
s−ζ

(
1

γ

)
r

s
s−ζ (b++ε) − C3Tr

2s
β1+2

]
for r ≥ 1

with positive constants C0, C1, C2, C3 depending on n, σ, ε and on c1, c2, β1, β2.

Proof. For P = HrV , Inequality (3.29) was established in Proposition 3.8. Recall that a−, b− is
for 0 < r < 1 and a+, b+ is for r ≥ 1. For 0 < r < 1, we can apply Theorem 3.11 with α0 =

C exp
[
CV,ω log

(
1
γ

)
ra−

]
≥ 1 (we can assume that C ≥ 1), α1 = C log

(
1

γ

)
rb− . we thus get, the

following:
For T > 0 and g ∈ L2(Rn) we have

‖e−T
2 Hs

r g‖2L2(Rn) ≤
C̃obs(T/2, s, rV, ω)

T

∫ T/2

0

‖e−tHs
r g‖2L2(ω) dt

where the positive constant C̃obs(T/2, s, rV, ω) is given by

(3.31) C̃obs(T/2, s, rV, ω) = C0 exp

[
C1 log

(
1

γ

)
ra− + C2T

− ζ
s−ζ log

s
s−ζ

(
1

γ

)
r

s
s−ζ b−

]
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with constants C0, C1, C2 > 0 depending on n, σ and on c1, c2, β1, β2 of Assumptions A1-A2 only.
Next, using Corollary 2.5, we get

(3.32) ‖e−THs
r g‖2L2(Rn) = ‖e−T

2 Hs
r
(
e−

T
2 Hs

r g
)
‖2L2(Rn) ≤ e−

µ∗
2 r

2s
β1+2 T ‖e−T

2 Hs
r g‖2L2(Rn)

with µ∗ depending only on c1, β1 and n. Combining (3.31) and (3.32) we obtain (3.30) with C3 = µ∗/2

and Cobs(T, s, rV, ω) = C̃obs(T/2, s, rV, ω) exp
(
− C3Tr

2s
β1+2

)
.

For r ≥ 1, the proof is the same by replacing a− and b− with a+ + ε and b+ + ε, and the constants
will also depend on ε. �

Simple calculus shows the following:

Lemma 3.13. With the notation and conditions of Proposition 3.12

(i) for every T > 0, sup0<r<1 Cobs(T, s, rV, ω) < +∞ if and only if a−, b− ≥ 0 in which case we
obtain

sup
0<r<1

Cobs(T, s, rV, ω) ≤ A0(T, s, γ) := C0

(
1

γ

)C2

exp

[
C2T

− ζ
s−ζ log

s
s−ζ

(
1

γ

)]
.

(ii) If
2s

β1 + 2
> ν := max

(
a+,

s

s− ζ
b+

)
then supr≥1Cobs(T, s, rV, ω) < +∞. Further,

sup
r≥1

Cobs(T, s, rV, ω) ≤ A1(T, s, γ) :=




C0 expC4T

−(δ+ ζ
s−ζ (1+δ)) log

s
s−ζ (1+δ)

(
1
γ

)
for T ≤ 1

C0 expC5T
−δ log

s
s−ζ (1+δ)

(
1
γ

)
otherwise

where δ =

(
s

β1 + 2
− ν

2

)−1

and C4, C5 do not depend on T, γ.

Proof. The first bound is trivial, for the second one, we use that

sup
r≥1

Cobs(T, s, rV, ω) ≤ C0 sup
r≥1

exp

[
C1 min(1, T )−

ζ
s−ζ log

s
s−ζ

(
1

γ

)
rν+

s
s−ζ ε − C3Tr

2s
β1+2

]

where ε is chosen to be

0 < ε =
1

2

(
2s

β1 + 2
− ν

)
s− ζ

s
<

(
2s

β1 + 2
− ν

)
s− ζ

s
.

and then that supr≥1 exp(Ar
u −Brv) = exp

v − u

u
A

(
Au

Bv

)1/(v−u)

when 0 < u ≤ v. �

Remark 3.14. From Remark 3.10 we get that, if V, Ṽ both satisfy Assumption A1 or Assumption
A2 with same paramerters c1, c2, β1 and β2, then

sup
r≥0

Cobs(T, s, rV + Ṽ , ω) . sup
r≥1

Cobs(T, s, rV, ω).

Lemma 3.15. With the notation and conditions of Proposition 3.12 and assuming that s > ζ, the

condition
2s

β1 + 2
> ν := max

(
a+,

s

s− ζ
b+

)
(resp.

2s

β1 + 2
= ν) simplifies to the following:

(i) if V satisfies Assumption A1, s > sA1 :=
β1 + 2

4
;

(ii) if V satisfies Assumption A2, s > sA2 :=
β1 + 2

3
.

Proof. (i) Let us first assume that V satisfies Assumption A1. Remember that

a+ =
1

2
, b+ =





1− σ − 2ζ

β1 + 2
≤ 0 if (β1 − β2)σ = 0

max

(
1

2
− σ

β1 + 2
,

1

β1 + 2

)
− 2ζ

β1 + 2
if (β1 − β2)σ 6= 0

.
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In particular,
2s

β1 + 2
> a+ is satisfied if and only if s > sA1 . We will thus assume that s > sA1 and

we only need to prove that
2s

β1 + 2
>

s

s− ζ
b+ as well. As s > ζ, this is equivalent to

(3.33) s >
β1 + 2

2
b+ + ζ.

Using again that s > ζ, this is obviously satisfied if b+ ≤ 0, hence we only need to consider the case
b+ > 0, i.e.,

b+ = max

(
1

2
− σ

β1 + 2
,

1

β1 + 2

)
− 2ζ

β1 + 2
> 0.

As ζ ≥ 1

2
, b+ can only be positive when

b+ =
1

2
− σ

β1 + 2
− 2ζ

β1 + 2
.

Substitute this into (3.33) we obtain the equivalent form

s >
β1 + 2

4
− σ

2
= sA1 −

σ

2

which is clearly satified under our assumption s > sA1.

(ii) Let us now assume that V satisfies Assumption A2 with 3β2 ≤ 4β1+2 and s > sA2. Remember
that

a+ =
2

3
, b+ =

2

3
−
(

σ

β1 + 2
+

β2
2β1

+
2ζ

β1 + 2

)

Again,
2s

β1 + 2
> a+ is equivalent to s > sA2 . We thus assume that s > sA2 and we only need to prove

(3.33) which, in this case, is equivalent to

s > sA2 −
β1 + 2

2

(
σ

β1 + 2
+

β2
2β1

+
2ζ

β1 + 2

)

and is thus clearly satisfied when s > sA2.

Assume that V satisfies Assumption A2 with 3β2 > 4β1 + 2. Remember that

a+ =
2

3
, b+ =





1

β1 + 2
− β2

(β1 + 2)β1
≤ 0 if σ = 0

max

(
2

3
− σ

β1 + 2
,

1

β1 + 2

)
− 2ζ

β1 + 2
if σ 6= 0

.

As for the previous case, we have to impose s > sA2 and only need to show that
2s

β1 + 2
>

s

s− ζ
b+.

This is satisfied when b+ ≤ 0 so that we only need to consider the case σ > 0 and

b+ =
2

3
− 2ζ + σ

β1 + 2

since 2ζ ≥ 1. Substitute this into (3.33) we want s > sA2−(4ζ+2σ) which follows from the assumption
s > sA2. �

Let us now determine under which conditions

sup
r>0

Cobs(T, s, rV, ω) < +∞.

By Lemma 3.13 (i) it is necessary to ensure

a− ≥ 0 and b− ≥ 0.

From Proposition 3.8, this only happens in the following cases:

(i) If V satisfies Assumption A1, a−, b− ≥ 0 is equivalent to ζ := β2+2σ
2β1

=
1

2
which, as β2 ≥ β1

and σ ≥ 0, reduces to β2 = β1 and σ = 0.
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(ii) If V satisfies Assumption A2 and 3β2 − 4β1 − 2 ≤ 0, then b− < 0 unless σ(3β2 − 4β1 − 2) = 0

and in this case b− = −
(

σ

β1 + 2
+

β2 − β1
β1(β1 + 2)

)
< 0 unless β2 = β1 and σ = 0. Note that

again ζ =
1

2
in this case.

Note also that if β1 = β2 then 3β2 − 4β1 − 2 = −(β1 +2) < 0 so that, if V satisfies Assumption A2,
b− ≥ 0 if and only if β2 = β1 and σ = 0.

Now it remains to make sure that

sup
r≥1

Cobs(T, s, rV, ω) < +∞.

By Lemma 3.15 it is sufficient to assume that s > sA1 (resp. s > sA2) under Assumption A1 (resp.
Assumption A2). Hence we obtain the following corollary from Lemma 3.13 and Lemma 3.15.

Corollary 3.16. With the notation and conditions of Proposition 3.12, then

sup
r>0

Cobs(T, s, rV, ω) < +∞

if

(i) V satisfies Assumption A1 with β1 = β2, σ = 0 and s > sA1;
(ii) V satisfies Assumption A2 with β1 = β2, σ = 0 and s > sA2.

Further if V satisfies Assumption A1 (resp. V satisfies Assumption A2) and the above conditions is

satisfied, then set sA = sA1(resp. sA = sA2), δ =
2(β1+2)
s−sA

, then

(a) if s > sA and T ≤ 1,

(3.34)
B−(T, s, rV, ω) := sup

r>0
Cobs(s, rV, ω) .

(
1

γ

)C1

exp

[
C2T

− 1
2s−1 log−

2s
2s−1

(
1

γ

)]

+ exp

[
C3T

−δ− 1+δ
2s−1 log−

2s
2s−1 (1+δ)

(
1

γ

)]
;

(b) if s > sA and T ≥ 1,

(3.35)
B+(T, s, rV, ω) := sup

r>0
Cobs(s, rV, ω) .

(
1

γ

)C1

exp

[
C2T

− 1
2s−1 log−

2s
2s−1

(
1

γ

)]

+ exp

[
C3T

−δ log−
2s

2s−1 (1+δ)

(
1

γ

)]
;

4. Essential self adjointness of Baouendi-Grushin operators

The results and the proofs in this section are essentially the same as for [DM21, Proposition 3.1].

For f ∈ L1(Rn × Rm), we write its partial Fourier transform as

F2[f ](x, η) = fη(x) = (2π)−m/2

∫

Rm

f(x, y)e−i〈y,η〉 dη η ∈ R
m.

For f ∈ L1(Rn × Rm) ∩ L2(Rn × Rm), Parseval’s relation writes ‖F2[f ]‖L2(Rn+m) = ‖f‖L2(Rn+m). We
may thus extend F into a unitary transform on L2(Rn × Rm) and in particular fη is well defined for
almost every η and, for u ∈ L2(Rn), v ∈ L2(Rm),

∫

Rn+m

f(x, y)u(x)v(y) dxdy =

∫

Rm

∫

Rn

F2[f ](x, η)u(x) dx v̂(η) dη

where û (resp. v̂) is the usual Fourier transforms of u in L2(Rn), resp. of v in L2(Rm).
We will use the same notation for f ∈ L1(Rn × Tm), and its partial Fourier coefficient as

Fp
2 [f ](x, k) = fk(x) = (2π)−m/2

∫

Tm

f(x, y)e−i〈y,k〉 dη k ∈ Z
m.
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For f ∈ L1(Rn × Tm) ∩ L2(Rn × Tm), Parseval’s relation writes ‖F2[f ]‖L2(Rn,ℓ2(Zm) = ‖f‖L2(Rn×Tm).
We may thus extend F into a unitary transform from L2(Rn × Tm) to L2(Rn, ℓ2(Zm). In particular,
for u ∈ L2(Rn), v ∈ L2(Tm),

∫

Rn×Tm

f(x, y)u(x)v(y) dxdy =
∑

k∈Zm

∫

Rn

F2[f ](x, k)u(x) dx ck(v)

where
(
ck(v)

)
k∈Zm are the usual Fourier coefficients of v.

Proposition 4.1. Let V ∈ L1
loc(R

n) and assume that V satisfies assumption A2 Let LV = −∆x −
V (x)∆y, then L is essentially self-adjoint on L2(Rn × Rm) as well as on L2(Rn × Tm).

Proof. Let L∗ be the Hilbert adjoint of L on L2(Rm+n). According to [RS72, Corollary of Theorem
VIII.3] it is enough to show that, for every λ ∈ C \ R, L∗ − λ is one-to-one. We thus want to show
that, if f ∈ L2(Rn+m) is such that, for every ϕ ∈ C∞

c (Rn+m),
∫

Rn+m

f(x, y)
(
−∆x − V (x)∆y − λ

)
ϕ(x, y)dxdy = 0

then f = 0.
Taking ϕ(x, y) = u(x)v(y) with u, v smooth and compactly supported, we assume that

0 =

∫

Rm

∫

Rn

f(x, y)
(
−∆u(x)− λu(x)

)
dx v(y)dy −

∫

Rm

∫

Rn

f(x, y)V (x)u(x)dx∆v(y) dy

=

∫

Rm

∫

Rn

F2[f ](x, η)
(
−∆+ |η|2V (x)− λ

)
u(x)dx v̂(η) dη.

This implies that, for every u ∈ Cc(Rn),
∫

Rn

F2[f ](x, η)
(
−∆+ |η|2V (x) − λ

)
u(x)dx = 0

for almost every η. Consider the Schrödinger operator Hη = −∆+ |η|2V (x) which, under assumption
A2 is essentially self-adjoint so that, if g ∈ L2(Rn), then

∫

Rn

g(x)
(
Hη − λ

)
u(x)dx = 0

for every u ∈ C∞
c (Rn) implies that g = 0 a.e. We conclude that F2[f ](x, η) = 0 for almost every x and

almost every η so that f = 0 a.e.
On L2(Rn × Tm), we replace partial Fourier transform with partial Fourier coefficients. �

5. Proof of the exact observability inequalities

We are now ready to prove the main theorem. Let us recall what we want to prove in the synthetic
table, Table 1.

Assumption A2 Assumption A1

s > (β1 + 2)/3
s > (β + 2)/3, exactly null-controllable

for any T > 0 exactly null-controllable

s > (β1 + 2)/4
s ≤ (β1 + 2)/3

s ≤ (β1 + 2)/4
not known under Assumption A2 not known under Assumption A1

see Remark 1.11 for the standard case see Remark 1.11 for the standard case

Table 1. Exactly null-controllability results from equidistributed sets. For the case
y ∈ Rm, we need to set β1 = β2, while for the case y ∈ Tm we do not need this
condition.

As already mentionned, it is enough to prove the observability properties. Let us start with the
non-periodic case. The observability equation corresponding to (EBG,s) is the following:
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Theorem 5.1. Let T > 0, β1 = β2 > 0, and γ > 0. Let V ∈ L1
loc(R

n) that satisfies Assumption A1
(resp. Assumption A2) and let LV = −∆x−V (x)∆y be the corresponding Baouendi-Grushin operator
on Rn × Rm. Let ω ⊂ Rn be a γ-equidistributed set. If s > sA1 (resp. s > sA2), then the there exists
a constant CL

obs(T, s, V, ω) such that the inequality

∥∥∥e−TLs
V f
∥∥∥
L2(Rn×Rm)

≤ CL
obs(T, s, V, ω)

∫ T

0

∥∥∥e−tLs
V f
∥∥∥
L2(ω×Rm)

dt

holds for every f ∈ L2(Rn × Rm).

Proof. We have, using Fubini, Parseval (for F2) and Proposition 3.12
∥∥∥e−TLs

V u
∥∥∥
2

L2(Rn×Rm)
=

∥∥∥F2[e
−TLs

V u]
∥∥∥
2

L2(Rn×Rm)
=

∫

Rm

∫

Rn

∣∣∣e−THs
|η|2V F2[u](x, η)

∣∣∣
2

dxdη

≤
∫

Rm

Cobs(T, s, |η|2V, ω)
T

∫ T

0

∫

ω

∣∣∣e−tHs
|η|2V F2[u](x, η)

∣∣∣
2

dxdη dt

≤ supr>0 Cobs(T, s, rV, ω)

T

∫ T

0

∫

ω

∫

Rm

∣∣∣e−tHs
|η|2V F2[u](x, η)

∣∣∣
2

dxdη dt

=
supr>0 Cobs(T, s, rV, ω)

T

∫ T

0

∫

ω

∫

Rm

∣∣∣e−tLs
V u(x, y)

∣∣∣
2

dxdy dt

provided

CL
obs(T, s, V, ω) :=

1

T
sup
r>0

Cobs(T, s, rV, ω) < +∞.

It remains to use Proposition 3.12 and Lemma 3.13 to conclude that the observability inequality holds
in the listed case. �

Remark 5.2. The proof actually also provides an estimate of the observability constants, namely,

when s > sA1 (resp. s > sA2) and CL
obs(T, s, V, ω) .

B−(T, s, ω, V )

T
when T < 1 and C(T, s, ω, V ) .

B+(T, s, ω, V )

T
when T ≥ 1 where B− and B+ are defined in (3.34)-(3.35);

Next, we show that adding a zero-order term to LV allows to obtain observability corresponding to
(EBGS,s) from smaller sets:

Proposition 5.3. Let T > 0, σ ≥ 0, and γ > 0. Let V, Ṽ ∈ L1
loc(R

n) that satisfy Assumption

A2 (resp. Assumption A1) with same parameters β1, β2 and let LV,Ṽ = −∆x − V (x)∆y + Ṽ be the

corresponding Baouendi-Grushin-Schrödinger operator on Rn×Rm. Let ω ⊂ Rn be a (γ, σ)-distributed
set. Assume further that s, β1, β2, σ, T satisfy (ii) or (iii) with in Lemma 3.13.

Then the there exists a constant CL
obs(T, s, V, Ṽ , ω) such that for every f ∈ L2(Rn × Rm)

∥∥∥e−TLs
V,Ṽ f

∥∥∥
L2(Rn×Rm)

≤ CL
obs(T, s, V, Ṽ , ω)

∫ T

0

∥∥∥e−tLs
V,Ṽ f

∥∥∥
L2(ω×Rm)

dt.

Proof. We have, using Fubini, Parseval (for F2) and Proposition 3.12
∥∥∥e−TLs

V,V0u
∥∥∥
2

L2(Rn×Rm)
=

∥∥∥F2[e
−TLs

V,V0u]
∥∥∥
2

L2(Rn×Rm)
=

∫

Rm

∫

Rn

∣∣∣e−THs
|η|2V +V0F2[u](x, η)

∣∣∣
2

dxdη

≤
∫

Rm

Cobs(T, s, (1 + |η|2)V, ω)
T

∫ T

0

∫

ω

∣∣∣e−tHs
|η|2V +V0F2[u](x, η)

∣∣∣
2

dxdη dt.

Here we use Remark 3.14 to absorb Ṽ into V . We thus get
∥∥∥e−TLs

V,V0u
∥∥∥
2

L2(Rn×Rm)
≤ supr≥1 Cobs(T, s, rV, ω)

T

∫ T

0

∫

ω

∫

Rm

∣∣∣e−tLs
V,V0u(x, y)

∣∣∣
2

dxdy dt

provided

CL
obs(T, s, V, Ṽ , ω) :=

1

T
sup
r>1

Cobs(T, s, rV, ω) < +∞.

It remains to use Lemmas 3.13 and 3.15 to conclude. �
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We finally treat the semi-periodic case:

Theorem 5.4. Let T > 0, β2 ≥ β1 > 0, and γ > 0. Let V ∈ L1
loc(R

n) that satisfies Assumption A1
(resp. Assumption A2) and let LV = −∆x−V (x)∆y be the corresponding Baouendi-Grushin operator
on Rn × Tm. Let ω ⊂ Rn be a γ-equidistributed set. If s > sA1 (resp. s > sA2), then there exists a
constant CL

obs(T, s, V, ω) such that the inequality

∥∥∥e−TLs
V f
∥∥∥
L2(Rn×Tm)

≤ CL
obs(T, s, V, ω)

∫ T

0

∥∥∥e−tLs
V f
∥∥∥
L2(ω×Tm)

dt

holds for every f ∈ L2(Rn × Tm).

Proof. We have, using Fubini and Parseval (for Fp
2 )

‖e−TLs
V u‖2L2(Rn×Tm) = ‖Fp

2 [e
−TLs

V u]‖2L2(Rn×Tm) =
∑

k∈Zm

∫

Rn

∣∣∣e−THs
|k|2V Fp

2 [u](x, k)
∣∣∣
2

dx.

For k = 0, we use that a γ-equidistributed set is also γ-thick. Then, as H0V = ∆ we can appeal to
Theorem 1.4 to bound

∫

Rn

∣∣∣e−THs
0V Fp

2 [u](x, k)
∣∣∣
2

dx ≤ C

∫ T

0

∫

ω

∣∣∣e−THs
0V Fp

2 [u](x, k)
∣∣∣
2

dxdt.

For k 6= 0, we have |k| ≥ 1. Then we apply Lemma 3.13, Lemma 3.15 and Proposition 3.12 to
obtain

∑

k∈Zm\{0}

∫

Rn

∣∣∣e−THs
|k|2V Fp

2 [u](x, k)
∣∣∣
2

dx ≤ C
∑

k∈Zm\{0}

∫ T

0

∫

ω

∣∣∣e−THs
|k|2V Fp

2 [u](x, k)
∣∣∣
2

dxdt.

Grouping both estimates and applying Parseval’s relation gives us the desired observability inequality.
�

Note that the k = 0 case in the above proof requires ω to be γ-thick so that, for this proof to work
for (γ, σ)-distributed sets, one needs σ = 0.
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