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Abstract: This paper assesses the feasibility of performing topology optimization of laminar 1

incompressible flows governed by the steady state Navier–Stokes equations using anisotropic 2

mesh adaptation to achieve a high-fidelity description of all fluid-solid interfaces. The present 3

implementation combines an immersed volume method solving stabilized finite element formulations 4

cast in the Variational Multiscale (VMS) framework, and level set representations of the fluid-solid 5

interfaces, used as a posteriori anisotropic error estimator to minimize the interpolation error under 6

the constraint of a prescribed number of nodes in the mesh. Numerical results provided for several 7

two-dimensional problems of power dissipation minimization show that the optimal designs are 8

mesh-independent (although the convergence rate does decreases as the number of nodes increases), 9

agree well with reference results from the literature, and provide superior accuracy over prior studies 10

solved on isotropic meshes (fixed or adaptively refined). 11

Keywords: Topology Optimization; Fluid mechanics; Level Set Method; Anisotropic mesh 12

adaptation 13

1. Introduction 14

Fluid flow topology optimization is the process of finding the best path for a fluid to 15

flow in a prescribed design domain to maximize a measure of performance under a set of 16

design constraints, for instance, to minimize dissipation subject to a constant volume of 17

fluid. Such an approach originates from solid mechanics [1,2], where it has matured into a 18

powerful, reliable and increasingly available tool for engineers in the early stages of complex 19

structural design processes at the component level [3,4]. It has since spread to a variety of 20

other physics modeled after partial di�erential equations; see Refs. [5,6] for surveys of the 21

evolving methods and applications, and Ref. [7] for a recent literature review within the 22

context of fluid flow problems. Topology optimization has mathematical foundation built 23

on iterative analysis and design update steps, often steered by gradient evaluations. What 24

stands out (compared to the size and shape optimization methods it has emerged from) is 25

the great design freedom, that allows generating non-intuitive designs from arbitrary initial 26

guesses, possibly meeting conflicting requirements and complex interdependencies between 27

design parameters and system response. 28

We leave aside here explicit boundary methods, that represent the fluid-solid interface 29

by edges or faces of a body-fitted mesh, and have limited flexibility to handle complicated 30

topological changes. The prevalent classes of methods for topology optimization are the 31

density and level set methods. Density methods rely on a Brinkman penalization of the 32

solid domain, where the flow is modeled as a fictitious porous material with very low 33

permeability [1,8,9]. They manage drastic topological changes, as the gradient information 34

(or sensitivity) is distributed over a large part of the domain, but can lead to spurious or 35

leaking flows if the penalization factor is not well-calibrated, since the velocity and pressure 36

fields are computed in the entire domain (both the solid and fluid regions). Level set 37
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methods conversely model the solid boundaries by iso-contours of a level set function [10–12]. 38

They lack a nucleation mechanism to create new holes, due to the sensitivities being located 39

only at the solid-fluid interface, which is often relieved using initial designs with many holes. 40

Meanwhile, they easily handle complicated topological changes (e.g., merging or cancellation 41

of holes), and allow for well defined, crisp interface representations while avoiding the 42

intermediate material phases (grayscales) and mesh-dependent spatial oscillations of the 43

interface geometry (staircasing) often encountered in density methods [13]. 44

The norm in topology optimization is to employ fixed finite element meshes with 45

close-to-uniform element size, small enough that all relevant physical phenomena are reliably 46

captured, but not so small that the cost of performing the optimization becomes una�ordable. 47

A recent trend has been to use adaptive remeshing techniques to maintain a competitive 48

computational cost. Such an approach consists in generating a coarse base grid, then in 49

adding recursively finer and finer subgrids in the regions requiring higher resolution. This 50

repeats either until a maximum level of refinement is reached, or until the local truncation 51

error drops below a certain tolerance, for more sophisticated implementations endowed with 52

error estimation routines. Within the context of fluid flow problems, particular emphasis 53

has been put on (but not limited to) adaptive meshing refinement (AMR) schemes, using 54

both density [14,15] and level set methods [16,17]; see also [18] for an application to phase 55

field methods1 and [19–21] for recent e�orts applying a di�erent remeshing scheme to a 56

combination of level set functions and adaptive body-conforming meshes. 57

There is still ample room for progress, though, as almost all adaptive algorithms 58

applied so far to fluid flow topology optimization support only isotropic size maps. Fluid 59

dynamics conversely involves convection dominated phenomena for which anisotropic meshes 60

are highly desirable [22], especially in the vicinity of the solid boundaries, where the fluid 61

velocity exhibits steep gradients in the wall-normal direction and skin-friction plays a 62

defining role. The premise of this study is that the ability to generate highly stretched 63

elements in boundary layer regions can substantially increase the accuracy of the geometric 64

representation, compared to what is often seen in topology optimization of flow problems, 65

and naturally convey said accuracy to the numerical solution without sophisticated inter- 66

polation or discretization techniques. We note that this is all perfectly in line with the 67

recommendations made in [7] to improve upon the current state of the art. Nonetheless, our 68

literature review did not reveal any other study combining anisotropic mesh adaptation and 69

fluid flow topology optimization, besides the density-based optimisation of Stokes flow in 70

Ref. [15], possibly because the notorious di�culty of finding spatial discretization schemes 71

that meet the level of robustness required by automatic anisotropic mesh adaptation. 72

This research intends to fill the gap by introducing a novel numerical framework for 73

topology optimization of Navier–Stokes flows. The latter combines level set methods and 74

anisotropic mesh adaptation to handle arbitrary geometries immersed in an unstructured 75

mesh. The Navier–Stokes system is solved by a variational multiscale (VMS) stabilized 76

finite element method supporting elements of aspect ratio up to the order of 1000:1 [23]. 77

The same numerical method is used to solve the adjoint Navier–Stokes system underlying 78

the sensitivity analysis needed to evolve the level set function. The metric map providing 79

both the size and the stretching of mesh elements in a very condensed information data is 80

derived from the level set. A posteriori anisotropic error estimator is then used to minimize 81

the interpolation error under the constraint of a prescribed number of nodes in the mesh. 82

The latter can be adjusted over the course of optimization, meaning that the base grid can 83

be either refined or coarsened on demand. This contrasts with AMR, whose total number 84

of mesh elements cannot be controlled, and whose mesh cannot be coarsened further than 85

its base configuration. Since it reduces the cost of modelling the solid material away from 86

the interface, such an approach is expected to achieve further speed-ups while also helping 87

improve manufacturability of the optimal design, which remains an issue as most classical 88

1 Another class of interface capturing schemes that remain less popular due to the larger computational
cost and the di�culty of numerically discretizing the biharmonic phase-field equation.
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topology optimization methods render organic designs that can be di�cult to translate into 89

computer-aided design models. 90

The paper is organized as follows: the governing equations are formulated in Sec. 2. 91

The anisotropic mesh adaptation algorithm and the immersed, stabilized finite element 92

numerical framework used to perform the design update step are described in Secs. 3 and 4, 93

respectively. The details of the implemented topology optimization algorithm are provided 94

in Sec. 5. Finally, numerical experiments showcasing the potential of the approach on 95

two-dimensional power dissipation minimization problems are presented in section 6, with 96

particular attention paid to highlighting the improved accuracy and mesh-independence of 97

the obtained solutions. 98

2. Immersed model for fluid flow topology optimization 99

In the following, we denote by W a fixed, open bounded domain in Rd (with d the space 100

dimension), with boundary ˆW oriented with inward-pointing normal vector n. Throughout 101

this study, W = Wf ∪Ws is the disjoint reunion of two domains Wf and Ws (for simplicity, 102

we refer to Wf as the fluid domain, and to Ws as the solid domain, although we also fill 103

Ws with a fluid for numerical convenience, as further explained in the following). The two 104

domains are separated by an interface G = Wf ∩Ws, whose position we seek to optimize with 105

respect to a certain measure of performance, here a cost function J to minimize. 106

2.1. State equations 107

Mathematically, the problem is characterized by a set of physical variables determined
as the solutions of partial di�erential equations, themselves derived from modeling con-
siderations. Here, the flow motion in the fluid domain Wf is modeled after the steady
incompressible Navier–Stokes equations

∇ ⋅u =0 in Wf , (1)
flu ⋅ ∇u =−∇p+∇ ⋅ (2µÁ(u)) in Wf , (2)

where u is the velocity, p is the pressure, Á(u) = (∇u+∇u
T )�2 is the rate of deformation

tensor, and we assume constant fluid density fl and dynamic viscosity µ. The fluid domain
boundary ˆWf is split into (wall) interface G, inlet Gi, i.e., the combined boundary of all
surfaces where fluid enters the domain, and outlet Go, i.e., the combined boundary of all
surfaces where fluid leaves the domain. Open flow boundary conditions are appended under
the form of a prescribed velocity at the inlet, zero pressure and viscous stress conditions at
the outlet, and zero velocity at the interface, hence

u =ui on Gi , (3)
pn = µÁ(u) ⋅n =0 on Go , (4)

u =0 on G . (5)

2.2. Adjoint-based sensitivity analysis 108

We assume in the following that the cost function (i) can be formulated as a surface 109

integral over the domain boundary (rather than its interior), and (ii) does not depend on 110

the flow quantities on the wall, which is most often true in topology optimization. It is thus 111

expressed as integrals over all or any part of inlet and/or outlet , i.e., 112

Js = �
Gi∪Go

Jds . (6)
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The problem of minimizing the cost function subject to Navier–Stokes as state equations is 113

tackled using the continuous adjoint method. The reader interested in the technicalities of 114

the method is refereed to [24]. One first forms the Lagrangian 115

L = �
Gi∪Go

J ds−�
Wf

p̃∇ ⋅u dv −�
Wf

ũ ⋅ (flu ⋅ ∇u+∇p−∇ ⋅ (2µÁ(u))dv , (7)

featuring the adjoint velocity ũ as the Lagrange multiplier for the momentum equations (2) 116

and the adjoint pressure p̃ as the Lagrange multiplier for the continuity equation (1). One 117

then seeks to decompose the variation of L due to a change in the interface position into 118

individual variations with respect to the adjoint, state and design variables. The variation 119

with respect to the adjoint variables 120

”(ũ,p̃)L = −�
Wf

”p̃∇ ⋅u dv −�
Wf

”ũ ⋅ (flu ⋅ ∇u+∇p−∇ ⋅ (2µÁ(u))dv , (8)

is trivially zero as long as (u, p) is solution to the above Navier–Stokes equations, in which
case L = Js. After integrating by parts, the variation with respect to the state variables is

”(u,p)L =�
Wf

(∇ ⋅ ũ)”p dv +�
Wf

(−flu ⋅ ∇ũ+ fl∇u
T ⋅ ũ−∇p̃−∇ ⋅ (2µÁ(ũ))) ⋅ ”u dv

+�
Gi∪Go

ˆuJ ⋅ ”u ds+�
ˆWf

(p̃n+ 2µÁ(ũ) ⋅n+ fl(u ⋅n)ũ) ⋅ ”u ds

−�
Gi∪Go

ˆpJn ⋅ (−”pn+ 2µÁ(”u) ⋅n)ds−�
ˆWf

ũ ⋅ (−”pn+ 2µÁ(”u) ⋅n)ds , (9)

on behalf of the viscous stress being purely tangential in incompressible flows. At this
stage, adjoint equations and boundary conditions are designed to ensure ”(u,p)L = 0, which
requires the domain and boundary integrals to vanish individually in (9). Keeping in mind
that we work here under the assumption of a fixed interface (since the design variable is
constant), we obtain the linear, homogeneous problem

∇ ⋅ ũ =0 in Wf , (10)
−flu ⋅ ∇ũ+ fl∇u

T ⋅ ũ =∇p̃+∇ ⋅ (2µÁ(ũ)) in Wf , (11)

driven by the non-homogeneous boundary conditions

ũ =− ˆpJn on Gi , (12)
p̃n+ 2µÁ(ũ) ⋅n+ fl(u ⋅n)ũ =− ˆuJ on Go , (13)

ũ =0 on G , (14)

associated to (3)-(5). Note, the minus sign ahead of the first term of the adjoint momentum 121

equation (11) reflects the reversal in directionality due to the non-normality of the linearized 122

evolution operator [25]. Expressing the interface normal deformation after [26] as 123

”u = —∇u ⋅n , (15)

the variation with respect to the design variable (now encompassing the domain deformation) 124

is ultimately computed as 125

”—Js ≡ ”—L = �
G

—(p̃n+ 2µÁ(ũ) ⋅n) ⋅ (∇u ⋅n)ds = �
G

—µ(∇ũ ⋅n) ⋅ (∇u ⋅n)ds ,

where the last equality stems from the incompressibility of the state and adjoint solutions [24]. 126

This enables e�cient design update schemes via first-order gradient descent methods, as the 127

second term in the integrand is the desired sensitivity to a displacement — at some specific 128
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point of the interface. For instance the simplest steepest-descent algorithm implemented 129

herein moves down the cost function, in the direction of the steepest slope using 130

— = −µ(∇ũ ⋅n) ⋅ (∇u ⋅n) , (16)

up to a positive multiplicative factor to control the step taken in the gradient direction. 131

2.3. Level set representation of the interface 132

The level set method is used here to localize and capture the interface between the 133

fluid and solid domains from the zero iso-value of a smooth level set function, classically the 134

signed distance function defined as 135

Ï(x) =
�������������

−dist(x, G) if x ∈ Wf ,
0 if x ∈ G ,
dist(x, G) if x ∈ Ws ,

(17)

with the convention that Ï < 0 in the fluid domain. Once the sensitivity analysis has output 136

a displacement — in the direction of the steepest slope, the position of the level set is updated 137

solving a transport equation with normal velocity —n�D· , where D· is a pseudo-time step 138

to convert from displacement to velocity, that has no physical relevance since we are not 139

concerned by the absolute displacement of a given point on the interface, only by its relative 140

displacement with respect to its neighbors. This equation is posed in the whole domain 141

W, which is because the normal vector recovered at the interface as n = ∇Ï���∇Ï�� is easily 142

extended to W using (17). The main problem with this approach is that the level set after 143

transport is generally no longer a distance function, which is especially problematic when a 144

specific remeshing strategy depending on the distance property is used at the interface (as is 145

the case in this study). As a result, the distance function needs to be reinitialized, which is 146

done here using a coupled convection-reinitialization method wherein the level set function 147

is automatically reinitialized during the resolution of the transport equation. In practice, 148

the signed distance function is cut o� using a hyperbolic tangent filter, as defined by 149

„ = E tanh�Ï

E
� , (18)

with E the cut-o� thickness, so the metric property is asymptotically satisfied in the vicinity 150

of the zero iso-value. This filtered level set is then evolved solving the auto-reinitialization 151

equation 152

ˆ· „+ a· ⋅ ∇„ = S , (19)

where we note 153

a· = —

D·
n+ ⁄

D·
sgn(„) ∇„

��∇„�� , S = ⁄

D·
sgn(„)�1− � „

E
�2� , (20)

and ⁄ is a parameter homogeneous to a length, set to the mesh size h⊥ in the direction 154

normal to the interface. Such an approach is shown in [27–29] to reduce the computational 155

cost and to ensure a better mass conservation compared to the classical Hamilton–Jacobi 156

method in which both steps are performed in succession. Moreover, since the filtered level 157

set defined in (18) is bounded, Dirichlet boundary conditions „ = ±E are easily appended 158

to Eq. (19) to explicitly design fluid and solid sub-regions of ˆW. 159

3. Anisotropic mesh adaptation 160

A primitive pseudo-code of the procedure for solving the topology optimization problem 161

posed in Sec. 2 is provided in the following algorithm: 162
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Algorithm 1 Simplified update scheme
Require: Anisotropic mesh adapted to initial level set function

1: loop

2: Compute state
3: Compute adjoint
4: Compute cost function sensitivity
5: Set displacement in the direction of steepest slope
6: Update level set
7: Generate anisotropic mesh adapted to new level set

to repeat until a maximum number of iterations or a convergence threshold has been reached. 163

In a nutshell, this is done here using a finite element immersed numerical framework com- 164

bining implicit representation of the di�erent domains, level set description of the interface, 165

and anisotropic remeshing capabilities. For the sake of readability, the mesh adaptation 166

algorithm, whose implementation in the context of fluid flow topology optimization makes 167

for the main novelty of this study, is presented here as a stand-alone section. We then walk 168

through each of the other steps in Sec. 4 and review the various problems involved and the 169

numerical methods for solving them. 170

3.1. Construction of an anisotropic mesh 171

The main idea of anisotropic, metric-based mesh adaptation is to generate a uniform 172

mesh (with unit length edges and regular elements) in a prescribed Riemannian metric 173

space, but anisotropic and well adapted (with highly stretched elements) in the Euclidean 174

space. Assuming that, in the context of metric-based adaptation methods, controlling the 175

interpolation error su�ces to master the global approximation error, the objective can be 176

formulated as finding the mesh, made up of at most Nn nodes, that minimizes the linear 177

interpolation error in the L
1 norm. Following the lines of [30,31], an edge-based error 178

estimator combined to a gradient recovery procedure is used to compute, for each node, a 179

metric tensor that prescribes a set of anisotropic directions and stretching factors along 180

these directions, without any direct information from the elements, nor any underlying 181

interpolation. The optimal stretching factor field is obtained by solving an optimization 182

problem using the equi-distribution principle under the constraint of a fixed number of 183

nodes in the mesh, after which a new mesh is generated using the procedure described 184

in [32], based on a topological representation of the computational domain. 185

3.2. Edge error estimate 186

Given a mesh Wh of the domain W, we denote by x
ij the edge connecting a given 187

node x
i to x

j ∈ S(i), where S(i) is the set of nodes connected to x
i, and the number of 188

such nodes is noted as �S(i)�. Also, given a regular analytical (scalar) function Â defined 189

on W, and its P1 finite element approximation Âh computed on Wh, we follow [30] and 190

estimate the interpolation error along the edge x
ij as the projection along the edge of the 191

second derivative of Â. This is obtained projecting along the edge a Taylor expansion of the 192

gradient of Â at x
j to give 193

Áij = �gij ⋅xij � , (21)

where the i and j superscripts indicate nodal values at nodes x
i and x

j , respectively, 194

g
i = ∇Â(xi) is the exact value of the gradient at x

i, and g
ij = g

j − g
i is the variation of 195

the gradient along the edge. Although Eq. (21) involves only values of the gradient at 196

the edge extremities and can thus be evaluated without resorting to ressource expensive 197

Hessian reconstruction methods, this however requires the gradient of Â to be known and 198

continuous at the nodes, which in turn requires full knowledge of Â. Meanwhile, only 199

the linear interpolate Âh is known in practice, whose gradient is piecewise constant and 200
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discontinuous from element to element, although its projection along the edges is continuous 201

since it depends only on the nodal values of the field. 202

A recovery procedure is thus used to build a continuous gradient estimator defined 203

directly at the nodes. It is shown in [30] that a suitable error estimate preserving second- 204

order accuracy is obtained substituting the reconstructed gradient for the exact gradient 205

in (21), to give 206

Áij = �ḡij ⋅xij � , (22)

where ḡ
ij = ḡ

j − ḡ
i and we denote by ḡ

i the recovered gradient of Âh at node x
i. The latter 207

is defined in a least-square sense as 208

ḡ
i = argmin

g∈Rd
�

j∈S(i)
�(g−∇Âh) ⋅xij �2 , (23)

for which an approximate solution using the nodal values as sole input is shown in [30] to be 209

ḡ
i = (Xi)−1⋅ �

j∈S(i)
(Âh(xj)−Âh(xi))xij , (24)

where X
i is the length distribution tensor defined as 210

X
i = 1
�S(i)� �j∈S(i)

x
ij ⊗x

ij , (25)

that gives an average representation of the distribution of the edges sharing an extremity. 211

3.3. Metric construction 212

In order to relate the error indicator Áij defined in (22) to a metric suitable for mesh 213

adaptation purposes, we introduce the stretching factor sij as the ratio between the length 214

of the edge x
ij after and before the adaptation. The metric at node x

i is sought to generate 215

unit stretched edge length in the metric space, that is, 216

(sijx
ij)T ⋅Mi ⋅ (sijx

ij) = 1 , ∀j ∈ S(i) , (26)

for which an approximate least-square solution is shown in [30] to be 217

M
i = ��

d

�S(i)� �j∈S(i)
s

2
ijx

ij ⊗x
ij��
−1

, (27)

provided the nodes in S(i) form at least d non co-linear edges with x
i (which is the case 218

if the mesh is valid). The metric solution of (27) is ultimately computed setting a target 219

total number of nodes Nn. Assuming a total error equi-distributed among all edges, the 220

stretching factor is shown in [31] to be 221

sij =
����
�
i

Ni(1)
Nn

����

2
d

Á
−1�2
ij , (28)

where Ni(1) is the number of nodes generated in the vicinity of node x
i for a unit error, 222

given by 223

Ni(1) = ��det
�
�

d

�S(i)� �j∈S(i)
Á

1�2
ij

x
ij

�xij � ⊗
x

ij

�xij �
�
�
�
�
−1�2

. (29)
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3.4. Summary 224

In order to simplify and clarify the presentation, the main steps needed for metric 225

construction at the nodes is summarized in the following algorithm: 226

Algorithm 2 Anisotropic mesh adaptation algorithm
Require: Anisotropic adapted mesh

1: Set number of nodes Nn

2: Compute Âh on current mesh
3: for each node x

i
do

4: Compute length distribution tensor X
i using (25)

5: Compute nodal recovered gradient.ḡi using (24)
6: for all edges x

ij
do

7: Compute edge recovered gradient ḡ
ij

8: Compute edge-based error Áij using (22)
9: Compute stretching factor sij using (28)

10: Compute metric M
i using (27)

11: Generate new mesh by local improvement in the neighborhood of the nodes and edges [32]
12: Interpolate Âh on new mesh

where classical linear interpolation from one mesh to another is applied. 227

3.5. Level set-based adaptation criteria 228

In practice, the variable used for error estimation purpose is the filtered level set 229

defined in (18), as it satisfies the metric property in a thin layer around the interface (in 230

particular it preserves the zero iso-value of Ï, which is the only relevant information for 231

mesh adaptation purposes), but avoids unnecessary adaption of the mesh further away 232

from the interface (where the interpolation error is close-to-zero, due to ��∇„�� ∼ 0). This 233

means that the criterion for mesh adaptation is purely geometric, i.e., the same mesh is 234

pre-adapted around the fluid-solid interface, then used to compute all quantities needed 235

to perform the next design update step. The flexibility of the proposed mesh adaptation 236

technique is illustrated in Figs. 1 and 2, where a solid circle, square and regular pentagram 237

defined by level set functions have been immersed close to the boundary of a square cavity 238

filled with fluid, to assess the capability to handle di�erent features (angles, singular points, 239

curvatures) even under drastic conditions. Four meshes made up of 500, 1000, 2500 and 240

5000 nodes are considered, each of which comes in two flavors, one structured and the 241

other anisotropic, adapted to the level set. On the one hand, the adapted meshes exhibit 242

the expected orientation and deformation of the mesh elements, whose longest edges are 243

parallel to the solid boundaries. On the other hand, they are naturally and automatically 244

coarsened in smooth regions where the filtered level set is constant, while extremely refined 245

near the interface. Also, the transition is finer with an anisotropic adaptive mesh, which 246

allows maintaining a very good accuracy even for a low number of nodes, as evidenced in 247

Fig. 2 by the zero iso-value of the level sets. More quantitative results are available in [33], 248

where it is shown that at least ten times more elements are required in a structured mesh 249

to achieve the same accuracy, as measured computing the total perimeter and area of the 250

three immersed objects. 251

Nonetheless, it is worth mentioning that the approach also supports more complex 252

adaptation criteria featuring physical quantities, thus providing the ability to dynamically 253

adapt the mesh during the simulations. The common method to adapt a mesh to several 254

variables is to combine the metrics corresponding to each individual variable using metric 255

intersection algorithms, which is known to incur a relatively high computational cost and 256

to have potentially non-unique, suboptimal outcome. Conversely, the present approach 257

allows building directly a unique metric from a multi-component error vector combining 258

level set and any relevant flow quantity of interest, as definition (22) is easily extended 259

to account for several sources of error [34]. Indeed, if we consider Â = (Â1 , Â2 , . . . , Âp) a 260
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(a)

(b)

(c)

(d)

Figure 1. Three immersed solid objects inside a squared cavity filled with fluid using structured
meshes. (a) Mesh and zero iso-value of the level set function for a structured mesh with 500 nodes.
(b-d) Same as (a) for a structured mesh with (b) 1000 nodes, (c) 2500 nodes and (d) 5000 nodes.
The red and blue hues correspond to the solid and fluid domains, respectively.

vector consisting of p scalar variables, it comes out straightforwardly that the error is now a 261

vector Áij = (Áij,1 , Áij,2 , . . . , Áij,p), whose L
2 norm can serve as simple error value for the 262



Version August 4, 2023 submitted to Fluids 10 of 40

(a)

(b)

(c)

(d)

Figure 2. Same as Fig. 1 using anisotropic adapted meshes. (a) Mesh and zero iso-value of the
level set function for an anisotropic mesh with 500 nodes, adapted using the level set filtered with
E = 2× 10−3. (b-d) Same as (a) for an anisotropic mesh with (b) 1000 nodes with E = 10−3, (c)
2500 nodes with E = 5× 10−4 and (d) 5000 nodes with E = 10−4.

edge from which to compute the stretching factor (28) and ultimately, the metric solution 263

of (27). For instance, the 2d+ 3 sized nodal vector field defined as 264

Âh(xi) = ����
„

i
h

max
j∈S(i)„

j
h

,
u

i
hk∈{1...d}��ui

h�� ,
��ui

h��
max
j∈S(i) ��uj

h�� ,
ũ

i
hk∈{1...d}��ũi

h�� ,
��ũi

h��
max
j∈S(i) ��ũj

h��
���� , (30)
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can be used to combine adaptivity with respect to the norm and direction of the state and 265

adjoint velocity vectors, in addition to the level set. Because all fields are normalized by 266

their respective global maximum, a field much larger in magnitude cannot dominate the 267

error estimator, meaning that the variations of all variables are fairly taken into account. 268

This benefits problems involving more complex physics (e.g., turbulence, heat transfer, 269

fluid-structure interaction, multiple phases, possibly in interaction with one another), all the 270

more so in the context of topology optimization, as the di�erence in the spatial supports of 271

the state and adjoint quantities resulting from the non-normality of the linearized evolution 272

operator [35] may otherwise yield conflicting requirements in terms of the regions of the 273

computational domain most in need of refinement. 274

4. Computational methods 275

This section is devoted to the stabilized finite element numerical framework used to 276

compute all solutions of interest on anisotropic adapted meshes and to perform the design 277

update steps. For the sake of simplicity in the notations, and as long as it does not lead 278

to ambiguity, we omit in what follows the distinction between all continuous variables 279

(e.g., domains, solutions, operators) and their discrete finite element counterparts, as well 280

as the dependency of all variables on the iteration of the optimization process. 281

4.1. Immersed volume method 282

The immerse volume method (IVM) [36,37] is used to combine the fluid and solid 283

phases of the problem into a single fluid with variable material properties (density and 284

viscosity). This amounts to solving state and adjoint equations identical to those introduced 285

in Sec. 2, but formulated not just the fluid domain Wf , but in the whole domain W, with 286

phase-dependent density and viscosity fields adequately interpolated over a small layer 287

around the interface, and otherwise equal to their fluid and solid values. Note, the thickness 288

of the interpolation layer is user-defined and does not increase in size during the optimization, 289

unlike the homogenization method or any other generalized material method. Using the 290

level set function (17) as criterion for anisotropic mesh adaptation ensures that individual 291

material properties can be distributed accurately and smoothly as possible over the smallest 292

possible thickness around the interface. This is classically done by linear interpolation 293

between the fluid and solid values, using a smooth Heaviside function computed from the 294

level set to avoid discontinuities by creating an interface transition with a thickness of a few 295

elements. Such an approach is simpler that the Ersatz material approach [38], that adds 296

a Brinkman penalization term to the Navier–Stokes equations, and has clear connections 297

to density-based methods through the material distribution [17]. It is especially relevant 298

to thermal coupling problems, as having composite conductivity and specific heat means 299

that the amount of heat exchanged at the interface then proceeds solely from the individual 300

material properties on either side of it, and removes the need for a heat transfer coe�cient. 301

For the pure flow problems tackled here, though, it su�ces to use constant density and 302

viscosity (equal to the fluid values) and to set the velocity to zero at all grid nodes located 303

inside the solid domain Ws. Compared to using a very high solid to fluid viscosity ratio 304

to ensure that the velocity is zero in the solid domain, this can be seen as a hard penalty 305

preventing the fluid from leaking across the immersed interface. The latter holds numerically 306

because anisotropic mesh adaptation precisely aligns the mesh element edges along the 307

interface. It thus ensures that the latter does not intersect arbitrarily the mesh elements, 308

which would otherwise compromise the accuracy of the finite element approach. 309

4.2. Variational multiscale modeling 310

The convective terms in the incompressible Navier-Stokes and level set transport 311

equations may cause spurious node-to-node velocity oscillations. Furthermore, the equal 312

order linear/linear approximations used for the velocity and pressure variables, albeit very 313

desirable due to its simplicity of implementation and a�ordable computing cost (especially for 314

3D applications), may give rise to spurious pressure oscillations. To prevent these numerical 315



Version August 4, 2023 submitted to Fluids 12 of 40

instabilities, we solve here stabilized formulations cast in the Variational Multiscale (VMS) 316

framework, that enhance the stability of the Galerkin method via a series of additional 317

integrals over element interior. The basic idea is to split all quantities into coarse and fine 318

scale components, corresponding to di�erent levels of resolution, and to approximate the 319

e�ect of the fine scale (that cannot be resolved by the finite element mesh) onto the coarse 320

scale via consistently derived residual based terms. 321

4.2.1. Navier–Stokes equations 322

In practice, the state solution is computed by time-stepping the unsteady Navier–Stokes 323

equations with large time steps to accelerate convergence towards a steady state. The 324

stopping criterion is here for two consecutive time steps to di�er by less than 10−6 in L
∞

325

norm. In order to deal with the time-dependency and non-linearity of the momentum 326

equation, the transport time of the time scale is assumed much smaller than that of the 327

coarse scale. In return, the fine scale contribution to the transport velocity is neglected, and 328

the fine scale is not tracked in time, although it is driven by the coarse-scale, time-dependent 329

residuals and therefore does vary in time in a quasi-static manner. In-depth technical and 330

mathematical details together with extensive discussions regarding the relevance of the 331

approximations can be found in [39]. Ultimately, the coarse scale variational problem is 332

formulated as 333

�
W
(flˆtu+ flu ⋅ ∇u) ⋅w dv +�

W
2µÁ(u) ∶ Á(w)dv −�

W
p(∇ ⋅w)dv +�

W
(∇ ⋅u)q dv

− Ne�
k=1
�

Wk

·1r1 ⋅ (flu ⋅ ∇w)dv − Ne�
k=1
�

Wk

·1r1 ⋅ ∇q dv − Ne�
k=1
�

Wk

·2r2(∇ ⋅w)dv = 0 , (31)

where we have considered a discretization of W into Ne non-overlapping elements (triangles 334

or tetrahedrons), Wk is the domain ocuppied by the kth element, and r1 and r2 are the 335

momentum and continuity residuals 336

−r1 = flˆtu+ flu ⋅ ∇u+∇p , −r2 = ∇ ⋅u , (32)

whose second derivatives vanish since we use linear interpolation functions. Finally, ·1 and 337

·2 are ad-hoc stabilization coe�cients, computed on each element after [37,40] as 338

·1 = 1

fl�·2
t (u)+ ·

2
d �1�2

, ·2 = h
2

·1
, (33)

with convection (transport) and di�usion-dominated limits defined as 339

·t(u) = ct
u

h
, ·d = cd

µ

flh2 . (34)

Here, u is a characteristic norm of the velocity on the element, computed as the average 340

L
2 norm of the nodal element velocities. Also, h is the element size, computed as its 341

diameter in the direction of the velocity to support using anisotropic meshes with highly 342

stretched elements [41], and ct,d are algorithmic constants taken as ct = 2 and cd = 4 for 343

linear elements [40]. Equation (31) is discretized with a first-order-accurate time-integration 344

scheme combining semi-implicit treatment of the convection term, implicit treatment of 345

the viscous, pressure and divergence terms, and explicit treatment of the stabilization 346

coe�cients. All linear systems are preconditioned with a block Jacobi method supplemented 347

by an incomplete LU factorization, and solved with the GMRES iterative algorithm, with 348

tolerance threshold set to 10−6. 349
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4.2.2. Adjoint Navier–Stokes equations 350

Application of the stabilized formulation, as described above, to the adjoint Navier– 351

Stokes equations yields the following coarse scale variational problem 352

�
W
(−flu ⋅ ∇ũ+ fl∇u

T ⋅ ũ) ⋅w dv +�
W

2µÁ(ũ) ∶ Á(w)dv +�
W

p̃(∇ ⋅w)dv +�
W
(∇ ⋅ ũ)q dv

− Ne�
k=1
�

Wk

·̃1r̃1 ⋅ (−flu ⋅ ∇w)dv − Ne�
k=1
�

Wk

·̃1r̃1 ⋅ ∇q dv − Ne�
k=1
�

Wk

·̃2r̃2(∇ ⋅w)dv

−�
Go

fl(u ⋅n)(ũ ⋅w)ds =�
Go

ˆuJ ⋅w ds . (35)

The associated momentum and continuity residuals read 353

−r̃1 = −flu ⋅ ∇ũ+ fl∇u
T ⋅ ũ−∇p̃ , −r̃2 = ∇ ⋅ ũ , (36)

and the stabilization coe�cients are computed on each element after [42] as 354

·̃1 = 1

�·2
t (u)+ ·

2
d + ·2

r �1�2 . ·̃2 = ·2 , (37)

Note, ·r is an additional component corresponding to the reaction-dominated limit, which 355

stems from the fl∇u
T ⋅ ũ term describing the production of adjoint perturbations. It is 356

defined as 357

·r = fl∇u , (38)

where ∇u is a characteristic norm of ∇u on the element, computed as the average L
2 358

norm of the nodal velocity gradients. It is important to note that the adjoint stabilization 359

coe�cients depend solely on u, not ũ, which is because the adjoint flow field is transported 360

at (minus) the state velocity. Note also, Eq. (35) features boundary terms evaluated at the 361

outlet, which is because the integration by part of the pressure and viscous terms unveils a 362

boundary term 363

�
ˆW
(p̃n+ 2µÁ(ũ) ⋅n) ⋅w ds = −�

Go

(fl(u ⋅n)ũ+ ˆuJ) ⋅w ds , (39)

due to the adjoint boundary condition (13). Equation (35) is fully implicitly integrated, 364

except the outflow boundary term that needs be treated explicitly for implementation 365

convenience. Even though the last computed adjoint solution (hence pertaining to the 366

previous design) is used to evaluate the boundary term, this simple scheme has been found 367

to converge to identical shapes and cost function minimum, compared to solving iteratively 368

with relaxed sub-iterations. Due to the linearity of Eqs. (10)-(11), this in turn cuts down 369

the numerical e�ort, as only one single linear system needs be solved at each update step, 370

for which we use a BCGS iterative algorithm with tolerance threshold set to 10−12 and LU 371

factorization as preconditioner. 372

4.2.3. Interface update scheme using the convective level set method 373

The auto-reinitialization level set problem (19) is solved with an SUPG method [43,44], 374

whose stabilization proceeds from that of the ubiquitous convection-di�usion-reaction 375

equation [45,46]. The associated variational problem is formulated as 376

�
W
(ˆ· „+ a· ⋅ ∇„)› dv −�

Wk

·3r3a· ⋅ ∇› dv =�
W

S› dv , (40)

with residual 377

−r3 = ˆ· „+ a· ⋅ ∇„−S , (41)
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and stabilization coe�cient 378

·3 = 1
·t(a· ) . (42)

It is easily checked that all terms scale as 1�D· , so we can set D· = 1 without any loss of 379

generality because the solution is ultimately independent on the pseudo-time step value. As 380

the convection velocity a· depends on main unknown „, Eq. (40) is solved with semi-implicit 381

treatment of the convection term and explicit treatment of the source term and stabilization 382

coe�cients. All linear systems are solved using the GMRES algorithm with incomplete LU 383

factorization as preconditioner, and tolerance threshold set to 10−8. 384

5. Numerical implementation 385

5.1. Geometrical constraints 386

Fluid flow topology optimization is generally performed under geometrical constraints, 387

typically, constant or upper bounded surfaces and/or volumes to avoid the two extreme cases 388

of the solid domain clogging the entire design domain (as in pressure drop minimization 389

problems), or disappearing altogether (as in drag minimization problems). This is usually 390

done adding penalty terms to the Lagrangian, each of which consists of an empirical penalty 391

parameter multiplied by a measure of violation of the constraint, and whose variations with 392

respect to the state and design variables snowballs into the derivation of the adjoint problem 393

and of the cost function sensitivity. Here, the constraint of a constant volume of fluid Vtarget 394

is applied a posteriori, i.e., we solve the unconstrained problem presented in Sec. 2, in the 395

sense that no penalty term is added to the Lagrangian, although the optimization remains 396

subject to Navier–Stokes as state equations. Once the convective level set method presented 397

in Sec. 4.2.3 has updated the interface position, a first pass of anisotropic mesh adaptation 398

is performed, after which the volume of the fluid domain is computed as 399

VÏ = �
W

H‘(Ï)dv , (43)

where H‘ is the smoothed Heaviside function on the fluid domain defined as 400

H‘(Ï) =
���������������

1 if Ï < −‘ ,
1
2
�1− Ï

‘
− 1

fi
sin�fi Ï

‘
�� if �Ï� ≤ ‘ ,

0 if Ï > ‘ ,

(44)

and ‘ is a regularization parameter set to 2h⊥. A simple dichotomy approach is then used 401

to optimize a constant deformation ”Ï meant to enlarge (”Ï < 0) or shrink (”Ï > 0) the fluid 402

domain, until the di�erence �VÏ+”Ï −Vtarget� between the actual and target volumes drops 403

below a certain tolerance, at which point we cut o� Ï+ ”Ï and perform a second pass of 404

mesh adaptation. Two points are worth mentioning: first, because each o�set changes the 405

min-max values of the truncation, the above procedure requires knowledge of the level set 406

Ï, not just the filtered level set „. A brute force algorithm therefore performs beforehand a 407

complete reconstruction of the distance function from the zero iso-value of „, as only the 408

filtered level set (not the level set) is evolved during the convection-reinitialization step. 409

Second, only small deformations are considered so that no intermediate mesh adaptation 410

passes are required. By doing so, the total cost is essentially that of performing the second 411

pass of mesh adaptation, as further discussed in the following. 412
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5.2. Steepest descent update rule 413

In practice, the displacement used to perform the update step is defined as 414

— = −◊
µ(∇ũ ⋅n) ⋅ (∇u ⋅n)‰G(x)

max
W

µ(∇ũ ⋅n) ⋅ (∇u ⋅n)‰G(x)�
l

’(��x−x
l
s��) , (45)

where ◊ > 0 is a descent factor controlling the step taken in the gradient direction, and ‰G 415

and ’ are activation functions between 0 and 1 ensuring that the design is fittingly updated 416

only in relevant regions of the computational domain. More details are as follows: 417

• ‰G is a binary filter returning a value of 1 only at nodes within a distance E of the 418

interface. This is because the normal vector in a level set framework is recovered as 419

n = ∇„���∇„��, so the displacement is non-zero in the whole fluid domain, even far from 420

the interface where n has unit norm because ��∇„�� only tends asymptotically to zero. 421

In return, the update step can break down numerically at nodes nearly equidistant 422

from two subparts of the interfaces (for instance the centerline of a channel). 423

• ’ is a smooth filter assigning 0 value to a position xs ∈ ˆW singled out prior to 424

optimization, because the flow there may be driven to a singularity, and ill-defined 425

velocity gradients may cause large, unphysical displacements. Such singularities can be 426

dealt with numerically by appending fluid/solid Dirichlet boundary conditions to the 427

level set convection-reinitialization problem. Nonetheless, they must not be included 428

in the normalization step to avoid forcing excessively small displacements along the 429

remaining part of the interface, and thereby considerably slowing down the convergence 430

rate of the iterative optimization process. We use here hyperbolic tangent filters 431

’(r) = 1
2
+ 1

2
tanh�–s tan�−fi

2
+ fi

2
r

rs + ‘s1
+ ‘s2�� , (46)

increasing from 0 to 1 within a distance of 2rs from the singularity, with rs a transition 432

radius such that 433

4rs <min
l,m
��xl

s −x
m
s �� , (47)

to prevent overlaps, –s a steepness parameter controlling the sharpness of the transition, 434

and ‘s1,2 small regularization parameters to avoid local discontinuities. 435

Ultimately, the above filtering and normalization steps ensure that the level set is 436

updated using a displacement that is non-zero only in a thin layer of thickness E about the 437

interface, minus a certain number of spheres of radius rs centered on the singularities. 438

5.3. Descent factor 439

It follows from Eq. (45) that the descent factor ◊ physically represents the maximum 440

displacement amplitude over the update region of interest. In practice, though, the actual 441

numerical displacement, estimated from the di�erence between zero iso-value of the filtered 442

level set before and after transport, has been found to be well below its theoretical value. 443

This is because the state and adjoint velocities are forced to zero is the solid domain. Hence, 444

the displacement, being driven by the velocity gradients, is also zero everywhere in the solid, 445

except in a very narrow region about the interface, typically a couple of elements thick. As 446

a result, it is not possible to explicitly control the displacement achieved numerically at each 447

iteration. A simple scheme to do so would have been to repeatedly evolve the interface with 448

a small descent factor until the di�erence between the cumulated and target displacement 449

drops below a certain tolerance, but the interface can be evolved only once per update step, 450

as the gradient information is lost if the displacement happens to be in the direction of the 451

solid (for the same reason mentioned above). We thus tune the descent factor manually on 452

a case by case basis, for the achieved displacement to be slightly smaller than the cut-o� 453
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Start

Initialize level set
Generate initial adapted mesh

Compute state solution from (1)-(2)
Compute adjoint solution from (10)-(11)

Compute sensitivity and normalized displacement from (45)

Uniform
displacement? Stop

Yes

No

Update level set using convection-reinitialization method (19)
Generate anisotropic mesh adapted to new level set (1st pass)

Volume constraint
satisfied?

Yes

No

Recover target volume (43)
Generate anisotropic mesh adapted to new level set (2nd pass)

Figure 3. Flowchart of performance topology optimization procedure.

thickness. This has been found to be a satisfactory trade-o� between accuracy and numerical 454

e�ort, as the number of iterations required for convergence remains very a�ordable, and the 455

position of the evolved interface is accurately tracked. Displacements larger than the cut o� 456

thickness conversely move the level set into regions of the computational domain lacking 457

the proper mesh refinement, which has been found to ultimately a�ect the accuracy of the 458

interface representation. 459

5.4. General algorithm 460

Figure 3 shows the flowchart of the implemented topology optimization algorithm, in 461

which anisotropic mesh adaptation is key to capture the interface with the highest precision 462

possible. Note, as a consequence of the level set-based technique used to enforce the volume 463

of fluid constraint, convergence is achieved not when the displacement is identically zero 464

(as would be the case using a penalized Lagrangian approach), but when the displacement 465

is uniform along the interface. This is not easily done on the fly, though, so we rather 466

iterate until a maximum number of iterations has been reached and evaluate convergence a 467

posteriori; see Sec. 7. 468

6. Numerical benchmarks 469

This section assesses the accuracy and e�ciency of the numerical framework through 470

three examples of two-dimensional (d = 2) topology optimization problems recently consid- 471
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W = [0; 1]×[0; 1] [0; 0.7]×[0; 1] [0; 1.5]×[0; 1] Design domain
Vtarget = 0.25 0.28 0.5 Target volume of fluid

Re = 2 » » Reynolds number
qi = 0.0266 » 0.0222 Injected volumetric flow rate

ei = 0.2 » 0.166 Inlet width
eo = 0.2 » 0.166 Outlet width
lc = 0.1 0.4 0.1 Conveying pipes length

Nn = 30000 » 40000 Nb. mesh nodes
Nel = 60000 » 80000 Nb. mesh elements
h⊥ = 0.0001 » » Min. interface normal mesh size

Dt = 0.1 » » CFD Numerical time step
E = 0.005 » » Level set cut o� thickness�”Ï� = 0.001 » » Initial volume recovery o�set

rs = 0.0125 » » Transition radius
–s = 2.1 » » Sharpness parameter(‘s1, ‘s2) = (0.0005, 0.005) » » Regularization parameters

Table 1. Numerical parameters for the pipe bend, four terminal device and double pipe topology
optimization problems.

ered in the fluid mechanics literature. It is thus worth insisting that the novelty lies not 472

in the associated optimal designs themselves, but in the accuracy to which the optimal 473

interfaces are captured in the simulation model. 474

6.1. Preliminaries 475

All examples feature either a single inlet or multiple identical inlets of width ei, and 476

either a single outlet, or multiple identical outlets of width eo. Parabolic flow profiles normal 477

to the boundary are prescribed at all inlets, as defined by 478

ui = 3qi

2ei
�1− �2r

ei
�2�n , (48)

where qi is the injected volumetric flow rate (the same for all inlets), and r is the distance 479

from the inlet centerline. For each case, the sole control parameter is the Reynolds number 480

defined as Re = flqi�µ, which amounts to using the inlet width and mean inlet velocity as 481

reference length and velocity scales. The cost function to minimize is the net inward flux 482

of total pressure through the boundaries, taken as a measure of the total power dissipated 483

by a fluid dynamic device. Since the orientation of the normal n yields u ⋅n�Gi
> 0 and 484

u ⋅n�Go < 0, this can be expressed in the form of (6) using 485

J = ptot(u ⋅n) = (p+ 1
2

fl(u ⋅u))(u ⋅n) , (49)

from which the derivatives needed to complete the derivation of the adjoint boundary 486

conditions deduce as 487

ˆpJ = u ⋅n , ˆuJ = ptotn+ fl(u ⋅n)u . (50)

The remainder of the practical implementation details are as follows: 488
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Figure 4. Set-up of the pipe bend problem. The light gray shade denotes parts of the boundary
where solid boundary conditions are appended to level set auto-reinitialization equation.

• All design domains are initialized with spherical solid inclusions coming in various 489

sizes, adjusted for the initial volume2 of fluid to match the target within the desired 490

tolerance. This essentially removes the need to create new holes by a dedicated 491

nucleation mechanism. The admissible error on the target volume is set to 1%. 492

• Leads of length lc appended normal to the boundary are used to systematically convey 493

the fluid into and out of the design domain. This is for numerical consistence, as the 494

exact problem formulation may vary depending on the case, the reference and the 495

problem dimensionality, and it is not always clear whether such leads are included 496

in the design domain (which they are here, although they are not considered in the 497

volume constraint, neither in definition of the target volume nor in the computation of 498

the volume of fluid). 499

• Since the reference design domains (without the leads) consist of square and rectangular 500

cavities, the singular points excluded from the displacement normalization step are 501

the sharp intersections between the leads and the boundary of the cavities (without it 502

being a consequence of explicitly representing the leads, as the exact same procedure 503

has been found suitable without such appendage). 504

• The leads are excluded from the displacement normalization step, for which we simply 505

add to the max argument of (45) a binary filter returning a value of 0 at all nodes 506

located inside the pipes. This is again to avoid slowing down the convergence rate of 507

the iterative optimization process, as the maximum displacement is otherwise located 508

in the leads (because the easiest way to minimize the dissipated power is to suppress 509

the flow by having the solid entirely clogging the leads). 510

• Boundary conditions are appended to the auto-reinitialization level set equation, under 511

the form of fluid at the inlet and outlet, and solid everywhere else. 512

• All meshes have been checked to have an element-to-node ratio close to 2 (as should 513

be for dense meshes made up of triangular elements). The mesh information is thus 514

documented in the following in terms of its equivalent number of elements Nel = 2Nn 515

to ease the comparison with the available literature. 516

6.2. Design of a pipe bend 517

We consider first the design of a pipe bend, a standard example for topology optimization 518

in fluid dynamics [14,17,47–50] used to provide a first verification and characterization of 519

2 Actually cross-sectional area or volume per unit length in the third dimension since d = 2, but we choose
to keep the volume terminology for the sake of generality
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(a) (b) (c)

Figure 5. Designs of a pipe bend sampled over the course of optimization using the parameters
given in Tab. 1. (a) Anisotropic adapted mesh. (b) Zero iso-value of the level set function. (c)
Norm of the velocity vector.

the method. All relevant problem parameters are given in Tab. 1. The design domain is a 520

square cavity of unit length, that has one inlet (left side) and one outlet (bottom side); see 521

Fig. 4. The aim is to determine the optimal design of the pipe bend that connects the inlet 522

to the outlet and minimizes the dissipated power subject to the constraint that the fluid 523

must occupy 25% of the cavity, which is the same volume as a quarter torus fitting exactly 524

to the inlet and outlet. 525

A total of 400 iterations has been run with 60000 mesh elements, as illustrated in 526

Fig. 5 by the anisotropic adapted mesh, zero iso-value of the level set function and velocity 527

norm of a selected sample. The method is found to easily handle the multiple topological 528

changes (e.g., merging or cancellation of holes) occurring over the course of optimization. 529

Also, consistently with the results in Sec. 3, all meshes exhibit the expected refinement 530

and deformation, with coarse and regular elements away from the interface between solid 531

and fluid (all the more so in the solid domain, where only a few ten elements are used), 532

but fine, extremely stretched elements on either side of the interface, to allow the velocity 533

to smoothly transition to zero across the boundary layer; see the close-up in Fig. 6. In 534
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(a) (b) (c)

Figure 5. (cont.) Designs of a pipe bend sampled over the course of optimization using the
parameters given in Tab. 1. (a) Anisotropic adapted mesh. (b) Zero iso-value of the level set
function. (c) Norm of the velocity vector. The optimal pipe bend is shown at the bottom.

Figure 6. Successive close-ups on the anisotropic adapted mesh of the optimal pipe bend, starting
from the dashed box shown in Fig. 5.
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Figure 7. Set-up of the four terminal device problem. The light gray shade denotes parts of the
boundary where solid boundary conditions are appended to level set auto-reinitialization equation.

return, the interfaces are sharply captured, not only at optimality but during all stages 535

of the optimization. This represents a major improvement in accuracy of the geometric 536

representation with respect to the available recent literature, as even traditional (isotropic) 537

adaptive mesh refinement techniques have been shown to yield quality issues (staircase 538

e�ects) in smoothly curved regions. Ultimately, we obtain an almost straight channel nearly 539

identical to that documented in [47], albeit with a higher resolution, which is because most 540

energy is dissipated by shear at low Reynolds numbers, so an optimal flow pipe is preferably 541

as short and wide as possible. The obtained results are further discussed in Sec. 7, with 542

particular emphasis on the convergence rate and sensitivity of both the optimal and the 543

optimization path to the number of nodes. 544

6.3. Design of a four terminal device 545

Our second numerical example deals with minimization of the power dissipation in a 546

four-terminal device [51]. This is a follow-up to the previous bend pipe problem, in which 547

the cavity features a rectangular cavity of unit height and aspect ratio 0.7:1. It has two 548

inlets and two outlets distributed antisymmetrically on the left and right sides to level up 549

the complexity; see Fig. 7 for a sketch of configuration and Tab. 1 for the remaining problem 550

parameters. The aim is to determine the optimal design that connects the inlets to the 551

outlets, subject to the constraint that the fluid must occupy 40% of the cavity, which is the 552

same volume as two straight parallel pipes fitting the upper and lower pairs of inlet/outlet. 553

A total of 300 iterations has been run with 60000 mesh elements; see Fig. 7 showing 554

the anisotropic adapted mesh, zero iso-value of the level set function and velocity norm of a 555

selected sample collected over the course of optimization. All adapted meshes are especially 556

reminiscent of their bend pipe counterparts, with coarse, regular elements away from the 557

interface and fine, elongated elements on either side of the interface; see Fig. 8, and allow 558

accurately representing the boundary layers at all stages of the optimization (even in the 559

leads). Ultimately, we obtain a pair of U-turns connecting each inlet to the outlet on the 560

same side of the design domain. This is consistent with literature results showing that the 561

U-turn solution is favored over the simpler parallel channels solution at aspect ratios larger 562

than 0.6:1 [14,17,51], only the present solution is captured with superior accuracy. This is 563

again because optimal pipes at low Reynolds numbers are preferably short and wide, and 564

the cost of bending the fluid stream is low given that most fluid flows in the (shorter) inner 565

region. 566
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)
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)

Figure 7. Designs of a four terminal device sampled over the course of optimization using the
parameters given in Tab. 1. (a) Anisotropic adapted mesh. (b) Zero iso-value of the level set
function. (c) Norm of the velocity vector.



Version August 4, 2023 submitted to Fluids 23 of 40

(a
)

(b
)

(c
)

Figure 7. (cont.) Designs of a four terminal device sampled over the course of optimization using
the parameters given in Tab. 1. (a) Anisotropic adapted mesh. (b) Zero iso-value of the level set
function. (c) Norm of the velocity vector. The optimal four terminal device is shown at the bottom.
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Figure 8. Successive close-ups on the anisotropic adapted mesh of the optimal four terminal
device, starting from the dashed box shown in Fig. 7.

Figure 9. Set-up of the double pipe problem. The light gray shade denotes parts of the boundary
where solid boundary conditions are appended to level set auto-reinitialization equation.

6.4. Design of a double pipe 567

In the third numerical example, we consider the double pipe problem, another bench- 568

mark for fluid topology optimization [47,50,52,53], whose parameters are provided in Tab. 1. 569

The design domain is a rectangular cavity of unit height and aspect ratio 3:2, that has 570

two inlets (left side) and two outlets (right side); see Fig. 9. The aim is to determine the 571

optimal design of the double pipe that connects the inlets to the outlets and minimizes the 572

dissipated power subject to the constraint that the fluid must occupy 33.3% of the cavity, 573

which is the same volume as two straight parallel pipes fitting the upper and lower pairs of 574

inlet/outlet. 575

A total of 3000 iterations has been run with 80000 mesh elements (due to the larger 576

design domain), during which the design goes through several complex stages all accurately 577

represented on anisotropic adapted meshes, as evidenced by the selected sample shown in 578

Figs. 10-11. Ultimately, the optimal design resembles a single-ended wrench, with the two 579

inlet pipes connecting to a wider pipe in the center of the domain, that itself connects to a 580

single outlet (either the upper or the lower outlet since the setup has horizontal reflectional 581

symmetry). Since the optimal flow pipe at low Reynolds numbers is preferably short and 582

wide, this represents the better trade-o� between transporting fluid the shortest way, and 583

transporting it in the widest possible pipe. Note, the obtained solution di�ers from the 584

double-ended wrench documented in [47,50,52], in which the center pipe ultimately connects 585

to the two outlet. This is because the authors prescribe parabolic flow profiles at both 586

the inlets and the outlets. The flow is thus forced to exit via both outlets, while it can 587

exit via a single outlet under the more physical zero pressure/zero viscous stress condition 588
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Figure 10. Designs of a double pipe sampled over the course of optimization using the parameters
given in Tab. 1. (a) Anisotropic adapted mesh. (b) Zero iso-value of the level set function. (c)
Norm of the velocity vector. The optimal double pipe is shown at the bottom.



Version August 4, 2023 submitted to Fluids 26 of 40

(a
)

(b
)

(c
)

Figure 10. (cont.) Designs of a double pipe sampled over the course of optimization using the
parameters given in Tab. 1. (a) Anisotropic adapted mesh. (b) Zero iso-value of the level set
function. (c) Norm of the velocity vector. The optimal double pipe is shown at the bottom.



Version August 4, 2023 submitted to Fluids 27 of 40

Figure 11. Successive close-ups on the anisotropic adapted mesh of the optimal four terminal
device, starting from the dashed box shown in Fig. 10.

Figure 12. Computational cost of the implemented algorithm, as obtained averaging 300 update
steps of the pipe bend, double pipe, and four terminal device problems (100 steps for each) using the
simulation parameters provided in Tab. 1. All results normalized to achieve unit average time per
iteration. The LS and LSF labels stand for level set (LS) and filtered level set (LSF), respectively.

used here, which allows saving the cost of pipe splitting [53]. The number of iterations for 589

this case is larger by one order of magnitude compared to the pipe bend and four terminal 590

problems, which is easily explained by the fact that the optimization must bypass the bassin 591

of attraction of the double-ended wrench, that keeps being a local minimizer. This is all the 592

more di�cult because the cost function of both minimizers di�ers by only 10%, but we show 593

in Sec 7 that this particular feature is ultimately very sensitive to the number of nodes used 594

to perform the mesh adaptation. 595

7. Discussion 596

7.1. Computational e�ciency 597

Figure 12 presents detailed timing results obtained by averaging 300 dedicated update 598

steps performed with the parameters compiled in Tab. 1; 100 steps for each case presented 599

in Secs. 6.2-6.4. As could have been expected, the cost of an iteration is dominated by that 600

of computing the state solution. This takes about 10 Navier–Stokes iterations representing 601

40% of the total cost, which can be scaled down substantially in the context of steady-state 602

problems using an iterative Newton-like method. Otherwise, the cost of performing the two 603

passes of mesh adaptation represents about a cumulative 40% of the total cost. Meanwhile, 604

the cost of both geometrically reinitializing the signed distance function level set and of 605

optimizing the volume constraint o�set is very a�ordable (less than 1% in total, with 606

4-5 dichotomy iterations needed to reach the desired accuracy of 1%). Such conclusions 607

presumably carry over to any other problem of same dimensionality, tackled with comparable 608

parameters. 609
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Convergence iter. Cost function Nb. mesh elements
295 33.1 80000
306 32.7 60000
212 32.9 40000
148 32.1 20000
153 68.9 80000
129 69.1 60000
104 69.0 40000
68 68.6 20000

2460 68.6 105000
1750 67.6 80000
2130 68.2 55000
1594 67.0 25000

Table 2. Convergence data for the pipe bend, four terminal device and double pipe topology
optimization problems. All cost function values made non dimensional using the inlet width and
mean inlet velocity (equivalently, using flq3

i �e2

i as reference cost functional value).

7.2. Convergence and mesh dependency 610

Since we perform here a fixed number of iterations, convergence is assumed here when 611

the sliding average over the 10 latest cost functional values is less than a prescribed error set 612

to 2% of the cost functional average over the 50 final iterations. The reason is twofold: first, 613

the cost function keeps varying even after convergence because the mesh slightly changes 614

between consecutive iterations, and so does the volume of fluid as long as the deviation 615

from the target does not exceed the admissible error. Second, assuming convergence simply 616

when the relative di�erence between two successfive cost functional values is less than a 617

prescribed error has been found to yield premature convergence to the double-ended wrench 618

local minimizer of the double pipe problem. Note, all data discussed in the following pertain 619

to a single optimization run. Rigorously speaking, convergence is best assessed by averaging 620

results over multiple independent runs, as mesh adaptation is not a deterministic process 621

(the outcome depends on the processors and number of processors used, and any initial 622

di�erence propagates over the course of optimization because the meshes keep being adapted 623

at each iteration), but we have found very little variability by doing so. 624

Exhaustive convergence data are provided in Tab. 2 for all three cases reported above. 625

Putting the obtained results in a broader context is uneasy because convergence is rarely 626

documented in the literature, and even when it is, the key factors explicitly a�ecting 627

convergence (e.g., initial shape, convergence criterion and threshold) are not. In practice, 628

our literature review did not reveal any other study putting all these levels of information 629

together. Here, the bend pipe problem converges within 306 iterations, which is well above 630

the convergence iteration reported in the seminal paper by Borrvall & Peterson [47] that 631

lies in a range from 64 (using 2500 mesh elements) to 85 (using 10000 mesh elements). A 632

first explanation is that all designs in the aforementioned reference are evaluated on the 633

same isotropic mesh, hence the descent factor is not constrained by the thickness of the 634

level set, and larger values can be used to speed up convergence. Another possibility further 635

discussed below is that most studies in the literature rely on a limited number of elements in 636

a range from 5000 to 20000. We conversely use a much larger value, which is on purposes to 637

equally assess all steps of the optimization, but ultimately slows down the convergence rate. 638

A first important point is that such a large number of nodes is mostly useful during 639

the early stage of optimization, where the many solid inclusions dramatically increase the 640

surface of the interfaces that needs be captured. In practice, the latter has been found to 641
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(a) (b)

(c) (d)

Figure 13. (a) Evolution per design step of the Interface surface area for the bend pipe ( ), four
terminal device ( ) and double pipe ( ) problems. (b-d) Convergence against number of mesh
elements for (b) the bend pipe, (c) four terminal device and (d) double pipe problems. The circle
symbols mark the iterations sampled in (b) Figs. 5-14, (c) Figs. 7-15, and (d) Figs. 10-16. All cost
function values made non dimensional using the inlet width and mean inlet velocity (equivalently,
using flq3

i �e2

i as reference cost functional value). The ellipses in (d) indicate the transition from the
double to the single-ended wrench minimizer.

decrease significantly after the first dozens of iterations (by a factor of 3-10 depending on 642

the case); see Fig. 13(a) showing the surface area computed over the first 200 iterations as 643

SÏ = �
W

”‘(Ï)dv , (51)

where ”‘ is the Dirac function 644

”‘(Ï) =
���������

1
2‘
�1+ cos�fi Ï

‘
�� if �Ï� ≤ ‘ ,

0 if �Ï� > ‘ ,
(52)

smoothed with the same regularization parameter ‘ as the Heaviside function (44). A 645

second important point is that the anisotropic mesh adaptation algorithm refines the mesh 646

in hierarchical importance of the level set gradient. If new geometrical features appear in 647

the solution (associated with high gradients), the mesh is automatically coarsened in regions 648

with lower gradient and refined near the newly emerging features. If the number of nodes 649

is large, as has been the case so far, then the decrease in the interface surface area allows 650

resolving finer, more complex patterns without degrading the accuracy in other parts of 651

the design domain, because the coarsened regions are actually over-resolved. This shows 652

through the progressive mesh refinement in the fluid domain in Figs. 5-10, as more and more 653

elements become available to improve the mesh in other regions of the domain. If the number 654

of nodes is small, all essential features of the solution will remain well captured (albeit to 655

a slightly lower accuracy), but the finest, most intricate topologies will be smoothed out, 656
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(a) (b) (c)

Figure 14. Anisotropic meshes of a pipe bend sampled over the course of optimization, using (a)
80000, (b) 40000 and (c) 20000 mesh elements.

which is expected to yield faster convergence because the sensitivity will have less overshoots 657

and the displacement will be more homogeneously distributed over the interface. 658

Confirmation comes from additional runs performed on both denser and coarser meshes. 659

The look-alike design samples documented in Figs. 14-16 indicate that all runs follow the 660

same optimization path, with smaller details being captured as the number of elements 661

increases. Just as important is the fact all optimal solutions are independent of the mesh size. 662

This means that the ability of the method to represent smaller and smaller features does not 663

results in smaller and smaller features being represented in the optimal designs, as can occur 664

in sti�ness optimization of mechanical structures [54]; see also [47] for proof that total power 665

dissipation minimization is well posed in this respect. For the bend pipe and four terminal 666

devices, the expected behavior is observed, as coarser-mesh runs converge substantially 667

faster, for instance the bend pipe with 20000 elements converges within 165 iterations, which 668

is lower by about 45% compared to using 60000 elements. If a less restrictive convergence 669

threshold of 5%, is enforced, this drops to 102, which is only a tad above the 85 iterations 670

of [47]. The improvement carries over to the four terminal device problem, whose run with 671

20000 elements converges within 68 iterations, which is lower by about 50% compared to 672
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(a) (b) (c)

Figure 14. (cont.) Anisotropic meshes of a pipe bend sampled over the course of optimization,
using (a) 80000, (b) 40000 and (c) 20000 mesh elements.

using 60000 elements (this further drops to 61 using a convergence threshold of 5%). Note, 673

in both cases, coarser does not equate coarse, as the convergence information compiled in 674

Tab. 2 shows that the coarsest meshes actually resolves the optimal interface to an excellent 675

accuracy. 676

Meanwhile, convergence for the double pipe ends up being almost arbitrary and the 677

algorithm has di�culties in finding the optimal topology due to the characteristics of the 678

cost function landscape. The convergence history in Fig. 13(d) shows that the run with 679

55000 elements does indeed converge faster to the double-ended wrench solution minimizer 680

but then needs more iterations to ultimately reach the single-ended wrench global minimizer, 681

so convergence is ultimately slower than using 80000 elements. Interestingly, the run with 682

25000 elements successfully bypasses the local minimizer because the lack of elements does 683

not allow representing the complexity prevailing in the early stage of the optimization. This 684

ends up quickly breaking the horizontal reflectional symmetry, but the convergence rate 685

ultimately remains comparable to that with 80000 elements, which raises the possibility 686

that the wrench solutions are actually flat minimizers. 687

688
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Figure 15. Anisotropic meshes of a four terminal device sampled over the course of optimization,
using (a) 80000, (b) 40000 and (c) 20000 mesh elements.
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Figure 15. (cont.) Anisotropic meshes of a four terminal device sampled over the course of
optimization, using (a) 80000, (b) 40000 and (c) 20000 mesh elements.
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Figure 16. (cont.) Anisotropic meshes of a double pipe sampled over the course of optimization,
using (a) 105000, (b) 55000 and (c) 25000 mesh elements.
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Figure 16. (cont.) Anisotropic meshes of a double pipe sampled over the course of optimization,
using (a) 105000, (b) 55000 and (c) 25000 mesh elements.
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Figure 17. Set-up of the simplified flow distributor problem. The light gray shade denotes parts
of the boundary where solid boundary conditions are appended to level set auto-reinitialization
equation.

W = [0; 1.2]×[0; 1.3] Design domain
Vtarget = 0.4 Target volume of fluid

Re = 1 Reynolds number
qi = 0.08 Injected volumetric flow rate
ei = 0.12 Inlet width
eo = 0.1 Outlet width

lc,i = 0.4 Inlet conveying pipes length
lc,o = 0.3 Outlet conveying pipes length

Nn = 25000 Nb. mesh nodes
Nel = 50000 Nb. mesh elements

Table 3. Numerical parameters for the flow distributor problem.

7.3. Application to a simplified flow distributor problem 689

We finally consider a practical application of the developed framework with the 690

simplified flow distributor problem shown in Fig. 17. The design domain for this case is a 691

rectangular cavity of aspect ratio 0.4:0.5 widening through four consecutive steps of aspect 692

ratio 0.2:0.1, hence a stair shape with overall aspect ratio 1.2:1.3. It features a single inlet 693

on the left, and six identical outlets on the right. The aim is to determine the optimal 694

design connecting the inlet to the outlets and minimizes the dissipated power subject to the 695

constraint that the fluid must occupy 40% of the cavity, and the flow must be distributed 696

evenly over the multiple outlet orifices for each outlet to have 1/6 of the fluid flow entering 697

through the inlet. Since the zero pressure outflow condition does not force the inlet to 698

connect to all the outlets (as has been assessed in Sec. 6.4 on the double pipe problem), we 699

use the modified cost function 700

J = (1−Ê)ptot(u ⋅n)+ Ê

2
��u−utarget��2 , (53)
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Figure 18. Intermediate (left) and optimal (right) distributor designs illustrated by their anisotropic
adapted meshes.

where Ê is a scalar-valued factor weighing the priority given to either power dissipation or 701

uniformity of the outflow distribution, and utarget is a target parabolic velocity distribution, 702

whose outlet centerline velocity is adjusted for the mass flow to exit through the outlets 703

to match exactly that entering through the inlet. In doing so, the theoretical framework 704

developed in Sec. 2 carries over straightforwardly, provided the adjoint boundary conditions 705

are updated accordingly using 706

ˆpJ = (1−Ê)u ⋅n , ˆuJ = (1−Ê)ptotn+ (1−Ê)fl(u ⋅n)u+Ê(u−utarget) . (54)

707

The entire domain for this cased is meshed with 50000 elements, with the remaining 708

parameters given in Tab. 3. All other parameters are identical to those in Tab. 1. Note a 709

large weight Ê = 0.999 is used here to achieve comparable orders of magnitude for both the 710

power dissipation and uniformity contributions to the cost function. This yields the optimal 711

duct shown in Fig. 18, that delivers most of the fluid in the center area of the cavity before 712

distributing it to the outlet channels (evenly to a 5% accuracy) via a fine comb-like structure. 713

The obtained solution has all the attributes of a power dissipation optimal, an initial large 714

straight pipe ultimately dividing into a near-perfect symmetrical network of six short pipes 715

to minimize the cost of bending the fluid stream. It di�ers from that documented in [55] 716

for a similar problem, which is because the authors do not consider power dissipation in 717

their cost function, and impose only an upper bound on the volume of fluid. Even though, 718

this showcases the potential of the method for smooth solutions to engineering problems 719

of practical interest, for instance the design of compact and lightweight heat exchangers 720

such those widely used in air conditioning (the design domain being representative of the 721

refrigerant distributor section), or for microfluidics, where minimizing dissipation while 722

maintaining an even fluid distribution in all branches of a network is of great interest to 723

improve the performance of lab-on-a-chip devices. 724

725

8. Conclusion 726

The present study proves feasible to perform topology optimization of Navier–Stokes 727

flows using anisotropic meshes adapted under the constraint of a fixed number of nodes. 728

The proposed approach combines a level set method to represent the boundary of the fluid 729

domain by the zero iso-value of a signed distance function, and stabilized formulations 730

of the state, adjoint, and level set transport equations cast in the Variational Multiscale 731

(VMS) framework. The method has been shown to allow for drastic topology changes during 732

the optimization process. Nonetheless, the main advantage over existing methods is the 733

ability to capture all interfaces to a very high degree of accuracy using adapted meshes 734

whose anisotropy matches that of the numerical solutions. This gives hope that the method 735

can ease the transition to manufacturable CAD models that closely resembles the optimal 736

topology. 737
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The method has been tested on several examples of power dissipation minimization in 738

two dimensions. The obtained optimal designs are identical to reference literature results, 739

which assesses the relevance of the present implementation for designing fluidic devices, as 740

further illustrated by a simplified engineering case optimizing a flow distributor to minimize 741

power dissipation while maintaining even flow distribution at multiple outlets. All optimal 742

designs are shown to be mesh-independent, although the convergence rate does decrease as 743

the number of nodes increases, despite the method being able to resolve smaller and smaller 744

geometrical features. Exhaustive computational e�ciency data are reported with the hope 745

to foster future comparisons, but it is worth emphasizing that we did not seek to optimize 746

said e�ciency, for instance, using an iterative Newton-like method to compute all state 747

solutions, which takes up the bulk of the computational time. The obtained results show the 748

di�culty of determining the global minimum when two strong minima are competing, which 749

simply reflect the fact that gradient-based algorithms are easily trapped in local optima, 750

all the more so when applied to sti� nonlinear problems (gradient-free methods are better 751

equipped in this regard, but can be more complex to implement and to use). Future work 752

will be aimed at considering multi-component adaptation criterion to take into account the 753

di�erence in the spatial supports of the state and adjoint solutions, and at extending the 754

present method to more general two- and three-dimensional cases, including fluid-thermal 755

coupling problems. 756
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