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Introduction and motivation

The study of partial differential equations began with the works of Euler, D'Alembert, Lagrange, and Laplace on the description of mechanics in the continuum. Such equations emerged in the context of the development of models of the physics of continuous media such as vibrating strings [START_REF] Maor | A discrete model for the vibrating string[END_REF], Newtonian gravitational field of extended matter [START_REF] Counihan | Presenting Newtonian gravitation[END_REF], electrostatics [START_REF] Jackson | Classical Electrodynamics[END_REF], liquid flow [START_REF] Mattheij | Partial differential equations: modeling, analysis, computation[END_REF] and, later, with the theory of heat conduction, electricity, and magnetism [START_REF] Greenwood | The Boltzmann equation in the theory of electrical conduction in metals[END_REF]. The analysis of these models played a fundamental role in the systematic study of partial differential equations and the search for analytical solutions.

In the last century, physics has experienced a growing role in the study of symmetries and conserved quantities, used both in theoretical and phenomenological areas to explain a series of phenomena and try to give them a deep meaning. A similar study has been possible thanks to theorems published in 1918 by the German mathematician Amalie Emmy Noether [START_REF] Kosmann-Schwarzbach | The Noether Theorems. Invariance and Conservation Laws in the Twentieth Century[END_REF][START_REF] Noether | Nachrichten von der Gesellschaft der Wissenschaften zu Göttingen[END_REF]. In the formulation of fundamental theories of physics, the principle of invariance under some type of symmetry has always occupied a central position) just think about Galilei invariance in Newtonian mechanics or Lorentz invariance in relativistic mechanics) and can even function as a pillar for the construction of the theory, as is the case with the principle of general covariance in general relativity or the principle of gauge invariance in gauge theories. The form of its mathematical implementation varies according to the physical context and thus can involve mathematical entities of different types, among which we can mention, for example: finite groups (for discrete symmetries) and topological groups (for continuous symmetries) or, more specifically, Lie groups and algebras.

Numerous equations in Physics are of utmost importance, from Newton's first law to relativity. We can highlight the conservation law of the Euler-Lagrange equations, one of which is well known. In 1744, Leonhard Euler presented to the world an equation that came to be called one of the laws of conservation which is the integral of energy. In this sense, it began to be denoted by L (q, q) when such a Lagrangian describes a system of fixing points, thus being -L (q, q) + ∂ 2 L (q, q). q = constant holds along all the solutions of the Euler-Lagrange equations.

Consider the fundamental problem of the calculus of variations: to minimize [START_REF] Frederico | A formulation of Noether's theorem for fractional problems of the calculus of variations[END_REF] I(q(•)) = b a L (t, q(t), q(t))dt (1.1) {po} with the condition q(a) = q a and q(b) = q b , and where q = dq dt . The Lagrangian L :

[a, b] × R n × R n → R
is assumed to be a C 1 -function with respect to all arguments, and admissible functions q(•) are assumed to be C 2 -smooth. For many years, several researchers have dedicated themselves to discussing problems of type (1.1) and proving Noether's theorem (there are several versions of the proof). On the other hand, the Euler-Lagrange equations are another fundamental point in the theory of the calculus of variations [START_REF] Frederico | Composition functionals in higher order calculus of variations and Noether's theorem[END_REF][START_REF] Frederico | Higher-Order Noether's Theorem for Isoperimetric Variational Problems[END_REF][START_REF] Frederico | Noether's theorem for non-smooth extremals of variational problems with time delay[END_REF]. In the literature to date, there is a wide range of results that use the Euler-Lagrange equations [START_REF] Castilo | Composition functionals in calculus of variations: applications to products and quotients[END_REF][START_REF] Dacorogna | Direct methods in the calculus of variations second edition[END_REF]. We can also highlight Noether's Theorem and the Euler-Lagrange equations via fractional derivatives [START_REF] Almeida | Calculus of variations with fractional derivatives and fractional integrals[END_REF][START_REF] Frederico | Fractional conservation laws in optimal control theory[END_REF] and the references therein. As highlighted, the theory of calculating variations is of great relevance and importance in several areas [START_REF] Buttazzo | One-dimensional variational problems: an intrudution[END_REF][START_REF] Cannarsa | Herglotz variational principle and Lax-Oleinik evolution[END_REF][START_REF] Djukic | Noether's theorem for optimum control systems[END_REF][START_REF] Dunford | Linear Operaiors[END_REF][START_REF] Evans | An Introduction to Mathematical Optimal Control Theory[END_REF][START_REF] Gastão | Calculus of variations and optimal control for generalized functions[END_REF][START_REF] Hestenes | Calculus of variations and optimal control theory[END_REF][START_REF] Logan | Invariant variational principles[END_REF][START_REF] Noether | Invariante Variationsprobleme[END_REF][START_REF] Olver | Applications of Lie groups to differential equations[END_REF] and the references therein.

Over the last few years, the theory of G-calculus and pseudo-analysis has seen an interesting growth. Although there are few results, researchers have recently been motivated to discuss problems via pseudo-analysis. One of the researchers who has been important for the growth of the theory is Endre Pap [START_REF] Pap | Pseudo-additive measures and their applications[END_REF][START_REF] Pap | Pseudo-analysis approach to nonlinear partial differential equations[END_REF][START_REF] Pap | Noncommutative and nonassociative pseudo-analysis and its applications on nonlinear partial differential equations[END_REF][START_REF] Pap | Pseudo-L p space and convergence[END_REF], who has numerous cutting-edge works and applications. Recently the began discussing problems involving partial differential equations via pseudo-analysis. It is worth noting that in 2005, Pap [START_REF] Pap | Applications of the generated pseudo-analysis to nonlinear partial differential equations[END_REF] discussed a as motivation theory of generalized functions the theory of Mikusinski operators, which allows the construction of a generalized solution of the Burgers equation. In this sense, considering the extensions of pseudo-sum and pseudo-multiplication operations to non-commutative operations and non-associative cases, he addressed non-linear PDE problems. For a reading of other works involving different equations via pseudo-analysis, see [START_REF] Hosseini | On pseudo-fractional integral inequalities related to Hermite-Hadamard type[END_REF][START_REF] Babakhani | Some properties of pseudo-fractional operators[END_REF][START_REF] Hosseini | On pseudo-fractional integral inequalities related to Hermite-Hadamard type[END_REF][START_REF] Ralevic | The pseudo-linear superposition principle for nonlinear partial differential equations and representation of their solution by the pseudo-integral[END_REF][START_REF] Agahi | Pseudo-fractional integral inequality of Chebyshev type[END_REF] and the references therein.

Thus far, we have not addressed pseudo-analysis work with the calculus of variations. In this sense, the natural question that arises: Is there any reason why such connections have not yet been addressed? A priori, we can state that since the first work on calculus of variations and pseudo-analysis, the only work in this direction was carried out by Frederico et al. [START_REF] Frederico | Existence and uniqueness of global solution for a Cauchy problem and g-variational calculus[END_REF]; however, they used three theories, namely: fractional calculus, calculus of variations and pseudo-analysis. Another explanation for why there is still no work in this area the difficulties imposed by the function G, which is used to define the theory's operations.

Consider the following problem of the calculus of variations:

Problem 1: (Fundamental problem of pseudo-calculus of variations). {pb} Find ϕ ⋆ ∈ Υ such that I (ϕ ⋆ ) = min{I(ϕ) | ϕ ∈ Υ } where (1.2) I(ϕ) = ⊕ [a,b] L (ξ, ϕ(ξ), φ(ξ)) ⊙ dξ.
Here, the Lagrangian L

1 ([a, b]) ∋ L : [a, b] × U × R n -→ R and φ(ξ) = dϕ dξ . Furthermore,
⊙ and ⊕ will be presented in Section 2. Suppose that the data G • L ∈ C 1 of Problem 1 satisfies the following assumptions: (A 1 ) There exists k ≥ 0 such that

G • L (ξ, ϕ, v) ≥ ρ(|v|) -k
where ρ is a Nagumo function for the functional I: ρ : R + -→ R + and lim p→+∞ ρ(p) p = +∞;

(A 2 ) For all r > 0 there exists K(r) > 0 such that

   ∂(G • L ) ∂ϕ (ξ, ϕ, v) + ∂(G • L ) ∂v (ξ, ϕ, v) ≤ K(r)ρ(|v|) ξ ∈ [a, b], ϕ ∈ U ∩ B r and v ∈ R n ; (A 3 ) The function ρ satisfies ρ(p + m) ≤ C M (1 + ρ(p)), for all m ∈ [0, M ], p > 0.
Motivated by the theory of calculus of variations and pseudo-analysis, in this paper, we are initially interested in attacking issues of Euler-Lagrange pseudo-equation, the D'Alembert pseudo-principle, and pseudo-Noether theorem and some examples and comments. In other words, we are first interested in discussing the following result: {th:el} Theorem 1.1. Suppose that G • L is of class C 1 and that there exists ρ satisfying assumptions (A 1 ), (A 2 ) and

(A 3 ). If ϕ(•) ∈ Υ is a weak extremal of I for all ξ ∈ [a, b],
then ϕ is a solution of the Euler-Lagrange pseudo-equation

(1.3) {EL} {EL} ∂ ⊕ L ∂ϕ (ξ, ϕ(ξ), φ(ξ)) = d ⊕ dξ ∂ ⊕ L ∂ φ (ξ, ϕ(ξ), φ(ξ))
a.e. on [a, b].

On the other hand, we investigate two proofs of the pseudo-Noether theorem. The first is without transforming the independent variable, and the second is a discussion of the following results:

{Pnoether} Theorem 1.2. If functional I is invariant in the sense of Definition 4.5, then the quantity C ξ, ϕ(ξ), φ(ξ) defined by C ξ, ϕ(ξ), φ(ξ) = ∂ ⊕ L ∂ φ ξ, ϕ(ξ), φ(ξ) ⊙ G -1 ∂σ ∂s (0, ϕ) ⊕ L ξ, ϕ(ξ), φ(ξ) ⊖ ∂ ⊕ L ∂ φ ξ, ϕ(ξ), φ(ξ) ⊙ G( φ(ξ)) ⊙ G -1 ∂χ ∂s (0, ϕ) (1.4) {PNoether}
is a constant of motion on X ′ and S ′ .

Otherwise, the paper is organized as follows: Section 2 presents the fundamental concepts of pseudo-analysis. In Section 3, we will discuss the first result of the paper, i.e., the proof of the theorem involving the Euler-Lagrange pseudo-equation and the D'Alembert pseudo-principle. In this sense, in Section 4, we investigate the proof of pseudo-Noether's theorem. Finally, examples and comments on the results conclude the paper.

Mathematical Background: Auxiliary Results

Let

[a, b] ⊂ [-∞, ∞]. The full order on [a, b] will be denoted by ⪯. Let [a, b] + = {u|, u ∈ [a, b], 0 ⪯ u}. Let G : [a, b] → [0, ∞]
a monotone and continuous function. For a given G, the pseudooperations ⊕ and ⊙ are defined by [START_REF] Pap | Pseudo-additive measures and their applications[END_REF][START_REF] Pap | Applications of the generated pseudo-analysis to nonlinear partial differential equations[END_REF][START_REF] Hosseini | On pseudo-fractional integral inequalities related to Hermite-Hadamard type[END_REF][START_REF] Babakhani | Some properties of pseudo-fractional operators[END_REF] (2.1)

u ⊕ v = G -1 (G(u) + G(v)) and u ⊙ v = G -1 (G(u)G(v)).
A binary operation ⊕ on [a, b] is a pseudo-addition if it is commutative, non-decreasing with respect to ⪯, continuous, associative and with a zero (neutral) element denoted by 0. On the other hand, a binary operation

⊙ on [a, b] is a pseudo-multiplication if it is commutative, positively non-decreasing, i.e., u ⪯ v implies u ⊙ z ⪯ v ⊙ z for all z ∈ [a, b] + , associative and with a unit element 1 ∈ [a, b], i.e., for each u ∈ [a, b], 1 ⊙ u = u. Also, 0 ⊙ u = 0 and that ⊙ is distributive over ⊕, i.e., u ⊙ (v ⊕ z) = (u ⊙ v) ⊕ (u ⊙ z).
Note that G -1 (1 1 1) = 1 and G -1 (0 0 0) = 0. The structure ([a, b], ⊕, ⊙) is a semiring [START_REF] Pap | Pseudo-additive measures and their applications[END_REF][START_REF] Pap | Applications of the generated pseudo-analysis to nonlinear partial differential equations[END_REF][START_REF] Hosseini | On pseudo-fractional integral inequalities related to Hermite-Hadamard type[END_REF][START_REF] Babakhani | Some properties of pseudo-fractional operators[END_REF]. Definition 2.1. [START_REF] Pap | Pseudo-additive measures and their applications[END_REF][START_REF] Pap | Applications of the generated pseudo-analysis to nonlinear partial differential equations[END_REF][START_REF] Hosseini | On pseudo-fractional integral inequalities related to Hermite-Hadamard type[END_REF][START_REF] Babakhani | Some properties of pseudo-fractional operators[END_REF] Let the pseudo-operation ⊙ be defined through a monotone and continuous function

G : [a, b] → [0, ∞]. The G-integral of a measurable function f : [c, d] → [a, b] is given by ⊕ [c,d] f ⊙ du = G -1 d c G(f (u)) du .
Let G be the additive generator of the strict-pseudo-addition ⊕ on [a, b] such that G is continuously differentiable on (a, b). The corresponding pseudo-multiplication ⊙ will always be defined as

u ⊙ v = G -1 (G(u) • G(v)). If a function f is differentiable on (c, d)
and has the same monotonicity as function G, then the G-derivative of f at the point u ∈ (c, d) is defined by [START_REF] Pap | Pseudo-additive measures and their applications[END_REF][START_REF] Pap | Applications of the generated pseudo-analysis to nonlinear partial differential equations[END_REF][START_REF] Hosseini | On pseudo-fractional integral inequalities related to Hermite-Hadamard type[END_REF][START_REF] Babakhani | Some properties of pseudo-fractional operators[END_REF] 

d ⊕ du f (u) = G -1 d du G(f (u)) .
Also, if there exists the n-G-derivative of f , then

d (n)⊕ du f (u) = G -1 d n du n G(f (u)) .
Definition 2.2. [START_REF] Pap | Pseudo-additive measures and their applications[END_REF][START_REF] Pap | Applications of the generated pseudo-analysis to nonlinear partial differential equations[END_REF][START_REF] Hosseini | On pseudo-fractional integral inequalities related to Hermite-Hadamard type[END_REF][START_REF] Babakhani | Some properties of pseudo-fractional operators[END_REF] Let G be a generator of a pseudo-addition ⊕ on interval [-∞, +∞]. The binary operations ⊖ and ⊘ on [-∞, +∞] are defined by the expressions

u ⊖ v = G -1 (G(u) -G(v)) and u ⊘ v = G -1 G(u) G(v) .
If the expressions G(u) -G(v) and G(u) G(v) make sense, they are said to be the pseudosubtraction and pseudo-division consistent with the pseudo-addition ⊕.

Definition 2.3. [START_REF] Pap | Pseudo-additive measures and their applications[END_REF][START_REF] Pap | Applications of the generated pseudo-analysis to nonlinear partial differential equations[END_REF][START_REF] Hosseini | On pseudo-fractional integral inequalities related to Hermite-Hadamard type[END_REF][START_REF] Babakhani | Some properties of pseudo-fractional operators[END_REF] Let G : [-∞, +∞] → [-∞, +∞] be a continuous, strictly increasing and odd function such that G(0) = 0 0 0, G(1) = 1 1 1 and G(+∞) = +∞. The system of pseudo-arithmetical operations {⊕, ⊘, ⊙, ⊖} generated by these functions is said to be a consistent system. 

Υ = {ϕ ∈ AC ([a, b], R n ) | ∀ξ ∈ [a, b], ϕ(ξ) ∈ U, ϕ(a) ∈ U a , ϕ(b) ∈ U b }.
δI(ϕ; η) = G -1 b a ∂(G • L ) ∂ϕ (ξ, ϕ(ξ), φ(ξ)) • η(ξ) + ∂(G • L ) ∂ φ (ξ, ϕ(ξ), φ(ξ)) • η(ξ) dξ . Proof. Let r > 0 such that y ∈ U∩B r . Since η ∈ Lip([a, b], R n ) such that η(a) = η(b) = 0,
the map ϵ → ϕ + ϵη ∈ U is well defined and continuous in its co-domain. Therefore, we can find an ϵ > 0 sufficiently small such that ϕ + ϵη ∈ U ∩ B r . In this sense, if ϕ ∈ Υ , then y + ϵη ∈ Υ . Now, let us prove that if I(ϕ) < +∞, then

I(ϕ + ϵη) < +∞. Note that ⊕ [a,b] L (ξ, ϕ(ξ)+ϵη(ξ), φ(ξ)+ϵ η(ξ))⊙dξ = G -1 b a G•L (ξ, ϕ(ξ)+ϵη(ξ), φ(ξ)+ϵ η (ξ)) dξ and G • L (ξ, ϕ(ξ) + ϵη(ξ), φ(ξ) + ϵ η(ξ)) = G • L (ξ, ϕ(ξ), φ(ξ)) + ϵ 0 d(G • L ) ds (ξ, ϕ(ξ) + sη(ξ), φ(ξ) + s η(ξ)) ds.
Using the conditions (A 2 ), (A 3 ) and (A 1 ), yields

ϵ 0 d(G • L ) ds (ξ, ϕ(ξ) + sη(ξ), φ(ξ) + s η(ξ)) ds = ϵ 0 ∂(G • L ) ∂(ϕ + sη) (ξ, ϕ(ξ) + sη(ξ), φ(ξ) + s η(ξ)) • η(ξ) + ∂(G • L ) ∂( φ + s η) (ξ, ϕ(ξ) + sη(ξ), φ(ξ) + s η(ξ)) • η(ξ) ds ≤ ϵ 0 κ 1 (|η(ξ)| + | η(ξ)|) ρ φ(ξ) + s η(ξ) ds ≤ κ 2 ϵ 0 ρ φ(ξ) + s η(ξ) ds ≤ κ 3 ϵ 0 1 + ρ φ(ξ) ds ≤ κ 3 1 + G • L (ξ, ϕ(ξ), φ(ξ)) + k ϵ,
where κ i , i = 1, 2, 3 are suitable positive constants, depending only on ϕ and on the Lipschitz constant of η. This means that I(ϕ + ϵη) < +∞.

The first variation of I can be computed as follows

δI(ϕ; η) = G -1 d dϵ G G -1 b a G L (ξ, ϕ(ξ) + ϵη(ξ), φ(ξ) + ϵ η(ξ)) dξ ϵ=0 = G -1 d dϵ b a G L (ξ, ϕ(ξ) + ϵη(ξ), φ(ξ) + ϵ η(ξ)) dξ ϵ=0 = G -1 b a ∂ ∂ϵ G(L (ξ, ϕ(ξ) + ϵη(ξ), φ(ξ) + ϵ η(ξ))) dξ ϵ=0 = G -1 b a ∂(G • L ) ∂ϕ (ξ, ϕ(ξ), φ(ξ)) • η(ξ) + ∂(G • L ) ∂ φ (ξ, ϕ(ξ), φ(ξ)) η(ξ) dξ .
From by the previous estimates we also obtain that

∂ ∂ϵ G(L (ξ, ϕ(ξ) + ϵη(ξ), φ(ξ) + ϵ η(ξ))) ≤ ∂(G • L ) ∂ϕ (ξ, ϕ(ξ) + ϵη(ξ), φ(ξ) + ϵ η(ξ)) • η(ξ) + ∂(G • L ) ∂ φ (ξ, ϕ(ξ) + ϵη(ξ), φ(ξ) + ϵ η(ξ)) • η(ξ) ≤ κ 3 (1 + ρ( φ(ξ) )),
where ρ φ(ξ) ∈ L 1 ([a, b]) by assumption (A 1 ) and the smoothness of G and I. 

□ Lemma 3.4. (Du Bois-Reymond pseudo-lemma [39]) Let f, z ∈ C([a, b], R n ). If {funda} h ∈ C 1 G ([a, b], R n ) such that h(a) = h(b) = 0 0 0 and ⊕ [a,b] (z(ξ) ⊙ h(ξ)) ⊕ f (ξ) ⊙ d ⊕ h(ξ) dξ ⊙ dξ = 0 then it follows that f ∈ C 1 G ([a, b], R n ) and d ⊕ f (ξ) dξ = z(ξ) on [a.b], where C 1 G ([a, b], R n ) denote the
δI(ϕ; η) = G -1 b a ∂(G • L ) ∂ϕ (ξ, ϕ(ξ), φ(ξ)) • η(ξ) + ∂(G • L ) ∂ φ (ξ, ϕ(ξ), φ(ξ)) • η(ξ) dξ = 0 0 0. (3.1)
In this sense, Eq.(3.1) can thus be written as follows

δI(ϕ; η) = G -1 b a G G -1 G G -1 ∂(G • L ) ∂ϕ • η(ξ) + G G -1 ∂(G • L ) ∂ φ • η(ξ) dξ = G -1 b a G G -1 ∂(G • L ) ∂ϕ • η(ξ) ⊕ G -1 ∂(G • L ) ∂ φ • η(ξ) dξ = G -1 b a G G -1 G G -1 ∂(G • L ) ∂ϕ • G G -1 η(ξ) ⊕ G -1 G G -1 ∂(G • L ) ∂ φ • G G -1 η(ξ) dξ = G -1 b a G ∂ ⊕ L ∂ϕ ⊙ G -1 η(ξ) ⊕ ∂ ⊕ L ∂ φ ⊙ G -1 η(ξ) dξ = G -1 b a G ∂ ⊕ L ∂ϕ ⊙ G -1 η(ξ) ⊕ ∂ ⊕ L ∂ φ ⊙ d ⊕ dξ G -1 η(ξ) dξ = ⊕ [a,b] ∂ ⊕ L ∂ϕ ⊙ G -1 η(ξ) ⊕ ∂ ⊕ L ∂ φ ⊙ d ⊕ dξ G -1 η(ξ) ⊙ dξ = 0 0 0. (3.2)
Therefore, using Lemma 3.4, we obtain Eq.(1.3) and we concluded the proof. □

Finally, Lemma 3.3 yields the D'Alembert principle. 

Corollary 3.5. Let L 1 ([a, b]) ∋ Q : [a, b] × U × R n -→ R
; η) = G -1 b a G • Q(ξ, ϕ(ξ), φ(ξ)) • η(ξ)dξ for all η ∈ Lip([a, b], R n ).
Under the hypotheses of the Theorem 1.1, we get the following generalized Euler-Lagrange pseudo-equation

d ⊕ dξ ∂ ⊕ L ∂ φ (ξ, ϕ(ξ), φ(ξ)) = ∂ ⊕ L ∂ϕ (ξ, ϕ(ξ), φ(ξ)) ⊕ Q(ξ, ϕ(ξ), φ(ξ)).

Pseudo-Noether's theorem

The Noether's theorem [START_REF] Noether | Invariante Variationsprobleme[END_REF] identifies a quantity that is preserved along any solution q(•) of the Euler-Lagrange equations of a variational integral, so-called first integral of motion, with any differentiable symmetry of the integrated. (ii) For each s ∈ P , the map ψ(s, •) is invertible, and ψ -1 (s, •) is of class C 2 ; (iii) ψ(0, •) = Id D , where Id is the identity function; (iv) For all s, s ′ ∈ P : 

s + s ′ ∈ P ⇒ ψ(s, •) • ψ(s ′ , •) = ψ(s + s ′ , •).
extremal ϕ ∈ C 2 ([a, b], S ′ ) it satisfies ⊕ X ′ L ξ, ϕ(ξ), dϕ dξ (ξ) ⊙ dξ = ⊕ X ′ L ξ, σ(s, ϕ(ξ)), dσ dξ (s, ϕ(ξ)) ⊙ dξ
is a constant of motion on X ′ , S ′ if (4.2) {lcon} {lcon} d ⊕ C dξ ξ, ϕ(ξ), φ(ξ) = 0 0 0 ∀ξ ∈ X ′ along all the extremals ϕ ∈ C 2 ([a, b], S ′ ).
C ξ, ϕ(ξ), φ(ξ) = ∂ ⊕ L ∂ φ ξ, ϕ(ξ), φ(ξ) ⊙ G -1 ∂σ ∂s (0, ϕ) (4.3) {NCL}
is a constant of motion on X ′ and S ′ .

Proof. Calculating the derivative with respect to s of Eq.(4.1) at s = 0 ∈ P and ξ ∈ X ′ , yields Substituting the Eq.(4.5) into Eq.(4.4), and using the same arguments as in the proof of Theorem 1.1, Eq.(4.4) is equivalent to

0 0 0 = G -1 d ds G G -1 X ′ G L ξ, σ(s, ϕ(ξ)), dσ dξ (s, ϕ(ξ)) dξ s=0 = G -1 X ′ ∂ ∂s G L ξ, σ(s, ϕ(ξ)), dσ dξ (s, ϕ(ξ)) dξ s=0 = G -1 X ′ ∂(G • L ) ∂ϕ (ξ, ϕ(ξ), φ(ξ)) • ∂σ ∂s (0, ϕ) + ∂(G • L ) ∂ φ (ξ, ϕ(ξ), φ(ξ)) • ∂ ∂s dσ dξ (s, ϕ (ξ) 
⊕ X ′ ∂L ⊕ ∂ϕ ξ, ϕ(ξ), φ(ξ) ⊙ G -1 ∂σ ∂s (0, ϕ) (4.6) {c11} ⊕ ∂L ⊕ ∂ φ ξ, ϕ(ξ), φ(ξ) ⊙ d ⊕ dξ G -1 ∂σ ∂s (0, ϕ) ⊙ dξ = 0 0 0. (4.7)
Using the Euler-Lagrange equation (1.3) in the first term of the pseudo-integral on (4.6), and Leibniz's formula for pseudo-multiplication, we find

(4.8) ⊕ X ′ d ⊕ dξ ∂L ⊕ ∂ φ ξ, ϕ(ξ), φ(ξ) ⊙ G -1 ∂σ ∂s (0, ϕ) ⊙ dξ = 0 0 0.
Since equality (4.8) holds for all ξ ∈ X ′ and for all s ∈ S ′ , and G is a monotone function, we obtain Eq.(4.3). Therefore proof is completed.

□ {def:inv1} Definition 4.5. Let X = {χ(s, •)} s∈P ∈ C 2 (ξ ′ , X ′ ) and S = {σ(s, •)} s∈P ∈ C 2 (S ′ , S ′ )
be one parameter groups of diffeomorphims on the open sets X ′ ⊆ [a, b] and S ′ ⊆ R n respectively. The functional I is said to be invariant under the action of X and S, if for any weak extremal

ϕ ∈ C 2 ([a, b], S ′ ) it satisfies ⊕ X ′ L ξ, ϕ(ξ), dϕ dξ (ξ) ⊙ dξ = ⊕ χ(s,X ′ ) L χ( s, ξ), σ(s, ϕ(ξ)), dσ dχ(s, ξ) (s, ϕ(ξ)) ⊙ dχ(s, ξ) 
for all s ∈ P and all ξ ∈ X ′ .

We can now extend our previous Theorem 4. [START_REF] Mattheij | Partial differential equations: modeling, analysis, computation[END_REF] for the more general case including both space and time transformations. The generalized Noether-type pseudo-theorem for variational pseudo-problems is given in the Theorem 1.2 and proved as follows:

Proof. (Proof of Theorem 1.2) First, we parameterize the independent variable ξ ∈ [a, b] by using a Lipschitz transformation as follows

ξ -→ σ ∈ [σ a , σ b ], with ξ(σ a ) = a, ξ(σ b ) = b.
Using this parametrization, the functional I defined in Eq.(1.2) can be rewritten as an autonomous functional Ī[ξ(•), ϕ(ξ(•))] given by Since I[(•)] defined in Eq.(1.2) is an invariant functional in the meaning of Definition 4.5, Ī[ξ(•), ϕ(ξ(•))] in Eq.(4.9) will be invariant in the meaning of Definition 4.2. Consequently, from Theorem 4.4, yields

I[ϕ(•)] -→ Ī[ξ(•), ϕ(ξ(•))] = ⊕ [σa,σ b ] L ξ(σ), ϕ(ξ(σ)), φ(ξ(σ)), ⊙ dξ(σ) = G -1 σa σa G • L ξ(σ), ϕ(ξ(σ)), φ(ξ(σ)) dξ(σ) = G -1 σa σa G • L ξ(σ), ϕ(ξ(σ)), ϕ ′ σ ξ ′ σ ξ ′ σ dσ = G -1 σa σa G • L (ξ(σ), ϕ(ξ(σ)), ϕ ′ σ , ξ ′ σ ) dσ = G -1 a a G • L ξ, ϕ ( 
C (ξ, ϕ, ξ ′ σ , ϕ ′ σ ) = ∂ ⊕ L ∂ϕ ′ σ ⊙ G -1 ∂σ ∂s (0, ϕ) ⊕ ∂ ⊕ L ∂ξ ′ σ ⊙ G -1 ∂χ ∂s (0, ϕ) (4.10) is a constant of motion. Note that ∂G • L ∂ϕ ′ σ = ∂G • L ∂ φ (4.11) {cnm} and ∂G • L ∂ξ ′ σ = L - ∂L ∂ φ • φ. (4.12) {cnm1}
Using the same reasoning as in the prove of Theorem 1.1, we obtain

∂ ⊕ L ∂ϕ ′ σ = ∂ ⊕ L ∂ φ (4.13) {cnm} ∂ ⊕ L ∂ξ ′ σ = L ⊖ ∂ ⊕ L ∂ φ ⊙ G -1 ( φ). (4.14) {cnm1}
Substituting the Eq.(4.13)-Eq.(4.14) into Eq.(4.10), we obtain the constant of motion (1.4). Therefore, we concluded the proof. □

Comments and Illustrative applications

Below, some comments about Theorem 1.2 are valid in order to enrich the investigated results.

(1) About the Theorem 1.2.

Problems of the calculus of variations in this direction are very recent. To the best of our knowledge, there is only one article [START_REF] Frederico | Existence and uniqueness of global solution for a Cauchy problem and g-variational calculus[END_REF] in which the authors proved the existence and uniqueness of a variational problem. Therefore, Theorem 1.2 is quite interesting because it provides a very explicit expression of a constant of motion in terms of the symmetry group and Lagrangian for Problem 1.

(2) Link with the classical problem of the calculus of variations.

In case G(ξ) = ξ, Problem 1 is reduced to the classical problem of the calculus of variations (Problem (5.1)), (5.1) {eq:pbcv} {eq:pbcv}

I[(•)] = b a L ξ, ϕ(ξ), φ(ξ) -→ min ,
and one obtains from Theorem 1.2 the standard Noether's theorem [START_REF] Noether | Invariante Variationsprobleme[END_REF]: (3) Coherence's principle Application to Problem 1 when the Lagrangian L does not depend explicitly on ϕ.

C ξ, ϕ(ξ), φ(ξ) = ∂L ∂ φ ξ, ϕ(ξ), φ(ξ) • ∂σ ∂s (0, ϕ) + L ξ, ϕ(ξ), φ(ξ) - ∂L ∂ φ ξ, ϕ(ξ), φ(ξ) • φ(ξ) • ∂χ ∂s (0, ξ) (5.2) {PCNoether}
In classical mechanics, when Problem (5.1) does not depend explicitly on ϕ, i.e., L ≡ L ξ, φ(ξ) , it follows from (5.3) that the generalized momentum p = ∂L ∂ φ is a constant of motion. This is also an immediate consequence of Noether's theorem [START_REF] Noether | Invariante Variationsprobleme[END_REF]: from the invariance with respect to translations on ϕ, i.e., σ(s, ϕ(ξ)) = ϕ(ξ) + s, it follows from (5.2) that p is a constant of motion. In this case, our variational problem reduces to (5.5)

I(ϕ) = ⊕ [a,b] L (ξ, φ(ξ)) ⊙ dξ -→ min .
Furthermore, in such circumstances, Theorem 1.2 provides a new interesting insight for problem (5.5): {MO} Corollary 5.1. For the fractional problem (5.5), the quantity

(5.6) ∂ ⊕ L ∂ φ ξ, ϕ(ξ), φ(ξ)
is a constant of motion in the sense of Definition 4.3.

Proof. Provided that the Lagrangian does not depend explicitly on ϕ, it is easy to check that invariance condition (4.1) is satisfied with χ(s, ϕ(ξ)) = ξ and σ(ξ, ϕ(ξ)) = ϕ(ξ) + s.

In fact, (4.1) holds trivially proving that dσ dχ(s, ξ) Using the previous notations, one has ∂χ ∂s (0, ξ) = 0 and ∂χ ∂s (0, ϕ) = 1. As G -1 (1 1 1) = 1 and G -1 (0 0 0) = 0 desired conclusion follows from Theorem 1.2. □

Application to Problem 1 when the Lagrangian L does not depend explicitly on ξ Another famous example of the application of Noether's theorem in classical mechanics is given by the conservation of energy: when the Lagrangian L in (5.1) is autonomous, i.e., L ≡ L ϕ(ξ), φ(ξ) . In our case, Theorem 1.2 also gives a new and interesting result for autonomous pseudo-variational problems. Let us consider an autonomous variational problem i.e., the case when function L given in (1.2) do not depends explicitly on the independent variable ξ: Proof. Analogous to the prove of Corollary 5.1. □

I(ϕ) =

Conclusions and Open Questions

The pseudo-analysis is a mathematical area of currently strong research, with numerous applications in physics and engineering. The theory of the calculus of variations for pseudo-systems was recently initiated in [START_REF] Frederico | Existence and uniqueness of global solution for a Cauchy problem and g-variational calculus[END_REF], with the study of the existence and uniqueness of solutions for g-variational problems. In this paper we go a step further: we prove a pseudo-Noether's theorem.

The pseudo-variational theory is in its early stages, so that much remains to be done. This is particularly true in the area of pseudo-optimal control, where the results are completely non-existent. To the best of the author's knowledge, there is no general formulation of a pseudo-version of Pontryagin's Maximum Principle. Then, with a pseudonotion of Pontryagin extremal, we can try to extend the present results to a more general context of the pseudo-optimal control.

3 .

 3 Euler-Lagrange pseudo-equation and D'Alembert pseudo-principle Let a, b ∈ R with 0 ≤ a < b. Let a connected open set U ⊂ R n and two closed subsets U a , U b ⊂ U . We denote by AC ([a, b], R n ) the class of all absolutely continuous arcs ϕ : [a, b] → R n . Definition 3.1. The set of admissible arcs is defined by

Definition 3 . 2 .Lemma 3 . 3 .

 3233 (First variation of I) Let ϕ, η ∈ AC([a, b], R n ) such that ϕ + ϵη ∈ Υ and I(ϕ + ϵη) < +∞ for ϵ in a neighborhood of 0. Then, the first variation of I at ϕ in direction η is defined by δI(ϕ; η) = d ⊕ dϵ I(ϕ + ϵη) ϵ=0 provided the pseudo-derivative at the right-hand side term exists. The function ϕ is called weak extremal of I if δI(ϕ; η) = 0 0 0 for all η ∈ AC([a, b], R n ). {1varia} Consider the conditions (A 1 ) -(A 3 ). If y ∈ Υ is such that ϕ(•) ∈ U for all ξ ∈ [a, b] and I(ϕ) < +∞, then for all η ∈ Lip ([a, b], R n ) such that η(a) = η(b) = 0 the first variation of I at ϕ in direction η exist and is given by

  space of all continuous functions ϕ defined on [a, b] which have continuous first pseudo-derivative endowed with the norm ∥ϕ(ξ)∥ 1 := max a≤ξ≤b |ϕ(ξ)| ⊕ max a≤ξ≤b d ⊕ ϕ(ξ) dξ . Motivated by Lemma 3.3 and Lemma 3.4, we will prove the main result of this section. Proof. (Proof of Theorem 1.1) Since ϕ(•) ∈ Υ is a weak extremal of I, the map ϵ → I(ϕ+ϵη) attains the extremal at ϵ = 0 for all η ∈ Lip ([a, b], R n ) such that η(a) = η(b) = 0. So using Lemma 3.3, one has

Definition 4 . 1 .

 41 (Variational symmetry group) Let D ⊆ R n be an open set. We said {sg} that Φ = {ψ(s, •)} s∈P is a one parameter group of diffeomorphisms of D if it satisfies: (i) P is an open set, 0 0 0 ∈ P and ψ ∈ C 2 (P × D, D);

Definition 4 . 2 .

 42 (Invariance without transforming the independent variable ξ) {def:inv} Let S = {σ(s, •)} s∈P ∈ C 2 (S ′ , S ′ ) be one parameter groups of diffeomorphims on the open set S ′ ⊆ R n . The functional I is said to be invariant under the action of S, if for any weak

( 4 . 1 )Definition 4 . 3 .

 4143 {invg} for all s ∈ P and all ξ ∈X ′ ⊆ [a, b]. {lc1} Let X ′ ⊆ [a, b]be an open set. We said that a quantity C ξ, ϕ(ξ), φ(ξ)

Theorem 4 . 4 .

 44 (Pseudo-Noether theorem without transforming the independent variable ξ) If the functional I is invariant in the sense of Definition 4.2, then {CNT} the quantity C ξ, ϕ(ξ), φ(ξ) defined for all ϕ ∈ C 2 ([a, b], S ′ ) and ξ ∈ X ′ by

  {22} Taking into account that ∂ ∂s act on variable s and d dξ on variable ξ, and σ ∈ C 2 with respect to s (see Definition 4.1), we have (4.5)

  ξ), φ(ξ) dξ , (4.9) where ξ ′ σ = dξ(σ) dσ and ϕ ′ σ = dϕ(ξ(σ)) dσ .

  is a conservation law, i.e. (5.2) is constant along all the solutions of Euler-Lagrange equation (5.3) {eq:EL} {eq:EL} ∂L ∂ϕ ξ, ϕ(ξ), φ(ξ) = d dξ ∂L ∂ φ ξ, ϕ(ξ), φ(ξ) (this classical equation is obtained from (1.3) putting G(ξ) = ξ).

Finally, we have

  an important conclusion: the principle of coherence is respected, i.e.

⊕

  [a,b] L (ϕ(ξ), φ(ξ)) ⊙ dξ -→ min .(5.7) Corollary 5.2. Let I be an autonomous functional given by (5.7). Then I is invariant by the time translation given by χ(s, ξ) = ξ + s and σ(s, ϕ(ξ)) = ϕ(ξ), and Theorem 1.2assures that C ϕ(ξ), φ(ξ) = L ϕ(ξ), φ(ξ) ⊖ ∂ ⊕ L ∂ φ ϕ(ξ), φ(ξ) ⊙ G -1 ( φ(ξ))is a constant of motion in the sense of Definition 4.3.
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