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Abstract
Gas furnaces are the most widely used means of heating in industry, and with the growing concern
for environmental issues, and a global energy crisis at our doorstep, the optimization of the processes
related to them becomes a key challenge. This paper aims at introducing a new way of practicing
gas furnace control involving simulations, virtual sensors and deep reinforcement learning (DRL)
techniques. In order to do so we designed a set of simulations of conjugate heat transfer systems
governed by the coupled Navier–Stokes and heat equations for single-step control. The DRL
algorithm used in this paper is the policy-based optimization (PBO) algorithm specialized in single-
step (or open-loop) control. We explore its ability to find global maxima in di�erent situations and
under various constraints. Therefore, various 2D and 3D cases are tackled, in which the position of
the work piece, the flow rate, and other parameters are controlled. The obtained results highlight
the potential of the DRL framework combined with computational fluid dynamics (CFD) conjugate
heat transfer systems for optimizing searches in large parameter spaces. For the 2D case, PPO
achieved an increase of 89% in temperature homogeneity, and for the 3D case an increase of 7% in
final temperature with the same total input.

Keywords: Deep Reinforcement Learning; Artificial Neural Networks; Conjugate heat transfer;
Computational fluid dynamics; Thermal control; Serpentine.

1. Introduction1

Just like cooling, properly heating a part is a challenge that manufacturers take up every day2

to obtain the desired properties in the part, whether they are mechanical, electrical, optical or3

aesthetic. To achieve that, gas furnaces have been studied for a long time and their control has4

evolved to arrive today at the cohabitation of many techniques, including manual control, fuzzy5

control [1], proportional-integral (PI)/proportional-integral-derivative (PID) single-loop control or6

cascade control [2, 3] among others. The reason for this flourishing of techniques is the di�culty to7

accurately perform temperature control, whether it is because of the di�culty to measure the tem-8

perature accurately inside the chamber, or because of the di�erent characteristics of temperature9

variation through flow control such as non linearity, inertia and time delay.10

Temperature control has been addressed by a lot of articles in the literature, and with the11

emergence of Artificial Neural Networks (ANNs) taking advantage of the most recent advances in12

computational power and data analysis, new control techniques that are more robust and can deal13

with non linearity, inertia and time delay have been developed : image processing and clustering14

to control gas burners [4, 5], recurrent neural networks (RNNs) with electrical furnaces [6, 7],15

neural networks for metal quality control [8] and for flame stability control [9–11], and radial16

basis function neural networks (RBFNNs) to control coke furnaces [12]. In the aerospace industry,17

burners are also very thoroughly studied to prevent any incident inside aircraft engines. They use18

neural networks in the active control of the burning chambers and find ways to prevent oscillating19

patterns to occur during combustion [13]. Such patterns are generally responsible for a premature20
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fatigue of the materials composing the chamber, as well as disturbances to the good functioning21

of the combustion. This is also true for industrial gas furnaces ; even though these issues are less22

explored in the field of furnace control, they become more and more important with the use of23

mixed fuels, and the alternating use of natural gas and dihydrogen.24

In the realm of optimal control with constraints on the state of the system, the combination of25

deep neural networks (DNNs) and reinforcement learning (RL) algorithms (a formal framework in26

which an agent learns by interacting with an environment and learns by gathering experience) has27

brought new cards to the table in such a way that the best performing algorithms in a wide variety28

of tasks (e.g., games [14, 15], cooling control [16], autonomous cars [17], medicine [18], energy29

[19, 20]). In fluid dynamics, this so-called deep reinforcement learning (deep RL, or DRL) has also30

been used with success for flow control and shape optimization with success (Refs. [21, 22] and the31

references therein) by taking advantage of its robustness to non linearity and to high dimensional32

spaces. This field of application is still at an early stage, as evidenced by the scarce literature33

dedicated to DRL-based thermal control [23, 24], but it shows great promise for the future of fluid34

related topics.35

This work aims at introducing DRL into the field of gas furnace control. More specifically, it36

assesses the performances of proximal policy optimization (PPO [25]) for the one-step control of a37

heating chamber. We use an algorithm introduced in [26] and whose relevance for open-loop flow38

control problems is assessed in [27] that is a degenerate version of the classical PPO algorithm. The39

choice for PPO is driven by its data e�ciency (a decisive criteria for computationally expensive40

simulations), ease of implementation and already widely assessed performance. Several problems41

of conjugate heat transfer in two and three dimensions are used as testbed to push forward the42

development of this novel approach. To the best of the authors knowledge, this constitutes the43

first attempt to achieve DRL-based control of conjugate forced convection heating processes.44

2. Governing equations for fluid mechanics45

The focus of this research is on conjugate heat transfer and laminar, incompressible fluid flow46

problems in two and three-dimensions, for which the conservation of mass, momentum and energy47

is described by the nonlinear, coupled Navier–Stokes and heat equations48

Ò · u = 0 , (1)
fl(ˆtu + u · Òu) = Ò · (≠pI + 2µ"(u)) , (2)

flcp(ˆtT + u · ÒT ) = Ò · (⁄ÒT ) , (3)

where u is the velocity field, p is the pressure, T is the temperature, "(u) = (Òu + ÒuT )/2 is the49

rate of deformation tensor, we assume here constant fluid density fl, dynamic viscosity µ, thermal50

conductivity ⁄, and specific heat cp, and we have neglected buoyancy and radiative heat transfer,51

on behalf of the focus being on conjugate forced convection heat transfer.52

This is solved here with an in-house stabilized finite elements environment cast in the Variational53

Multiscale (VMS) framework. This allows using equal order linear approximations for all variables54

(very desirable due to its simplicity of implementation and a�ordable computing cost) by enhancing55

the stability of the Galerkin method via a series of additional derived residual based terms evaluated56

over element interior. The solid is treated as an immersed body, using the Immerse Volume Method57

to compute the amount of heat exchanged between the solid and the fluid only from the individual58

material properties on either side of it (which in turn removes the need for a heat transfer coe�cient,59

a limiting issue for the present numerical experiments where we vary the position of the solid). For60

details about the numerical framework, including the interface capturing method used to generated61

strongly anisotropic meshes adapted at the fluid-solid boundary (to ensure that the fluid properties62

are distributed as accurately and smoothly as possible over the smallest possible thickness around63

the interface), the reader can refer to Refs. [24, 28]. The relevance of this numerical method has64

been validated on multiple benchmarks here [29] and in particular for heat transfer here [30]. For65

the sake of simplicity we will not discuss it here.66
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Figure 1: Fully connected neural network with two hidden layers, modeling a mapping from data living in R3
to

data living in R2
.

3. Deep reinforcement learning and proximal policy optimization67

3.1. Neural networks68

A neural network (NN) is a connected collection of non-linear functions. It is extremely useful69

when trying to mimic the relationship between multiple highly non-linear phenomena. A fully70

connected network is sketched in figure 1, it has layers (represented as columns in the sketch) and71

within each of them the neurons are connected to all of those contained in the next layer. The input72

layer is the one that receives information from the outside, the output layer is the one that gives the73

result and between them are hidden layers. Building an e�cient neural network requires a relevant74

architecture (e.g., type of network, depth, width of each layer), finely tuned hyper-parameters (i.e.,75

parameters that cannot be learned directly by the neural network, e.g., optimizer, learning rate,76

batch size) and an adequate amount of data to learn from. More details here Ref. [31] and the77

references therein.78

3.2. Deep reinforcement learning79

Reinforcement learning (RL) is a type of machine learning in which an agent learns the actions80

to do in an environment in order to get the best reward possible. Such method is often formulated81

as a Markov Decision Process for which a full loop looks like this :82

• Assume the environment is in state st œ S at iteration t, where S is a set of states;83

• The agent uses wt, an observation of the current environment state (and possibly a partial84

subset of st) to take action at œ A, where A is a set of actions;85

• The environment reacts to the action by transitioning from st to state st+1 œ S;86

• The agent is fed with a reward rt œ R, where R is a set of rewards, and a new observation87

wt+1.88

This repeats until a steady state is reached. The succession of states and actions defines a trajectory89

· = (s0, a0, s1, a0, . . . ) for which the agent will try and maximize the cumulative reward at each90

step, by choosing an action. That is why the most common quantity of interest in RL is the91

discounted cumulative reward :92

R(·) =
Tÿ

t=0
“trt, (4)

where T is the final time, and “ œ [0, 1] is the discount factor that weights the importance of93

rewards according to their distance to the present (the agent being short-sighted in the limit where94

“ æ 0, and far-sighted in the limit where “ æ 1).95

There exist two main types of RL algorithms : model-based methods either have access to the96

environment and therefore know the probability distribution of the states they end up in, or try to97

build an approximation of it ; model-free methods don’t try to understand the environment, but98

only communicate with it and try to find the best actions to take, these methods are prominent in99

the DRL community.100
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Figure 2: RL agent and its interactions with its environment.

Inside the model-free family of algorithms are also two main techniques : value-based methods101

that learn to predict the future rewards of a set of actions in order to pick the best one, and policy-102

based methods that keep in memory a policy that maps states to actions and learn to obtain the103

best rewards by modifying this policy. Many DRL algorithms in the community, including PPO,104

the one used in this paper, use gradient ascent to optimize a parameterized policy with respect to105

the expected return and therefore belong to the family of policy gradient methods. For a more106

thorough introduction to the taxonomy of RL methods (together with their respective pros and107

cons) please refer to Ref. [32].108

3.3. From policy methods to Proximal policy optimization109

This section is intended for non-expert readers and provides an overview of the basic principles110

and prerequisites of the Policy Gradient Method and the various steps taken to improve it.111

112

- Policy methods. A policy method maximizes the expected discounted cumulative reward of a113

decision policy fi mapping states to actions. It doesn’t use a value function as explained before,114

but a probability distribution to determine which actions are best at any given state. Policies being115

often stochastic, the following notations are introduced:116

• fi(s, a) is the probability of taking action a in state s under policy fi,117

• Qfi(s, a) is the expected value of the discounted cumulative reward after taking action a in118

state s (also termed state-action value function or Q-function)119

Qfi(s, a) = Efi

#
R(·)|s, a

$
, (5)

where Efi is the expected value E under policy fi.120

• V fi(s) is the expected value of the discounted cumulative reward in state s (also termed value121

function or V-function)122

V fi(s) = Efi

#
R(·)|s

$
. (6)

The V and Q functions are thus related such that123

V fi(s) =
ÿ

a

fi(s, a)Qfi(s, a) , (7)

so V fi(s) can also be understood as the probability-weighted average of discounted cumulative124

rewards over all possible actions in state s.125
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- Policy gradient methods. A policy gradient method aims at optimizing a parameterized policy126

fi◊, where ◊ denotes the free parameters whose values can be learnt from data (as opposed to the127

hyper parameters). In practice, one defines an objective function based on the expected discounted128

cumulative reward129

J(◊) = Efi◊

#
R(·)

$
, (8)

and looks for ◊ú maximizing J(◊) :130

◊ú = arg max
◊

Efi◊

#
R(·)

$
. (9)

One can try to do this by estimating the policy gradient Ò◊J(◊) and using a gradient ascent131

algorithm. This is certainly a di�cult task as one is seeking a gradient that depends on the policy132

parameters, but also on the whole space of state-action pairs, in a context where the e�ects of133

policy changes on the state probability distribution are unknown (since modifying the policy will134

most likely modify the probability distribution over the set of visited states). One commonly used135

estimator, derived in [32] using the log-probability trick, reads136

Ò◊J(◊) = Efi◊

C
Tÿ

t=0
Ò◊ log (fi◊(st, at)) R(·)

D
≥ Efi◊

C
Tÿ

t=0
Ò◊ log (fi◊(st, at)) ‚Afi(st, at)

D
, (10)

where ‚Afi is some biased estimate (here its normalization to zero mean and unit variance) of the137

advantage function138

Afi(s, a) = Qfi(s, a) ≠ V fi(s) , (11)

that measures the improvement (if Afi > 0, otherwise the lack thereof) associated with taking action139

a in state s (Q-function) compared to taking the average over all possible actions (V-function).140

This is possible because the V-function doesn’t depend on the action, and therefore doesn’t change141

the expected value, but it shows experimentally that it also reduces the variance and speeds up the142

learning. When the policy fi◊ is represented by a neural network (in which case ◊ simply represents143

the network parameters), we tend to estimate the policy loss144

L(◊) = Efi◊

C
Tÿ

t=0
log (fi◊(at|st)) ‚Afi(st, at)

D
, (12)

whose gradient is equal to the (approximated) policy gradient (10) and is computed with respect145

to each parameter of the neural network by using the chain rule at each layer with the back-146

propagation algorithm [33].147

148

- Trust regions. The learning rate of the policy gradient methods, i.e. the size of the steps taken at149

each learning iteration, has a large impact on their performances. Too small, and the learning will150

never end, too large, and it will be di�cult to get out of degenerate regions where the gradient is151

already high or noisy. Fine-tuning the learning rate could be a solution, but it asks sometimes for152

too much work finding the right balance. One way to stay in the range of improvement is to define153

a maximum distance between the new policy and the old one, this way, even when the gradient154

becomes too high, the trust region clips the distance and avoid the aforementioned issues. We155

will not dwell on the intricate details of the many algorithms developed to solve such trust region156

optimization problems, e.g., natural policy gradient (NPG [34]), or trust region policy optimiza-157

tion (TRPO [35]). Su�ce it to say that they use the MinMax algorithm to maximize iteratively158

a surrogate policy loss (i.e. a lower bound approximating locally the actual loss at the current159

policy), but are di�cult to implement and can be computationally expensive, as they rely on an160

estimate of the second-order gradient of the policy log probability.161

162
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- Proximal policy optimization. Proximal policy optimization (PPO) is a similar approach to TRPO163

(on which it is based) but with a simpler heuristic that uses a probability ratio between the two164

policies to maximize improvement without the risk of performance collapse [25]. The focus here is165

on the PPO-clip algorithm1, that optimizes the surrogate loss166

L(◊) = Efi◊

5
min

3
fi◊(a|s)

fi◊old(a|s) , g(‘, ‚Afi(s, a))
4

‚Afi(s, a)
6

, (13)

where167

g(‘, A) =
I

1 + ‘ A Ø 0 ,

1 ≠ ‘ A < 0 ,
(14)

and ‘ œ [0.1, 0.3] is the clipping range, a small hyper parameter defining how far away the new168

policy is allowed to go from the old. Its range is adapted from the paper on Proximal Policy169

Optimization [36] and was confirmed in our own implementation. The general picture is that170

a positive (resp. negative) advantage increases (resp. decreases) the probability of taking action171

a in state s, but always by a proportion smaller than ‘, otherwise the min kicks in (13) and its172

argument hits a ceiling of 1 + ‘ (resp. a floor of 1 ≠ ‘). This prevents stepping too far away from173

the current policy, and ensures that the new policy will behave similarly but hopefully in a better174

way.175

3.4. Single-step PPO176

We now come to single-step PPO, a “degenerate” version of PPO introduced in [26] and intended177

for situations where the optimal policy to be learnt by the neural network is state-independent,178

i.e. fi◊(a, s) = fi◊(a), as is notably the case in optimization and open-loop control problems179

(closed-loop control problems conversely require state-dependent policies for which standard PPO180

is best suited). The main di�erence between standard and single-step PPO can be summed up as181

follows: where standard PPO seeks the optimal set of parameters ◊ı leading to the largest possible182

cumulative reward over one episode, single-step PPO seeks the optimal parameters ◊ı such that183

aı = fi◊ı(s0), where s0 is some input state (usually a constant vector of zeros) consistently fed184

to the agent for the optimal policy to eventually embody the transformation from s0 to aı. The185

agent initially implements a random initial policy determined by the free parameters ◊0, after186

which it gets only one attempt per learning episode at finding the optimal (i.e., it interacts with187

the environment only once per episode). This is illustrated in figure 3 showing the agent draw a188

population of actions at from the current policy, and being returned incentives from the associated189

rewards to update the free parameters for the next population of actions at+1 = fi◊t+1(s0) to yield190

larger rewards.191

In practice, the agent outputs a policy parameterized by the mean and variance of the proba-192

bility density function of a d-dimensional multivariate normal distribution, with d the dimension193

of the action required by the environment. Actions drawn in [≠1, 1]d are then mapped into rele-194

vant physical ranges, a step deferred to the environment as being problem-specific. The resolution195

essentially follows the process described in section 3.3, only a normalized averaged reward substi-196

tutes for the advantage function. This is because classical PPO is actor-critic, i.e., it improves the197

learning performance by updating two di�erent networks, a first one called actor that controls the198

actions taken by the agent, and a second one called critic, that learns to estimate the advantage199

from the value function as200

A(st, at) = rt + “V (st+1) ≠ V (st) . (15)

In single-step PPO, the trajectory consists of a single state-action pair, so the discount factor can201

be set to “ = 1 with no loss of generality. In return, the advantage reduces to the whitened reward202

since the two rightmost terms cancel each other out in (15). This means that the approach can do203

without the value-function evaluations of the critic network, i.e., it is not actually actor-critic.204

1
There is also a PPO-Penalty variant which uses a penalization on the average Kullback–Leibler divergence

between the current and new policies, but PPO-clip performs better in practice.
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Figure 3: Action loop for single-step PPO. At each episode, the input state s0 is provided to the agent, which in

turn provides n actions to n parallel environments. The latter return n rewards, that evaluate the quality of each

action taken. Once all the rewards are collected, an update of the agent parameters is made using the PPO loss

(13).

(a) (b)

Figure 4: (a) Schematic of the 2D forced convection set-up. (b) Sensors positions in the solid domain.

4. Control of forced convection heating in a 2D open cavity205

4.1. Case description206

This test case is based on the second test case of this paper [24] with a few twists. Here we207

address the control of conjugate heat transfer for the heating of a piece by injection of a hot fluid208

in the chamber. We use a Cartesian coordinate system with origin at the center of the chamber.209

The solid has a rectangular shape with height h and aspect ratio 2:1, and is initially at the cold210

temperature Tc. It can be fixed or move around the chamber according to the parameters we wish to211

control. Its density, thermal conductivity and heat capacity can take two values, depending on the212

type of solid we are trying to emulate in order two compare the two : brick or steel. The chamber213

itself has a rectangular shape with height H and aspect ratio 4:1, and its walls are isothermal at214

temperature Tw. The north wall of the chamber has three identical inlets of width e, each of which215

models the exit plane of an injector blowing hot air with constant temperature Th and velocities216

Vi œ [0.01, 0.99] subjected to217
3ÿ

i=1
Vi = 1 , (16)

to emulate a constant input to the chamber. The fluid is released through two identical outlets on218

each side of the chamber with height e0, and positioned against the south wall.219

In the absence of buoyancy, temperature evolves as a passive scalar to the Navier–Stokes equations.220

All parameters named above are provided in 1, along with the material properties used to model221

the composite fluid, that yield fluid values of the Reynolds and Prandtl numbers222

Re =
fle maxiœ{1,2,3} Vi

µ
œ [67, 200] , Pr = cpµ

⁄
= 2 . (17)

Note the very high value of the solid to fluid viscosity ratio, meant to ensure that the velocity223

inside the solid is zero and that the no-slip condition on the boundary is satisfied. Thus, only224

pure conduction occurs in the solid. The governing equations are solved with no-slip isothermal225

conditions u = 0 and T = Tw on ˆ�, except at the inlets where u = ≠Viey and T = Th, and226

at the exhausts where a zero-pressure condition is imposed : p = ˆxu = ˆxT = 0. No thermal227

condition is imposed at the interface, where heat exchange is implicitly driven by the di�erence228
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H h e Tw Tc Th µ fl ⁄ cp

1 0.2 0.2 10 10 300
0.001 1 0.5 1000 Fluid
1000 1800 1 600 Brick
1000 7800 50 500 Steel

Table 1: Geometric and numerical parameters used in the 2-D forced convection setup. All values in SI units, with

the exception of temperature given in Celsius.

in the individual material properties, as intended in the Immersed Volume Method. The mesh on229

which the computation is performed is defined at the beginning only around the interface to ensure230

its good definition, then remeshing is performed every 5 time steps based on velocity gradients231

to also capture accurate velocity profiles. We aim at 20000 elements, with hmin = 0.0001. More232

about our remeshing technique here [37].233

4.2. Control234

The quantities subjected to optimization are the three inflow velocities Viœ{1,2,3}, plus the235

insertion angle of the piece being heated, and the position of its center of mass, hence six control236

parameters (three for the inflow distribution, one for the angle and two for the position). We could237

have used two parameters to control the inflow distribution since the last one is constrained by the238

total inflow, but in order to avoid asymmetry in the learning process we decided to control each239

of the injectors in the same way. In practice, each injector is given a value between 0.01 and 0.99240

which is then scaled in order to obtain their speed while following (16).241

Just like in [24], we distribute 15 probes uniformly in the workpiece to compute the reward used242

by the DRL algorithm. The probes are arranged in an array of nx = 5 columns and ny = 3 rows243

with resolutions �x = 0.09 and �y = 0.075, respectively; see figure 4(b). The following formula244

gives an estimate of the tangential heat flux by averaging the norm of the temperature gradient245

across rows and columns respectively :246

È||ÒÎT ||Íi = 2
ny ≠ 1 |

ÿ

j ”=0
sgn(j)||ÒT ||ij | , È||ÒÎT ||Íj = 2

nx ≠ 1 |
ÿ

i ”=0
sgn(i)||ÒT ||ij | , (18)

where subscripts i, j and ij denote quantities evaluated at x = i�x, y = j�y and (x, y) =247

(i�x, j�y), respectively, and symmetrical numbering is used for the center probe to sit at the248

intersection of the zero-th column and row. The reward rt = ≠È||ÒÎT ||Í fed to the DRL agent is249

given by the average of the quantities calculated before250

rt = ≠ 1
nx + ny

ÿ

i,j

È||ÒÎT ||Íi + È||ÒÎT ||Íj , (19)

which especially yields rt = 0 for a perfectly homogeneous heating.251

A second reward is also tested in this paper to assess the feasibility of controlling both the252

homogeneity and e�ciency of the furnace. This is expressed as253

Ât(w1, w2) = w1
nxny

ÿ

i,j

Tij + w2rt , (20)

where the first term is the right-hand side measures the solid temperature averaged across all254

sensors, and w1,2 are scalar-valued factors weighing the priority given to each objective. In practice,255

a single point concurrently minimizing both objectives usually does not exist. The optimal solutions256

are thus to be understood as Pareto-e�cient solutions [38] that best manage trade-o�s between257

the two criteria, in the sense that further optimizing one objective decreases the performance258

of the other one (after which the final decision is made by the practitioner based on subjective259

preferences).260

The agent is a fully-connected network with two hidden layers, each holding 2 neurons. The261

resolution process uses 8 environments and 2 steps mini-batches to update the network for 32262

epochs, with learning rate set to 5 ◊ 10≠3, and PBO loss clipping range to ‘ = 0.3.263
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Figure 5: Control of heating homogeneity for the brick-like workpiece. (a) Optimal temperature distribution found

by the DRL algorithm by controlling (from top to bottom) : the inflow velocities under constant workpiece angle

and position, the inflow velocities and workpiece angle under constant position, and the inflow velocities, workpiece

angle and position. (b) Corresponding streamlines colored by the magnitude of velocity.

4.3. Results264

4.3.1. Control of heating homogeneity265

We evaluate first the performance of the algorithm in several scenarios of increasing complexity,266

using the homogeneity-based reward rt. Two di�erent workpieces are used, one that has the267

properties of a brick-like material, and one that has the properties of a steel-like material. For each268

workpiece, three di�erent cases are considered, in which the DRL agent is tasked with optimizing269

either the inflow velocities (under constant workpiece angle and position), or the inflow velocities270

and the workpiece angle (under constant position), or the inflow velocities, angle and position (the271

most general case).272

For each case, 150 episodes have been run (1200 simulations), each of which performs 2000273

iterations with time step �t = 0.1 (hence a heating time of 200), starting from an initial condition274

consisting of zero velocity and uniform temperature (except in the solid domain), and using the275

level set, velocity and temperature as multiple-component criterion to adapt the mesh (initially276

pre-adapted using the sole level set) every 5 time steps under the constraint of a fixed number of277

elements nel = 15000. This represents 1200 simulations, each of which is performed on 8 cores and278

lasts 10mn, hence 200h of total CPU cost. We can clearly see in figures 5 and 6 the flow patterns279

that develop when the blown fluid travels through the cavity. Moreover, it clearly depends on the280

inflow distribution and position of the piece, and features complex rebound phenomena (either281

fluid/solid, when a jet impinges on the workpiece, or fluid/fluid, when a deflected jet meets the282

crossflow of another jet), leading to the formation of multiple recirculations varying in number,283

position and size.284

The results of the various optimization scenarios are shown in figure 5 for the brick-like material285

and figure 6 for the steel-like material. The use of the reward rt has a great e�ect on the aspect286

of these results in any control configuration. Even though they are all di�erent, we can spot some287

common features : the workpiece is kept in colder areas of the chamber, which allows for lower288

temperature gradients as prescribed by the reward, and it is also generally well surrounded by289

streamlines that ensure symmetry in the heating. In the simplest case where the agent has to290

control only the inflow velocities, it has no problem finding the best solution possible, which is true291

also when we add the workpiece angle (not shown here for conciseness), and they both present the292

features we mentioned.293

When tasked with simultaneously optimizing all six parameters (inflow velocities, angle and294

position), we show in figure 7 that the algorithm learns quite fast up to episode 60, but pursues295
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(b)(a)

Figure 6: Control of heating homogeneity for the steel-like workpiece. (a) Optimal temperature distribution found

by the DRL algorithm by controlling (from top to bottom) : the inflow velocities under constant workpiece angle

and position, the inflow velocities and workpiece angle under constant position, and the inflow velocities, workpiece

angle and position. (b) Corresponding streamlines colored by the magnitude of velocity.

the iteration to handle the position on the y axis and the angle, as it restarts an exploration phase296

around episode 85, which allows to reach even better rewards in the end (see also figure 8 for297

an illustration of temperature distributions at the final step randomly sampled over the course of298

optimization). Indeed, with a larger space to explore, some parameters may be optimized more299

easily than others, for example if they have a greater impact on the reward. In this case, this may300

be a good idea to optimize the last parameters individually, since the first reward chosen may not301

be the best fitted to their optimization. The reward obtained from the original simulation (centered302

piece, same speed at each inlet) has a mean value of ≠0.450, figure 7 indicates that PPO converged303

around a reward of ≠0.050 which yields an improvement of 89% of the temperature homogeneity.304

4.3.2. Control of heating e�ciency305

As explained in 4.2, we introduce here a second reward Ât,w1,w2 to assess the feasibility of con-306

trolling the e�ciency of heating of the piece while keeping the gradient homogeneous. The PPO307

algorithm should consider a new solution space in which minima are decided by both the tem-308

perature and the gradient. This should lead to di�erent solutions than the ones before, especially309

concerning the average of the temperature values at the probes.310

Only the steel-like workpiece is considered here (as it allows for a better conduction and there-311

fore larger temperature di�erences) under the third optimization scenario, i.e., inflow velocities,312

workpiece angle and position as free parameters). We tested two sets of weight, (w1, w2) = (1, 1)313

and (10, 1), with the second one giving more priority to the averaged temperature component,314

and compare in figure 9 the obtained average temperature at the final time step, to those ob-315

tained under the three scenario presented earlier for pure homogeneous control (that corresponds316

to (w1, w2) = (0, 1)). For the simplest homogeneous control cases presented in figures 9(a) and317

(b), the temperature is constrained by the position of the workpiece, and the algorithm quickly318

converges. Adding in the workpiece position as free parameter increases the complexity, (the pos-319

sibility to move the workpiece anywhere in the chamber yields much higher variance in the space320

of achievable temperature distributions). In return, the average temperature in figure 9(c) drops321

to a lower value value slightly above 26¶, to be understood as an indirect consequence of the op-322

timization of the homogeneity reward rt. The scenario shown in figure 9(d) corresponds to the323

optimization of the compound reward Ât using all six control parameters (w1, w2) = (1, 1), for324

which the temperature again drops, similar to the previous case. Finally, by using the reward325

Ât,10,1 with (w1, w2) = (10, 1), the algorithm reaches a temperature of 26.5¶. Consistently, the326

optimal temperature distributions for this two cases are somewhat similar to those obtained by327
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(a)

(b) (c)

(d) (e)

(f) (g)

Figure 7: Control of heating homogeneity for the steel-like workpiece using the inflow velocities, workpiece angle

and position as free parameters, corresponding to the scenario at the bottom of figure 6. Evolution per episode of

the (a) reward, and (b-g) control parameters. Black curves are the moving averages.

controlling the heating homogeneity, but with a workpiece that is closer to the heat sources as the328

value of w1 in the reward Ât increases, to give more priority to lowering the averaged temperature.329

4.4. Discussion330

Whether it be for the brick-like or the steel-like workpiece, the algorithm finds, in each scenario,331

a relevant local minimum that satisfies the conditions we imposed on it. One point worth noticing332

is the wide variety of solutions the algorithm comes up with, best illustrated by comparing figures333

5, 6 and 10. This may be because the complexity of this case gives room for a lot of equivalent334

solutions, and the algorithm struggles to find the global minimum and always ends up in local335

minima. Numerical approximations can also create noise and give an information too imprecise to336

be processed by the PPO method, especially since the reward is calculated from point-wise data337

interpolated from the simulation (similar to experimental measurements). By running the same338

simulation 1000 times, we noticed a fluctuation in the reward, with estimated relative standard339

deviation by 4.1%.340
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Figure 8: Control of heating homogeneity for the steel-like workpiece using the inflow velocities, workpiece angle

and position as free parameters, corresponding to the scenario at the bottom of figure 6. Temperature distribution

at the final time step for randomly sampled episodes marked by the arrows in figure 7(a).

This has been confirmed by running 8 times the same learning experiment (steel workpiece,341

homogeneous reward rt, control of the inflow velocities, workpiece angle and position), for which342

the algorithm found local minima more or less sensitive to perturbations, and the relative standard343

deviation computed for the moving average over the 50 latest values is 9.9%. As interpreted before,344

the algorithm seems to struggle finding a global maximum of our reward function rt, likely because345

there exists a sensitivity to noise and system uncertainty. There are a few possible reactions to346

that. Firstly, it could be useful to improve the balance between exploration and exploitation,347

using improved search distributions to e�ectively encourage the policy to explore more on the348

potential valuable actions, no matter whether they were preferred by the previous policies or not349

(for instance, using the recently introduced PBO algorithm [39], that uses three separate neural350

networks to learn the mean, variance and correlation parameters of a multivariate normal search351

distribution, while single-step PPO updates the mean and variance, the same for all variables,352

from a single neural network). Another possibility is to fine-tune the architecture of the neural353

network. As the number of parameters to control increases, the number of neurons that model354

the policy should increase too, but there is no guideline for that. Finally, the reward itself could355

be changed, along with the constraints on the parameters to control. These aspects have a great356

impact on the shape of the solution space, and therefore on the ease for the algorithm to find a357

global maximum. In real world applications, a lot of constraints can come into consideration when358

choosing the reward, or the parameters to operate on. Finding the right way to communicate our359

needs to the algorithm is a whole topic in itself. We leave the exploration of these reactions to360

future works.361

5. Single-step control of a 3D serpentine heater362

5.1. Case description363

We propose in this test case to apply the same DRL-CFD framework to a three-dimensional364

case of industrial interest: the serpentine heater. It consists of a 3D simulation of two fluids, a365

liquid which is cold at first, and the hot gas that is distributed inside the chamber, and should come366

out colder due to the transfer of heat from the gas to the liquid (this resembles a heat exchanger367

but with a configuration closer to a gas burner).368

The control objective here is to find the best flow distribution between an array of gas burners369

to heat a liquid in a pipe. We use Cartesian coordinate system with origin at the center of the370

chamber. The chamber is a simple parallelepiped with size H on x and z axes and h on the y axis.371

The pipe is made from the extrusion of a circle of radius R and a center at (≠H/2, 0, ≠H/4), with372

three 180 degrees bends around the y axis. It has two planes of symmetry Oxz and Oxy. The373

longer straight part of the pipe has a length of L, the second straight part has a length of l and374

12



(a) (b)

(c) (d)

(e)

Figure 9: Evolution per episode of the final temperature averaged across all sensor positions in the steel-like

workpiece, using (a-c) the homogeneity reward and (d-e) the compound homogeneity/e�ciency reward with (d)

(w1, w2) = (1, 1) and (e) (w1, w2) = (10, 1). The free parameters subjected to optimization are (a) the inflow

velocities under constant workpiece angle and position, (b) the inflow velocities and workpiece angle under constant

position, and (c-e) the inflow velocities, workpiece angle and position.

the rest of the pipe can be deducted from symmetry with the condition that all three bends have375

exactly the same radius. The hot gas comes out of 6 circular inlets of radius r, 4 on the y≠ side376

and two on the y+ side. They are disposed in an array aligned on the center of the pipe at each of377

its bends, see figure 12 (a) et (c). Since this case has no moving parts, remeshing is not needed,378

hence a unique mesh is used, as seen in figure 12 (d). It is composed of 35021 nodes and 197949379

tetrahedral elements. The elements aspect ratio is shown in the bar chart 13.380

The fluid in the pipe comes in through the lower hole with a parabolic speed profile correspond-381

ing to a flow rate D, and a temperature Tc. At t = 0 the temperature in the chamber is Tc, and hot382

gas comes through the 6 inlets at temperature Th, with speed Vi œ [0.1, 0.9]. In the same manner383
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(b)(a)

Figure 10: Control of e�ciency for the steel-like workpiece. (a) Optimal temperature distribution found by the DRL

algorithm by controlling the inflow velocities, workpiece angle and position, using reward Ât with weighs (w1, w2)

set to (from top to bottom) (1, 1) and (10, 1). (b) Corresponding streamlines colored by the magnitude of velocity.

Figure 11: Temperature distribution at the final time step for randomly sampled episodes of heating e�ciency control

for the steel-like workpiece. The free parameters subjected to optimization are the inflow velocities, workpiece angle

and position, corresponding to the scenario at the bottom of figure 10.

as for the previous case, we emulate a constant input by imposing384

6ÿ

i=1
Vi = 1 . (21)

The exhaust is positioned in the center of the top face of the chamber. It has a rectangular shape385

and is half the size of the top face. We consider in this case that there is no solid material separating386

the inside of the pipe from the gas. Only a no slip and isothermal condition is applied on the walls387

of the chamber (with the exception of the inlets and exhausts), with T = Tw. A no slip condition388

is also applied on the 2D interface representing the pipe. At the exhausts a zero-pressure condition389

is imposed : p = ˆxu = ˆxT = 0. No thermal condition is imposed at the interface, where heat390

exchange is implicitly driven by the di�erence in the individual material properties. Again, in the391

absence of buoyancy, the temperature evolves as a passive scalar for the Navier–Stokes equations.392

This allows us to solve the Navier–Stokes equations separately for the gas and the fluid in the393

pipe and then find the temperature field in the whole domain. Using the parameters for the liquid394

and the gas provided in Table 2, the Reynolds and Prandtl numbers in the hot gas domain are395

estimated to be Re œ [5, 30] and Pr = 20, and Re œ [320] and Pr = 400 in the liquid.396
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(b)(a)

(d)(c)

Figure 12: (a) Schematic of the pipe with positions of the gas inlets projected along the y axis. Fully opaque circles

are inlets in front of the pipe, i.e. on the y+
side of the chamber, and transparent circles are inlets on the other side.

(b) Position of the sensors on the outlet of the pipe. (c) Schematic of the whole setup with arrows representing the

direction of the gas flow. (d) Representation of the mesh used.

Figure 13: Bar chart of the aspect ratio of tetrahedral elements.
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H h R r L l D Tw Tc Th µ fl ⁄ cp

4 2 0.2 0.15 3 1 0.05 150 20 300
0.01 1 0.5 1000 Gas
0.1 100 1 4000 Pipe

Table 2: Geometric and numerical parameters used in the 3D serpentine heater setup. All values in SI units, with

the exception of temperature given in Celsius.

Figure 14: Representative temperature fields sampled on the course of optimization on the surface of the pipe

together with streamlines colored by the magnitude of velocity, both in logarithmic scales.

5.2. Control strategy397

The quantity being optimized is the distribution of the inflow between the 6 injectors Viœ[[1,6]].398

In order to avoid asymmetry in the learning process we decided to control each of the injectors in399
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the same way, that is to assign each injector a value between 0.1 and 0.9, scaled a posteriori to400

recover a valid velocity satisfying (21). In order to compute the reward rt we distribute 29 probes401

uniformly on the outlet of the pipe each at a distance � = 0.06 of their closest neighbour, see402

figure 12 (b). These probes allow us to monitor the temperature out of the pipe, and the reward403

given the PPO algorithm (computed at the final simulation time) is defined as404

rt = 1
29

29ÿ

i=1
Ti , (22)

with Ti being the temperature at probe i.405

In a second stage, we add a strong constraint to this reward. By looking at the highest temper-406

ature in the pipe across all time steps, we penalize the solutions that reach a temperature above a407

limit Tl = 200. We chose the limit by looking at the solutions found by the PPO algorithm with408

the first reward and their highest temperature inside the pipe. The new reward is thus409

flt =
;

rt, if max� T < Tl ,
0, if max� T Ø Tl ,

(23)

where � is the inner pipe domain. This is meant to avoid concentrating too much energy in the410

same spot and thus protecting the materials used in the heating process.411

5.3. Results412

(b)

(a)

Figure 15: Evolution per episode of the (a) reward rt, and (b) control velocity at each gas burner, and (c) maximum

temperature max� T in the pipe. Black curves are the moving averages. The color code of the inlets is the same as

in fig.12.

For this case, 150 episodes have been run, each composed of 8 environment, each of which413

performs 1300 iterations with time step �t = 0.1 to march in time the same initial condition414

(consisting of zero velocity and uniform temperature, except in the pipe domain). This represents415
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1200 simulations, each of which is performed on 8 cores and lasts 40mn, hence 800h of total CPU416

cost; see figure 14 for representative temperature and velocity distributions sampled of the course417

of optimization.418

Figure 15 shows the evolution of the reward rt and the values given to each inlet at each419

individual. The colors correspond to each inlet and are kept also in figure 16. The trend of these420

curves demonstrate a fast convergence of PBO in this context, with a transitional phase during421

which it tries to explore other possibilities. The solution found by the algorithm puts all the422

energy in a single, well positioned hot gas inlet (which is rather intuitive except that the location423

of said may not be), as the last 200 episodes all yield the same distribution among the inlets : all424

for the top left inlet and nothing for the rest. As can be seen in figure 12 (a), this particular inlet is425

near the end of the tube, right in front of large area thanks to the bend in the tube. This position426

allows for a large part of the heat to be transferred to the tube without too much energy being lost427

in perturbations. The results of the learning process under the constrained reward flt are shown428

in figure 16, where the red line marks the limit temperature Tl that we try not to top (which the429

single-step PPO algorithm successfully achieves, as the temperature converges to a value slighly430

below). No moving average is given here since the hard constraint forces the reward to be zero431

when the limit temperature is topped. A trend is however visible since the reward still goes up in432

general and the frequency of constraint violation reduces along the training. Colored curves can433

be linked to the figures 12 (a) and 15. After convergence, the DRL still puts most of the weight434

on the top left inlet, with the rest of energy mainly given to the top right inlet, right next to the435

other, and closer to the output of the pipe. This shows the ability of the method to find optimal436

solutions under the constraint of safe operating conditions (here the pipe maximum temperature).437

(a)

(b)

(c)

Figure 16: Evolution per episode of the (a) reward flt, (b) control velocity at each gas burner, and (c) maximum

temperature max� T in the pipe. Black curves are the moving averages. The color code of the inlets is the same as

in fig.12.
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5.4. Discussion438

The main interest behind this comparison is to assess how the algorithm performs when a hard439

constrained is applied directly to the reward. The first control experiment are somehow consistent440

with intuition, but the second one provides with more relevant and exploitable results in a real441

context where the ability to not exceed a certain temperature can be essential for the industrial442

process. On another note, for this case, it could be more useful for this case to investigate the443

feasibility to learn active control strategies (by adjusting dynamically the control velocities to444

appropriate sensing of flow variables). As the temperature of one spot approches the maximum445

authorized value, this would allow redistributing some of the power to the other spots to balance446

everything properly, and to converge rapidly to an optimal configuration. This would also allow447

for some evolution of the input flow of the pipe, and a reaction to it.448

6. General discussion449

Several points deserve further consideration to keep pushing forward the development of DRL450

in the context of such real-life applications. First, improving e�ciency and convergence (by fine-451

tuning the hyper parameters and comparing with di�erent DRL algorithms allowing for increased452

exploration, as PPO prevents by design large updates of the policy to avoid performance collapse).453

Second, designing improved reward construction strategies, as approximating the reward from454

point-wise temperature data has been shown to yield a certain sensitivity to system and numerical455

uncertainty, which in turn may trap the algorithm in local optimal. Third, enriching the description456

of the test cases using multi-physics modeling, e.g., radiative heat transfer and thermo-mechanical457

coupling to encompass the solid deformations. Finally, investigating the case of active flow control458

in which the control parameters are dynamically adjusted from measurements in the workpiece459

and the furnace, and has often proved to be of great importance in industrial contexts.460

7. Conclusion461

Optimization of heating processes is achieved here training a fully connected network with462

the PBO deep reinforcement algorithm, in which it gets only one attempt per learning episode463

at finding the optimal. The numerical reward fed to the network is computed with a stabilized464

finite elements CFD environment solving the coupled Navier–Stokes and heat equations, using a465

combination of variational multi-scale modeling, immerse volume method, and multi-component466

anisotropic mesh adaptation.467

The approach succeeds at improving the homogeneity of temperature (or a blend of homo-468

geneity and absolute temperature) across the surface of two-dimensional cold workpieces under469

jet impingement heating. Several control scenarios have been considered (that can be considered470

di�erent levels of design constraint), from the simple case where only the inflow velocity of the471

hot air injectors is optimized relative to a fixed workpiece position, up to the most complex case472

where the DRL agent also optimizes the position and insertion angle of the workpiece itself. The473

potential of the approach for industrial configurations of engineering interest is also showcased by474

optimizing the inflow of multiple gas burners in a three-dimensional serpentine heater.475

The present results highlight the capabilities of coupling DRL and computational fluid dynam-476

ics in the context of industrial manufacturing processes in general, and heating processes inside477

industrial furnaces in particular.478
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