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Abstract. We introduce an automated resource analysis technique
is introduced, targeting a Call-By-Push-Value abstract machine, with
memory prediction as a practical goal. The machine has a polymor-
phic and linear type system enhanced with a first-order logical fragment,
which encodes both low-level operational semantics of resource manipu-
lations and high-level synthesis of algorithmic complexity.
Resource analysis must involve a diversity of static analysis, for escape,
aliasing, algorithmic invariants, and more. Knowing this, we implement
the Automated Amortized Resource Analysis framework (AARA) from
scratch in our generic system. In this setting, access to resources is a
state-passing effect which produces a compile-time approximation of run-
time resource usage.
We implemented type inference constraint generation for our calculus,
accompanied with an elaboration of bounds for iterators on algebraic
datatypes, for minimal ML-style programming languages with Call-by-
Value and Call-By-Push-Value semantics. The closed-formed bounds are
derived as multivariate polynomials over the integers. This now serves
as a base for the development of an experimental toolkit for automated
memory analysis of functional languages.

Keywords: Type Theory · Static Analysis · Memory Consumption ·
Amortized analysis · Call-by-Push-Value.

1 Introduction

Typed functional programming offers some structural safety out-of-the-box, but
correctness of systems also depends on quantitative, material concerns: memory
consumption must remain within bounds, latency and energy cost must be low,
etc. This highlights the need for general-purpose resource analysis tools for typed
functional languages. But functional languages in the style of ML or Haskell
pose specific challenges for resource predictions. First, dynamic allocations is an
inherent problem, since the size of the allocated data cannot be fully determined
statically. Second, prevalent use of garbage collectors and reference counting in
⋆ This work has been partially performed at the IRILL center for Free Software Re-

search and Innovation in Paris, France.
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those languages means de-allocation points are implicit. Lastly, closures (and
high-order programming in general) purposefully hide the amount of resources
and state of data they close over.

Amortized complexity [16] has been used to extend functional type systems
with resource analyses, notably in Hoffmann’s Automated Amortized Resource
Analysis (AARA) [4]. But extending both the precision and generality of current
methods puts a large burden on formalisms and implementations. In this paper,
we develop a three-step approach to improve this situation:

1. We extend a Call-by-Push-Value abstract machine typed with intuitionis-
tic linear logic introduced by Curien et al. Programs are decomposed as
interaction between values and stacks, whose types can involve parameters
variables, which denotes quantities of resources and number of combinatorial
patterns in data. These parameters are guarded by first-order constraints.
Call-by-Push-Value semantics strictly partition types into data-types and
computation-types, and use closures and thunks to mediate between them.

2. Then, we devise a Call-By-Push-Value effects, which reflects at type-level
the logical requirements inputs and outputs states of programs: execution
go well for all states (∀) with enough resources, and returns some arbitrary
state (∃) with some allocated resources.

3. Finally, our implementation extracts a global constraint on resource usage
from the type of the rewritten program. Those final constraints are expressed
in first-order arithmetic, and can be exported or solved automatically using
our heuristic mimicking AARA reasoning. Solvers restricted to intuitionistic
logic can elaborate resource expression back into the program.

Users can annotate higher-order code with domain-specific constraints which
partially specify runtime behavior. This allows for verification of high-order pro-
grams through annotations in the general case, which is, to our knowledge, novel
in implementations of AARA. Using our system, resources analyses can be de-
composed into independent phases: a program is compiled into the machine
according to its CBPV semantics, it is then automatically rewritten with our ef-
fect and typechecked. Finally, the domain-specific constraints obtained by type-
checking are solved using arithmetic solvers. Note that this last step does not
involve the original programs or the semantics of the programming language, as
opposed to previous work.

Producing resources bounds has many non-trivial requirements: one must
unravel memory aliasing, lifetime of allocations, algorithmic complexity and in-
variants, etc. When all those analyses interact, it becomes beneficial to use a
formalism that puts them all on equal footings, as opposed to one dedicated
uniquely to resource analyses. In our experiments, combinations of those anal-
yses are easier implement and verify thanks to factorization, effect system, and
core inference procedure.

Plan Section 2 is dedicated to the wider context of amortized static analysis,
the AARA method, and its recent formalizations in linear, Call-By-Push-Value
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λ-calculus. This ends with a more detailed summary of our technical setup imple-
menting AARA. In section 3, we introduce our generic abstract machine adopting
those advances, and follow with its type system in section 4. We then explain how
to encode resource analyses for high-level languages as a Call-By-Push-Value ef-
fect in our model in section 5. We discuss our implementation and automation
of analyses for functional languages in section 6, and describe perspectives for
further research in the conclusion section 7.

2 Context and State of the Art

We begin by fixing some important notions regarding amortized algorithm analy-
sis [16], reviewing the AARA framework, and presenting its most recent instanti-
ations. Amortized algorithm analysis is a method for determining the complexity
of some operations on a data structure. Instead of merely accumulating costs, it
represent programs and their resources together as a closed system, and charac-
terizes cost as the minimum of total resource allowing the execution to proceed.
We then present with the Automated Amortized Resource Analysis framework
and its recent advances using Call-By-Push-Value. Once those concepts are set
up, we end the section with our setup for recovering AARA in a generic Call-
By-Push-Value system.

2.1 Amortized Analysis

Amortized analysis is an ubiquitous tool for the analysis of algorithms over
the entire lifetime of some structure, introduced by Tarjan [16] to determine
asymptotic costs, but it applies just as well to quantitative prediction. Foreseeing
the rest of the paper, we will represent programs by abstract machines and
follow the nomenclature of previous works [1]. States of the abstract machine are
commands c ∈ C, and are made up of a value V ∈ V and an continuation stack
S ∈ S with syntax c = ⟨V ∥ S⟩. Semantics are given by deterministic, small-
step reduction which will be assumed to terminate throughout the paper. The
execution of a program is therefore a finite sequence of commands c = (ci)i≤n.

Costs A cost metric is a function m : C×C → Z giving a cost for a transition
c → c′. When m(c, c′) ≥ 0 we call the cost a debit, and when m(c, c′) < 0 we
call it a credit. Those credits do not occur for some costs models like time and
energy, which cannot be recouped. Models with credits, like memory or currency,
require credits and follow an extra condition, mimicking absence of bankruptcy:
all intermediate costs

∑
j≤i mj must be positive. Figuratively, this means that

memory cannot be freed before having been allocated, that currency cannot be
spent from an empty account, etc.

For a sequence of deterministic reductions (ci)i≤n, we write mi = m(ci, ci+1)
the cost of a reduction step, and m(c) the total cost of the reduction sequence.
This total cost is the maximum of costs that can be reached at an intermediate
state, that is m(c) = maxi≤n

∑
j≤i mj .
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Potential This formalism for costs can be reformulated as a matter of transfer
of resources, an idea originally put forward by Tarjan [16]. Assume given a fixed,
sufficiently high amount of resources P to run a program (pick any P ≥ m(c)).
Each intermediate command ci has a positive amount of allocated resources
qi =

∑
j≤i mj , and a positive amount of free resources pi = P − qi. At the

beginning of execution, we have p0 = P and q0 = 0, and as reduction progresses,
we have the two inductive relations pi = pi+1+mi and qi+mi = qi+1. Therefore,
pi + qi = p0 + q0 = P is an invariant of execution: resources are neither created
nor lost, but preserved.

Predicting Amortized Costs The “potential” point of view frames the prob-
lem of cost analysis as one of invariant search: given V ∈ V, find some function
f : S → N such that f(S) ≥ m(⟨V ∥ S⟩). Specifically, for each type for envi-
ronment, we define numerical invariants called parameters (size, length, height,
etc.) which gives a function φ : S → Nk taking each environment to its numerical
invariant, and call φ a parameterization of S. Many such parameterizations ex-
ists for the same datum. For example, a tree might be parameterized by its size,
its depth and width, or more complex combinatorial data. Then given a param-
eterization φ of the runtime data, the amortized complexity of V is a function
PV : Nk → N such that PV (φ(S)) ≥ m(⟨V ∥ S⟩).

2.2 Automated Amortized Resource Analysis and RAML

Hoffmann’s Automated Amortized Resource Analysis (introduced in [4], see [6]
for a retrospective) is a type-theoretic framework for resource usage inference
in functional languages. We give here a short introduction to AARA for non-
recuperable costs. Nevertheless, both AARA and our methods support them.

In Hoffmann’s work, costs are represented by pairs p = (pmax, pout) with
pmax ≥ pout, which means “evaluation has a maximal cost of pmax of which
pout are still allocated at the end”. They are endowed with sequencing written
additively. Judgements Γ ⊢p

p′ e : T means that if p resources are free before
evaluating e, then p′ are available afterward.

Parameters in AARA are linear combinations of specialized parameters called
indices, which directly represent the number of some pattern in a structure;
For example, the base indices of a list l are the binomial coefficients

(len(l)
k

)
with constant k, which count the number of non-contiguous sublists of l with
length k. The weights with which indices are combined are subject to a linear-
programming optimization to derive bounds on pmax and pout. AARA doesn’t
use a linear type system. Instead, source programs must be syntactically affine:
every variable is used at most once, and explicitly duplicated, which splits its
weights.

We show the rule for pairs below, exhibits an important property of AARA
typing: it encodes operational semantics of the specific source language within
its typing rules. Below for example, the cost kpair is payed from p+kpair, then e is



A reusable machine-calculus for automated resource analyses 5

evaluated, then e′, yielding the sequence of potentials (p+kpair) → p → p′ → p′′.

Γ ⊢p
p′ e : A Γ ⊢p′

p′′ e
′ : B

Γ ⊢p+kpair
p′′ (e, e′) : A×B

Instances of AARA cover different complexity classes [7], some aspects of
garbage collection [12] for pure functional programming, and some aspects of
imperative programming with mutable arrays [9]. Hoffmann et al. have imple-
mented AARA in Resource-Aware ML [5] (RAML), a type system for a purely-
functional subset of OCaml that infers memory bounds, and supports reasoning
the the number of nodes in algebraic datatypes, iteration on lists, deeply-nested
pattern matching, and limited form of closures. On those programs, RAML can
infer costs for a class of algorithms of polynomial complexity. The key point
allowing RAML to precisely bound memory usage of OCaml programs is its
compile-time representation of heap pointers, allowing it to be aware of memory
aliasing. RAML support high-order programming, if high-order arguments do
not change during successive calls to the high-order function that uses them.
Our continuation-passing, defunctionalized system allows for such changes to be
represented as modification to the argument’s evaluation context, with can in
theory be tracked using the same tools as data structures.

2.3 dℓPCF and λamor

On the other end of the spectrum, type systems inspired from program logics
can prove complex properties, even for non-terminating programs. Dal Lago &
Gaboardi’s dℓPCF [3,2] is a type system for the λ-calculus with integers and
fixpoints (PCF for short), with a highly-parametric, linear, and dependent type
system. It is relatively complete up to a solver for arithmetic. This can encode,
for example, the number of execution steps of programs in the Krivine machine
in the presence of fixpoints, but finding closed forms of this number of steps is
undecidable. This highlights the impossibility of typing the costs of fixpoint in
the general case.

Originally, dℓPCF could only bound accumulative costs, but subsequent work
by Rajani, Gaboardi, Garg & Hoffmann [15] have recovered amortization within
this setting. The resulting system, λamor, is a family of program logics, parame-
terized by a first-order theory describing resources. Changing this theory tunes
the resulting system to be close to the syntax-directed, inferable, and amor-
tized costs of AARA, or the recursion logic of dℓPCF. Resources and costs are
represented using two primitive type constructors. Computation incurring costs
are typed MIA (with I the cost), and implement a cost-accumulating monad.
The type of values of type A holding potential is [I]A, and implements the dual
potential-spending comonad. This system uses Levy’s Call-By-Push-Value [8]
formalism for encoding effectful λ-calculi, with two apparent limitation: first,
it uses two different reductions: one for cost-free expression, and second that
performs resource interaction on normal forms of the previous one. Second, the
finer semantics of Call-by-Push-Value are only used in λamor to analyse programs
with coarser Call-by-Value semantics.
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2.4 Abstract Interpretation for Resource Analysis

While the current work focuses on type-based resource analysis and extension to
finer program semantics, other resource analysis techniques have been created.
We note the CioaPP system for resource analysis [10], based on abstract inter-
pretation. This techniques approximates the semantics of values using abstract
domains. For example, and integer could be abstracted by an union of interval,
to which the integer is guaranteed to belong. Multiple languages are supported
through compilation to Horn clauses in the style of logic programming: pro-
grams are represented by predicated C(−→x ) linking their source and semantics,
defined by relation to other predicates in clauses C ′

1(
−→x )∧ · · · ∧C ′

2(
−→x ) ⇒ C(−→x ),

in which the −→x are all quantified universally. Abstract domains for −→x can then
be directly built using the clauses, and a purpose-built fixpoint operator for each
domain that abstract iteration. Cioa/PP can be used to derive polynomial, ex-
ponential and logarithmic complexities, and verify that programs manipulate
resources according to quantitative bounds over all inputs or a restriced domain.
Implementations exists for many monotone resource metrics, such as time, en-
ergy and gas (execution fees for smart contracts on blockchains) [13]. To our
knowledge, recuperable resources aren’t supported.

2.5 Our Technical Setup

Decomposing AARA into a Call-By-Push-Value effect allows for a simplified
embedding of languages and programming paradigms: Call-By-Push-Value pro-
grams explicitly define their evaluation order and allow for mixed-style eval-
uation. We exploit this in the next section. Furthermore, this allows embed-
ding AARA’s index languages into a mainstream, general-purpose type system
(sequent-style System-F) and simplifies formalization. We’ll describe our type
system and how to encode resource analyses in sections 4 and 5. As a consequence
of those two changes, the vast literature of typechecking and type inference then
becomes directly applicable, which we discuss in section 6.

3 The ILL-calculus

We now introduce the polarized ILL-calculus, an abstract machine calculus due
to Curien, Fiore & Munch-Maccagnoni[1,11], which we extend with algebraic
datatypes, fixpoints, and explicit sharing. The name is a nod to its type-level
semantics which are exactly polarized Intuitionnistic Linear Logic. At runtime,
it is exactly a continuation-passing abstract machine for the Call-By-Push-Value
λ-calculus. This technical setup allows for a state-passing effects, and an encoding
resource manipulations at type-level. The core of the machine is taken as-is from
[1], and we introduce the following additions for our purposes: explicit sharing
of variables; polymorphism; fixpoints; and a notation for thunks and closures.
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3.1 Generalities

At the term level, the ILL-machine is an abstract machine, whose terms are
described in “Terms (linear)”, figure 1. The first line defines commands c,
which are a pair ⟨V ∥ S⟩ of a value V and a stack S. Both parts are tagged
with a polarity : + for data and − for computations. When a value and a stack
interact in a command, we call V left side and S right side.

Below commands in the figure, values and stacks are defined in match-
ing pairs of same polarity. Some values are built inductively from constructors
V = K(

−→
V ) and interact with pattern matching stacks with many branches

S = µ(K(−→x ).c | . . . ). Dually, some stack defined inductively and terminated
with a continuation variable, giving S = K1(

−→
V1) ·K2(

−→
V2) · . . . ·α, and inter-

act with pattern-matching values V = µ((K(−→x ) ·α).c | . . . ). The continuation
variable α stands for a yet-unspecified stack, and value variables x stand for yet-
unspecified values. This implements continuation passing : instead of returning
a value, programs jump to the current continuation by passing it to a stack.

3.2 Linear Fragment

The ILL machine works with linear substitutions unless stated otherwise. In this
subsection, the machine encodes linear computations, which preserve resources
held by values by definition. We now describe each pair of compatible values and
stack which use linear substitution. For each following (bold label), please refer
to the corresponding definition in Terms and reduction in Reduction.

(let-value) and (let-stack) The machine manipulates values and stacks with
binders: the stack µ+x.c captures the data on the other side, and jumps to c
with x bound, which can be understood as “let x = . . . in c”. Dually, the term
µ−α.c captures the evaluation context on the other side of the command in α
and jumps to c. Those are the two reductions in Reduction, figure 1.

(data) Algebraic type constructors are defined as in functional languages à la
OCaml or Haskell. They have value-constructors K to build values with the fa-
miliar syntax K(

−→
V ). Data structures then are consumed by pattern-matching

stacks: for example, a type with two constructors K1(−), and K2(−,−) matches
with a stack µ(K1(x1).c1 | K2(x2, y2).c2). Those two reduce together by branch-
ing and binding variables:

⟨K1(V1) ∥ µ(K1(x1).c1 | K2(x2, y2).c2)⟩ → c1[V1/x1].

(computation) The same way datatypes has values build inductively from con-
structors K(

−→
V ), computation types have stacks defined inductively from con-

structors K(
−→
V ) ·S. Functions are the prototypal example: the function A ⊸ B
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Terms (linear)

c ::= ⟨V + ∥ S+⟩+ | ⟨V − ∥ S−⟩− (cut)

(var) (let-val) (data) (closure)
V + ::= x+ ⧸ K(

−→
V +) ⇓(V −)

S+ ::= α+ µx+.c µ
(−−−−−−→
K(−→x +).c

)
µ⇓(x−).c

(var) (let-stk) (computation) (thunk)

V − ::= x− µα−.c µ
(−−−−−−−−−−−→
(K(−→x +) ·α−).c

)
µ(⇑ ·α+).c

S− ::= α− ⧸ K(
−→
V +) ·S− ⇑ ·S+

Terms (non-linear)

c ::= ⟨V + ∥ µdel.c⟩ | ⟨V + ∥ µdup(x, y).c⟩ (structure)

(sharing) (fixpoint)
V + ::= µ(! ·α−).c µ(fix ·α−).⟨self ∥ S+⟩
S+ ::= ! ·S− fix ·S−

Reductions

(let-stack)
〈

µ+α.c
∥∥∥ S

〉
→ c[S/α]

(let-value)
〈

V
∥∥∥ µ−x.c

〉
→ c[V/x]

(weakening)
〈

V
∥∥∥ µdel.c

〉
→ c

(contraction)
〈

V
∥∥∥ µdup(x, y).c

〉
→ c[V/x, V/y]

(closure)
〈

⇓(V )
∥∥∥ µ⇓(x).c

〉
→ c[V/x]

(thunk)
〈

µ(⇑ ·α).c
∥∥∥ ⇑ ·S

〉
→ c[S/α]

(datatypes)
〈

Kj(
−→
V )

∥∥∥ µ
(−−−−−−→
Ki(

−→xi).ci
) 〉

→ cj [
−→
V /−→xj ]

(computations)
〈
µ
(−−−−−−−−−−→
(Ki(

−→xi) ·αi).ci
) ∥∥∥ Kj(

−→
V ) ·S

〉
→ cj [

−→
V /−→xj , S/αj ]

(sharing)
〈

µ(! ·α).c
∥∥∥ ! ·S

〉
→ c[S/α]

(fixpoint)
〈
µ(fix ·α).⟨self ∥ S⟩

∥∥∥ fix ·S′
〉

→ ⟨µ(fix ·β)⟨self ∥ S[β/α]⟩ ∥ S⟩[S′/α]

Fig. 1: ILL-machine: term-level syntax
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has a constructor λ(V ) · (S) which carries an argument of type A and a contin-
uation stack consuming A B. Then, the λ-calculus call f(V ) corresponds to the
command ⟨f ∥ λ(V ) ·S⟩, where S is the outer context of the call (hidden in λ-
calculus). The body of f is a pattern-matching value: we write f = µ(λ(x) ·α).c,
in which x binds the argument and α binds the continuation. They interact by
reducing as:

⟨µ(λ(x) ·α).c ∥ λ(V ) ·S⟩ → c[V/x, S/α].

Types with many stack constructors implement computation with many dif-
ferent calls, each call sharing the same environment (think, in OOP, of an object
with multiple methods, all sharing the same instance variables).

(thunks ⇑) and (closures ⇓) Closures and thunks implement local control
flow, by delaying calls to computations and generation of data. Thunks µ(⇑ ·α).c
are commands c blocked from reducing, with free stack variable α. When eval-
uated together with a stack ⇑ ·S, they bind S to α, and jump to c. Formally,
they reduces as ⟨µ(⇑ ·α+).c ∥ ⇑ ·S+⟩ → c[S+/α+]. The commands c[S/α] im-
mediately evaluates the thunk, and eventually its return value will interact with
S. Closures go the other way around, and delay launching computation. This
allows, for example, to store a function within a data structure. They are the
symmetric of thunks: a closed computation ⇓(V −) is opened with a blocked con-
text µ⇓(x−).c, which captures V − as x− and launches c, which sets up a new
evaluation context for it.

3.3 Call-By-Value Semantics

The canonical encoding of linear call-by-value functions A ⊸ B into Call-By-
Push-Value translates them as ⇓(A ⊸ ⇑B). At the term-level, the linear function
λx.e becomes a closure ⇓ over a function µ(λ(x) ·α), which defines a thunk
µ(⇑ ·β), which evaluates e. We write J−K the Call-By-Push-Value embedding of
a call-by-value term or type. Putting it all together, we have:

JA ⊸ BK = ⇓JAK ⊸ ⇑JBK

Jλx.eK = ⇓ µ(λ(x) ·α).⟨µ(⇑ ·β).⟨JeK ∥ β⟩ ∥ α⟩

The main point of interest of those semantics of CBV in CBPV is that they
are extendable with effects, which are implemented as systematic rewriting of
thunks and closures. Those rewritings can be sequenced to refine effects. In the
last sections, we combine an effect of type-level tracking of quantities and one
for state-passing to recover AARA.

3.4 Non-Linear Fragment

In order to encode non-linear programs, including recursion, and track them at
type-level, we introduce variations to closures that encode shared values and
recursive values.
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(sharing) Shareable data is encoded as shareable commands µ(! ·α).c, whichare
shared as-is then pass data to a stack ! ·S. Linearity is enforced at the type level
by making them have a distinct type, and asking that all value-variables bound
in shared commands also have a shareable type. In order to track non-linear
substitutions, sharing is explicitly implemented as stack matching shared values.
The stack µdel.c implements weakening by silently ignoring the value it matches
on, and µdup(x, y).c implements contraction by binding two copies x and y of
the shared value.

(fixpoint) Finally, recursive computations are encoded as fixpoints. They are
also subject to weakening and contraction, which enables the usual recursion
schemes of λ-calculus to be encoded into ILL. Formally, the stack constructor
fix ·S opens a fixpoint closure, expands its definition in its body once, and
feeds the resulting computation to S. On the other side, fixpoints have syntax
µ(fix ·α).⟨self ∥ S⟩, where self is a hole to be filled with the recursive value,
and S captures the self-referent closure once filled-it and returns the defined
recursive computation to α. The reduction substitutes the entire fixpoint into
self, which copies S. This is made formal in the associated rule in Reduction,
figure 1. Note the α-conversion in this rule, which protects one of the copies of
S from unwanted substitution.

4 Type System

The end game of the type system is to derive a first-order constraint C over
relevant quantities of a program, from which we then derive a bound. We call
those quantities parameters. They represent amount of liquid resources, or com-
binatorial information on data and computation. In this paper, we focus on
parameterizing data, for brevity.

It is capital that computations operate on data of arbitrary parameters. For
example, fixpoints will call themselves with arguments of varying sizes to encode
iteration. This means polymorphism over size must be accounted for. We solve
this issue by bundling quantified parameters within constructors.

4.1 Generalities

At the type level, ILL is polarized intuitionistic linear sequent calculus. Its syn-
tax is described in Types and Parameters, figure 2. The types A,B,C of values
and stack can have two base sorts T ∈ {+,−} reproducing their polarity. We
also have parameters n, p, q, with sorts in P which includes the integers N. Types
can depend on parameters: they have sorts

−→
P → T . Finally, type constructors

are polymorphic over types and parameters: they have sort
−→
T →

−→
P → T .

For example, lists can have heterogeneous parameters for each element: a list
[a0; a1; . . . ; an] which each ai of type A(i) has type List(A,n), with the argu-
ments having type A(n − 1) for the head, then A(n − 2), all the way to A(0).
The associated type constructor is List : (N → +) → N → +.
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Primitives and Parameters The usual connectives of instuitionistic linear
logic are definable as type constructors: ⊗ and 1 (“pattern matching pairs” and
“unit type”), ⊕ and 0 (“sums” and “empty type”), & and ⊤ (“lazy pairs” and
“top”), and ⊸ (“linear functions”). Thunks and closures are given their own
types: closures over a computation A− have the positive type ⇓A−, and thunks
returning some data typed A+ have negative type ⇑A+. We also take as given
the integers (N, 0, 1,+,×) for parameterization. Those can be extended to any
first-order signature.

Judgements Judgements are sequents Θ;C;Γ ⊢ ∆, which represent a typed
interface: inputs are denoted by value variables Γ = (

−−−→
x : A), and output by one

stack variable ∆ = (α : A). The parameters of this interface are Θ = (
−−−→
p : P) and

are guarded by a first-order constraint C. The parameters in Θ are bound in C,
Γ and ∆, and denote free quantities than be tuned within limits given by C.
Given this, the three judgements, for values V , stacks S and commands c are:

Syntax Sequent Given Θ such that C, we have . . .
Values Θ;C;Γ ⊢ V : A a value V of type A in context Γ .
Stacks Θ;C;Γ |S : A ⊢ ∆ a stack S of type A in context Γ,∆.

Commands c : (Θ;C;Γ ⊢ ∆) a valid command c under context Γ,∆.

The central rules of the type system are shown in “Example rules” figure 2.
Commands are built in the (cut) rule by matching a value and stack on their
type and taking a conjunction of their constraints. Rules (µL) and (µR) are for
binders. For example, (µR) turns a command c with a free variable x : A into a
stack µx.c : A which interacts with values of type A by substituting them for x.

4.2 Datatypes with Parameters

Building up the logical constraint for resources and algorithmic invariants is done
by accumulating generic information about constructors of values and stack. To
present how this machinery works, we encode a very simple constraint: a list is
always one element longer than its tail. The corresponding type definition for
lists, and resulting rules are shown in Example type definition, figure 2. Lists
have type List(A,n) with a type parameter n : N denoting size. The definition
of the Cons constructor is reproduced below.

| Cons of A(m)⊗List(A,m) where (m : N) with n = m+ 1

The definition states that lists List(A,n) have a head of type A(m) and a tail
of type List(A,m). The type of list elements is A : N → +, which allows each
element to be given a distinct parameterization according to its position. For
example, List(List(N,−), n) is a type of lists of lists of integer of decreasing
lengths: the first list has size 10, the next one 9, etc. Formally, the parameter m is
introduced in the where clause, and is guarded by the first-order constraint n =
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Types

T ::= + | − | P | P → T

A ::= p | Tcons(
−→
A ) | ⇓A | ⇑A | !A | Fix A

A ::= 1 | A⊗A | 0 | A⊕A | ⊤ | A&A | A ⊸ A | ∃Θ[C].C | ∀Θ[C].A (definable)

Parameters

P ::= N | . . .
p ::= 0 | 1 | p+ q | . . .
C ::= T | R(−→p ) | p = p | C ∧ C | C ⇒ C | ∃−→p . C | ∀−→p . C

Example type definition: lists

data L i s t (A: N → + , n : N) =
| Cons of A(m) ⊗ L i s t (A,m) where (m : N) with n = m+ 1
| N i l with n = 0 . (∗no ’ where ’ c l au s e f o r Ni l ∗)

Example type definition: state token

data ST(p ,q : N) =
| i n i t where q = 0
| d eb i t k of ST(p′ ,q′ ) with p′, q′ : N where p′ + k = p ∧ q + k = q′

| c r e d i t k of ST(p′ ,q′ ) with p′, q′ : N where p+ k = p′ ∧ q′ + k = q
| s l a c k of ST(p′ ,q′ ) with p′, q′, k : N where p′ + k = p ∧ q + k = q′

Example rules: identity and lists

c : (Θ;C;Γ ⊢ α : A−)
(µL)

Θ;C;Γ ⊢ µ−α.c : A−

c : (Θ;C;Γ, x : A+ ⊢ ∆)
(µR)

Θ;C;Γ |µ+x.c : A+ ⊢ ∆

Θ;C;Γ ⊢ V : A± Θ′;C′;Γ ′ |S : A± ⊢ ∆
(cut)

⟨t ∥ e⟩± : (Θ,Θ′;C ∧ C′;Γ, Γ ′ ⊢ ∆)

Θ1;C1;Γ1 ⊢ V1 : A(m) Θ2;C2;Γ2 ⊢ V2 : List(A,m)
(ConsR)

Θ1, Θ2;C;Γ1, Γ2 ⊢ Cons(V1, V2) : List(A,n)

C = ∃m.(n = m+ 1) ∧ C1 ∧ C2

c1 : (Θ;C1;Γ ⊢ ∆) c2 : (Θ,m : N;C2;Γ, x : A(m), y : List(A,m) ⊢ ∆)

Θ;C;Γ |µ( Nil().c1 | Cons(x, y).c2 ) : List(A,n) ⊢ ∆

C = ((n = 0) ⇒ C1) ∧ (∀m.(n = m+ 1) ⇒ C2) (ListL)

Fig. 2: ILL-machine: type system and examples
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m+1 in the with clause. This is to be understood as “where m is fresh integer
parameter with n = m+ 1”. When constructing a list List(A,n) with the rule
(ConsR), m is added to Θ and the constraint n = m+1 is added. Symmetrically,
when pattern matching on a list List(A,n) with the rule (ListL), the branch of
the pattern matching for Cons must be well-typed for any m such that n = m+1,
which yields a constraint ∀m.(n = m+1) ⇒ C ′ in which n = m+1 is assumed.

4.3 Implementing Polymorphism

Once some parameterization of data is chosen, we want parameters-aware data
and computations. Recall that when introducing constructors, some parame-
ters Θ satisfying some constraint C are introduced existentially, and when this
constructor is matched on, they are introduced universally. This allows us to
encode polymorphism over parameters as types with only one constructor. We
define existential quantification over parameters Θ such that C with the ∃Θ[C].A
datatype as follows:

data ∃Θ[C] .A = PackΘ;C of A(Θ ) where Θ with C

Introducing PackΘ;C(V ) produces the constraint ∃Θ.C, and when pattern-
matching on it, C is assumed to hold for some unknown Θ, giving a constraint
∀Θ.C ⇒ C ′′. Universal quantification goes the other way around, binding some
constraint existentially in stacks, and universally in values. Compile-time infor-
mation Θ,C about a continuation stack S : A−(Θ) is witnessed by the stack
constructor SpecΘ;C ·S. On the value side, µ(SpecΘ;C ·α).c requires that C in
the command c, and generates ∀Θ.C ⇒ C ′.

Closures over universally quantified computations take any input such that
some constraint holds. Likewise, thunks over existential quantification type de-
layed computations with (yet undetermined) parameters. For example, a thunk
which returns a pair of lists whose total length is 10 can be typed as ⇑∃(n,m :
N)[n+m = 10]. List(A,n)⊗ List(A,m).

4.4 An Example of Encoding: append

A minimal, non-trivial example of parameter polymorphism is the append func-
tion on lists. We implement it in two phases. First, we implement rev_append,
which flips the first lists and appends it to the second. Then, we define append
with two calls to rev_append. This decomposition shows the function of pa-
rameter polymorphism, as both call to rev_append occur on lists of different
sizes. Figure 3 lists the original ML code for both functions and the compiled
version of rev_append. We omit giving the translation of append, since it is
straightforward once given rev_append.

rev_append is defined as a fixpoint. The first line in the definition binds a
self-reference to f and binds a continuation α to which it returns the function.
In c1, when the function is called for lists l1 of size n and l2 of size m, the
execution context built by the caller instantiates the sizes with ∀(n,m) which
the callee matches on. Then, in c2, we pattern-match on l1, which introduces
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let rec rev_append l1 l2 = match l1 with [] -> l2
| h::t -> rev_append t (h::l2)

let append l1 l2 = rev_append (rev_append l1 []) l2

rev_append : Fix ∀n,m,A. L(A,n) ⊸ L(A,m) ⊸ ⇑L(A,n+m)

= µ(fix ·α).⟨self ∥ µf.c1⟩
c1 = ⟨µ(∀(n,m) · l1 · l2 ·⇑ ·β).c2 ∥ α⟩
c2 = ⟨l1 ∥ µ( Nil(n=0).⟨l2 ∥ β⟩ | Cons(∃n′.n=n′+1)(h, t).c3 )⟩
c3 = ⟨f ∥ fix ·∀(n′,m+1) · t · Cons(m+1)(h, l2) ·⇑ ·β⟩

Fig. 3: BILL Source code of the rev_append function

∃n′.n = n′ + 1 (resp. n = 0) if the list has a head (resp. is empty). In this
last case, the function recurses on itself in c3. This recursive call is done with
an execution context ∀(n′,m+1) ·S, in which the new values for n and m are
instantiated.

4.5 Soundness

Reduction preserves parameterizations in the following sense:

Theorem 1. If c : (Θ;C;Γ ⊢ ∆) reduces as c → c′, and c′ : (Θ′;C ′;Γ ′ ⊢ ∆′),
then Θ′ ⊂ Θ, Γ ′ ⊂ Γ , ∆ = ∆′, and for every instantiation of Θ, C ⇒ C ′.

The proof is done by induction over typed reduction of commands, after
proving the standard Barendregt properties (which can be done following [11]).
We only have space to briefly summarize the salient point. First, we prove the
statement for ⟨µα.c ∥ S⟩ and ⟨V ∥ µx.c⟩. Then, the only significant cases are
⟨PackΘ;C(V ) ∥ µPackΘ;C(x).c⟩ and its dual with Spec. The Pack command re-
duce to c[V/x] and generates the constraint (∃Θ.C)∧ (∀Θ.C ⇒ C ′) with C ′ the
constraint for c. This immediately implies C ∧ C ′, which is also constraint gen-
erated by ⟨V ∥ µx.c⟩, and therefore c[V/x]. The case of Spec is purely identical.

5 Embedding AARA as an Effect

In section 3, we refined the CBPV embedding of CBV functions to polymorphic
closures and thunks. This allowed to track parameters as control flow switches
in and out of programs. To recover AARA, we merely need to specialize this
translation to track sizes and resources.

5.1 An Effect for Parameters

With our setup, we can translate CBV programs to ILL-machine that associates
a constraint C on their free parameters Θ. This is implemented by refining clo-
sures and thunks. Closures ⇓A are replaced by closures over quantified com-
putations ⇓∀Θ[C].A(Θ), that is, computations that take any arguments with



A reusable machine-calculus for automated resource analyses 15

parameters Θ satisfying C. On the other side, thunks ⇑B are replaced with
⇑∃Θ′[C ′].B(Θ′), which returns data parameterized by Θ′ such that C ′. With
this effect, the call-by-value linear function A ⊸ B is translated to a parameter-
aware version that accept all (∀) inputs with the right parameters and return
some (∃) output with its own parameters. For example, the function append on
lists has a length-aware type (here in long form, to show the implicit ∃ binder):

⇓∀n,m. List(A,n) ⊸ List(A,m) ⊸ ⇑∃k[k = m+ n]. List(A, k)

5.2 Polymorphic State-Passing Effect

We extend the translation of call-by-value functions with another effect: state
passing. Closures now accept a token ST(p, q) with p free resources and q al-
located resources, and thunks return a token ST(p′, q′). Closures ⇓∀Θ[C].(−)
become ⇓∀Θ[C].ST(p, q) ⊸ (−), in which C guards the resources p and q. This
means closures take in any state whose resources satisfy C. Likewise, thunks
becomes ⇑∃Θ[C ′].ST(p′, q′)⊗(−), and return resources p′ and q′ specified by C ′.

This can lift the hidden inner behavior of append at type-level. Relying on
linear typing, the effects detect that the progressive deallocations of the inter-
mediate reversed list compensate for the progressive allocation of the final result
(under an ideal garbage collector). When typed with state-passing below, the
tokens’ types shows that only n nodes are allocated simultaneously for the call.

⇓∀n,m, p, q. ST(p+ n ∗ kCons, q) ⊸ List(A,n) ⊸ List(A,m)

⊸ ⇑∃k[k = m+ n]. ST(p, q + n ∗ kCons)⊗ List(A, k)

5.3 Token Encoding

To implement this translation without specific primitives, we define a state to-
ken capable of representing the operations of debit (spending resources), credit
(recovering resources), and slack (aligning costs upwards) at type-level. We de-
fine a type constructor ST with two resource parameters, that implements those
operations, in Example type definition: state token, figure 2.

The token begins its life as init, which has type ST(p, 0). Debiting k0 re-
sources from a token s : ST(p+k0, q) is done by using the constructor debitk0(s)
which creates a new token of type ST (p, q+ k0). The credit constructor imple-
ments the opposite operation. For slack, the amount of resources being wasted
k is left free. At call site, k is introduced existentially in the constraint, and left
to be specified later at the whims of the constraint solver. Lower values of k lead
to better bounds, but must remain high enough to run all branches.

5.4 Potential in Shared Values

AARA usually stores potential within shared values as opposed to a centralized
token. We take a somewhat different approach to sharing: we want shared values
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!A(Θ) to specify how much potential their instances commonly occupy, and store
those resources in the token. To do so, we define below a type !φA(Θ) which
represent shared copies with potential. Building the value requires a token with
φ(Θ) free resources and allocates them; Extracting the underlying !A(Θ) from
!φA(Θ) frees φ(Θ) resources. This is definable without any primitive in the ILL-
machine, together with resource-aware contraction and weakening, which fully
reproduce AARA potential.

!φA(Θ) = ⇓∀p, q. ST(p, q + φ(Θ)) ⊸ ⇑ ST(p+ φ(n), q)⊗ !⇑A(Θ).

6 Implementation for ML-like Languages

We have implemented a prototype1 of the ILL-machine, together with type
inference and constraint generation using the HM(X) technique [14]. HM(X)
(Hindley-Milner extended with X ), is a generic constraint-based type inference
procedure extending Hindley-Milner with user-definable sorts, types and predi-
cates. Our extension of covers arbitrary first-order signatures for parameters, and
features a generic constraint simplifier. It then can export simplified constraints
to the Coq theorem prover for verification by hand, or to the MiniZinc2 opti-
mization suite to for full cost inference with minized slack. This yields complexity
bounds as a multivariate polynomial. Our heuristic for elaborating polynomial
parameter expressions from a first-order constraint works as following:

1. Take as input a first-order constraint over the integers. Its syntax is generated
by (∀,∃,∧,⇒,=,≤)

2. Skolemize all existential variables: ∃y.C generates a fresh multivariate poly-
nomial p(−→x ) over the variables −→x in scope, and reduces to C[p(−→x )/y]. Those
polynomial p are formal sums of monomials with coefficients −→α , which are
all held in a global context for the polynomials.

3. Assume all implications are of the form (p(−→x ) = e[−→x ]) ⇒ C, and substitute
p for e in C

4. Put the constraint under prenex form. We have arrived at a constraint C =
∀−→x .

∧
i(ei[

−→x ,−→α ] = e′i[
−→x ,−→α ]). Reinterpret the constraint as a system of

polynomial equations with variables −→x and unknown coefficients −→α .
5. Finally, instantiate and optimize −→α under this final system of equations. The

metric for the optimization is the sum of the leading non-zero coefficients of
the complexity being computed.

Our preliminary experiments indicate that when manually annotating data-
types definitions with their RAML parameterization, the tight algorithmic com-
plexities derivable for list iterators can be recovered in BILL. We are currently
exploring ways to extend parameterization to tree-shaped datatypes, as well as
the potential precision gains that can be obtained by parameterizing to Call-By-
Push-Value evaluation contexts.
1 https://gitlab.lip6.fr/suzanneh/autobill
2 https://www.minizinc.org

https://gitlab.lip6.fr/suzanneh/autobill
https://www.minizinc.org
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The direct translation from ML-style languages to ILL-with-token is factored
in the implementation. User-facing languages are be translated to a Call-By-
Push-Value λ-calculus the canonical way, and then compiled into ILL through a
CPS-translation and explicit duplication of shared variables. Later passes imple-
ment the Call-By-Push-Value effects described in this paper, to-and-from ILL.
High-level languages can be analyzed more easily, as they only need to be trans-
lated to a Call-By-Push-Value λ-calculus with credit/debit primitives.

Limitations Higher-order functions are a pain-point for AARA analyses, as
getting correct bounds require lifting constraints out of high-order arguments.
Depending on the theory modeling parameters, this can be quite tricky. Our im-
plementation compares favorably to RAML in this regard, as it supports native
constraints annotations on high-order arguments. Fixpoints are also a thorny is-
sue. This has two mitigations: (1) require user-provided annotations for fixpoint
invariants, or (2) reproduce RAML’s constraints on iteration: (mutually) recur-
sive functions which define folds and traversals through nested pattern-matching
and accumulation. In our experiments, we found our system to be amenable to
a third approach: general purpose iterators can be defined with manual annota-
tions using fixpoints, and then used without annotations.

7 Conclusion

Extending the static type discipline of functional languages for resource anal-
ysis is a tantalizing prospect. But understanding the operational properties of
programs means recovering a diverse swath of information like memory aliasing,
algorithmic invariants, and sharing of data outside their scope of definition.

To create a fine-grained, generic, extendable base for AARA, we extended
the ILL Call-By-Push-Value calculus developed by Curien at al. [11,1] with fix-
points, polymorphism and native first-order constraints. We combined this with
a decomposition of λ-calculi in a Call-By-Push-Value machine, which explicits
control flow. With this, expressions are a combination of closures requiring some
properties to hold on their inputs, and thunks which witness some properties of
their output. Instantiating our generic system to represent a finite amount of
resources within the program’s state, well-typedness stipulates that this finite
amount is sufficient to cover all allocations and liberations. It recovers the core of
the AARA [6] method for resource analysis from first principles, from a generic
Call-By-Push-Value intermediate representation for static analysis.

Perspectives Our implementation covers the target machine, the constraint-
aware type system, and a heuristic to solve constraints over multivariate polyno-
mial. Current work focuses on implementing program-wide analysis à la RAML.
This requires automatically annotating the constraints associated to each con-
structor in datatype definitions to encode a particular flavor of AARA analyses.
We also aim to support shared regions, reusing the parameterized type system
to generate constraints on region lifetimes.
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