%0 Journal Article %T How Tuning Interfaces Impacts the Dynamics and Structure of Polymer Nanocomposites Simultaneously %+ Laboratoire Charles Coulomb (L2C) %+ Laboratoire Charles Coulomb (L2C) %A Genix, Anne-Caroline %A Bocharova, Vera %A Carroll, Bobby %A Dieudonné-George, Philippe %A Chauveau, Edouard %A Sokolov, Alexei %A Oberdisse, Julian %< avec comité de lecture %@ 1944-8244 %J ACS Applied Materials & Interfaces %I Washington, D.C. : American Chemical Society %V 15 %N 5 %P 7496-7510 %8 2023-02-08 %D 2023 %Z 2310.14680 %R 10.1021/acsami.2c18083 %K Surface modification %K interfacial gradient %K interparticle spacing distribution %K segmental dynamics %K interfacial layer thickness %K colloidal silica %K silane %K poly(2-vinylpyridine) %Z Physics [physics]/Condensed Matter [cond-mat]/Soft Condensed Matter [cond-mat.soft]Journal articles %X Fundamental understanding of macroscopic properties of polymer nanocomposites (PNCs) remains difficult due to the complex interplay of microscopic dynamics and structure, namely interfacial layer relaxations and three-dimensional nanoparticle arrangements. The effect of surface modification by alkyl methoxysilanes at different grafting densities has been studied in PNCs made of poly(2-vinylpyridine) and spherical 20 nm silica nanoparticles (NPs). The segmental dynamics has been probed by broadband dielectric spectroscopy, and the filler structure by small-angle X-ray scattering and reverse Monte Carlo simulations. By combining the particle configurations with the interfacial layer properties, it is shown how surface modification tunes the attractive polymer-particle interactions: bare NPs slow down the polymer interfacial layer dynamics over a thickness of ca. 5 nm, while grafting screens these interactions. Our analysis of interparticle spacing and segmental dynamics provides unprecedented insight into the effect of surface modification on the main characteristics of PNCs: particle interactions and polymer interfacial layers. %G English %2 https://cnrs.hal.science/hal-04244949v1/document %2 https://cnrs.hal.science/hal-04244949v1/file/Hydrophobic_manuscipt_C18.pdf %L hal-04244949 %U https://cnrs.hal.science/hal-04244949 %~ CNRS %~ L2C %~ MIPS %~ UNIV-MONTPELLIER %~ UM-2015-2021 %~ UM-EPE