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We generalize the familiar notion of periodicity in sequences to a new kind of pseudoperiodicity, and we prove some
basic results about it. We revisit the results of a 2012 paper of Shevelev and reprove his results in a simpler and more
unified manner, and provide a complete answer to one of his previously unresolved questions. We consider finding
words with specific pseudoperiod and having the smallest possible critical exponent. Finally, we consider the problem
of determining whether a finite word is pseudoperiodic of a given size, and show that it is NP-complete.
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In honor of Vladimir Shevelev (1945–2018)

1 Introduction
Periodicity is one of the simplest and most studied aspects of words (sequences). Let w = a0a1a2 · · · at−1

be a finite word. We say that w is (purely) periodic with period p (1 ≤ p ≤ t) if ai = ai+p for
0 ≤ i < t − p. For example, the French word entente is periodic with periods 3, 6, and 7. The
definition is extended to infinite words as follows: w = a0a1 · · · is periodic with period p if ai = ai+p

for all i ≥ 0. Unless otherwise stated, all words in this paper are indexed starting with index 0. All infinite
words are defined over a finite alphabet.

In this paper we begin the study of a simple and obvious—yet apparently little-studied—generalization
of periodicity, which we call k-pseudoperiodicity.

Definition 1. We say that a finite word w = a0a1 · · · at−1 is k-pseudoperiodic if there exist k ≥ 1
integers 0 < p1 < p2 < · · · < pk such that ai ∈ {ai+p1

, ai+p2
, . . . , ai+pk

} for all i with 0 ≤ i < t− pk.
For infinite words the membership must hold for all i. If this is the case, we call (p1, p2, . . . , pk) a
pseudoperiod for w.
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In this paper, when we write a pseudoperiod (p1, p2, . . . , pk) we always assume 0 < p1 < · · · < pk.
Note that 1-pseudoperiodicity is the ordinary notion of (pure) periodicity. If an infinite word w is k-
pseudoperiodic for some k < ∞, we call it pseudoperiodic.

We note that our definition of pseudoperiodicity is not the same as that studied by Blondin Massé et al.
(2012). Nor is it the same as the notion of quasiperiodicity, as introduced by Marcus (2004), and now
widely studied in many papers. Nor is it the same as “almost periodicity”, which is more commonly
called uniform recurrence (i.e., every block that occurs, occurs with bounded gaps between successive
occurrences).

1.1 Notation
We use the familiar regular expression notation for regular languages. For infinite words, we let xω for a
nonempty finite word x denote the infinite word xxx · · · .

The exponent of a finite word x, denoted exp(x) is |x|/p, where p is the smallest period of x. For
example, if x = entente, then exp(x) = 7/3. If q divides |x|, then by xp/q we mean the word of length
p|x|/q that is a prefix of xω . For example, (alf)7/3 = alfalfa.

If all the nonempty factors f of a (finite or infinite) word x satisfy exp(f) < e, we say that x is e-free.
If they satisfy exp(f) ≤ e, we say that x is e+-free.

The critical exponent of an infinite word w is the supremum of exp(x) over all finite nonempty factors
x of w. Here the supremum is taken over the extended real numbers, where for each real number α there
is a corresponding number α+ satisfying α < α+ < β for all β > α. Thus if x is a real number, the
inequality x ≥ α+ has the same meaning as x > α.

If S is a set of (finite or infinite) words, then its repetition threshold is the infimum of the critical
exponents of all its words.

A run in a word is a maximum block of consecutive identical letters. The first run is called the initial
run.

An occurrence of a finite nonempty word x in another word w (finite or infinite) is an index i such that
w[i+ j] = x[j] for 0 ≤ j < |x|. The distance between two occurrences i and i′ is their difference |i′ − i|.

The Thue-Morse word t = 01101001 · · · is the infinite fixed point, starting with 0, of the morphism
µ(0) = 01 and µ(1) = 10.

1.2 Goals of this paper
There are five basic questions that interest us in this paper.

1. Given an infinite sequence s, is it pseudoperiodic?

2. If s is k-pseudoperiodic for some k, what is the smallest such k?

3. If s is k-pseudoperiodic, what are all the possible pseudoperiods of size k?

4. What is the smallest possible critical exponent of an infinite pseudoperiodic word with specified
pseudoperiod?

5. How quickly can we tell if a given finite sequence has a pseudoperiod of bounded size?



Pseudoperiodic Words and a Question of Shevelev 3

In particular, we are interested in answering these questions for the class of sequences called automatic.
A novel feature of our work is that much of it is done using a theorem-prover for automatic sequences,
called Walnut, originally developed by Hamoon Mousavi. For more information about Walnut, see
Mousavi (2016); Shallit (2022).

Here is a brief summary of what we do in our paper. In Section 2 we prove basic results about pseudope-
riodicity, and show that questions 1, 2, and 3 above are decidable for the class of automatic sequences.
In Section 3, we recall Shevelev’s problems about pseudoperiods of the Thue-Morse word, solve them
using our method, and also solve his open question from 2012. In Section 4, we obtain analogous pseu-
doperiodicity results for some other famous sequences. In Section 5 we turn to question 4, obtaining the
best possible critical exponent for binary words having certain pseudoperiods. In Section 6 we treat the
case of larger alphabets and obtain some results. In Section 7 we prove that checking the existence of a
pseudoperiod of size k is, in general, a difficult computational problem, thus answering question 5. Along
the way, we state two conjectures (Conjectures 34 and 39) and one open problem (Open Problem 30).
Finally, in Section 8, we make some brief biographical remarks about Vladmir Shevelev.

2 Basic results
Proposition 2. An infinite word s is pseudoperiodic if and only if there exists a bound B < ∞ such that
two consecutive occurrences of the same letter in s are always separated by distance at most B.

Proof: Suppose s has pseudoperiod (p1, p2, . . . , pk), with p1 < · · · < pk. Then clearly we may take
B = pk.

On the other hand, if two consecutive occurrence of every letter are always separated by distance ≤ B,
then we may take (1, 2, . . . , B) as a pseudoperiod for s.

For binary words we can say this in another way.

Proposition 3. Let x be an infinite binary word.

(a) If M is the maximum element of a pseudoperiod, then the longest non-initial run in x is of length
≤ M − 1;

(b) if the longest non-initial run length in x is B, then (1, 2, 3, . . . , B + 1) is a pseudoperiod.

In particular, an infinite binary word is pseudoperiodic if and only if it consists of a single letter repeated,
or its sequence of run lengths is bounded.

Proof: Suppose x is pseudoperiodic with pseudoperiod (p1, p2, . . . , pk) and let M = max1≤i≤k pi. Let
a ∈ {0, 1} and let x[p..q] be a run of a’s and x[q+1..r] be the following run (of a’s). Then x[r+1] = a.
Now consider x[q] = a. Since x is pseudoperiodic, we know that (r+1)− q ≤ M . Hence all non-initial
runs are of length at most M − 1.

On the other hand, if index p does not correspond to the last letter of a run, then x[p] = x[p + 1]. If
it does so correspond, since the word is binary and all non-initial run lengths are bounded, say by B, we
know that x[p+ i] = x[p] for some i ≤ B + 1. So (1, 2, . . . , B + 1) is a pseudoperiod.

Proposition 4. The only infinite words with pseudoperiod (1, 2) are those of the form aω or a∗(ab)ω

and b∗(ba)ω for distinct letters a, b. The only finite words with pseudoperiod (1, 2) are those of the form
a∗(ab)∗(a+ ϵ) with a ̸= b.
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Proof: Follows immediately from Proposition 3.

Theorem 5. If an infinite word has pseudoperiod S then it has ≤ maxS distinct letters. If it has exactly
maxS distinct letters, then it must have a suffix of the form xω , where x is a word of length maxS
containing each letter exactly once.

Proof: Suppose w has pseudoperiod S, with k = maxS. Since each occurrence of a letter is followed
by another occurrence of the same letter at distance ≤ k, it follows that each letter of w must occur with
frequency ≥ 1/k in w. But the total of all frequencies must sum to 1, so there cannot be more than k
distinct letters.

Now suppose w has exactly k distinct letters, say 0, 1, . . . , k − 1. Without loss of generality, as-
sume that the last letter to occur for the first time is k − 1 and pk−1 is this first occurrence. Further-
more, let p0, . . . , pk−2 be the positions of the last occurrence of the letters 0, 1, . . . , k − 2 that precede
pk−1, and again, without loss of generality assume p0 < · · · < pk−2 < pk−1. Thus w[p0..pk−1] =
0w1 1w2 2 · · · (k − 2)wk−1 (k − 1) for some words w1, w2, . . . , wk−1, where wi contains no occur-
rences of letters < i. However, if any of these wi were nonempty then w could not be pseudoperi-
odic (because the 0 at position p0 would not be followed by another 0 at distance ≤ k). So all the
wi are empty. Furthermore, pseudoperiodicity also shows that w[pk−1 + 1] = 0, and inductively, that
w[pk−1 + i] = (i− 1) mod k for all i ≥ 0.

We now turn to results about automatic sequences. This is a large and interesting class of sequences
where the nth term is computed by a finite automaton taking as input the representation of n in some
base (or generalizations, such as Fibonacci base). For more information about automatic sequences, see
Allouche and Shallit (2003).

Corollary 6. Problems 1, 2, and 3 above are decidable, if s is an automatic sequence.

Proof: By the results of Bruyère et al. (1994), it suffices to create first-order logical formulas asserting
each property. The domain of the variables in all logical statements is assumed to be N = {0, 1, 2, . . .},
the natural numbers.

By Proposition 2, we know that s is pseudoperiodic if there is a bound on the separation of two consec-
utive occurrences of the same letter. We can assert this as follows. First, define a formula that asserts that
i < j are two consecutive occurrences of the same letter:

twoconsec(i, j) := i < j ∧ s[i] = s[j] ∧ ∀p (p > i ∧ p < j) =⇒ s[i] ̸= s[p].

Next, the formula
sep(B) := ∀i, j twoconsec(i, j) =⇒ j ≤ i+B.

asserts the claim that two consecutive occurrences of the same letter are separated by at most B. Finally,
the formula ∃B sep(B) evaluates to TRUE if and only s is pseudoperiodic. This solves the first problem.

Once we know that s is pseudoperiodic, we can find the smallest B such that sep(B) holds. To do so,
form the automaton for

sep(B) ∧ ¬ sep(B − 1);

it will accept exactly one value of B, which is the desired minimum. This tells us that s has pseudoperiod
(1, 2, . . . , B), so certainly it is B-pseudoperiodic.
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We can now write the assertion that s has a pseudoperiod of size p, as follows:

∃a1, a2, . . . , ap 1 ≤ a1 ∧ a1 < a2 ∧ · · · ∧ ap−1 < ap ∧
∀n (s[n] = s[n+ a1] ∨ s[n] = s[n+ a2] ∨ · · · ∨ s[n] = s[n+ ap]).

By testing this for p = 1, . . . , B, we can find the smallest p for which this holds. This solves problem 2.
Finally, we can determine all possible pseudoperiods of size p with the formula

1 ≤ a1 ∧ a1 < a2 ∧ · · · ∧ ap−1 < ap ∧
∀n (s[n] = s[n+ a1] ∨ s[n] = s[n+ a2] ∨ · · · ∨ s[n] = s[n+ ap]).

The corresponding finite automaton accepts all the possible pseudoperiods (a1, . . . , ap) of size p.

From these ideas we can prove an interesting corollary.

Corollary 7. Suppose the automatic sequence s is not k-pseudoperiodic. Then there exists a constant
C (depending only on s) such that for all k-tuples 0 < p1 < p2 < · · · < pk, the smallest n for which
s[n] ̸∈ {s[n+ p1], s[n+ p2], . . . , s[n+ pk]} satisfies n ≤ Cpk.

Proof: A trivial variation on the previous arguments shows that if s is automatic, then there is an au-
tomaton accepting, in parallel, n, p1, p2, . . . , pk such that n is the smallest natural number satisfying
s[n] ̸∈ {s[n + p1], s[n + p2], . . . , s[n + pk]}. Thus, in the terminology of Shallit (2021), this n can be
considered a “synchronized function” of (p1, . . . , pk). We can then apply the known linear bound on
synchronized functions (Shallit, 2021, Thm. 8) to deduce the existence of C such that n ≤ Cpk.

Although, as we have just seen, these problems are all decidable for automatic sequences in theory, in
practice, the automata that result can be extremely large and require a lot of computation to find. We can
use Walnut, a theorem-prover originally designed by Mousavi (2016) to translate logical formulas to
automata.

Example 8. Let us consider an example, the Fibonacci word f = 01001010 · · · , the fixed point of the
morphism 0 → 01, 1 → 0. The following Walnut code demonstrates that it is 2-pseudoperiodic. (In
fact, this follows from the much more general Proposition 9 below.)

eval isfibpseudo "?msd_fib Ea,b 1<=a & a<b &
An (F[n]=F[n+a]|F[n]=F[n+b])":

It returns TRUE.
We can determine all possible pseudoperiods of size 2 using Walnut, as follows:

def fib2pseudoperiod "?msd_fib 1<=a & a<b &
An (F[n]=F[n+a]|F[n]=F[n+b])":

The resulting automaton accepts all pairs (a, b) that are pseudoperiods of f , in Fibonacci representation.
It has 28 states and is displayed in Figure 1.

We now consider a famous uncountable class of binary sequences, the Sturmian words (Lothaire, 2002,
Chap. 2). These are infinite words of the form sα,β := (⌊(n+1)α+β⌋−⌊nα+β⌋)n≥1, where 0 < α < 1
is an irrational real number and 0 ≤ β < 1.

Proposition 9. Every Sturmian sequence is 2-pseudoperiodic but not 1-pseudoperiodic.
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27
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[1,0]

[0,0]

[1,0]

[1,1]

[0,0]

[0,1]

[1,0]
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Fig. 1: Pseudoperiods of size 2 for the Fibonacci word.

Proof: If sα,β were 1-pseudoperiodic, it would be periodic and hence the letter 1 would occur with
rational density. However, the 1’s appear in sα,β with density α, which is irrational.

Now let [0, c1, c2, . . .] be the continued fraction expansion of α. Without loss of generality, we can
assume that α < 1/2; otherwise consider s1−α,0 which is the binary complement of sα,0. Hence c1 ≥ 2.

It is easy to see from the definition of sα,β that sα,0 is a suffix of an infinite concatenation of blocks of
the form 0c1−11 and 0c11. It follows that (c1, c1 + 1) is a pseudoperiod.

Remark 10. There are, of course, non-Sturmian sequences that are 2-pseudoperiodic but not 1-pseudoperiodic.
For example, every sequence in {01, 001}ω has pseudoperiod (2, 3).
Remark 11. Trivial observation: to determine whether a given fixed tuple (p1, p2, . . . , pk) is a pseudope-
riod of an infinite sequence s, it suffices to examine all of the factors of length pk + 1 of s.

3 Shevelev’s problems
In this section, we consider some results of Vladimir Shevelev (2012). We reprove some of his results in
a much simpler manner, obtain new results, and completely solve one of his open questions.

Recall from Section 1.1 that the Thue-Morse sequence t = 01101001 · · · is the infinite fixed point,
starting with 0, of the map sending 0 → 01 and 1 → 10. Shevelev was interested in the pseudoperiodicity
of t, and gave a number of theorems and open questions involving this sequence. We are able to prove all
of the theorems and conjectures in Shevelev (2012) using our method, with the exception of his Conjecture
1. Luckily, this conjecture was already proved by Allouche (Allouche, 2015, Thm. 3.1).

Proposition 12. The Thue-Morse sequence is 3-pseudoperiodic, but not 2-pseudoperiodic.

Proof: The first statement follows from the (almost trivial) fact that every word in {01, 10}ω has pseu-
doperiod (1, 2, 3).
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For the second statement, we use Walnut again. To prove the second half of the theorem, we assert
2-pseudoperiodicity as follows and show that it is false:

∃a, b (a ≥ 1) ∧ (a < b) ∧ ∀i (t[i] ∈ {t[i+ a], t[i+ b]}).

Translating the assertion into Walnut, we have:

eval twopseudotm "Ea,b (a>=1 & a<b) & Ai (T[i]=T[i+a] | T[i]=T[i+b])":
# returns FALSE
# 23 ms

This returns FALSE, which proves that the Thue-Morse sequence is not 2-pseudoperiodic.

Since t is not 2-pseudoperiodic, we know from Corollary 7 that there exists a constant C such that for
1 ≤ a < b we have t[n] ̸∈ {t[n+a], t[n+ b]} for some n ≤ Cb. For the Thue-Morse word, we can prove
the following bound:

Theorem 13.

(a) For all a, b with 1 ≤ a < b there exists n ≤ 5
3b such that t[n] ̸∈ {t[n+ a], t[n+ b]}.

(b) The previous result is optimal, in the sense that if the bound 5
3b is reduced, then there are infinitely

many counterexamples.

Proof: To prove (a) and (b), we can use the following Walnut commands:

eval casea "Aa,b (1<=a & a<b) => En (3*n<=5*b) &
T[n]!=T[n+a] & T[n]!=T[n+b]":

# evaluates to TRUE

eval caseb "Am Ea,b 1<=a & a<b & b>m & Ai (3*i<5*b) =>
(T[i]=T[i+a]|T[i]=T[i+b])":

# evaluates to TRUE

We now turn to Shevelev’s Proposition 1 in Shevelev (2012) which (in our terminology) asserts the
following:

Theorem 14. The triples {(a, a+ 2k, a+ 2k+1) : a ≥ 1, k ≥ 0} are pseudoperiods for the Thue-Morse
sequence.

Shevelev’s proof of this was rather long and involved. We can prove it almost instantly with Walnut,
as follows:

Proof: We express the conditions placed on the triples as follows.

Power2(x) := ∃k x = 2k

ShevCond(a, b, c) := (a ≥ 1) ∧ (∃x Power2(x) ∧ (b = a+ x) ∧ (c = a+ 2x)).

We write the proposition as:

∀a, b, c, i ShevCond(a, b, c) =⇒ (t[i] ∈ {t[i+ a], t[i+ b], t[i+ c]}).

Translating the above into Walnut commands, we have:
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reg power2 msd_2 "0*10*":
def shevcond "(a>=1) & (Ex $power2(x) & (b=a+x) & (c=a+2*x))":
# returns a DFA with 7 states
# 13 ms
eval prop1 "Aa,b,c,i $shevcond(a,b,c) =>

(T[i]=T[i+a] | T[i]=T[i+b] | T[i]=T[i+c])":
# returns TRUE
# 6 ms

The assertion returns TRUE, which proves that the Thue-Morse sequence is 3-pseudoperiodic.

Shevelev observed that Theorem 14 did not characterize all such triples. In his Proposition 2, he showed
(1, 8, 9) is a pseudoperiod. We can do this with Walnut as follows:

eval shevprop2 "Ai (T[i]=T[i+1])|(T[i]=T[i+8])|(T[i]=T[i+9])":
# 97 ms
# return TRUE

These two results caused Shevelev to pose his “Open Question 1”, which in our terminology is the
following:

Open Problem 15. Characterize all triples (a, b, c) with 1 ≤ a < b < c that are pseudoperiods for the
Thue-Morse sequence.

Shevelev was unable to solve this, but using our methods, we can easily solve it.

Theorem 16. There is a DFA of 53 states that accepts exactly the triples (a, b, c) such that 1 ≤ a < b < c
is a pseudoperiod of t.

Proof: We want to characterize the triples (a, b, c) such that

Triple(a, b, c) := (a ≥ 1) ∧ (a < b) ∧ (b < c) ∧ ∀i t[i] ∈ {t[i+ a], t[i+ b], t[i+ c]}.

We construct the following DFA triple in Walnut to answer the question.

def triple "(a>=1) & (a<b) & (b<c) &
Ai (T[i]=T[i+a] | T[i]=T[i+b] | T[i]=T[i+c])":

# returns a DFA with 53 states
# 4356513 ms

This gives us an automaton of 53 states, which is presented in the Appendix. Determining it was a major
calculation in Walnut, requiring 4356 seconds of CPU time and 18 GB of storage. The complete answer
to Shevelev’s question is then the set of triples accepted by our DFA triple.

Because the answer is so complicated, it is not that surprising that Shevelev did not find a simple answer
to his question.

Now that we have the automaton triple, we can easily check any triple (a, b, c) to see if it is a
pseudoperiod of t in O(log abc) time, merely by feeding the automaton with the base-2 representations
of the triple (a, b, c).

Furthermore, our automaton can be used to easily prove other aspects of the pseudoperiods of the
Thue-Morse sequence. For example:
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Corollary 17.

(a) For each a ≥ 1 there exist arbitrarily large b, c such that (a, b, c) is a pseudoperiod of t.

(b) For each b ≥ 2 there exist pairs a, c such that (a, b, c) is a pseudoperiod of t.

(c) For each c ≥ 3 there exist pairs a, b such that (a, b, c) is a pseudoperiod of t.

Proof: We use the following Walnut code.

eval tmpa "Aa,m (a>=1) => Eb,c b>m & c>m & $triple(a,b,c)":
eval tmpb "Ab (b>=2) => Ea,c $triple(a,b,c)":
eval tmpc "Ac (c>=3) => Ea,b $triple(a,b,c)":

and Walnut returns TRUE for all three.

We now look at the possible distances between pseudoperiods of t.

Corollary 18.

(a) {b − a : ∃c (a, b, c) is a pseudoperiod of t} = {(2j − 1)2i : j ≥ 1, i ≥ 0} ∪ {(22j−1 + 1)2i :
j ≥ 1, i ≥ 0} ∪ {11 · 2i : i ≥ 0}.

(b) {c− b : ∃a (a, b, c) is a pseudoperiod of t} = {(2j − 1)2i : j ≥ 1, i ≥ 0} ∪ {(2j + 1)2i : j ≥
1, i ≥ 0}.

Proof: We use the following Walnut code.

reg parta msd_2 "0*11*0*|0*1(00)*10*|0*10110*":
reg partb msd_2 "0*100*10*|0*11*0*":
eval checka "An $parta(n) <=> (Ea,b,c $triple(a,b,c) & b=a+n)":
eval checkb "An $partb(n) <=> (Ea,b,c $triple(a,b,c) & c=b+n)":

and Walnut returns TRUE twice.

We now turn to Shevelev’s Theorem 2 in Shevelev (2012).

Theorem 19. The only triples of distinct positive integers (a, b, c) for which both t[i] and t[i] belong to
{t[i+a], t[i+ b], t[i+ c]} for all i ≥ 0 are those satisfying b = a+2k and c = a+2k+1 for some k ≥ 0.

Proof: To assert the claim in first-order logic, we first construct a formula to show that at least one of the
values in S is not equal to the other two; this implies that S contains both t[i] and t[i]:

NeqTriple(a, b, c) := (a ≥ 1) ∧ (a < b) ∧ (a < c)∧
∀i (t[i+ a] ̸= t[i+ b] ∨ t[i+ b] ̸= t[i+ c] ∨ t[i+ c] ̸= t[i+ a]).

Our theorem can then be expressed as follows.

∀a, b, c (Triple(a, b, c) ∧ NeqTriple(a, b, c)) ⇐⇒ ShevCond(a, b, c).

Translating the above into Walnut, we build a DFA neqtriple.
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def neqtriple "(a>=1) & (a<b) & (b<c) &
Ai (T[i+a]!=T[i+b] | T[i+b]!=T[i+c] | T[i+c]!=T[i+a])":

# returns a DFA with 7 states
# 554 ms

We prove the theorem with the Walnut command below:

eval thm2 "Aa,b,c ($triple(a,b,c) & $neqtriple(a,b,c)) <=>
$shevcond(a,b,c)":

# returns TRUE
# 6 ms

This returns TRUE, which proves the Theorem.

We now turn to Shevelev’s Propositions 3 and 4 in Shevelev (2012). In our terminology, these are as
follows:

Proposition 20. For all k ≥ 1, the Thue-Morse sequence has pseudoperiod (a, b, c) if and only if it has
pseudoperiod (2ka, 2kb, 2kc).

Proof: We prove the following equivalent statement which implies the proposition by induction on k:

∀a, b, c Triple(a, b, c) ⇐⇒ Triple(2a, 2b, 2c).

Translating this into Walnut, we have the following.

eval prop3n4 "Aa,b,c $triple(a,b,c) <=> $triple(2*a, 2*b, 2*c)":
# returns TRUE
# 14 ms

This returns TRUE, which proves the proposition.

4 Other sequences
After having obtained pseudoperiodicity results for the Thue-Morse sequence t, it is logical to try to obtain
similar results for other famous sequences.

In this section we examine sequences such as the Rudin-Shapiro sequence rs, the variant Thue-Morse
sequence vtm, the Tribonacci sequence tr, and so forth.

For each sequence s in this section, we assert 2-pseudoperiodicity as follows and use Walnut to
determine whether it holds:

∃a, b (a ≥ 1) ∧ (a < b) ∧ ∀i (si ∈ {si+a, si+b}).

And we assert 3-pseudoperiodicity as follows and use Walnut to determine whether it holds:

∃a, b, c (a ≥ 1) ∧ (a < b) ∧ (b < c) ∧ ∀i (si ∈ {si+a, si+b, si+c}).
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4.1 The Mephisto Waltz sequence
The Mephisto Waltz sequence mw = 001001110 · · · is defined by the infinite fixed point of the morphism
0 → 001, 1 → 110 starting with 0. It is sequence A064990 in the OEIS.

Proposition 21. The Mephisto Waltz sequence is 3-pseudoperiodic, but not 2-pseudoperiodic.

Proof: We translate the assertions of 2-pseudoperiodicity into Walnut as follows and show that it is
false.

eval twopseudomw "?msd_3 Ea,b (a>=1 & a<b) &
Ai (MW[i]=MW[i+a] | MW[i]=MW[i+b])":

# 496 ms
# return FALSE

We translate the assertions of 3-pseudoperiodicity into Walnut as follows and show that it is true.

eval threepseudomw "?msd_3 Ea,b,c (a>=1 & a<b & b<c) &
Ai (MW[i]=MW[i+a] | MW[i]=MW[i+b] | MW[i]=MW[i+c])":

# 2202253 ms
# return TRUE

Knowing that the Mephisto Waltz sequence is 3-pseudoperiodic naturally leads to the following prob-
lem.

Problem 22. Characterize all triples (a, b, c) with 1 ≤ a < b < c that are pseudoperiods for the Mephisto
Waltz sequence.

We want to characterize the triples (a, b, c) such that

TripleMW(a, b, c) := (a ≥ 1) ∧ (a < b) ∧ (b < c) ∧ ∀imw[i] ∈ {mw[i+a],mw[i+ b],mw[i+ c]}.

We construct the following DFA triplemw in Walnut to solve the problem.

def triplemw "?msd_3 (a>=1 & a<b & b<c) &
Ai (MW[i]=MW[i+a] | MW[i]=MW[i+b] | MW[i]=MW[i+c])":

# returns a DFA with 13 states
# 2331762 ms

The complete answer to this problem is the set of triples accepted by our DFA triplemw.

4.2 The ternary Thue-Morse sequence
The ternary Thue-Morse sequence vtm = 210201 · · · is defined by the infinite fixed point of the morphism
2 → 210, 1 → 20, and 0 → 1 starting with 2. It is sequence A036577 in the OEIS.

Proposition 23. The ternary (variant) Thue-Morse sequence is 3-pseudoperiodic, but not 2-pseudoperiodic.

Proof: We translate the assertions of 2-pseudoperiodicity into Walnut as follows and show that it is
false.

https://oeis.org/A064990
https://oeis.org/A036577
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eval twopseudovtm "Ea,b (a>=1 & a<b) &
Ai (VTM[i]=VTM[i+a] | VTM[i]=VTM[i+b])":

# 235 ms
# return FALSE

We translate the assertions of 3-pseudoperiodicity into Walnut as follows and show that it is true.

eval threepseudovtm "Ea,b,c (a>=1 & a<b & b<c) &
Ai (VTM[i]=VTM[i+a] | VTM[i]=VTM[i+b] | VTM[i]=VTM[i+c])":

# 505315560 ms
# 188 GB
# return TRUE

Knowing that the ternary Thue-Morse sequence is 3-pseudoperiodic naturally leads to the following
problem.

Problem 24. Characterize all triples (a, b, c) with 1 ≤ a < b < c that are pseudoperiods for the ternary
Thue-Morse sequence.

We want to characterize the triples (a, b, c) such that

TripleVTM(a, b, c) := (a ≥ 1)∧ (a < b)∧ (b < c)∧∀i (vtm[i] ∈ {vtm[i+a],vtm[i+b],vtm[i+c]}).

We construct the following DFA triplevtm in Walnut to solve the problem.

def triplevtm "(a>=1 & a<b & b<c) &
Ai (VTM[i]=VTM[i+a] | VTM[i]=VTM[i+b] | VTM[i]=VTM[i+c])":

# returns a DFA with 12 states
# 815830898 ms

The complete answer to this problem is the set of triples accepted by our DFA triplevtm. It is depicted
in Figure 2. Again, this was a very large computation with Walnut.

0

[0,0,0]

1
[0,0,1]

2[0,1,1]

3

[1,1,1]

4

[1,1,0]

5[0,0,0]

6
[0,0,1]

7
[0,0,0]

[1,1,0]

8

[0,1,0]

[0,0,0]

9[1,1,0]

[0,0,0] 10[0,0,1]

11[0,0,0][1,0,0]
[0,1,0] [0,0,0]

Fig. 2: Automaton recognizing all pseudoperiods of size 3 for the vtm sequence.
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By looking at the acceptance paths of Figure 2, we can deduce the following result.

Theorem 25. The only 3-pseudoperiods for the vtm sequence are

• {((22i+1 − 1)22j+1, (22i+2 − 1)22j , 22i+2j+2) : i, j ≥ 0}

• {(3 · 22j , (22i+2 + 1)22j+1, (22i+1 + 1)22j+2) : i, j ≥ 0}

• {(22i+2j+3, (22i+3 + 1)22j , (22i+2 + 1)22j+1) : i, j ≥ 0}.

Proof: There are only essentially three possible paths to the accepting state labeled 8 in Figure 2. They
are labeled

• [0, 0, 0]∗[0, 0, 1][1, 1, 0]([1, 1, 0][1, 1, 0])∗[0, 1, 0]([0, 0, 0][0, 0, 0])∗

• [0, 0, 0]∗[0, 1, 1]([0, 0, 0][0, 0, 0])∗[0, 0, 1][1, 1, 0][1, 0, 0]([0, 0, 0][0, 0, 0])∗

• [0, 0, 0]∗[1, 1, 1][0, 0, 0]([0, 0, 0][0, 0, 0])∗[0, 0, 1][0, 1, 0]([0, 0, 0][0, 0, 0])∗

By considering the base-2 numbers specified by each coordinate, we obtain the theorem.

4.3 The period-doubling sequence
The period-doubling sequence pd = 1011101011 · · · is defined by the infinite fixed point of the morphism
1 → 10, 0 → 11 starting with 1. It is sequence A035263 in the OEIS.

Proposition 26. The period-doubling sequence is 3-pseudoperiodic, but not 2-pseudoperiodic.

Proof: We translate the assertions of 2-pseudoperiodicity into Walnut as follows and show that it is
false.

eval twopseudopd "Ea,b (a>=1 & a<b) &
Ai (PD[i]=PD[i+a] | PD[i]=PD[i+b])":

# 424 ms
# return FALSE

We translate the assertions of 3-pseudoperiodicity into Walnut as follows and show that it is true.

eval threepseudopd "Ea,b,c (a>=1 & a<b & b<c) &
Ai (PD[i]=PD[i+a] | PD[i]=PD[i+b] | PD[i]=PD[i+c])":

# 40 ms
# return TRUE

Knowing that the period-doubling sequence is 3-pseudoperiodic naturally leads to the following prob-
lem.

Problem 27. Characterize all triples (a, b, c) with 1 ≤ a < b < c that are pseudoperiods for the period-
doubling sequence.

https://oeis.org/A035263
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We want to characterize the triples (a, b, c) such that

TriplePD(a, b, c) := (a ≥ 1) ∧ (a < b) ∧ (b < c) ∧ ∀i (pd[i] ∈ {pd[i+ a],pd[i+ b],pd[i+ c]}).

We construct the following DFA triplepd in Walnut to solve the problem.

def triplepd "(a>=1 & a<b & b<c) &
Ai (PD[i]=PD[i+a] | PD[i]=PD[i+b] | PD[i]=PD[i+c])":

# returns a DFA with 28 states
# 30 ms

The complete answer to this problem is the set of triples accepted by our DFA triplepd.

4.4 The Rudin-Shapiro sequence

The Rudin-Shapiro sequence r = 00010010 · · · is defined by the relation r[n] = |(n)2|11 mod 2, that is,
the number of occurrences of 11, computed modulo 2, in the base-2 representation of n. It is sequence
A020987 in the OEIS.

Theorem 28. The Rudin-Shapiro sequence is 4-pseudoperiodic, but not 3-pseudoperiodic.

Proof: To check 3-pseudoperiodicity, we used the Walnut command

eval rudinpseudo "Ea,b,c a>=1 & a<b & b<c &
An (RS[n]=RS[n+a]|RS[n]=RS[n+b]|RS[n]=RS[n+c])":

which returned the result FALSE. This was a big computation, requiring 20003988ms and more than 200
GB of memory on a 64-bit machine.

It is 4-pseudoperiodic, as Walnut can easily verify that (2, 3, 4, 5) is a pseudoperiod.

4.5 The Tribonacci sequence

The Tribonacci sequence is a generalization of the Fibonacci sequence. It is defined by the infinite fixed
point of the morphism 0 → 01, 1 → 02, and 2 → 0 and is sequence A080843 in the OEIS.

Theorem 29. The Tribonacci sequence is 3-pseudoperiodic, but not 2-pseudoperiodic.

Proof: It has pseudoperiod (4, 6, 7), as can be easily verified by checking all factors of length 8 (or with
Walnut).

Open Problem 30. Characterize all the 3-pseudoperiods of the Tribonacci sequence.

Although this is in principle doable with Walnut, so far, this seems to be beyond our computational
abilities, requiring the determinization of a large nondeterministic automaton.

https://oeis.org/A020987
https://oeis.org/A080843
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4.6 The paperfolding sequences

The paperfolding sequences are an uncountable family of sequences originally introduced by Davis and
Knuth (1970) and later studied by Dekking et al. (1982). The first-order theory of the paperfolding se-
quences was proved decidable in Goč et al. (2015). Every infinite paperfolding sequence is specified by
an infinite sequence f of unfolding instructions. Since Walnut’s automata work on finite strings—they
are not Büchi automata—we have to approximate an infinite f by considering its finite prefixes f . A fuller
discussion of exactly how to do this can be found in (Shallit, 2022, Chap. 12); we just sketch the ideas
here.

We can use Walnut to determine the pseudoperiods of any specific paperfolding sequence, or the
pseudoperiod common to all paperfolding sequences.
Walnut can prove that no paperfolding sequence is 2-pseudoperiodic, as follows:

reg linkf {-1,0,1} {0,1} "()*[0,1][0,0]*":
def pffactoreq "?lsd_2 At (t<n) => FOLD[f][i+t]=FOLD[f][j+t]":
eval paper_pseudo2 "?lsd_2 Ef,a,b,x 1<=a & a<b & $linkf(f,x) &

x>=2*b+3 & Ai (i>=1 & i+b+1<=x) =>
($pffactoreq(f,i,i+a,1)|$pffactoreq(f,i,i+b,1))":

# FALSE, 26926 secs

Here pffactoreq asserts that the two length-n factors of the paperfolding sequence specified by a finite
code f , one beginning at position i and one at position j are the same. And linkf asserts that x = 2|f |.
The assertion paper pseudo2 is that there exists some paperfolding sequence and numbers a, b such
that every position i has a symbol equal to either the symbol at position i+ a or i+ b.

All paperfolding sequences are 3-pseudoperiodic; for example, (1, 3, 4) is a pseudoperiod of all paper-
folding sequences.

eval paper_pseudo134 "?lsd_2 Af,x,i ($linkf(f,x) & i>=1 & i+5<=x) =>
($pffactoreq(f,i,i+1,1)|$pffactoreq(f,i,i+3,1)|
$pffactoreq(f,i,i+4,1))":

However, not all pseudoperiods work for all paperfolding sequences. For example, we can use Walnut to
show that (1, 2, 16) is a pseudoperiod for the paperfolding sequence specified by the unfolding instructions
1 1 1 · · · , but not a pseudoperiod for the regular paperfolding sequence (specified by 1 1 1 · · · ).

We can compute the pseudoperiods that work for all paperfolding sequences simultaneously, using the
following Walnut code:

def paper_pseudo3 "?lsd_2 1<=a & a<b & b<c &
Af,x,i ($linkf(f,x) & i>=1 & i+c+1<=x) =>
($pffactoreq(f,i,i+a,1)|$pffactoreq(f,i,i+b,1)|$pffactoreq(f,i,i+c,1))":

# 10 states, 2356 ms

The automaton in Figure 3 accepts the base-2 representation (here, least significant digit first) of those
triples (a, b, c) with 1 ≤ a < b < c as a pseudoperiod for all paperfolding sequences.
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0

[0,0,0]

1[1,1,0]

2

[1,0,1]

3

[0,1,1]

4[1,0,0]

5

[0,1,0] 6

[1,0,0]
[0,0,1]

7[0,1,0]

8[0,0,1]

[0,0,0]
[1,0,0]
[1,1,0]
[1,1,1]

[0,1,0]
[0,1,1]

[0,0,1]
[1,0,1]

[1,0,0] [0,0,0]
[0,1,0]
[1,1,0]
[0,1,1]
[1,1,1] [1,0,1]

9

[0,0,1]

[1,1,0]

[0,1,0]

[0,0,0]
[1,0,0]
[0,0,1]
[1,0,1]
[1,1,1]

[0,1,1]

[1,0,0]

[1,1,0]
[1,1,1]

[1,0,1]

[0,0,0]
[0,1,0]
[0,1,1]

[0,0,1]

[1,1,0]

[1,0,0]
[1,0,1]

[0,1,0]

[0,0,0]
[0,0,1]
[0,1,1] [1,1,1]

[0,1,0]
[1,1,0]

[1,0,0]
[1,0,1][0,0,0]

[0,0,1]
[0,1,1]
[1,1,1]

Fig. 3: Automaton accepting base-2 representations of pseudoperiod triples common to all paperfolding sequences.

5 Critical exponents
In this section we consider the following problem. Suppose we consider the class Ca,b of all infinite
binary words with a specified pseudoperiod (a, b), for integers 1 ≤ a < b. Can we construct words of
small critical exponent in Ca,b? And what is the repetition threshold of Ca,b?

The general strategy we employ is the following. We use a heuristic search procedure to try to guess
a morphism ha,b such that either ha,b(t) or ha,b(vtm) has pseudoperiod (a, b) and avoids e+ powers
for some suitable exponent e. Once such an ha,b is found, we can verify its correctness using Walnut.
Simultaneously we can do a breadth-first search over the tree of all binary words having pseudoperiod
(a, b) and avoiding e-powers. If this tree turns out to be finite, we have proved the optimality of this e.

Our first result shows that this critical exponent can never be ≤ 7/3.

Theorem 31. If x is an infinite binary word that is 2-pseudoperiodic, then x contains a (7/3)-power.

Proof: Suppose x has pseudoperiod 1 ≤ a < b, but is (7/3)-power-free. Theorem 6 of Karhumäki and
Shallit (2004) says that every infinite (7/3)-power-free binary word contains factors of the form µi(0) for
all i ≥ 0. These factors are all prefixes of t.

However, as we have seen in Theorem 13, the prefix of length 5
3b + 1 of t cannot have pseudoperiod

a, b, as the relation t[n] ∈ {t[n + a], t[n + b]} is violated for some n ≤ 5
3b. Thus it suffices to choose i

large enough such that 2i ≥ 5
3b+ 1. This contradiction proves the result.

Next we consider the case b = 2a.

Proposition 32. Let a ≥ 1 be an integer. If an infinite word has pseudoperiod (a, 2a), then it has critical
exponent ∞.
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Proof: Suppose that x has pseudoperiod (a, 2a). From x extract the subsequences

xa,i = (x[an+ i])n≥0

corresponding to indices that are congruent to i (mod a), for 0 ≤ i < a. Clearly each such subsequence
has pseudoperiod (1, 2). By Proposition 4, each subsequence xa,i must be of the form cω or c∗(cd)ω for
c, d distinct letters. It now follows that x is eventually periodic with period 2a, and hence has infinite
critical exponent.

Proposition 33. Let α ≥ 2+. If an α-free (resp., α+-free) binary word w has pseudoperiod (a1, . . . , ak),
then µ(w) is an α-free (resp., α+-free) binary word with pseudoperiod (2a1, . . . , 2ak).

Proof: The claim about the pseudoperiods is clear. The result about power-freeness can be found in, e.g.,
(Karhumäki and Shallit, 2004, Theorem 5).

We now summarize our results on critical exponents in the following table. Each entry corresponding
to a pseudoperiod (a, b) with b ̸= 2a has three entries:

(a) upper left: an exponent e, where the repetition threshold for Ca,b is e+;

(b) upper right: the length of the longest finite word having pseudoperiod (a, b) and avoiding e-powers;

(c) lower line: the morphic word with pseudoperiod (a, b) and avoiding e+ powers.

HHH
HHa
b

2 3 4 5 6 7 8 9 10 11 12

1 ∞ 5/2 33 3 11 13/5 29 7/3 15 3 61 3 45 5/2 43 5/2 33 5/2 52 5/2 57
h1,3(t) h1,4(t) h1,5(t) h1,6(vtm) h1,7(t) h1,8(t) h1,9(t) h1,10(t) h1,11(t) h1,12(t)

2 13/5 30 ∞ 3 15 5/2 66 13/5 84 13/5 30 5/2 19 13/5 60 5/2 20 7/3 31
h1,5(t) h2,5(t) µ(h1,3(t)) h2,7(t) h1,5(t) h2,9(t) µ(h1,5(t)) h2,11(t) µ(h1,6(vtm))

3 5/2 33 13/5 34 ∞ 13/5 98 5/2 42 8/3 28 13/5 69 5/2 59 8/3 72
h1,3(t) h1,5(t) h1,5(t) h1,3(t) h3,9(t) h1,5(t) h1,3(t) h3,12(t)

4 3 21 7/3 40 3 61 ∞ 7/3 18 5/2 33 5/2 19 5/2 141
h4,5(t) h4,6(t) h1,7(t) h1,6(vtm) h1,10(t) h4,11(t) µ2(h1,3(t))

5 5/2 66 3 68 13/5 33 5/2 66 ∞ 5/2 20 18/7 158
h5,6(t) h2,5(t) h1,5(t) h2,6(t) h2,11(t) h5,12(t)

6 7/3 40 5/2 60 17/6 89 7/3 48 5/2 69 ∞
h4,6(t) µ(h1,3(t)) h6,9(t) h6,10(t) h1,11(t)

7 13/5 50 7/3 41 13/5 92 13/5 84 7/3 31
h1,5(t) h4,6(t) h2,7(t) h7,11(t) h1,6(vtm)

8 5/2 66 5/2 33 3 65 7/3 82
h8,9(t) h1,10(t) h8,11(t) µ(h4,6(t))

9 7/3 40 5/2 57 55/21 200
h6,10(t) h9,11(t) h9,12(t)

10 5/2 33 7/3 54
h1,10(t) h10,12(t)

11 7/3 31
h11,12(vtm)

Tab. 1: Optimal critical exponents for binary words with certain specified pseudoperiod.

See the files longest finite seqs.txt and critical exp morphisms.txt at
https://github.com/sonjashan/sha_gen.git

for the specific morphisms.
From examination of Table 1, we see that all the critical exponents are at most 3+. This leads to the

following conjecture.

https://github.com/sonjashan/sha_gen.git
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Conjecture 34. For all pairs (a, b) with 1 ≤ a < b and b ̸= 2a, there exists an infinite binary word with
pseudoperiod (a, b) and avoiding 3+-powers.

We verified this conjecture for 1 ≤ a < b ≤ 54. For each pair of a and b, we first try each previously
saved morphism h on the Thue-Morse sequence t to see if h(t) has pseudoperiod {a, b} and avoids 3+-
powers. If that fails, we use backtracking to search for a new morphism that meets the criteria. Once we
find such an morphism, we verify the pseudoperiodicity and the powerfreeness with Walnut and save the
morphism for future use.

The following morphism is an example. It is initially generated for a = 1 and b = 5 but it also works
for 122 other pairs of a and b we tested.

morphism sha3 "0->11100011000 1->11100111000":
image S3 sha3 T:
eval pp1_5_checkS3 "An (S3[n]=S3[n+1]|S3[n]=S3[n+5])":
eval cubeplusfree_S3 "˜Ei,n n>0 & Aj (j<=2*n) => S3[i+j] = S3[i+j+n]":

For more details on this implementation, please see the github repository at
https://github.com/sonjashan/sha_gen.git .

Let us also provide details about the exceptional case of a = 1 and b = 6. The morphic word with
pseudoperiod (1, 6) which avoids (7/3)+-powers is h1,6(vtm), where h1,6(0) = 0011011001011001,
h1,6(1) = 0011011001, and h1,6(2) = 001101.

A simple computation shows that h(vtm) has pseudoperiod (1, 6) and that its factors of length 1000
avoid (7/3)+-powers.

Suppose that h1,6(vtm) contains a factor w that is a (7/3)+-power. Thus |w| > 1000. Notice that
the factor 0011 is a common prefix of the h1,6-image of all three letters. Moreover, 0011 appears in
h1,6(vtm) only as the prefix of the h-image of a letter.

We consider the word w′ obtained from w by erasing the smallest prefix of w such that w′ starts with
0011. Since we erase at most |h(0)| − 1 = 15 letters, the word w′ is a repetition of period p and exponent
at least 2.2.

So w′[1..4] = w′[p + 1..p + 4] = w′[2p + 1..2p + 4] = 0011. This implies that w′[1..2p] = h(uu)
where the pre-image uu must be a factor of vtm. This is a contradiction, since vtm is squarefree.

Finally, the results with a morphic word using µ as outer morphism are obtained via Proposition 33.

5.1 Binary words with pseudoperiods of the form (1, a)

Theorem 35. For at least 85% of all positive integers a ≥ 3 there is an infinite binary word with pseu-
doperiod (1, a), and avoiding 3+-powers.

Proof: The idea is to search for words with the given properties that have pseudoperiod (1, a) for all a
in a given residue class a ≡ i (mod n). As before, our words are constructed by applying an n-uniform
morphism (obtained by a heuristic search) to the Thue-Morse word t, and then correctness is verified with
Walnut.

Our results are summarized in Table 2.
As an example, here is the Walnut code verifying the results for (i, n) = (4, 5):

morphism a45 "0->00011 1->00111":
image B45 a45 T:

https://github.com/sonjashan/sha_gen.git
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i n morphism
4 5 0 → 00011

1 → 00111
3 7 0 → 0010011

1 → 0011011
4 9 0 → 000100011

1 → 000110011
8 9 0 → 110011000

1 → 110011100
4 11 0 → 11000111000

1 → 11000111001
5 11 0 → 11000111000

1 → 11000111001
7 11 0 → 10011001000

1 → 10011001001
8 11 0 → 10110100100

1 → 10110100101
10 11 0 → 11000111000

1 → 11000111001

i n morphism
5 13 0 → 1010010110100

1 → 1010010110101
8 13 0 → 1100110001000

1 → 1100110001001
4 14 0 → 11000100011000

1 → 11000100011001
9 14 0 → 11001110011000

1 → 11001110011101
13 14 0 → 11001100111000

1 → 11001100011001
7 15 0 → 110110011001000

1 → 110110011001001
4 16 0 → 1000111000111000

1 → 1000111000111001
6 16 0 → 1011001001101000

1 → 1011001001101001
10 16 0 → 1000111000111000

1 → 1000111000111001
15 16 0 → 1100111000111000

1 → 1100111000110001

Tab. 2: Words avoiding 3+ powers with pseudoperiods in residue classes.

eval cube45 "˜Ei,n (n>=1) & At (t<=2*n) => B45[i+t]=B45[i+n+t]":
eval test45 "Ap (Ek p=5*k+4) => An (B45[n]=B45[n+1]|B45[n]=B45[n+p])":

and both commands return TRUE.
The residue classes in Table 2 correspond to n = 5, 7, 9, 11, 13, 14, 15, 16. Now

lcm(5, 7, 9, 11, 13, 14, 15, 16) = 720720, and the residue classes above cover 614614 of the possible
residues (mod 720720). So we have covered 614614/720720

.
= .852 of all the possible a.

Theorem 35 can obviously be improved by considering larger moduli. For example, there exists a
morphism for every residue class modulo 41 except 0, 1, 2, 5, 6, 21, 23, 39.

6 Larger alphabets
Up to now we have been mostly concerned with binary words. In this section we consider pseudoperiod-
icity in larger alphabets.

The (unrestricted) repetition threshold RT (k) for words over k letters is well-known: we have RT (3) =
7/4, RT (4) = 7/5, and RT (k) = k/(k−1) if k = 2 or k ≥ 5 Currie and Rampersad (2011); Rao (2011).
Notice that the words attaining the repetition threshold are necessarily 3-pseudoperiodic. Indeed, every
infinite (k − 1)/(k − 2)-free word over k ≥ 3 letters is (k − 1, k, k + 1)-periodic. Thus, it remains to
investigate 2-pseudoperiodic words.
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Let us consider the repetition threshold RT ′(k) for 2-pseudoperiodic words over k letters. Obviously,
RT (k) ≤ RT ′(k). From the previous section, we know that RT ′(2) = 7/3. The following results show
that RT ′(3) = 7/4, RT ′(4) ≤ 3/2, and RT ′(5) ≤ 4/3, respectively.

Theorem 36. The image of every (7/5)+-free word over 4 letters by the following 188-uniform morphism
avoids (7/4)+-powers and has pseudoperiod (18, 37).

0 → p201021201210120102120210201202120121020102120121012010210

1210201202120121020102101201020120210121021201210120102120

1 → p201021201210120102101210201202120121021202101201020120210

1210212012101201021202101201020120210201021201210120102120

2 → p201021201210120102101210201202120121020102101201020120210

1210212012101201021202102012021201210201021201210120102101

3 → p121021201210120102120210120102012021020102120121012010210

1210201202120121021202101201020120210121021201210120102120

where p = 2102012021201210201021012010201202101210201202120121021202101201020120210.

Theorem 37. The image of every (7/5)+-free word over 4 letters by the following 170-uniform morphism
avoids (3/2)+-powers and has pseudoperiod (4, 10).

0 → p301020323132102010313231201020323130102012313230201021323120102032

313210201031323020102132313010203231321020123132302010313231201020

1 → p201020323132102012313230201021323130102012313210201031323120102132

313010203231321020103132302010213231301020123132302010313231201020

2 → p201020323132102010313231201021323130102032313210201231323020102132

313010201231321020103132312010203231301020123132302010313231201021

3 → p201020323132102010313231201021323130102012313230201021323120102032

313010201231321020103132312010203231321020123132302010313231201021

where p = 32313010201231321020103132302010213231.

Theorem 38. The image of every (5/4)+-free word over 5 letters by the following 84-uniform morphism
avoids (4/3)+-powers and has pseudoperiod (9, 19).
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0 → p312402104302403104201403204230243210230140210420124320423124021423024031

1 → p312402104301403204231203210230140210430120310420124320423124021423024032

2 → p012432102312402104301403104201243204230140210430120310423024321023014031

3 → p012402104302403104201243210231240210420140320423120321423024321023014032

4 → p012402104301403104201243214231240210420140320423124321423024031023014032

where p = 043012032142.

Theorems 36, 37, and 38 make use of (Ochem, 2006, Lemma 2.1), which has been recently extended to
larger exponents in (Mol et al., 2020, Lemma 23). In each case, the common prefix p appears only as the
prefix of the image of a letter. This ensures that the morphism is synchronizing. Then we check that the
image of every considered Dejean word u of length t is RT ′(k)+-free, where t is specified by (Ochem,
2006, Lemma 2.1).

In addition, using depth-first search of the appropriate space, we have constructed:

• A (5/4)+-free word over 6 letters with pseudoperiod (9,24), of length 500000.

• A (6/5)+-free word over 7 letters with pseudoperiod (22,33), of length 500000.

These examples suggest the following conjecture.

Conjecture 39. For every k ≥ 4 we have RT ′(k) = k−1
k−2 .

7 Computational complexity
For a finite word, checking a given specific pseudoperiod is obviously easy. However, checking the
existence of an arbitrary pseudoperiod is computationally hard, as we show now.

Consider the following decision problem:

PSEUDOPERIOD:
Instance: a string x of length n, and positive integers k and B.
Question: Does there exist a set S = {p1, p2, . . . , pk} of cardinality k with 1 ≤ p1 < · · · < pk ≤ B such
that x[i] ∈ {x[i+ p1], x[i+ p2], . . . , x[i+ pk]} for 1 ≤ i ≤ n− pk?

Theorem 40. PSEUDOPERIOD is NP-complete.

Proof: It is easy to see that PSEUDOPERIOD is in NP, as we can check an instance in polynomial time.
To see that PSEUDOPERIOD is NP-hard, we reduce from a classical NP-complete problem, namely,

HITTING SET Karp (1972). It is defined as follows:

HITTING SET
Instance: A list of sets S1, S2, . . . , Sm over a universe U = {1, 2, . . . , n} and an integer k′.
Question: Does there exist a set H = {h1, h2, . . . , hk′} of cardinality k′ such that Si ∩H ̸= ∅ for all i?
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Given an instance of HITTING SET S1, S2, . . . , Sm and U = {1, 2, . . . , n}, and integer k′, define
aℓ,i = 1 if ℓ ∈ Si and aℓ,i = 0 otherwise. We construct a PSEUDOPERIOD instance with k = k′ + 4,
B = 4n+ 5, and a string x, as follows:

x = uvwz1z2 · · · zm

and

u = 11 04n+3

v = 101 04n+3

w = 1001 04n+3

zi = 1000 a1,i000 a2,i · · · 000 an,i0000 (0011)n 0.

We first show that if the PSEUDOPERIOD instance has a solution, then we can extract a solution for
the HITTING SET instance. To do so, we examine what a valid pseudoperiod would look like for x by
first considering each 1 symbol.

The first 1 symbol, u[1] = x[1] = 1, is followed by 104n+3 and since the pj forming the pseudoperiod
are bounded by B = 4n + 5, we require p1 = 1 for the pseudoperiod property to be satisfied at x[1].
Similarly, the next 1 symbol u[2] = x[2] = 1 is followed by 04n+31, which requires that some pj equal
4n+4, in order to satisfy the pseudoperiod property. The v factor is analogous in that v[1] = 1 is followed
by 0104n+3, which gives us that p2 = 2 and v[3] = 1 has a 1 symbol 4n+4 symbols afterward, so it also
satisfies the pseudoperiod property. The w factor is such that w[1] = 1 is followed by 00104n+3, which
then forces p3 = 3 with w[4] satisfied by having a 1 symbol 4n+ 4 symbols afterward as previous.

We now consider the zi factors. For each zi, the 1 symbol at zi[1] satisfies the pseudoperiod property if
and only if the pseudoperiod contains some pj such that pj

4 ∈ Si. Since the only possible indices that can
be 1 within the B bound are the aℓ,i, the pseudoperiod property is satisfied at zi[1] using some pj of the
pseudoperiod if and only if zi[1 + pj ] = a pj

4 ,i
= 1 which means pj

4 ∈ Si.
Considering the remaining 1 symbols in zi, we see that each aj,i is followed by a 0 symbol and has

a 1 symbol exactly 4n + 4 indices later in the (0011)n factor. Regardless of the assignment of aj,i the
pseudoperiod property is satisfied. Each 1 symbol in the (0011)n factor has another 1 symbol either
p1 = 1, p2 = 2, or p3 = 3 indices later, as each 0011 is followed by one of: another 0011, 01 where the 1
symbol is zi+1[1], or the end of the string if i = m in which case it satisfies the pseudoperiod property by
default.

Finally, we observe that there are no more than two consecutive 1 symbols in x, so the pseudoperiod
property is satisfied at every 0 symbol, as there is another 0 symbol either p1 = 1, p2 = 2, or p3 = 3
indices later.

Taken together, a satisfying pseudoperiod for this instance is of the form {1, 2, 3, 4n+4}∪P , where P
is a set of cardinality k′ that has the property for all Si, there exists pj ∈ P such that pj

4 ∈ Si. Therefore,
if such a pseudoperiod exists, then we can derive a solution H = {p

4 | p ∈ P} for the HITTING SET
instance from the solution to the generated PSEUDOPERIOD instance.

Conversely, if the HITTING SET instance has a solution H then

P = {1, 2, 3, 4n+ 4} ∪ {4 · h | h ∈ H}
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is a valid pseudoperiod for x. All of the 0 symbols and most of the 1 symbols are satisfied by the p1 =
1, p2 = 2, p3 = 3, or pk = 4n + 4 as previously explained. We only need to check that the zi[1] = 1
also satisfy the desired property. There exists some hi ∈ Si ∩ H , since H is a hitting set, which means
that ahi,i = 1. This gives us that zi[1 + hi · 4] = ahi,i = 1 and 4 · hi ∈ P , which means each zi[1] also
satisfies the pseudoperiod property and P is a pseudoperiod for this instance.

Therefore, PSEUDOPERIOD is NP-Hard. This completes the proof.

8 About Vladimir Shevelev
Here we present some details about Vladimir Shevelev’s life and contributions, based on Shevelev (2022).

Vladimir Samuil Shevelev was born on March 9 1945 in Novocherkassk, Russia, under the name
Vladimir Abramovich. He received his Ph.D. in mathematics in 1971 from the Rostov-on-Don State
University in the USSR. In 1992 he received a D.Sc. in combinatorics from the Glushkov Cybernetic
Institute, Academy of Ukraine, Kiev.

From 1971 to 1974 he was Assistant Professor at the Department of Mathematics, Rostov State Univer-
sity. From 1974 to 1999 he taught at the Department of Mathematics, Rostov State Building University.
In 1982 he took the surname “Shevelev” and in 1999 he emigrated to Israel, where he taught at the Ben-
Gurion University of the Negev and did research at the Tel Aviv University.

From 1969 to 2016, Vladimir Shevelev published approximately 60 mathematical papers in refereed
journals. He also published approximately 40 preprints on the arXiv. He was an excellent chess player,
played the violin, and was a member of a Russian vocal group. He was married and had three children
and six grandchildren. He died on May 3 2018 in Beersheba, Israel.

May his memory be a blessing.

Photograph taken from https://www.math.bgu.ac.il/˜shevelev/Hobbies.pdf.

https://www.math.bgu.ac.il/~shevelev/Hobbies.pdf
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Appendix A The automaton triple
In this section we provide the Walnut code for the automaton triple.

msd_2 msd_2 msd_2

0 0
0 0 0 -> 0
0 0 1 -> 1
0 1 1 -> 2
1 1 1 -> 3

1 0
0 1 0 -> 4
1 1 0 -> 5
0 1 1 -> 6
1 1 1 -> 7

2 0
0 0 0 -> 8
1 0 0 -> 9
0 0 1 -> 10
1 0 1 -> 11
1 1 1 -> 12

3 0
0 0 0 -> 3
0 0 1 -> 13
0 1 1 -> 14
1 1 1 -> 3

4 0
0 0 0 -> 15
1 0 0 -> 16
0 1 0 -> 17
1 1 0 -> 18
1 1 1 -> 19

5 0
0 0 0 -> 20
0 1 0 -> 21
1 1 0 -> 13
0 1 1 -> 22

6 0
1 1 0 -> 23

7 0
0 1 1 -> 24
1 1 1 -> 25

8 0
0 0 0 -> 26
1 0 0 -> 27

9 0
0 0 0 -> 28
1 0 0 -> 14
0 0 1 -> 29
1 0 1 -> 19

10 0
1 1 0 -> 22

11 1
0 0 0 -> 30
1 1 0 -> 24
1 0 1 -> 31
1 1 1 -> 19

12 0
0 0 1 -> 24
1 0 1 -> 32
1 1 1 -> 33

13 0
0 1 0 -> 19
1 1 0 -> 13

14 0
1 0 0 -> 14
1 0 1 -> 19

15 0
0 0 0 -> 15
1 1 1 -> 19

16 0
1 0 0 -> 34

17 0
0 1 0 -> 35
0 1 1 -> 6

18 0
1 1 0 -> 18
1 1 1 -> 24

19 1
0 0 0 -> 19
1 1 1 -> 19

20 0
0 0 0 -> 36
0 1 0 -> 37

21 1
0 0 0 -> 38
0 1 0 -> 39
1 0 1 -> 24
1 1 1 -> 19

22 0
1 0 0 -> 24

23 0
1 1 0 -> 40

24 1
0 0 0 -> 24

25 0
0 1 0 -> 24
0 1 1 -> 24
1 1 1 -> 7

26 0
0 0 0 -> 41
0 0 1 -> 10
1 0 1 -> 42

27 0
1 0 1 -> 43

28 0
0 0 0 -> 44
0 0 1 -> 29
1 0 1 -> 45

29 0
1 1 0 -> 24

30 1
0 0 0 -> 46
1 1 1 -> 19

31 0
1 0 1 -> 47

32 1
0 0 0 -> 24
1 0 1 -> 48

33 0
0 0 1 -> 24
1 0 1 -> 24
1 1 1 -> 33

34 0
1 0 0 -> 16
1 1 1 -> 24

35 0
0 1 0 -> 17
1 1 0 -> 49

36 0
0 0 0 -> 20
0 1 0 -> 37
0 1 1 -> 22

37 0
1 0 1 -> 24

38 1
0 0 0 -> 50
1 1 1 -> 19

39 0
0 1 0 -> 51

40 1
0 0 0 -> 24
1 1 0 -> 23

41 0
0 0 0 -> 26

42 1
0 0 0 -> 52
1 1 0 -> 24

43 0
0 1 1 -> 24

44 0
0 0 0 -> 28
0 0 1 -> 29

45 0
0 1 0 -> 24

46 1
0 0 0 -> 30
1 1 0 -> 24
1 1 1 -> 19

47 0
1 0 1 -> 31
1 1 1 -> 24

48 0
1 0 1 -> 32

49 0
1 1 1 -> 24

50 1
0 0 0 -> 38
1 0 1 -> 24
1 1 1 -> 19

51 0
0 1 0 -> 39
1 1 1 -> 24

52 1
0 0 0 -> 42

https://arxiv.org/abs/0907.0880
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https://www.math.bgu.ac.il/~shevelev/
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