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Computing most general unifiers in Euclidean modal logics
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CNRS-INPT-UT3, Toulouse University, F-31062 Toulouse, France
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Abstract

We prove that all extensions of K5 have unary unification, even with parameters. Our proof is con-

structive in the sense that we can effectively compute, in 4-exponential space, a most general unifier for

any unifiable formula. In particular, this proves that unification and admissibility are decidable. We also

investigate special unification types: we show that K5 and KD5 are transparent, and we characterize the

projective extensions of K5.
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1 Introduction

In propositional logics, the problem of unification asks whether an arbitrary formula can be turned
into a tautology, by uniformly replacing its variables with other formulas. Formally, given a logic
L and a formula φ, we call a unifier of φ any substitution σ such that σ(φ) is a theorem of L. A
central question in unification theory is that of determining the type of a unifiable formula φ, a
concept that summarizes the structural information of its space of unifiers and, more specifically,
that indicates to which extent it admits a ‘compact’ representation. The different possible types
are unary, finitary, infinitary and nullary, and depend on the existence and cardinality of a minimal
complete set of unifiers of φ. The best of all four types is the unary one, which means that every
unifier of φ can be written as an instance of one specific unifier, called a most general unifier of φ.
Some most general unifiers have additional properties that make them easier to identify, such as
Wronski’s transparent unifiers [Wro95], and Ghilardi’s projective unifiers [Ghi97]. In all cases, the
type of the logic L is defined as the worst type among all the types of its unifiable formulas.

Unification is also closely related to the problem of admissibility : an inference rule φ1...φn

ψ is said
to be admissible for L if every unifier of φ1, . . . , φn is also a unifier of ψ – which means, intuitively,
that the rule turns theorem of L into theorems of L. If φ1 ∧ · · · ∧ φn admits a most general unifier
σ, then checking that φ1...φn

ψ is admissible amounts to check that σ is a unifier of ψ. For details we
refer to [BG11, BS01, Ghi99].

Unification in modal logics is still poorly understood, despite being studied since decades, and
having witnessed a number of milestones: in [Ghi00], Ghilardi proved that many transitive logics like
K4, S4 or GL are finitary; in [GS04], Ghilardi and Sacchetti proved that all extensions of K4.2+

are filtering and, in particular, unary; in [Jeř15], Jeřábek proved that K is nullary; in [Kos18],
Kost proved that all the extensions of K4D1 are projective. Yet, to this day, the type of standard
logics such as KD, KT and KB remains unknown. In parametric unification, substitutions are
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not allowed to affect some variables, called parameters (or constants in [BS01]). In this setting, the
logics KD, KT, KB, KDB, KTB and many others turn out to be nullary [BG17, Bal19, BG20].

While results in unification theory are usually derived via syntactic methods, semantics-driven
idea have also been applied with success. Those typically exploit a duality between modal algebras
and (general) Kripke frames, from which one can derive a correspondence between unifiers and
a certain type of bounded morphisms between canonical frames. Unification results can then be
proven by relying solely on the relational properties of these frames, thus favoring visual intuition.
This approach was used by Ghilardi for intuitionistic logic [Ghi04], and more recently by Balbiani
and Gougeon for modal logics [BG22]. In this work, we aim to apply these techniques to the
extensions of the logic K5 := K+♢x→ □♢x. These logics present key strong points, listed below.

1. Their canonical frames are Euclidean, and thus have a very simple from.
2. They are popular and well understood since years, with a complete characterization worked

out by Nagel and Thomason as early as the 80’s [NT85].
3. They are all locally tabular. Duality-based techniques were found to work best for logics with

this property, as it greatly simplifies the structure of their dual frames.
Unification for these logics has already been partially investigated in recent work, though in the
non-parametric setting only. First, the associated decision problem is readily proven to be in NP,
seeing that every variable-free formula is equivalent to one of ⊥, ⊤, □⊥ or ♢⊤.1 In [BG22], it was
proven that the projective extensions of K5 are exactly the extensions of K45. On the other hand,
the authors of [AABM23] exhibited infinitely many unary logics between K5 and K45 (including
K5 itself), but left open the question of whether all extensions of K5 are unary. In the present
paper, we answer this question in the affirmative, even in the case of parametric unification. Even
better, we exhibit an upper bound on the number of extra variables needed to construct a unifier.
More precisely, we show that if φ contains n variables, then φ admits a complete set of unifiers
that uses a number of variables 2-exponential in n. Combining this result with the fact that
extensions of K5 have filtering unification [AABM23], we show that one can effectively compute a
most general unifier for φ in 4-exponential space. From this, we also deduce that unification and
admissibility are decidable in 4-exponential space. Finally, we attempt to characterize the special
types of concise, transparent and projective unification – where concise means that a unifiable
formula always admits a most general unifier that does not introduce new variables. We show that
the projective extensions of K5 (in the parametric case) are exactly the extensions of the logic
Kt5 := K5 + x∧♢⊤ → ♢x. We also exhibit infinitely many transparent Euclidean logics that are
not projective – including K5 and KD5 – as well as infinitely many non-concise extensions of K5.

The paper is structured as follows. In Section 2, we introduce the necessary material. In
Section 3, we investigate the problem dual to unification and proceed to break it down into ‘atomic’
sub-problems that are easier to address. In Section 4, we present our algorithm for computing a
most general unifier. In Section 5, we deal with concise, transparent and projective unification. In
Section 6, we discuss potential directions for future work. For readability, we have deferred some
proofs to the appendix.

1This kind of result is folklore, and the proof sketch goes as follows. We call a ground substitution a substitution
that replaces variables by variable-free formulas only. We can see that if φ admits a unifier, then φ admits a ground
unifier, obtained by composing σ on the left with any ground substitution. Hence, we can decide whether φ is
unifiable by non-deterministically selecting a ground substitution σ, and checking whether σ(φ) is valid.
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2 Background

2.1 Modal logic

Let X be a countable set of variables. We fix a set P ⊆ X of parameters, such that both P and
X \ P are infinite. If X ⊆ X , we define the modal language LX over X by the following grammar:

φ ::= x | ¬φ | (φ ∧ φ) | □φ

where x ∈ X. We write L := LX . The abbreviations ⊥,⊤, φ ∨ ψ,φ→ ψ,φ↔ ψ,♢φ are defined as
usual, and we follow the standard rules for omission of parentheses. If φ ∈ L, we denote by Var(φ)
the set of all variables occurring in φ. The formula φ is said to be parameter-free if Var(φ)∩P = ∅.
The size of φ is the number of symbols occurring in φ, and is denoted by |φ|. A substitution is
a map σ : LX → LY with X,Y ⊆ X finite, satisfying σ(¬φ) = ¬σ(φ), σ(φ ∧ ψ) = σ(φ) ∧ σ(ψ)
and σ(□φ) = □σ(φ) for all φ,ψ ∈ LX . If σ : LX → LY and τ : LY → LZ are two substitutions,
the composition τσ : LX → LZ of σ and τ is the substitution defined by τσ(φ) := τ(σ(φ)) for all
φ ∈ LX .

A normal modal logic is a set L ⊆ L of formulas containing the axioms and closed under the
inferences rules described in Table 1. An extension of L is any normal modal logic L′ such that
L ⊆ L′. Given Γ ⊆ L, we denote by L + Γ the smallest extension of L containing the elements
of Γ. If Γ is a singleton {θ}, we write L + θ := L + {θ}. For convenience, we let ⊢L φ stand for
φ ∈ L. We then write φ ≡L ψ whenever ⊢L φ ↔ ψ. Given two substitutions σ : LX → LY and
τ : LX → LZ , we write σ ≡L τ if σ(x) ≡L τ(x) for all x ∈ X. Below we also define the relation of
global consequence relatively to L, adapted from [CZ97, Ch. 3].

All propositional tautologies

□(x→ y)→ (□x→ □y)

From φ infer σ(φ)

From φ and φ→ ψ infer ψ

From φ infer □φ

Table 1: Axioms and rules of normal modal logics. Here σ is a substitution.

Definition 2.1. Let L be a normal modal logic. Given φ,ψ ∈ L, we write φ ⊢L ψ if there exist
θ0, . . . , θn ∈ L such that θn = ψ and for all i ∈ [0, n], one of the following holds:

• θi = φ,
• θi ∈ L,
• there exist j, k < i such that θk = θj → θi,
• there exists j < i such that θi = □θj .

We denote by K5 the smallest modal logic containing the axiom ♢x → □♢x. We will also
consider the following extensions of K5:

KD5 := K5 + ♢⊤,
K45 := K5 + ♢x→ ♢♢x,

Kt5 := K5 + x ∧ ♢⊤ → ♢x,

S5 := K5 + x→ ♢x.

3



The axiom x ∧ ♢⊤ → ♢x is a weaker variation of the axiom x → ♢x, traditionally named
T [BdRV01]; this explains the name Kt5.

Finally, if L is a normal modal logic, we call a substitution σ : LX → LY parametric (with
respect to L) if for all p ∈ X ∩ P we have p ∈ Y and σ(p) ≡L p.

2

2.2 Kripke frames and duality

A Kripke frame is a pair F = (W,R) with W a non-empty set of points and R ⊆ W 2 a binary
relation. Abusing notations, we will often identify F to the set W . We define the relation Rn on
W by induction on n as follows:

• wR0u iff w = u, and
• wRn+1u if there exists v ∈W such that wRv and vRnu.

We then write wR≤nu if wRku for some k ≤ n.
A generated subframe of F is a frame F′ = (W ′, R′) such that W ′ ⊆ W , R′ = R ∩W ′2, and

w ∈ W ′ and wRu implies u ∈ W ′. In this case F is said to be generated by W ′. The frame F′ is
called a closed subframe of F if in addition, w ∈ W ′ and uRw implies u ∈ W ′. If F = (W,R) and
F′ = (W ′, R′) are two Kripke frames, a bounded morphism from F to F′ is a map f : F → F′ such
that:

• if wRu then f(w)R′f(u), (forward condition)
• if f(w)Ru′ then there exists u ∈W such that wRu and f(u) = u′. (backward condition)

We define the image of f as the set Im f := f [F] = {f(w) : w ∈ F}.

Definition 2.2. Let F = (W,R) be a Kripke frame. Let X ⊆ X and let V : X → 2W be a valuation
on F. Given w ∈W , we define F, V, w ⊨ φ by induction on φ ∈ LX :

• F, V, w ⊨ x if w ∈ V (x),
• F, V, w ⊨ ¬φ if F, V, w ⊭ φ,
• F, V, w ⊨ φ ∧ ψ if F, V, w ⊨ φ and F, V, w ⊨ ψ,
• F, V, w ⊨ □φ if F, V, u ⊨ φ for all u ∈W such that wRu.

We write F ⊨ φ in case F, V, w ⊨ φ for all valuations V on F and all w ∈ W . If Γ ⊆ LX , we write
F ⊨ Γ in case F ⊨ φ for all φ ∈ Γ.

For the rest of the paper, we fix a normal modal logic L.

Proposition 2.3 ([BdRV01, Th. 3.14]).
1. If F ⊨ L and F′ is a generated subframe of F, then F′ ⊨ L.
2. If f is a surjective bounded morphism from F to F′ and F ⊨ L, then F′ ⊨ L.

Definition 2.4. Let L be a normal modal logic, and X be a finite set of variables. A set Γ ⊆ LX
of formulas is said to be consistent if there are no φ1, . . . , φn ∈ Γ such that ⊢L ¬

∧n
i=1 φi. We say

that Γ is maximal consistent if Γ is consistent, and there is no consistent set ∆ ⊆ LX such that
Γ ⊂ ∆. The canonical frame of L over X is then the frame FX = (WX , RX) where:

• WX is the set of all maximal consistent sets of L over X, and
• ΓRX∆ iff for all □φ ∈ Γ, we have φ ∈ ∆.

2Traditionally, parametric unification requires that σ(p) = p instead of σ(p) ≡L p. This condition, however, is too
stricty syntactic to admit a dual counterpart, as in Proposition 2.9. This is why we favor our version, which presents
the advantage of being invariant under equivalence of substitutions. As we will see in Remark 2.20, this does not
alter unification in L in any significant way.
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We also introduce the canonical valuation VX defined by VX(x) := {Γ ∈ WX : x ∈ Γ}. We denote
by ⟨φ⟩X := {Γ ∈WX : φ ∈ Γ} the extension of φ in FX . We then denote by ⟨φ⟩∞X :=

⋂
n∈N⟨□nφ⟩X

the tight extension of φ in FX .

The following results are known as the Lindenbaum Lemma and Truth Lemma, respectively. In
the sequel, we will use them without justification.

Proposition 2.5 ([BdRV01, Lemma 4.17]). If Γ ⊆ LX is consistent, then there exists ∆ ∈ WX

such that Γ ⊆ ∆.

Proposition 2.6 ([BdRV01, Lemma 4.21]). For all w ∈ WX and φ ∈ LX , we have φ ∈ w iff
FX , VX , w ⊨ φ.

The logic L is said to be locally tabular if for every X ⊆ X finite, there are only finitely many
formulas in LX up to ≡L. In particular, this implies that FX is finite, and that FX ⊨ L, as a
consequence of the Truth Lemma and [BdRV01, Lemma 3.27]. In what follows, we assume that L
is locally tabular.

As we have seen, the canonical frame offers a bridge between logics and frames, between syntax
and semantics. Duality theory appears to further strengthens this link, by establishing a correspon-
dence between substitutions and bounded morphisms. Indeed, if σ : LX → LY is a substitution,
the dual of σ is the bounded morphism σ∗ : FY → FX defined by σ∗(Γ) := σ−1[Γ] for all Γ ∈ WY .
This correspondence is one-to-one modulo ≡L, which means that (1) for every bounded morphism
f : FY → FX there exists a substitution σ : LX → LY such that σ∗ = f , and (2) if σ∗ = τ∗

then σ ≡L τ (see [BG22]).3 It can then be specialized to a correspondence between parametric
substitutions and parametric bounded morphisms.

Definition 2.7. Let G be a generated subframe of FY and F be a generated subframe of FX . A
bounded morphism f : G → F is said to be parametric if for all p ∈ X ∩ P we have p ∈ Y and
f−1

[
⟨p⟩X ∩ F

]
= ⟨p⟩Y ∩G.

Remark 2.8. Alternatively, f is parametric if and only if for all p ∈ X ∩ P we have p ∈ Y , and
then for all w ∈ G we have w ∈ ⟨p⟩Y ⇐⇒ f(w) ∈ ⟨p⟩X . The point is that parametric bounded
morphisms ‘preserve’ parameters in a similar way as parametric substitutions do.

Proposition 2.9. Let σ : LX → LY be a substitution. Then σ is a parametric substitution if and
only if σ∗ is a parametric bounded morphism.

Proof. Suppose that σ is parametric, and let p ∈ X ∩ P. By assumption we have p ∈ Y . Then
Γ ∈ σ∗−1

[
⟨p⟩X

]
iff σ∗(Γ) ∈ ⟨p⟩X , iff σ(p) ∈ Γ, iff p ∈ Γ by assumption, iff Γ ∈ ⟨p⟩Y . Conversely,

suppose that σ is not parametric. Then there exists p ∈ X ∩P such that p /∈ Y , or else σ(p) ̸≡L p.
If p /∈ Y we are done, so assume that σ(p) ̸≡L p. Then {¬(σ(p) ↔ p)} is consistent, and so there
exists Γ ∈ WY such that either σ(p) ∧ ¬p ∈ Γ or ¬σ(p) ∧ p ∈ Γ. In the former case, we have
Γ ∈ σ∗−1

[
⟨p⟩X

]
and Γ /∈ ⟨p⟩Y , and in the latter case we have Γ /∈ σ∗−1

[
⟨p⟩X

]
and Γ ∈ ⟨p⟩Y . In

both cases, this proves that σ∗−1
[
⟨p⟩X

]
̸= ⟨p⟩Y .

3In the general case, one also has to endow FX and FY with a collection of admissible sets, and to restrict the
definition of a bounded morphism accordingly. However, when FX and FY are finite (as this is the case here), this
condition collapses and can simply be forgotten. For details we refer to [BG22].
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2.3 Euclidean frames

The logic K5 is known to be the logic of Euclidean frames. A Kripke frame F = (W,R) is said
to be Euclidean if wRu and wRv implies uRv, for all w, u, v ∈ W [CZ97, Cor. 3.37]. It is then
widely known that F is Euclidean if and only if F ⊨ K5. From now on, we assume that L is an
extension of K5. In this case, L is locally tabular [NT85, Cor. 5], and it follows that FX is a finite
Euclidean frame, for all X ⊆ X finite. In this section, we provide a comprehensive description of
Euclidean frames and bounded morphisms between them, as these will be of central interest in the
sequel. The following property is known under the name of 2-transitivity.

Proposition 2.10. Let F = (W,R) be an Euclidean frame. If wR≤3u then wR≤2u.

Proof. Suppose that wR≤3u and not wR≤2u. Then there exist v, v′ ∈ W such that wRvRv′Ru.
We use the fact that F is Euclidean. First, from wRv we obtain vRv. From vRv′ and vRv we then
obtain v′Rv. Finally, from v′Rv and v′Ru we obtain vRu. Thus wRvRu, a contradiction. This
proves the claim.

Now, let F = (W,R) be an Euclidean frame. A pre-cluster in F is a non-empty set c ⊆W such
that for all w, u ∈ c we have wRu. A pre-cluster c is called a cluster if there exists no pre-cluster
c′ in F such that c ⊂ c′; or alternatively, if whenever w ∈ c and wRu we have u ∈ c. A pre-cluster
which is not a cluster is called a proper pre-cluster. If W is a cluster, the frame F itself will be
called a cluster, and typically named C.

A point w in F is reflexive if wRw, initial if there is no u such that uRw, and isolated if there
is no u such that wRu. Note that since F is Euclidean, every isolated point is also initial. Indeed,
by contraposition, if w is non-isolated then we have uRw for some u, and it follows that wRw. We
write w ▷ c whenever w is initial, c is a pre-cluster and c = {u ∈W | wRu}. In this case we call w
a predecessor of c. We call w a quasi-predecessor of c, and write w ⊵ c, if either w is a predecessor
of c, or c is a cluster and w ∈ c. A pre-cluster with no predecessor is said to be degenerated . If C
is a cluster we then write Ĉ := C ∪ {w ∈W | ∃u ∈ C,wRu}.

We denote by R̄ the smallest equivalence relation on W containing R. The frame F is said to
be primitive if for all w, u ∈W we have wR̄u. Primitive frames present a fairly simple structure.

Proposition 2.11 ([NT85, Lemma 1]). A non-empty Euclidean frame F = (W,R) is primitive if
and only if one of the following holds:
1. we have W = {w} with w isolated,
2. there exists a cluster C in F such that W = Ĉ.

Proof. The direction from right to left is clear. Conversely, assume that F is primitive. Since F is
non-empty, there exists w ∈W . First suppose that w is isolated. For all u ∈W , we have wR̄u, but
then the only possibility if w = u. Thus F falls in case 1. Otherwise, there exists u ∈W such that
wRu. Then we also have uRu. Let C := {t ∈W : wR2t}, which is non-empty by assumption. First,
let t, t′ ∈ C. Then wRvRt and wRv′Rt′ for some v, v′ ∈W . Since F is Euclidean, we obtain vRv′,
and then v′Rt, and finally tRt′ and t′Rt. This proves that C is a pre-cluster. By Proposition 2.10,
it is then clear that C is a cluster. Now let v ∈W . We have wR̄v, but by Proposition 2.10 and the
Euclidean character of R, we see that this amounts to vRt for some t ∈ C. Therefore W = Ĉ, and
we are done.
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Primitive frames that fall in case 1 will be called trivial . If F falls in case 2, then it is clear
that the cluster C is the unique cluster in F. If C is the subframe of F generated by C, then we
write F = Ĉ and we call F a pinned cluster . Thus, Proposition 2.11 can also be understood as
the property that every Euclidean frame is a disjoint union of trivial frames and pinned clusters.
Examples of primitive frames are depicted in Figure 1.

Figure 1: Some primitive Euclidean frames. From left to right: a trivial frame; a degenerated two-element
cluster; a one-element cluster with two predecessors; a non-degenerated two-element cluster, containing
both a degenerated and a non-degenerated one-element pre-cluster; a degenerated cluster containing two
overlapping two-element pre-clusters with one predecessor each.

Proposition 2.12. Let F = (W,R) and F′ = (W ′, R′) be two Euclidean frames and f : W → W ′

be a map. Then f is a bounded morphism from F to F′ if and only if the following four conditions
are satisfied.
1. If w is isolated in F then f(w) is isolated in F′.
2. If C is a cluster in F then f [C] is a cluster in F′.
3. Suppose that c is a pre-cluster in F. If w ⊵ c, then f(w) ⊵ f [c].
4. Suppose that c is a pre-cluster in F, and that f [c] is a proper pre-cluster in F′. If w ▷ c, then

f(w) ▷ f [c].

We now prove a number of important results related to the canonical frame of L. Lemma 2.13
and Lemma 2.14 state that primitive subframes can be ‘copied’ from one canonical frame to another,
while forcing some variables to be true or false on the copy. Lemma 2.15 determines the number of
predecessors of a pre-cluster. First, we set some notations. Let Y, Z ⊆ X be finite, and P ⊆ Y ∩Z.
Given w ∈ FY and u ∈ FZ , we write w ∼P u if we have w ∈ ⟨p⟩Y ⇐⇒ u ∈ ⟨p⟩Z for all p ∈ P .

Lemma 2.13. Let Y,Z ⊆ X be finite, and P ⊆ Y ∩Z. Let {w} be a trivial subframe of FZ . Then
there exists a trivial subframe {w′} of FY such that w ∼P w′.

Proof. Let us write ρ :=
(∧

p∈P and w∈⟨p⟩Z p
)
∧
(∧

p∈P and w/∈⟨p⟩Z ¬p
)

. By construction we have

w ∈ ⟨□⊥∧ρ⟩Z , and so {□⊥∧ρ} is consistent. Hence, there exists w′ ∈ FY such that w′ ∈ ⟨□⊥∧ρ⟩Y ,
and {w′} is then the desired frame.

Lemma 2.14. Let Y,Z ⊆ X be finite, and P ⊆ Y ∩ Z. Let C be a cluster in FZ , and ∼ be
an equivalence relation on C such that w ∼ u implies w ∼P u for all w, u ∈ C. Assume that
|C/∼| ≤ 2|Y \P |. Then there exists a cluster C′ in FY and a surjective map f : C→ C′ such that for
all w, u ∈ C:
1. w ∼ u if and only if f(w) = f(u),
2. w ∼P f(w).

Lemma 2.15. Let X ⊆ X be finite and C be a cluster in FX .
1. If C is non-degenerated then C has 2|X| − |C| predecessors.
2. Every non-degenerated proper pre-cluster of C has 2|X| predecessors.

More precisely, for all c ⊂ C and Y ⊆ X, there is exactly one quasi-predecessor w of c such that
Y = {x ∈ X : w ∈ ⟨x⟩X}.
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2.4 The landscape of extensions of K5

Investigating unification in all Euclidean logics is an ambitious undertaking, but luckily we do
not start from scratch. In their 1985 paper [NT85], Nagel and Thomason studied these logics in
depth, and provided a complete characterization of the extensions of K5. In particular, they show
that every one of them is finitely axiomatizable, and that their axiomatization can be put in some
‘normal form’. We briefly present their results.

Let m ≥ 1. Given n ≥ 0 we define the frame Fn,m = (W,R) with W = {w} ∪ A ∪ B and
R = ({w} × A) ∪ (A ∪ B)2, where A and B are disjoint and |A| = m and |B| = n. We define the
frame F−1,m = (W,R) with |W | = m and R = W 2. We also introduce the set

N2 := {(n,m) : n ≥ −1 and m ≥ 1}.

Pairs in N2 are compared coordinate-wise, that is, (n,m) ≤ (n′,m′) stands for n ≤ m and n′ ≤ m′.
Nagel and Thomason then introduced, for all (n,m) ∈ N2, an axiom Axn,m expressing the fact that
the frame Fn,m is a ‘forbidden pattern’. To be precise, we have for all (n′,m′) ∈ N2,

Fn′,m′ ⊨ Axn,m ⇐⇒ (n,m) ̸≤ (n′,m′)

and so in particular Fn,m ⊭ Axn,m. Then every extension L of K5 admits a finite axiomatization
of the form

L = K5 + {Axn,m : (n,m) ∈ ∆}+ D? (1)

where D? ∈ {⊤,♢⊤} and ∆ ⊆ N2 is finite. Basically, the axiom D? is either vacuous (in case
D? = ⊤), or else enforces the absence of any isolated point in the canonical frame. In the sequel, we
assume that L is presented as in 1, and consider ∆ and D? to be fixed from now on. Let us write
↑∆ := {(n′,m′) ∈ N2 : ∃(n,m) ∈ ∆, (n,m) ≤ (n′,m′)}. In Proposition 2.16, we prove that ↑∆
characterizes the degenerated pre-clusters of the canonical frame. We give in Table 2 a presentation
of standard Euclidean logics in terms of ∆ of D?. We also provide a schematic depiction of ↑∆ in
Figure 2.

L ∆ D?

K5 ∅ ⊤
KD5 ∅ ♢⊤
K45 {(1, 1)} ⊤
Kt5 {(1, 0)} ⊤
S5 {(1, 0)} ♢⊤

Table 2: Standard characterizations of some logics

Proposition 2.16. Let X ⊆ X be finite.
1. Given m′ ≥ 1, there is a cluster in FX of size m′ if and only if 2|X| ≥ m′ and (−1,m′) /∈ ↑∆.
2. Let C be a cluster in FX , and c ⊆ C. Let n′ := |C \ c| and m′ := |c|. Then c is degenerated if

and only if (n′,m′) ∈ ↑∆.
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1-1
n

m

↑∆

Figure 2: The space N2 and the set ∆, whose elements are identified by circles. The colored area
corresponds to ↑∆.

2.5 Unification and admissibility

If σ : LX → LY and τ : LX → LZ are two substitutions, we write σ ≃ τ in case ⊢L σ(x)↔ τ(x) for
all x ∈ X. We say that σ is at least as general as τ , and write σ ⪯ τ , if there exists a substitution
µ : LY → LZ′ such that τ ≃ µσ. The following lemma states that we can in fact always take
Z ′ = Z in the previous definition.

Lemma 2.17. Let σ : LX → LY and τ : LX → LZ be two substitutions. Then σ ⪯ τ if and only
if there exists a substitution µ : LY → LZ such that τ ≃ µσ.

Proof. From right to left, this is clear. Conversely, suppose that σ ⪯ τ . Then there exists a
substitution µ′ : LY → LZ′ such that τ ≃ µ′σ. Let λ : LZ′ → LZ be the substitution defined by
λ(z) := z for all z ∈ Z ∩ Z ′, and λ(z) := ⊥ for all z ∈ Z ′ \ Z. Then from τ ≃ µ′σ we obtain
λτ ≃ λµ′σ, and since τ has codomain LZ , we have λτ = τ . Setting µ := λµ′ : LX → LZ , we finally
obtain τ ≃ µσ.

When a substitution σ : LX → LY is parametric, we have in particular X ∩ P ⊆ Y ∩ P. The
following lemma allows to strengthen this inclusion into an equality, which in some cases is more
convenient.

Lemma 2.18. Let σ : LX → LY be a unifier of φ. Then there exists a unifier τ : LX → LZ of φ
such that τ ⪯ σ and X ∩ P = Z ∩ P.

Proof. Let P := Y ∩P\X be the set of ‘excessive’ parameters in Y . For every p ∈ P , we introduce a
fresh variable zp (not a parameter). Let Z := (Y \P )∪{zp : p ∈ P}, which satisfies X ∩P = Z ∩P

9



by construction. Let λ : Y → Z be the substitution defined by λ(p) := zp for all p ∈ P , and
λ(y) := y for all y ∈ Y \ P . Likewise, let µ : Z → Y be defined by µ(zp) := p for all p ∈ P , and
µ(z) := z for all other z ∈ Z. Writing τ := λσ, it is then clear that τ is a unifier of φ and that
µτ = σ, whence τ ⪯ σ.

Lemma 2.19. The relation ⪯ is transitive.

Proof. Consider three substitutions σ : LX → LY , σ′ : LX → LY ′ , σ′′ : LX → LY ′′ such that
σ ⪯ σ′ and σ′ ⪯ σ′′. Then there exist two substitutions µ and µ′ such that σ′ ≃ µσ and σ′′ ≃ µ′σ′.
Let x ∈ X. We have ⊢L σ′(x)↔ µσ(x), and by uniform substitution it follows that ⊢L µ′σ′(x)↔
µ′µσ(x). Since ⊢L σ′′(x) ↔ µ′σ′(x), it follows that ⊢L σ′′(x) ↔ µ′µσ(x). If µ′′ := µ′µ, we then
obtain σ′′ ≃ µ′µσ, and thus σ ⪯ σ′′.

Now, let φ ∈ L and X := Var(φ). A unifier of φ is a parametric substitution σ : LX → LY
such that ⊢L σ(φ). If φ admits a unifier, then φ is said to be unifiable. A set Σ of unifiers of φ is
said to be complete if for all unifiers τ of φ, there exists σ ∈ Σ such that σ ⪯ τ . In this case, when
Σ is a singleton {σ}, we call σ a most general unifier of φ (or MGU for short). If every unifiable
formula admits a MGU, then L is said to be unary .

Remark 2.20. Due to technical motivations, our definition of unifiers does not exactly agree with
the state of the art. As explained in Footnote 2, the preservation of parameters is generally taken
to be purely syntactic. So let us call a standard unifier of φ any substitution τ : LX → LY such
that ⊢L τ(φ), and such that for all p ∈ X ∩ P we have p ∈ Y and σ(p) = p. Though the two
presentations differ, we claim that they are equivalent as far as the structural properties of the space
of unifiers are concerned. Indeed, given a unifier σ : LX → LY of φ, we can define τ : LX → LY by
τ(p) := p for all p ∈ X ∩P and τ(x) := σ(x) for all x ∈ X \P. Since σ is parametric, it is clear that
σ ≃ τ . Since σ is a unifier of φ, it follows that τ is a standard unifier of φ. Hence, every unifier
of φ is equivalent to some standard unifier of φ (and the converse is obviously true). In particular,
this implies that φ admits a MGU iff φ admits a standard MGU.

Unification is closely related to the problem of admissibility, which we introduce in its parametric
variant.

Definition 2.21. Let φ1, . . . , φn, ψ ∈ L. The rule φ1...φn

ψ is said to be admissible if every unifier
of φ1 ∧ · · · ∧ φn is also a unifier of ψ. The decision problem of admissibility has inputs of the form
(φ1, . . . , φn, ψ) ∈ Ln+1 for some n ∈ N, and an input (φ1, . . . , φn, ψ) is positive if and only if the
rule φ1...φn

ψ is admissible.

The traditional account of admissibility corresponds to the case where φ1, . . . , φn, ψ are parameter-
free. Proposition 2.22 below was first pointed out in [Ghi99].

Proposition 2.22. Let φ1, . . . , φn, ψ ∈ L, and suppose that φ1 ∧ · · · ∧ φn admits a most general
unifier σ. Then φ1...φn

ψ is admissible if and only if σ is a unifier of ψ.

In [BG22], it was proved that unifiers correspond to a certain type of bounded morphisms.

Definition 2.23. A dual unifier of φ is a parametric bounded morphism f : FY → FX such that
Im f ⊆ ⟨φ⟩∞X .
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Proposition 2.24 ([BG22, Th. 4.5]). A parametric substitution σ : LX → LY is a unifier of φ if
and only if σ∗ is a dual unifier of φ.

We also proceed to dualize the relation ⪯, namely, if σ and τ are two substitutions, we introduce
conditions on σ∗ and τ∗ that are necessary and sufficient for σ ⪯ τ . So consider two bounded
morphisms g : FY → FX and h : FZ → FX . We write g ⪯ h in case there exists a bounded
morphism f : FZ → FY such that gf = h.

Proposition 2.25. Let σ : LX → LY , τ : LX → LZ and µ : LY → LZ be three substitutions. Then
τ ≃ µσ iff σ∗µ∗ = τ∗.

Proof. Suppose that τ ≃ µσ. Let Γ ∈ FZ . Given φ ∈ LZ , the assumption τ ≃ µσ yields ⊢L
µσ(φ) ↔ τ(φ), and it follows that φ ∈ τ∗(Γ) iff τ(φ) ∈ Γ, iff µσ(φ) ∈ Γ, iff φ ∈ σ∗µ∗(Γ). Hence
τ∗(Γ) = σ∗µ∗(Γ), and this proves that σ∗µ∗ = τ∗.

Conversely, suppose that σ∗µ∗ = τ∗. We show that τ ≃ µσ. For suppose not. Then there exists
x ∈ X such that ⊬L τ(x) ↔ µσ(x). Hence, there exists Γ ∈ FZ such that Γ /∈ ⟨µσ(x) ↔ τ(x)⟩Z .
Then either µσ(x) → τ(x) /∈ Γ or τ(x) → µσ(x) /∈ Γ. Assume that µσ(x) → τ(x) /∈ Γ. Then
µσ(x) ∈ Γ and τ(x) /∈ Γ, whence x ∈ (σ∗µ∗)(Γ) and x /∈ τ∗(Γ), and thus (σ∗µ∗)(Γ) ̸= τ∗(Γ),
contradicting σ∗µ∗ = τ∗. In case τ(x)→ µσ(x) /∈ Γ, the reasoning is similar.

As a consequence of Lemma 2.17 and Proposition 2.25, we get the following result.

Corollary 2.26. Let σ : LX → LY and τ : LX → LZ be two substitutions. Then σ ⪯ τ if and only
if σ∗ ⪯ τ∗.

We also obtain the following from Lemma 2.18.

Corollary 2.27. Let f : FY → FX be a dual unifier of φ. Then there exists a dual unifier
g : FZ → FX of φ such that g ⪯ f and X ∩ P = Z ∩ P.

3 Reflections

Following the preliminary work laid down in Section 2.5, we now aim to study the structure of dual
unifiers. However, those are complicated objects: the domain of a dual unifier is a full canonical
frame, which consists of a large union of primitive frames. To bypass this difficulty, it will be
convenient to reason on a more granular scale, that is, to work with partial dual unifiers (in the
sense of partial functions). Such objects will be called reflections. In this section, we fix X ⊆ X
finite.

Definition 3.1. Let F be a generated subframe of FX . Given Y ⊆ X finite, a Y -reflection of F is
a pair (G, g) such that:

• G is a closed subframe of FY ,
• g is a parametric bounded morphism from G to FX ,
• g[G] ⊆ F.

We call (G, g) primitive if G is primitive. We call (G, g) total if G = FY .
For convenience, any Y -reflection of F, where Y is arbitrary, will be called a reflection of F.

Given a Y -reflection (G, g) of F, and a Z-reflection (H, h) of F, we write (G, g) ⪯ (H, h) if there
exists a parametric bounded morphism f : H→ G such that h = gf . We say that F has Y -bounded
(total, primitive) reflection if for every (total, primitive) reflection (H, h) of F, there exists a (total,
primitive) Y -reflection (G, g) of F such that (G, g) ⪯ (H, h).
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If F = ⟨φ⟩∞X and X = Var(φ) for some φ ∈ L, it is easy to see that the total reflections of
F are exactly the dual unifiers of φ. In addition, the relation ⪯, when restricted to dual unifiers,
coincides with the relation ⪯ defined in Section 2.5. Hence, reflections are a proper generalization
of dual unifiers.

Lemma 3.2. The relation ⪯ on reflections of F is transitive.

Proof. Suppose that (G, g) ⪯ (G′, g′) and (G′, g′) ⪯ (G′′, g′′). Then there exist two parametric
bounded morphisms f and f ′ such that g′ = gf and g′′ = g′f ′. It follows that g′′ = g(ff ′), whence
(G, g) ⪯ (G′′, g′′).

We first set a useful lemma, by showing that reflections can be ‘inflated’ – a process dual to
how a substitution σ : LX → LY can be extended to a substitution σ′ : LX → LZ with Y ⊆ Z.

Lemma 3.3. Let F be a generated subframe of FX . Let Y,Z ⊆ X be finite with X ∩ P = Y ∩ P ⊆
Z ∩ P. Let Y0, Y1 ⊆ Y \X and assume that Y0 ∩ Y1 = ∅ and |Z| = |Y \ (Y0 ∪ Y1)|. Let (H, h) be a
primitive Z-reflection of F. Then there exists a primitive Y -reflection (G, g) of F such that:

• (G, g) ⪯ (H, h),
• G ⊆ ⟨y⟩Y for all y ∈ Y1,
• G ⊆ ⟨¬y⟩Y for all y ∈ Y0.

Corollary 3.4. Let Y, Z ⊆ X be finite with X ∩P = Y ∩P ⊆ Z ∩P. If F has primitive Z-bounded
reflection and |Z| ≤ |Y |, then F has primitive Y -bounded reflection.

Proof. Since |Z| ≤ |Y |, we can select arbitrary sets Y0, Y1 ⊆ Y so that Y0 ∩ Y1 = ∅ and |Z| =
|Y \ (Y0 ∪ Y1)|. Then, it suffices to apply Lemma 3.3.

Now, our goal is to show that every generated subframe F of FX has bounded total Y -reflection
for a large enough set Y of variables, whose size can be computed effectively. To this end, our
strategy is to fragment FX into primitive generated subframes, and to show that each of these
subframes has primitive Y -bounded reflection. By ‘gluing’ all of these Y -reflections together, we
will then obtain the desired total Y -reflection of F. So first, let us prove that primitive frames have
bounded primitive reflection. To this end, we will distinguish the case of trivial frames from that
of pinned clusters. Observe that, by Proposition 2.12, all primitive reflections of trivial frames are
trivial frames themselves, and that all primitive reflections of pinned clusters are pinned clusters.

Lemma 3.5. Let Y ⊆ X be finite and such that X ∩ P ⊆ Y . Then every trivial subframe of FX
has Y -bounded reflection.

Proof. Let {w} be a trivial subframe of FX . Let ({v}, h) be a Z-reflection of F, for some Z. Then
we have Y ∩ P ⊆ Z and thus X ∩ P ⊆ Z. By applying Lemma 2.13 to P := X ∩ P, we obtain a
trivial subframe {u} of FY with v ∼X∩P u. As a result, u satisfies the same parameters in X as v
(and thus also w). By setting g(u) := w, we obtain a Y -reflection ({u}, g) of {w}, which obviously
satisfies ({u}, g) ⪯ ({v}, h).

For the next lemma, we introduce the integers NL := max {n : (n,m) ∈ ∆} and ML :=
max {m : (n,m) ∈ ∆} (see Figure 3), with the convention that max ∅ = −1. We then set
K := max {2|X|, NL,ML}.
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1-1 NL

ML

n
(n0,m0) (n1,m0)

m

(n0,m0)

(n0,m1) ↑∆

Figure 3: The space N2 with some subsets of interest.

Lemma 3.6. Let Ĉ be a pinned cluster in FX , with X finite. Let Y be a finite set of variables
such that X ⊆ Y and X ∩ P = Y ∩ P and 2|Y \X| ≥ 2K|C| + 1. Then Ĉ has Y -bounded primitive
reflection.

Proof. Let (Ĉ1, g1) be a primitive Z-reflection of Ĉ, for some Z. If |Z| < |Y |, it suffices to apply
Corollary 3.4, so we assume that |Y | ≤ |Z|. For all w ∈ C, we introduce the ‘w-cell’ C1

w := g−1
1 (w)

of C1, which will play a key role in the present proof. It is then clear that the C1
w’s cover C1 and are

pairwise disjoint. The idea is that the cells of size > 2K are somehow too big, and can be safely
‘contracted’ without affecting the existence of predecessors. Hence, we will be able to map C1 onto
a cluster C0 whose cells are all of size ≤ 2K. So, let w ∈ C. We introduce an equivalence relation
∼w over C1

w as follows.
1. If |C1

w| ≤ 2K, then ∼w is just the identity relation over C1
w.

2. Otherwise we have |C1
w| > 2K. Let ∼′

X∩P be the restriction of ∼X∩P to C1
w. Then it is clear

that ∼′
X∩P has at most 2|X∩P| equivalence classes. Since 2|X∩P| ≤ 2|X| ≤ K ≤ 2K < |C1

w|,
we can construct an equivalence relation ∼w finer than ∼′

X∩P , so that ∼w has exactly 2K
equivalence classes.

We then consider the equivalence relation ∼ :=
⋃
w∈C ∼w on C1. By construction, ∼ has at

most 2K|C| equivalence classes, and satisfies w ∼ u =⇒ w ∼X∩P u. In addition, we have
2K|C| ≤ 2|Y \P| ≤ 2|Y \(X∩P)|. Since X∩P = Y ∩P and Y ∩P ⊆ Z∩P, we also have X∩P ⊆ Z∩P.
We can thus apply Lemma 2.14 to P := X ∩P, and obtain a cluster C0 in FZ and a surjective map
f : C1 → C0 such that for all w, u ∈ C1, w ∼ u iff f(w) = f(u), and w ∼X∩P f(w). Then, given
u0 ∈ C0, there exists u1 ∈ C1 such that f(u1) = u0, and we set g0(u0) := g1(u1). By construction
of f , we see that g0 : C0 → C is well-defined. We also have g0 ◦ f = g1, and f and g0 preserve the
parameters in X. Given w ∈ C, we write C0

w := g−1
0 (w), and we can check that f maps C1

w onto
C0
w, that |C0

w| = |C1
w| in case |C1

w| ≤ 2K, and that |C0
w| = 2K in case |C1

w| > 2K. The situation is
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depicted in Figure 4.

f

g1

g0

C1

C0

C

Figure 4: The three clusters under examination. Here the cluster C contains three elements and,
accordingly, both C0 and C1 are divided into three cells.

We then extend g0 to a parametric bounded morphism from Ĉ0 to Ĉ. Consider a non-degenerated
pre-cluster c0 ⊆ C0. We write m0 := |c0| and n0 := |C0 \ c0|. We write c := g0[c0], and we construct
c1 ⊆ C1 non-degenerated such that g1[c1] = c. Below we consider three cases. In case 1, C0 and C1

are isomorphic, so this is easily solved. In case 2, the pair (n0,m0) lies in the colored horizontal
rectangle of Figure 3. When moving from (n0,m0) to the right, one is then guaranteed to stay
in this area and to remain outside of ↑∆. This means that if we manage to construct c1 so that
|C1 \ c1| = |C0 \ c0|, then c1 will be non-degenerated. Finally, in case 3, the pair (n0,m0) lies in the
vertical rectangle, and similarly we will construct c1 so that |c1| = |c0|.

1. Suppose that n0 ≤ K and m0 ≤ K. This means that |C0| ≤ 2K. Then for all w ∈ C we
have |C0

w| ≤ 2K, and thus |C0
w| = |C1

w| by construction. Hence, f is a bijection from C1 to C0.
Then, since c0 is non-degenerated, so is c1 := f−1[c0], as a consequence of Proposition 2.16.
We also have g1[c1] = g0 ◦ f [c1] = g0[c0] = c.

2. Suppose that n0 ≥ K. Let c1 ⊆ C1 be such that |c1| = |c0| and f [c1] = c0. Let n1 :=
|C1 \ c1|. Note that since |c1| = |c0| and |C0| ≤ |C1|, we have n0 ≤ n1. Suppose that c1 is
degenerated. Then by Proposition 2.16, there exists (n,m) ∈ ∆ such that (n,m) ≤ (n1,m0).
Since n0 ≥ K ≥ NL ≥ n, it follows that (n,m) ≤ (n0,m0), contradicting the fact that c0 is
non-degenerated. Thus c1 is non-degenerated. We also have g1[c1] = g0 ◦ f [c1] = g0[c0] = c.

3. Otherwise we have n0 ≤ K and m0 ≥ K. Given w ∈ C, we are going to define Aw ⊆ C1
w such

that |Aw| = |C0
w \c0|. If w /∈ c, then we have C0

w∩c0 = ∅, whence |C0
w| = |C0

w \c0| ≤ n0 ≤ 2K.
By construction, it follows that |C1

w| = |C0
w|, and we set Aw := C1

w. If instead w ∈ c, then we
select any Aw ⊆ C1

w such that |Aw| = |C0
w \ c0| – which exists since |C1

w| ≥ |C0
w|.

Now let c1 := C1 \
(⋃

w∈CAw
)

and m1 = |c1|. By construction we have

|C1 \ c1| =
∣∣ ⋃
w∈C

Aw
∣∣ =

∑
w∈C
|Aw| =

∑
w∈C
|C0
w \ c0| = |C0 \ c0| = n0.

Suppose that c1 is degenerated. Then by Proposition 2.16 there exists (n,m) ∈ ∆ such that
(n,m) ≤ (n0,m1). Since m0 ≥ K ≥ML ≥ m, it follows that (n,m) ≤ (n0,m0), contradicting
the fact that c0 is non-degenerated. Thus, c1 is non-degenerated.
We prove that g1[c1] = c. Let w ∈ c. Then C0

w∩c0 ̸= ∅, or equivalently C0
w\c0 ⊂ C0

w. It follows
that |Aw| = |C0

w \ c0| < |C0
w| ≤ |C1

w|. Hence, there exists u ∈ C1
w \ Aw, and by construction
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we have u ∈ c1 and g1(u) = w. Conversely, let w ∈ C \ c. Then Aw = C1
w = g−1

1 (w), and since
Aw ∩ c1 = ∅ there exists no u ∈ c1 such that g1(u) = w.

Next, let P ⊆ X ∩ P. We write θP := (
∧
p∈P p) ∧ (

∧
p∈X∩P\P p). Since c1 is non-degenerated,

the pre-cluster c = g1[c1] has at least one quasi-predecessor by Proposition 2.12. By Lemma 2.15,
it follows that c has at most 2|X\P | quasi-predecessors within ⟨θP ⟩X ∩ Ĉ, and that c0 has at least
2|Y \P | − |C0| predecessors within ⟨θP ⟩Y . From 2|Y \X| ≥ 2K|C|, we then get

2|Y \P | = 2|Y \X|+|X\P | = 2|Y \X| · 2|X\P | ≥ (2K|C|+ 1) · 2|X\P | ≥ 2K|C|+ 2|X\P | ≥ |C0|+ 2|X\P |

and thus 2|Y \P |− |C0| ≥ 2|X\P |. Therefore, the predecessors of c0 within ⟨θP ⟩Y are more numerous
than the quasi-predecessors of c within ⟨θP ⟩X ∩ Ĉ. We then extend g0 so that to map the former
onto the latter, and by construction g0 preserves the parameters in X.

Finally, we extend f to a parametric bounded morphism from Ĉ1 to Ĉ0. Consider c1 ⊆ C1 and
u ▷ c1. Let m1 := |c1| and n1 := |C1 \ c1|. Let c0 := f [c1], m0 := |c0| and n0 := |C0 \ c0|. Since
f is surjective, we have (n0,m0) ≤ (n1,m1). Thus, c0 is non-degenerated (as a consequence of
Proposition 2.16 again). We also have g0[c0] = g0 ◦ f [c1] = g1[c1], and g1(u) ⊵ g1[c1]. So by the
above construction of g0, there exists v ▷ c0 such that g0(v) = g1(u). We then set f(u) := v, and
we have g0 ◦ f(u) = g1(u).

It is then clear that f and g0 are two parametric bounded morphisms and that g0 ◦ f = g1.
We also have g0[Ĉ0] ⊆ Ĉ. We thus obtain a primitive Y -reflection (Ĉ0, g0) of Ĉ such that (Ĉ0, g0) ⪯
(Ĉ1, g1), and we are done.

We will also need a number of combinatorial properties.

Lemma 3.7. Let us write n := |X|.
1. If C is a cluster in FX , then |C| ≤ 2n.
2. If C is a cluster in FX , then |Ĉ| ≤ 22

n+1
.

3. There are at most 2n isolated points in FX .
4. There are at most 22

n
clusters in FX .

5. We have |FX | ≤ 22
n+3

.

6. Let Y ⊆ X be finite. Let m := |Y |. Then every generated subframe of FX has at most 22
2n+m+4

primitive Y -reflections.

We are now ready to prove the announced result. Below, the constant αL is defined as αL :=
max {log(log(NL)), log(log(ML))}, with the convention that log(−1) = log(0) = 0.

Proposition 3.8. Let X ⊆ X be finite, and F be a generated subframe of FX . Let n := |X|, and
Y ⊆ X be such that X ⊆ Y and Y ∩ P = X ∩ P and |Y | = 2 · 224n+αL+5

. Then F has Y -bounded
total reflection.

Proof. Let F1, . . . ,Fk be the collection of all primitive closed subframes of F. Let Y ′ ⊆ X be such
that X ⊆ Y ′ and Y ′ ∩ P = X ∩ P and |Y ′| = 3n + 2αL + 2. We write m := |Y ′|. Then we have
|Y ′ \X| = m−n = (n+ 2) + (n+ 2αL) ≥ n+ 2 + logK, whence 2|Y

′\X| ≥ 2n+2+logK ≥ 2K · 2n + 1.
So, given a cluster C in FX , the above inequalities together with Lemma 3.7 ensure that we have
2|Y

′\X| ≥ 2K|C|+ 1. Given 1 ≤ i ≤ k, the frame Fi is either trivial or a pinned cluster in FX , and
by Lemma 3.5 and Lemma 3.6, it follows that Fi has bounded primitive Y ′-reflection. So the next
step is to select Y ⊇ Y ′ big enough so that FY contains every primitive Y ′-reflection of every Fi. To
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this end, let R be the set of pairs of the form (i,H′, h′) where 1 ≤ i ≤ k and (H′, h′) is a primitive
Y ′-reflection of Fi. We introduce a set Y ∗ ⊆ X \ (P ∪ Y ′) such that |Y ∗| = ⌈log |R|⌉. In this case
we have |R| ≤ 2|Y

∗| and so there exists an injection Ω : R → 2Y
∗
. By Lemma 3.7, there are at

most 2n + 22
n ≤ 22

n+1
primitive closed subframes of FX , and each of them has at most 22

2n+m+4

primitive Y ′-reflections. Hence, we have |R| ≤ 22
n+1 · 222

m+n+4

, and thus

|Y ∗| ≤ 2n+1 + 22
m+n+4

= 2n+1 + 22
(3n+2αL+1)+n+4

= 2n+1 + 22
4n+2αL+5

.

As a result we have |Y ′ ∪ Y ∗| ≤ 3n + 2αL + 2 + 2n+1 + 22
4n+αL+5 ≤ 2 · 224n+αL+5

, and so we can
select Y ⊆ X such that Y ′ ∪ Y ∗ ⊆ Y and Y ∩ P = X ∩ P and |Y | = 2 · 224n+αL+5

.
Now we prove that F has Y -bounded total reflection. So let (FZ , h) be a total reflection of F.

Up to applying Corollary 2.27, we can assume that X ∩ P = Z ∩ P. Let H be a primitive closed
subframe of FZ . Then there exists i ∈ [1, k] such that h[H] ⊆ Fi, and H induces a primitive reflection
(H, hH) of Fi. Since Fi has bounded primitive Y ′-reflection, there exists a Y ′-reflection (H′, h′H) of
Fi such that (H′, h′H) ⪯ (H, hH). Then, by Lemma 3.3 there is some primitive Y -reflection (GH, gH)
of FH such that (GH, gH) ⪯ (H′, h′H) and GH ⊆ ⟨y⟩Y for all y ∈ Ω(i,H′, h′) and GH ⊆ ⟨¬y⟩Y for all
y ∈ Y ∗ \Ω(i,H′, h′) – since Ω is injective, this last condition ensures that all the GH’s are pairwise
disjoint. The situation is depicted in Figure 5.

F1

Fk

F
...

H

FZ

GH

FY

domain of g′

hH

gH

fH σ∗

Figure 5: Construction of a total reflection

By Lemma 3.2, it follows that (GH, gH) ⪯ (H, hH), and so there exists a parametric bounded
morphism fH : H→ GH such that gHfH = hH. The union of the fH’s induces a parametric bounded
morphism f : FZ → FY , and the union of the gH’s induces a parametric bounded morphism
g′ : G→ FX , where G is the union of all the GH’s. We then have g′f = h.

There remains to extend g′ to a total parametric bounded morphism g : FY → FX . Since
Z ∩ P = X ∩ P = Y ∩ P, we can select an arbitrary parametric substitution σ : LZ → LY , so
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that we have σ∗ : FY → FZ . Next, the domain of g′ is a closed subframe of FY , and thus so is its
complement. So we define g : FY → FX by g(w) := g′(w) if w belongs to the domain of g′, and
g(w) := h(σ∗(w)) otherwise. It is then clear that g is a parametric bounded morphism and that
Im g ⊆ F. Hence, (FY , g) is a total reflection of F. It is also immediate that gf = h. Therefore
(FX , g) ⪯ (FY , h), and we are done.

4 Computing a most general unifier via filtering

Now that we have obtained the dual properties that we are looking for, we lift them to the syntactic
level, and meet our final goal by applying results from [AABM23]. In this paper, we find a technique
allowing to ‘merge’ two unifiers into a more general third unifier – a property known as filtering.
In particular, if one is given a finite non-empty complete set Σ of unifiers, then one can obtain a
MGU by iterating this operation on the elements of Σ, and this simple procedure will give birth to
our algorithm. Let us set these ideas formally. We fix φ ∈ L and X := Var(φ).

Definition 4.1. Let σ : LX → LY and τ : LX → LZ be two substitutions, and t be a fresh variable.
The filtering of σ and τ is the substitution σ ⊓ τ : LX → LY ∪Z∪{t} defined by

(σ ⊓ τ)(x) :=
(
(□□t ∧ (t ∨ ♢⊤)) ∧ σ(x)

)
∨
(
(♢♢¬t ∨ (¬t ∧□⊥)) ∧ τ(x)

)
for all x ∈ X.

Proposition 4.2. Let σ : LX → LY and τ : LX → LZ be two substitutions.
1. If σ and τ are parametric, then so is σ ⊓ τ .
2. We have σ ⊓ τ ⪯ σ and σ ⊓ τ ⪯ τ .
3. If σ and τ are two unifiers of φ, then so is σ ⊓ τ .

Proof. For 2 and 3, we refer to [AABM23, Prop. 20]. For 1, let us write ψ := □□t ∧ (t ∨ ♢⊤). If
p ∈ P ∩X then by assumption we have (σ ⊓ τ)(p) ≡L (ψ ∧ p) ∨ (¬ψ ∧ p) ≡L p, as desired.

The following is a consequence of Lemma 2.19 and Proposition 4.2.

Corollary 4.3. Let Σ = {σ1, . . . , σn} be a finite non-empty complete set of unifiers of φ. Then
((σ1 ⊓ σ2) ⊓ . . . ) ⊓ σn is a most general unifier of φ.

Before moving to the main result, we will need an upper bound on the size of modal formulas,
up to equivalence in L.

Lemma 4.4. Let X ⊆ X be finite and n := |X|.
1. For all w ∈ FX , there exists θw ∈ LX such that |θw| = O(2n · n) and θw ∈ u iff w = u, for all

u ∈ FX .
2. For all ψ ∈ LX there exists χ ∈ LX such that ψ ≡L χ and |χ| = O

(
22

n+3 · 2n · n
)
.

Theorem 4.5. If φ is unifiable, then φ admits a most general unifier, which can be effectively
computed in space 4-exponential in the size of φ.

Proof. First, since K5 ⊆ L, the validity problem for L is in NP [HR07], and thus also in PSPACE.
Hence, there is a procedure validL(·) which decides whether ⊢L ψ in space polynomial in |ψ|, for
every ψ ∈ L. Let F be the subframe of FX generated by ⟨φ⟩∞X . We write n := |X|. Let Y ⊆ X be
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such that X ⊆ Y and Y ∩ P = X ∩ P and |Y | = 2 · 224n+αL+5
. Let Σ0 be the set of all parametric

substitutions from LX to LY , up to equivalence. Then since L is locally tabular, the set Σ0 is
finite, and we consider Σ := {σ ∈ Σ0 | σ is a unifier of φ}. By Proposition 3.8, F has Y -bounded
total reflection, and by duality (Corollary 2.26) it follows that Σ is a complete set of unifiers of
φ. If φ is unifiable, then Σ is non-empty, and Corollary 4.3 provides a MGU of φ. We describe
this procedure precisely in Algorithm 1, of which we now discuss the complexity. We see that the

Input: φ
X ← Var(φ);
n← |X|;
select Y ⊆ X such that X ⊆ Y and |Y | = 2 · 224n+αL+5

;
σ ← ♣;
foreach parametric substitution τ : LX → LY do

if validL
(
τ(φ)

)
then

if σ = ♣ then
σ ← τ ;

else
σ ← σ ⊓ τ ;

end

end

end
Output: σ

Algorithm 1: returns a MGU of φ if there is one, and returns ♣ otherwise

program requires three quantities of space: one to store τ , one to store σ, and one used by the
execution of validL on τ(φ).

1. The parametric substitution τ can be encoded as a map from X to LX . By Lemma 4.4, a
formula in LY can be written, up to equivalence, in size O

(
22

|Y |+3 ·2|Y | · |Y |
)
. In addition, since

there are arbitrarily many variables to be handled by the program, they cannot be represented
by primitive symbols. Instead, they need to be encoded by (say) numbers, and each variable

will use up to log |Y | digits. Hence, τ has size O
(
n · 22|Y |+3 · 2|Y | · |Y | · log |Y |

)
.

2. The parametric substitution σ is, in the worst case, the iteration of the operation ⊓ over
all of Σ0. A formula in LX can be identified to a subset of FX . By Lemma 3.7, we have

|FX | ≤ 22
n+3

, and so there at most 22
2n+3

formulas in LX , up to equivalence. It follows that

|Σ0| ≤
(

22
2n+3)n

. Further, the size of µ ⊓ µ′ is polynomial in the size of µ and µ′. Hence, the

size of σ is polynomial in

2n·2
2n+3

· n · 22|Y |+3 · 2|Y | · |Y | · log |Y |.

3. Given a parametric substitution τ : LX → LY , the size of the formula τ(φ) is polynomial in

|φ|·max {|τ(x)| : x ∈ X}. As mentioned in 1, τ(x) is written in spaceO
(
22

|Y |+3 ·2|Y |·|Y |·log |Y |
)

for all x ∈ X. Hence, the amount of space used by validL on τ(φ) will be polynomial in

|φ| · 22|Y |+3 · 2|Y | · |Y | · log |Y |.
In total, the space used by Algorithm 1 is polynomial in

(
n+2n·2

2n+3

·n+|φ|
)
·22|Y |+3 ·2|Y | ·|Y |·log |Y |

and thus 4-exponential in the size of φ.
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Combining this theorem with Proposition 2.22, we also obtain a complexity result for the
problems of unification and admissibility.

Corollary 4.6. Unification and admissibility in L are decidable in 4-exponential space.

Though the complexity of our algorithm is huge, extra assumptions on L may enable simplifi-
cations. Some logics feature what we call concise unification, which basically allows us to always
take Y = X, thus lowering the space complexity down to 3-exponential. In the next section we
investigate this condition.

5 Concise, transparent and projective unification

In this section we investigate special types of unary unification. Let φ ∈ L and X := Var(φ). A
unifier σ : LX → LX of φ is said to be transparent if we have τσ ≃ τ for all unifiers τ of φ [Wro95].
It is said to be projective if we have φ ⊢L σ(x) ↔ x for all x ∈ X [Ghi97]. The formula φ is
projective (resp. transparent) if it admits a projective unifier.

The logic L is said to be transparent (resp. projective) every unifiable formula is projective (resp.
transparent). It is said to be parameter-free projective if every unifiable parameter-free formula is
projective. Finally, the logic L has concise unification if every unifiable formula φ admits a MGU
σ : LX → LX , where X := Var(φ) – that is, a MGU that does not use more variables than those
already present in φ.

Proposition 5.1. Let φ ∈ L and X := Var(φ). Let σ : LX → LX be a unifier of φ.
1. If σ is transparent then σ is a most general unifier of φ.
2. If σ is projective then σ is transparent.

Proof. Item 1 is immediate. For Item 2, let τ be a unifier of φ and let x ∈ X. From φ ⊢L σ(x)↔ x,
it follows that τ(φ) ⊢L τ(σ(x) ↔ x), whence τ(φ) ⊢L τ(σ(x)) ↔ τ(x). Then since ⊢L τ(φ), we
obtain ⊢L τ(σ(x))↔ τ(x). Therefore τσ ≃ τ .

As a result, it is clear that all projective logics are parameter-free projective and transparent,
and that all transparent logics are unitary and have concise unification. Soon we will see that
some of these implications are proper. First, we exhibit the dual properties that correspond to
transparency and projectivity.

Definition 5.2. Let φ ∈ L and X := Var(φ). A dual unifier g : FY → FX of φ is said to be:
1. transparent if for all dual unifiers f : FY → FX of φ, we have gf = f ;
2. projective if for all w ∈ ⟨φ⟩∞Y , we have σ∗(w) = w.

Proposition 5.3. Let φ ∈ L and X := Var(φ). Let σ : LX → LX be a unifier of φ. Then σ is
transparent iff σ∗ is transparent, and σ is projective iff σ∗ is projective.

Proof. The first equivalence is a simple consequence of Proposition 2.25. For the second equivalence,
we refer to [BG22, Th. 4.5].

The projective extensions of K5 were characterized in [BG22], but in the parameter-free setting
only. Below we provide a similar result for projective parametric unification.
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Theorem 5.4 ([BG22, Th. 5.5]). The parameter-free projective extensions of K5 are exactly the
extensions of K45. More precisely, if K45 ̸⊆ L, then the formula ♢x→ ♢♢x is not projective.

Theorem 5.5. The projective extensions of K5 are exactly the extensions of Kt5. More precisely,
if Kt5 ̸⊆ L, then the formula (p ∧ ♢⊤)→ ♢(p ∨ x) with parameter p is not projective.

Proof. From right to left, suppose that Kt5 ⊆ L. Let φ ∈ L and X := Var(φ), and assume that φ
is unifiable. Then there exists a unifier σ : LX → LY of φ, and we can assume that X ⊆ Y . By
Lemma 2.18, we also assume that X ∩ P = Y ∩ P. This allows selecting an arbitrary parametric
substitution τ : LY → LX . Dually, we thus have a dual unifier σ∗ : FY → FX of φ, and a parametric
bounded morphism τ∗ : FX → FY . Since Kt5 ⊆ L, it is easy to see that every point in FX is either
isolated, or belongs to a cluster. In this case, ⟨φ⟩∞X is then a closed subframe of FX . We now define
a projective dual unifier f : FX → FX of φ by

f(w) :=

{
w if w ∈ ⟨φ⟩∞X ,
σ∗τ∗(w) otherwise,

for all w ∈ FX . We first check that f is a bounded morphism. Suppose that wRXu. If w ∈ ⟨φ⟩∞X ,
then u ∈ ⟨φ⟩∞X as well, so f(w)RXf(u) is immediate. Conversely, assume that w /∈ ⟨φ⟩∞X . Then
u /∈ ⟨φ⟩∞X as well. Since τ∗ and σ∗ are bounded morphisms, it follows that σ∗τ∗(w)RXσ

∗τ∗(u),
whence f(w)RXf(u). Now suppose that f(w)RXu

′. If w ∈ ⟨φ⟩∞X then w = f(w)RXu
′ and so

u ∈ ⟨φ⟩∞X too, whence wRXu
′ with f(u′) = u′. Otherwise f(w) = σ∗τ∗(w), and since τ∗ and σ∗

are bounded morphisms, there exists u ∈ FX such that wRXu and σ∗τ∗(u) = u′. Then u /∈ ⟨φ⟩∞X ,
whence f(u) = σ∗τ∗(u) = u′. It is also clear that f is parametric, that Im f ⊆ ⟨φ⟩∞X , and that
f(w) = w for all w ∈ ⟨φ⟩∞X . Therefore, f is a projective dual unifier of φ. By Proposition 5.3, it
follows that φ is projective.

Conversely, assume that Kt5 ̸⊆ L. Let φ := (p ∧ ♢⊤) → ♢(p ∨ x), with p ∈ P and x /∈ P.
We write X := {x, p}. Then we have ̸⊢L φ, for otherwise we would obtain ⊢L p ∧ ♢⊤ → ♢p after
substituting p for x, contradicting Kt5 ̸⊆ L. Further, we observe that φ is unifiable, as it suffices to
substitute ⊤ for x. Toward a contradiction, assume that φ is projective. Then by Proposition 5.3
there exists a dual unifier f : FX → FX of φ such that f(w) = w for all w ∈ ⟨φ⟩∞X . Since ⊬L φ, there
exists w ∈ ⟨p∧♢⊤∧¬♢(p∨ x)⟩X . Since w ∈ ⟨p⟩X and f is parametric, we then have f(w) ∈ ⟨p⟩X .
Since f(w) ∈ ⟨φ⟩∞X by construction, it follows that f(w) ∈ ⟨♢(p∨x)⟩X . Hence, there exists u ∈ ⟨p⟩X
such that f(w)RXu. Then by the backward condition, there is v ∈ FX such that f(v) = u and
wRXv. Then v belongs to a cluster, and so it is clear that v ∈ ⟨φ⟩∞X , whence f(v) = v. Then u = v
and wRXu, contradicting w ∈ ⟨¬♢p⟩X . We conclude that L is not projective.

Next, we exhibit infinitely many extensions of K5, including K5 and KD5 themselves, that
are transparent but not (parameter-free) projective. Given m ≥ 1, we introduce K5Wm :=
K5 + Ax−1,m and KD5Wm := KD5 + Ax−1,m. The set ∆ associated to these two logics is thus
{(−1,m)}, which means that every cluster in their canonical frame has size < m – hence the ‘W’,
which stands for ‘bounded width’. We also write K5W∞ := K5 and K5W∞ := KD5.

Proposition 5.6. If m ≥ 1 (including m =∞), then K5Wm and KD5Wm are transparent.

Proof. Let L := K5Wm. Let φ ∈ L and assume that φ is unifiable. Let X := Var(φ). Given
w ∈ FX , we write Pw := {p ∈ P ∩X : w ∈ ⟨p⟩X}. A cluster C in FX is said to be realizable if there
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exists a dual unifier h : FY → FX of φ such that C ⊆ h[FY ].4 In this case, we claim that for all
non-degenerated pre-clusters c ⊆ C and P ⊆ P, there exists u ∈ ⟨φ⟩∞X such that u ⊵ c and Pu = P .
Indeed, let c′ be a pre-cluster in FY such that h[c′] ⊆ c and |c′| = |c|. Then c′ is non-degenerated
(by construction of L), and by Lemma 2.15 there exists w ⊵ c′ such that Pw = P . Since h is a
parametric bounded morphism, it follows that h(w) ⊵ c and Ph(w) = P . Since h is a dual unifier
of φ, we also have h(w) ∈ ⟨φ⟩∞X , as desired.

Next, since φ is unifiable, it admits a dual unifier g : FY → FX , and we can assume that X ⊆ Y .
By Corollary 2.27, we can also assume that X ∩ P = Y ∩ P. Hence, we can select an arbitrary
parametric substitution τ : LY → LX . We construct a transparent dual unifier f : FX → FX of φ
as follows.

1. First, let C be a realizable cluster in FX . For every w ∈ Ĉ ∩ ⟨φ⟩∞X , we set f(w) := w. Note
that since C is realizable, we have C ⊆ ⟨φ⟩∞X , and so this case already covers all the elements

of C. If instead w ∈ Ĉ \ ⟨φ⟩∞X , we have w ▷ c for some c ⊆ C. As shown earlier, there exists
u ∈ ⟨φ⟩∞X such that u ⊵ c and Pu = Pw, and we set f(w) := u.

2. Next, let C be a non-realizable cluster in FX . Then for all w ∈ Ĉ, we set f(w) := g(τ∗(w)).
3. Finally, let w be isolated in FX . We set f(w) := w in case w ∈ ⟨φ⟩∞X , and f(w) := g(τ∗(w))

otherwise.
First, it is easy to check that f is a parametric bounded morphism. Now, consider w ∈ FX . If
w ∈ Ĉ for some realizable cluster C, then we already know that f(w) ∈ ⟨φ⟩∞X . If w ∈ Ĉ for some
non-realizable cluster C, then we have f(w) = g(τ∗(w)) ∈ ⟨φ⟩∞X by assumption on g. If w is isolated,
the reasoning is the same. This proves that f is a dual unifier of φ, and there remains to check
that f is transparent. Consider a dual unifier h : FZ → FX of φ. Given w ∈ FX , the element h(w)
belongs to ⟨φ⟩∞X and is either initial, or a member of some realizable cluster. By construction, it
follows that f(h(w)) = h(w), as desired. Finally, if L = KD5Wm then the proof is exactly the
same, except that we skip step 3 above.

Corollary 5.7. There are infinitely many transparent extensions of K5 that are not parameter-free
projective.

Proof. We know that the logics K5Wm and KD5Wm, where m ≥ 3 (including m = ∞), are
transparent by Proposition 5.6. Let L be one of them, and let X ⊆ X be non-empty. Then by
Proposition 2.16, there exists a cluster C = {w, u} of size 2 in FX . There also exists v ▷ {w},
and we have vRwRu but not vRu. This proves that L is not an extension of K45, and thus not
parameter-free projective by Theorem 5.4. Finally, it is clear that all of these logics are pairwise
distinct, and thus in infinite number.

These results show the abundance of concise logics, but it would also be interesting to make
sure that not all logics are concise – otherwise, the work of section 3 would be plain useless. To
prove this, we identify a necessary condition on ∆ for concise unification.

Proposition 5.8. Suppose that L has concise unification. Then either K45 ⊆ L, or there is no
n ≥ −1 such that (n, 1) ∈ ↑∆ and (−1, n+ 1) /∈ ↑∆.

Proof. Toward a contradiction, assume that K45 ̸⊆ L and that (n, 1) ∈ ↑∆ and (−1, n+ 1) /∈ ↑∆
for some n ≥ −1. From K45 ̸⊆ L it follows that (1, 1) /∈ ↑∆ (see Table 2). Hence, we also have

4Note: this amounts to say that Ĉ admits a reflection.
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n ≥ 2. Now let us fix X ⊆ X \ P such that |X| = 1. We have (−1, 2) ≤ (−1, 3) ≤ (−1, n + 1),
so (−1, 2) and (−1, 3) do not belong to ↑∆. Hence, by Proposition 2.16, there exist a one-element
cluster {v1} and a two-element cluster {w, u} in FX . In addition, since (1, 1) /∈ ↑∆, the pre-cluster
{w} is non-degenerated, so there exists w0 ▷ {w}.

If D? = ♢⊤, we select a formula φ ∈ LX such that ⟨φ⟩X = {v1, w0, w, u}. Otherwise, there
exists an isolated point v0 in FX , and we choose ⟨φ⟩X = {v0, v1, w0, w, u} instead. In both cases we
observe that ⟨φ⟩X is upward closed, in the sense that t ∈ ⟨φ⟩X and tRXt

′ implies t′ ∈ ⟨φ⟩X . In this
case, it is easy to check that we have ⟨φ⟩∞X = ⟨φ⟩X . We can then define a dual unifier f : FX → FX
of φ by setting f(t) := v0 in case t is isolated, and f(t) := v1 for any other t. So φ is unifiable, and
by assumption it admits a MGU σ : LX → LX . We write g := σ∗.

Now let us select Y ⊆ X \ P finite such that 2|Y | ≥ n+ 1. Then since (−1, n+ 1) /∈ ↑∆, there
exists by Proposition 2.16 a cluster C in FX such that |C| = n + 1. Further, let v ∈ C. Since
(n, 1) ∈ ↑∆, the pre-cluster {v} is degenerated by Proposition 2.16. We define h : FY → FX as
follows: we set h(v) := u, h(t) := w0 whenever t ▷ c ⊆ C \ {v}, and h(t) := w for every other
t ∈ Ĉ; then we set h(t) := v0 for all t isolated, and h(t) := v1 for every other t. The construction
is depicted in Figure 6. The map h is readily checked to be a dual unifier of φ, and thus there
exists a bounded morphism f : FY → FX such that gf = h. Then there is a cluster C′ in FX
such that f [C] = C′. It follows that g[C′] = gf [C] = h[C] = {w, u}. Since |X| = 1, we have also
|C′| ≤ 2, so the only possibility for C′ is to have size 2. We write C′ = {w′, u′} with g(w′) = w and
g(u′) = u. Again, there exists u′0 ▷ {u′}, and by Proposition 2.12 we must have g(u′0) ▷ {u}. But
then g(u′0) /∈ ⟨φ⟩∞X , a contradiction.

v
C

u

w

w0

. . . v0

. . . v1

Figure 6: The bounded morphism h (in bold arrows) from FY to ⟨φ⟩∞X . The colored area is mapped
to w. All isolated points are mapped to v0, and all clusters other than C are mapped to v1.

Corollary 5.9. There are infinitely many extensions of K5 that do not have concise unification.

Proof. For all n ≥ 2, we consider the logic L defined by ∆ := {(n, 1)} and D? = ⊤. Then K45 ̸⊆ L,
since (1, 1) /∈ ↑∆ (see Table 2), and we also have (n, 1) ∈ ↑∆ and (−1, n + 1) /∈ ↑∆. So L falsifies
the condition of Proposition 5.8, and thus lacks concise unification. It is also clear that all of these
logics are pairwise distinct.
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6 Conclusion

By thoroughly exploiting the dual properties of Euclidean logics, we proved not only that they have
unary unification, but also that most general unifiers can be computed effectively. The weakness of
our algorithm is obviously its complexity, which is so gigantic that it prevents any hope of actually
implementing it. However, one should keep in mind that our upper bounds are extremely coarse
and non-specific, in the sense that we have designed a general method for any extension of K5,
and that we have not looked at how it refines to special cases. As we have seen, logics with concise
unification are better behaved, and even in less lucky cases, there is much room for improvement.
Indeed, our complexity estimates rely on the upper bounds of Lemma 3.7, which can be refined
depending on the properties of the canonical frame. For instance, if ∆ contains the axiom (−1,m)
for some m ≥ 1, then all clusters in FX have size bounded by m − 1, instead of 2|X|. So anyone
interested in applying this work should carefully check how every upper bound can be optimized.

We have also provided a characterization of projective logics, along with counter-examples
showing that the transparent and projective types are distinct, as are the concise and unary types.
It is also interesting to note that the logic K45 is parameter-free projective but not projective,
since it is not an extension of Kt5 – thus revealing a discordance between the parametric and
non-parametric settings. In spite of this advancement, the landscape of Euclidean logics is yet to
be fully described: it could be interesting to characterize exactly the transparent/concise extensions
of K5, and to determine whether the concise and transparent types coincide.
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the satisfiability problem for modal logic. Journal of Logic and Computation, 17(4):795–
806, 2007.
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A Proofs for Section 2 (Background)

Proof of Proposition 2.12. Suppose that f is a bounded morphism. First, 1 follows immediately
from the backward condition. For 2, let C be a cluster in F. Let w′, u′ ∈ f [C]. Then w′ = f(w)
and u′ = f(u) for some w, u ∈ C. Since C is a cluster we have wRu, whence f(w)R′f(u) by the
forward condition. Now let w′ ∈ f [C] and assume that w′R′u′. Then w′ = f(w) for some w ∈ C,
and so by the backward condition there exists u ∈ W such that wRu and f(u) = u′. Since C is a
cluster we have u ∈ C, whence f(u) ∈ f [C]. This proves that f [C] is a cluster.

Next, suppose that c is a pre-cluster, and that w ▷ c. We prove that for all u′ ∈ W ′ we have
f(w)R′u′ iff u′ ∈ f [c]. First suppose that u′ ∈ f [c]. Then u′ = f(u) for some u ∈ c. Then wRu and
thus f(w)R′f(u) by the forward condition, whence f(w)R′u′. Conversely, suppose that f(w)R′u′.
Then by the backward condition there exists u such that wRu and f(u) = u′. Since w ▷ c we have
u ∈ c and thus u′ ∈ f [c], as desired. Hence we have either f(w) ▷ f [c], in case f(w) is initial, or
f(w) ∈ f [c] otherwise. This proves 3.

Now consider the case where f [c] is a proper pre-cluster. First we have f [c] ⊂ C ′ for some
cluster C ′. Then there exists u′ ∈ C ′ \ f [c]. Suppose that f(w) is not initial, that is, f(w) ∈ C ′.
Then f(w)R′u′, and so by the backward condition there exists u ∈ W such that f(u) = u′ and
wRu. Then u ∈ c, and so u′ = f(u) ∈ f [c], a contradiction. Therefore f(w) is initial in F′, and by
3 it follows that f(w) ▷ f [c].

Conversely, suppose that f satisfies 1, 2, 3 and 4. Assume that wRu. If w is not initial, then
w and u belong to a cluster C. By 2, f [C] is a cluster, and thus f(w)R′f(u). Otherwise we have
w ▷ c for some pre-cluster c. By definition we then have u ∈ c. By 3 it follows that f(w) ∈ f [c] or
f(w) ▷ f [c], and in both cases we obtain f(w)R′f(u).

Now assume that f(w)R′u′. By 1, w cannot be isolated. First suppose that w belongs to some
cluster C. Then f(w) ∈ f [C], and by 2 we obtain u′ ∈ f [C]. Thus, there exists u ∈ C such that
f(u) = u′. We then have wRu. Now suppose that w is initial. Then w▷c for some pre-cluster c. By
3 we then have f(w) ∈ f [c] or f(w) ▷ f [c]. If f(w) ▷ f [c], then in particular u′ ∈ f [c]. Otherwise we
have f(w) ∈ f [c], and so f [c] must be a cluster according to 4. Thus u′ ∈ f [c] as well. Therefore,
there exists u ∈ c such that u′ = f(u), and since w ▷ c we have wRu, as desired.

Proof of Lemma 2.14. Given w ∈ C, we will denote by [w] the equivalence class of w modulo ∼.
Since |C/∼| ≤ 2|Y \P |, there exists an injective map Ω : C/∼ → 2Y \P . Given w ∈ C, we then define
the Boolean formula θw ∈ LY as the conjunction of the following literals:

• p where p ∈ P and w ∈ ⟨p⟩Z ,
• ¬p where p ∈ P and w /∈ ⟨p⟩Z ,
• y where y ∈ Ω([w]),
• ¬y where y ∈ Y \

(
P ∪ Ω([w])

)
.

We then introduce a valuation V : C→ 2Y so that for all w ∈ C, we have C, V, w ⊨ θw. Then, let
φ :=

(∧
w∈C ♢θw

)
∧□

(∨
w∈C θw

)
and Γ0 := {□ψ → ψ : ψ ∈ LY }. We can check that for all w ∈ C,

we have C, V, w ⊨ {φ}∪Γ0. Hence, {φ}∪Γ0 is consistent, and so there exists a maximal consistent
set Γ ∈ FY such that {φ} ∪ Γ0 ⊆ Γ. Since Γ0 ⊆ Γ, it follows that Γ is reflexive. Therefore, Γ
belongs to a cluster C′. By construction, there exists, for every w ∈ C, some f(w) ∈ C′ ∩ ⟨θw⟩Y .
This defines a map f : C→ C′, which we prove to be surjective. For consider w′ ∈ C′. Then there
exists w ∈ C such that w′ ∈ ⟨θw⟩Y . Since f(w) ∈ ⟨θw⟩Y too, it follows that w′ ∼Y f(w). Since w′

and f(w) belong to the same cluster and satisfy the same literals, they satisfy the same formulas
in LY , and thus w′ = f(w). It remains to prove that f satisfies the required properties.
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1. Suppose that w ∼ u. Then by assumption, we have w ∼P u. In addition, Ω([w]) = Ω([u]), and
so we see that θw = θu. Since f(w) ∈ ⟨θw⟩Y and f(u) ∈ ⟨θu⟩Y , it follows that f(w) ∼Y f(u),
and reasoning as above we obtain f(w) = f(u). Conversely, suppose that f(w) = f(u). Then
f(w) ∈ ⟨θu⟩Y , and thus Ω([w]) = Ω([u]). Since Ω is injective, it follows that [w] = [u], that is,
w ∼ u.

2. The equivalence w ∼P f(w) stems from the construction of θw and f(w).

Proof of Lemma 2.15. For all w ∈ FX , we will write Yw := {x ∈ X : w ∈ ⟨x⟩X}. Note that for all
w, u ∈ C, we have Yw = Yu =⇒ w = u, as pointed out earlier. Given Y ⊆ X and c ⊆ C, we define

θcY :=

∧
y∈Y

y

 ∧
∧
y∈Y
¬y

 ∧
 ∧
u∈c and φ∈LX and u∈⟨φ⟩X

♢φ

 ∧□

 ∨
u∈c and φ∈LX and u∈⟨φ⟩X

φ

 .

1. Let w be a predecessor of c. Let Y ⊆ X and assume that Y ̸= Yu for all u ∈ C. Let V be
a valuation on FX such that w ∈ V (x) ⇐⇒ x ∈ Y holds for all x ∈ X, and V coincides
with VX everywhere else. Then FX , V, w ⊨ θCY , and so {θCY } is consistent. Thus, there exists
wY ∈ ⟨θCY ⟩X . Then wY ⊵ C. If wY ∈ C then by construction Y ̸= YwY = Y , a contradiction.
Hence wY ▷C. Conversely, if u▷C, then u ∈ ⟨θCYu⟩X and so u = wYu . Thus, the predecessors of
C are exactly the wY ’s, which can be checked to be pairwise distinct. We conclude that there
are exactly 2|X| − |C| predecessors of C.

2. Let c ⊂ C and w ▷ c. Given Y ⊆ X, we reason as above and obtain the existence of wY ∈
⟨θcY ⟩X . Then wY is initial, because there exists u ∈ C \ c, and thus some φ ∈ L such that
wY ∈ ⟨♢♢φ∧¬♢φ⟩X . Therefore wu ▷ C. Conversely, if u ▷ c, then u ∈ ⟨θcYu⟩X and so u = wYu .

Hence, c has exactly 2|X| predecessors.

Proof of Proposition 2.16. 1. Suppose that there is a cluster C in FX with |C| = m′. As pointed
out earlier, the relation ∼X coincides with the equality on C. So the elements of C correspond
one-to-one with the equivalence classes of ∼X , which can themselves be identified to subsets
of X. Hence m′ = |C| ≤ 2|X|. Further, C is isomorphic to the frame F−1,m′ , and so F−1,m′ ⊨ L.
So for all (n,m) ∈ ∆ we have F−1,m′ ⊨ Axn,m, whence (n,m) ̸≤ (−1,m′).
Conversely, suppose that 2|X| ≥ m′ and (−1,m′) /∈ ↑∆. Then for all (n,m) ∈ ∆ we have
(n,m) ̸≤ (−1,m′), whence F−1,m′ ⊨ L. Since 2|X| ≥ m′, there exists an injection Ω : F−1,m′ →
2X . For all w ∈ F−1,m′ , let us write θw :=

∧
x∈Ω(w) x ∧

∧
x∈X\Ω(w) ¬x. Given some arbitrary

w ∈ F−1,m′ , we then introduce φ := θw∧
(∧

u∈F−1,m′ ♢θu
)
∧□

(∨
u∈F−1,m′ θu

)
and Γ0 := {□ψ →

ψ : ψ ∈ LZ}. Clearly Γ0 ∪ {φ} is satisfiable on F−1,m′ , and thus consistent with L. Hence,
there exists w′ ∈ FX such that Γ0 ∪ {φ} ⊆ w′, and it is then clear that w′ belongs to a cluster
of size m.

2. Suppose that c is non-degenerated. Then c admits a predecessor u, and the subframe of FX
generated by u is isomorphic to Fn′,m′ . Then Fn′,m′ ⊨ L. Hence, for every (n,m) ∈ ∆ we have
Fn′,m′ ⊨ Axn,m, and thus (n,m) ̸≤ (n′,m′).
Conversely, suppose that for all (n,m) ∈ ∆ we have (n,m) ̸≤ (n′,m′). Then we have Fn′,m′ ⊨
L. We have Fn′,m′ = (W,R) with W = {w} ∪ A ∪ B defined as above, and |B| = |C \ c| = n′

and |A| = |c| = m′. Thus, there exists a bijection f : C → A ∪ B such that f [c] = A and
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f [C \ c] = B. Now let V be a valuation on Fn′,m′ defined by V (x) := f [VX(x) ∩ C] for all
x ∈ X. Since Fn′,m′ ⊨ L, the set Γ := {φ ∈ LX : Fn′,m′ , V, w ⊨ φ} is maximal consistent, and
so belongs to WX . Given u ∈ c and φ ∈ w, we have Fn′,m′ , V, f(u) ⊨ φ by construction of V .
Since f(u) ∈ A we get Fn′,m′ , V, w ⊨ ♢φ, and thus ♢φ ∈ Γ. Hence ΓRXu. Conversely, consider
u /∈ C\ c. Then for all v ∈ c there exists φv ∈ v such that φv /∈ u. By setting φ :=

∨
v∈c φv, we

obtain φ /∈ u and c ⊆ ⟨φ⟩X . As a result we have A = f [c] ⊆ ⟨φ⟩X , and thus Fn′,m′ , V, w ⊨ □φ.
Hence □φ ∈ Γ. Since φ /∈ u, it follows that not ΓRXu. This proves that Γ ▷ c, as desired.

B Proofs for Section 3 (Reflections)

Lemma B.1. Let σ : LX → LY be a substitution.
• If σ is injective, then σ∗ is surjective.
• If σ is surjective, then σ∗ is injective.

Proof. This is a direct consequence of [BdRV01, Prop. 5.52], together with the correspondence
between substitutions and modal algebra homomorphisms discussed e.g. in [BG22, Sect. 3].

Proof of Lemma 3.3. We write Y ∗ := Y \ (Y0 ∪ Y1). Since |Z| = |Y ∗|, there exists j : Y ∗ → Z
bijective, and since Y ∗ ∩P ⊆ Y ∩P ⊆ Z we can assume that j(p) = p for all p ∈ Y ∗ ∩P. We then
define a parametric substitution σ : LY → LZ by

σ(y) :=


⊤ if y ∈ Y1,
⊥ if y ∈ Y0,
j(y) if y ∈ Y ∗.

That σ is parametric follows from the fact that Y ∩P = X∩P ⊆ Y ∗∩P. We also have a substitution
τ : LZ → LY defined by τ(z) := j−1(z). It is then clear that σ is surjective, τ is injective, and
στ = idLZ

. By Lemma B.1, it follows that a := σ∗ : FZ → FY is an injective parametric bounded
morphism, b := τ∗ : FY → FZ is a surjective bounded morphism, and we have ba = idFZ

.
If H is trivial, then by Proposition 2.12, G := a[H] is trivial as well, and b maps G to H.

Otherwise, H is a pinned cluster Ĉ, and then by Proposition 2.12, G := a[Ĉ] is a pinned cluster Ĉ′.
Then a induces a bijection from C to C′, and so b maps C′ to C. Therefore, b maps Ĉ′ to Ĉ.

In both cases, we have constructed a closed primitive subframe G of FY such that a maps H to
G, and b maps G to H. By construction of a, we also have G ⊆ ⟨y⟩Y for all y ∈ Y1, and G ⊆ ⟨¬y⟩Y
for all y ∈ Y0. We introduce the bounded morphism g := hb|G : G → F, and we claim that g is
parametric. Indeed, if p ∈ X ∩ P and w ∈ G, we have

g(w) ∈ ⟨p⟩Y ⇐⇒ h(τ∗(w)) ∈ ⟨p⟩Y ⇐⇒ τ∗(w) ∈ ⟨p⟩Z ⇐⇒ w ∈ ⟨τ(p)⟩Z = ⟨j−1(p)⟩Z = ⟨p⟩Z

since h is parametric and p ∈ X ∩ P ⊆ Y ∗ ∩ P. In addition, g[G] ⊆ h[H] ⊆ F. We thus obtain a
Y -reflection (G, g) of F satisfying (G, g) ⪯ (H, h).

Proof of Lemma 3.7. 1. See Proposition 2.16.
2. By 1, we have |C| ≤ 2n and so C contains at most 22

n
pre-clusters. By Lemma 2.15, every

pre-cluster has at most 2n predecessors. Therefore, we have

|Ĉ| = 2n + 22
n · 2n ≤ 22

n+n + 22
n+n = 22

n+n+1 ≤ 22
n+2n = 22

n+1
.
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3. Given w and u isolated in FX , we have w ∼X u iff w = u. So there are at most 2n isolated
points.

4. As explained in the proof of Proposition 2.16, the clusters in FX can be identified to sets of
subsets of X. Hence, there are at most 22

n
of them.

5. By the previous results, FX contains at most 2n isolated points of size 1, plus at most 22
n

pinned clusters of size ≤ 22
n+1

. It follows that

|FX | ≤ 2n + 22
n · 22n+1 ≤ 2n + 22

n+1+2n+1
= 2n + 22

n+2 ≤ 2 · 22n+2
= 22

n+2+1 ≤ 22
n+3

.

6. Let F be a generated subframe of FX . A primitive Y -reflection of F is given by a primitive
subframe G of FY and a map g from G to FX . First, by 3 and 4, there are at most 2m+22

m ≤
22

m+1
possible choices for G. Then, by 2 and 5, there are at most (22

n+3
)2

2m+1

possible choices
for g. In total, the number of possibilities amounts to

22
m+1 ·

(
22

n+3)22m+1

= 22
m+1+2n+3·22m+1

≤ 22
m+1+22

m+1+2n+2 ≤ 22
2m+1+2n+3 ≤ 22

3·2n+m+2

≤ 22
2n+m+4

.

C Proofs for Section 4 (Computing a most general unifier via
filtering)

Proof of Lemma 4.4.

1. Given w ∈ FX , we introduce ρw :=
(∧

x∈X and w∈⟨x⟩Y x
)
∧
(∧

x∈X and w/∈⟨x⟩Y ¬x
)

and then

θw := ρw ∧

 ∧
wRXu

♢ρu

 ∧
 ∧
wR2

Xu

♢♢ρu

 ∧□

 ∨
wRXu

ρu

 ∧□□

 ∨
wR2

Xu

ρu

 .

By Proposition 2.10 it is then clear that θw has the desired property. In addition, the big
conjunctions and disjunctions in θw quantify over the worlds reachable from w. In the worst
case, w belongs to a pinned cluster, and so there are at most 2n of them by Lemma 3.7. Since
every ρu has size linear in n, it follows that |θw| = O(2n · n).

2. Let χ :=
∨
w∈⟨ψ⟩X θw. We prove that ⟨ψ⟩X = ⟨χ⟩X . Indeed, if w ∈ ⟨χ⟩X then w ∈ ⟨θu⟩X for

some u ∈ ⟨ψ⟩X . Then w = u by construction of θu, and it follows that w ∈ ⟨ψ⟩X . Conversely,
if w ∈ ⟨ψ⟩X , then w ∈ ⟨θw⟩X and so w ∈ ⟨χ⟩X . Therefore ψ ≡L χ. By Lemma 3.7 we also
have |⟨ψ⟩X | ≤ 22

n+3
, and thus |χ| = O(22

n+3 · 2n · n).
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