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Machine learning driven parameter identification for grey-box thermal modelling for buildings

District-scale energy management solutions require having building models that are both fast and capable of adapting to the reality. This paper presents an approach to improve the speed and flexibility of parametrized models in building thermal modelling, with a case study on the grey-box modelling of an individual house. It consists of performing machine learning (ML) on the parameter identification step, taking into account external variables in the process. The ML model learns how the identified values of the parameters vary according to the changing conditions and uncertainties affecting the building. The trained model is then used to frequently update the RC model with appropriate parameter values during simulation on new data. During validation, this MLenhanced modelling method provides prediction accuracy levels plausibly comparable to the classical method, with large gains in execution speed, giving it the potential to be deployed to energy controllers of buildings which are less powerful than personal computers.

Highlights

 Perform machine learning on the parameter identification step.  Fast ML-driven identification on new data, suitable for MPC applications.  Plausibly comparable prediction accuracy to classical grey-box modelling.

Introduction

The widespread adoption of distributed renewable energies generation and the rise of collective selfconsumption practice have generated a push to develop energy flexibility solutions at the district scale. This requires having modelling methods that are not only capable of adapting to changing conditions and uncertainties affecting the building but also faster than detailed physics simulations. The grey-box modelling, also known as resistive-capacitive (RC) modelling, is suitable for this task because it retains the major physical dynamics and can be constructed in a data-driven manner. It relies on the mathematical analogy between heat transfer and electrical transfer to represent the modelled building by a thermal network consisting of thermal resistances, capacitances, and sources. The air within a thermal zone is considered uniform in temperature and is represented by a node. Different models can be named according to the number of resistances and capacitances (xRyC, e.g. 3R2C), while the order of the model refers to the number of thermal masses representedwhich corresponds to the number of capacitances. RC models can be constructed following a forward approach, where the network topology and parameter are derived from the building geometry and from properties of construction materials. The inverse approach consists of selecting a generic structure then performing parameter identification to find the set of RC parameters that reproduce best the thermal dynamics observed in the data. The structure can be either single zone or multiple zoned, the latter consists of multiple single zone models connected together [START_REF] Belić | Detailed Thermodynamic Modeling of Multi-Zone Buildings with Resistive-Capacitive Method[END_REF]. The complexity of zone model can range from 1R1C (1 resistance 1 capacitance) up to 6R4C [START_REF] Li | Grey-Box Modeling and Application for Building Energy Simulations -A Critical Review[END_REF]. The choice of appropriate model order in the single zone case has been discussed by [START_REF] Reynders | Quality of Grey-Box Models and Identified Parameters as Function of the Accuracy of Input and Observation Signals[END_REF] : the authors tested multiple RC models from 1st-order to 5th-order on detached single-family houses representative of the Belgian buiding stock and concluded that models of 2nd to 4th-order gave good results within 1°C RMSE while 5th-order model was less robust due to overfitting. The inverse approach is data-driven and is applied by the majority of studies involving RC models [START_REF] Li | Grey-Box Modeling and Application for Building Energy Simulations -A Critical Review[END_REF]. It is of greater practical interest because the thermal performance of the building can degrade in long term, or when the building gets renovated, the initial model becomes obsolete. Moreover, in medium term, because of the reduced-physics nature of RC models, external factors that are not taken into account induce biases on the identified parameters of the RC model. These factors can include occupational gains, ventilation rate and angle of solar irradiation. As they change during the year, the induced biases also change, making the initial model lose accuracy when used in another moment of the year. It is therefore necessary to readjust RC parameters regularly by repeating the identification step. To our knowledge, there is no other research work which addresses repeated parameter identification outside of our research team. One issue of repeating parameter identification is the elevated computation cost due to the optimization process. It involves an optimization problem that is often nonconvex, for which there are two common solutions: either using a global optimization algorithm or having a multistart strategy, which is to initialize a gradient method with many initial guesses. [START_REF] Nguyen-Hong | Meta-Optimization and Scattering Parameters Analysis for Improving On Site Building Model Identification for Optimal Operation[END_REF]) proposed a meta-optimization approach to reduce the size of the parameter identification problem by fixing RC parameters with high observed variance to their theoretical values, thus reduces the total computation time. In this paper, we present a new approach to improve the speed of readjusting RC parameters: perform machine learning (ML) on the identification step in order to update the RC parameters faster and more frequently according to changing conditions in the operational phase of the model. This also adds modelling flexibility by taking into account external factors such as occupation, wind speed, and the moment in the year. Since the ML models are lightweight, they can be deployed to less powerful microprocessors of the energy controllers of the buildings to perform on-the-fly parameter identification and prediction, once the training is done on more powerful machines. This is suitable for distributed architecture of energy flexibility controllers and helps decreasing energy use and investment costs. Previous studies also treated the coupling of machine learning with a physics-based model [START_REF] Ellis | Machine Learning Enhanced Grey-Box Modeling for Building Thermal Modeling[END_REF]. Their approach is usually to model the prediction errors of the physics-based component while our approach seeks to maintain the importance of the physics component by modelling the bias induced on the identified parameters.

Method

This part begins by recalling the classic RC modelling workflow then introduces the new modelling method expanded with ML-driven identification.

Classic RC modelling

In the classic RC method used to predict indoor temperature 𝑇 𝑖𝑛𝑡 , after the model structure is chosen, parameter identification is performed to find the appropriate values for the parameters of the RC model, denoted 𝜃 𝑅𝐶 , which reproduces the dynamics of 𝑇 𝑖𝑛𝑡 given the observed data on the input variables of the RC model, as shown in Figure 1. The new method is a two-step process and introduces a metamodel, or identifying model, which will determine the suitable RC parameters to be used according to changing situations. This work will use machine learning (ML) models as the metamodel. Once the metamodel is trained on the results of classic identification, it will replace the role of the optimization process. More specifically, in the first step, a piecewise classic identification by least-squares optimization is performed on a historical data set to produce the 𝜃 𝑅𝐶 dictionary. This 𝜃 𝑅𝐶 dictionary is then combined with the external variables to constitute the training data for the metamodel. To increase the robustness of the metamodel, identifications with poor results from the first step can be excluded from the 𝜃 𝑅𝐶 dictionnary.

Let 𝜃 𝑅𝐶,𝜇 (𝛿) be the parameter set of the RC model obtained 

Case study Subject and reference data

The building to be modelled is a two-story energy positive house in the Parisian suburbs, France. 6.9 6.9 avg. GHI (W/m²) 122 135

RC structure and model

For this case study, the single-zone 2R2C structure is chosen for its simplicity while still able to reproduce most of the dynamics of indoor temperature. 

The gradient method used is Trust Region Reflective algorithm implemented in the scipy.optimize Python package [START_REF] Virtanen | SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python[END_REF].

The initial guess of 𝜃 are the same for all identifications and are chosen based on the typical order of magnitude of each parameter. Our tests have shown that this gives overall better results than reusing the previous identification result, 𝜃 𝑅𝐶 (𝛿-1) , for the next day δ.

Meanwhile, the initial guess for 𝑇 𝑒,𝑖𝑛𝑖𝑡 (initial envelope temperature at the beginning of the identification sequence) is the average of the initial indoor temperature 𝑇 𝑖𝑛𝑡,𝑖𝑛𝑖𝑡 and outdoor temperature 𝑇 𝑒𝑥𝑡,𝑖𝑛𝑖𝑡 . Bounds are applied to keep parameters values within reasonable physical values. 

Between 𝑇 𝑒𝑥𝑡,𝑖𝑛𝑖𝑡 𝑎𝑛𝑑 𝑇 𝑖𝑛𝑡,𝑖𝑛𝑖𝑡 (𝑇 𝑒𝑥𝑡,𝑖𝑛𝑖𝑡 + 𝑇 𝑖𝑛𝑡,𝑖𝑛𝑖𝑡 )/2 Metamodels 2 classes of machine learning model are studied: ridge linear regression (referred in the following sections by the short name "Ridge") and multilayer perceptron (MLP). These models are chosen because their simplicity is suitable to the small quantity of data of the learning task. Their input features are a combination of:  classic variables on [𝛿 -7, 𝛿 -1]: same variables as input of RC model, 𝑇 𝑒𝑥𝑡 , 𝑃 ℎ𝑒𝑎𝑡 𝑎𝑛𝑑 𝑃 𝑠𝑜𝑙 . See explanation in the following paragraph.

 external variables or not (respectively marked "_ev1" or "_ev0" in the short names which will appear later in this paper) on [𝛿 -7, 𝛿 -1], except occupation which is assumed to be known in advance on [𝛿 -6, 𝛿]: wind speed and occupation.  contextual variables : moment in the year, coded by a float on [-1,+1], with -1 being on the moment of new year, close to the middle of winter, and +1 being close to the middle of summer in June. For the classic variables, instead of giving the whole 3 time series, we decided to give descriptive statistics (mean and hourly total variation). Variants of the input are:

 cvDay = give daily statistics of classic variables  cvWeek = give 1 statistics for whole sequence of measures [𝛿 -7, 𝛿 -1]  cv71 = give daily statistics only for the day before (δ-1) and the same day of last week (δ-7), in order to account for the weekly cycle on input. The target variables are the 6 parameters for our 2R2C model, provided by the identification on Year 1 for the ML model to train on: 𝑦 = [𝑅 𝑖 , 𝑅 𝑜 , 𝐶 𝑖 , 𝐶 𝑒 , 𝐴 𝑖 , 𝐴 𝑒 ] (6)

Prediction loop

Prediction is done in a day-by-day manner, reinitializing 𝑇 𝑖𝑛𝑡,𝑅𝐶 to match 𝑇 𝑖𝑛𝑡,𝑟𝑒𝑓 each beginning of day and producing 1 day of prediction on each iteration.

We assume that we can anticipate in advance occupation of day 𝛿 in the form of occupation schedule in the prediction phase with the ML model. Since our focus in on evaluating the prediction of temperature, other inputs which are weather data and 𝑃 ℎ𝑒𝑎𝑡 during the day ahead are considered to be known in advance and are given to RC model. Prediction of day 𝑑 is done from 𝜃 𝑅𝐶,𝑑 which got identified from measures of [𝛿 -7, 𝛿 -1] inclusive.

Validation

The following methods of estimating and updating 𝜃 𝑅𝐶 over the prediction loop are compared:  LS, 𝜃 𝑅𝐶 static all year based on Year 1 (LSreuse_year)  LS, reuse 𝜃 𝑅𝐶 from Year 1, piecewise static by week (LSreuse_week, chosen to be the baseline)  LS, reidentify 𝜃 𝑅𝐶 on-line, piecewise static by week (LSnew_week)  Machine learning methods:

 Ridge, update daily (ridge_day)  MLP, update daily (MLP_day) The validation target is indoor temperature prediction accuracy, using mean absolute error (MAE) as the metric. It is the error of the predicted indoor temperature 𝑇 𝑖𝑛𝑡 from the RC simulation with respect to the reference data. For reuseLS_year, reuse identification results of Year 1 to calculate a single parameter set for prediction in Year2 by averaging:

𝜃 𝑅𝐶 𝑌𝑒𝑎𝑟2 = 1 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑑𝑎𝑦𝑠 ∑ 𝜃 𝑅𝐶,𝐿𝑆 𝛿,𝑌𝑒𝑎𝑟1 𝛿 (3)
For reuseLS_week, reuse the parameter set of the same week in Year 1 to predict in Year 2. Thus each 7 consecutive days in Year2 share the same 𝜃 𝑅𝐶 .

For newLS_week, reidentify 𝜃 𝑅𝐶 weekly using Year 2 data to apply to the next 7 consecutive days as shown in Figure 4.

Results and discussion

Identification for train set

To increase the amount of data for training, identification is done with sliding window at a step size of 1 day instead of 7 days. The width of the window is 7 days. 

Training of ML models

The training is done in Python with the scikit-learn package [START_REF] Pedregosa | Scikit-Learn: Machine Learning in Python[END_REF]. The 4 target variables 𝑅 𝑖 , 𝑅 𝑜 , 𝐶 𝑖 , 𝐶 𝑒 are log-transformed, considering their behavior in Figure 7. The input features are standardized.

Since MLP results depend on random initialization, multiple trainings are performed for this type of model with the seed of the pseudorandom generator going from 1 to 15, then the model with the best test score on Year 1 gets selected for subsequent steps. To train the MLP, the following parameters are seen to produce best results:  Regularization coefficient alpha = 1.  Single hidden layer of 8 neurons.  ReLU activation function. On the other hand, this was seen to produce more aberrant values in 𝜃 𝑅𝐶 on the validation set. These values were then clipped to be within acceptable bounds for 𝜃 𝑅𝐶 , as specified in the classic identification step (Table 2), before being used for prediction. For Ridge regression, setting alpha = 1 was seen to produce better results. Of the two external variables tested, wind speed is found to be of little importance and was removed from subsequent tests.

Prediction accuracy and speed

The LSnew_week method took over 4 minutes to reidentify 52 𝜃 𝑅𝐶 , while the same process for the ML models took negligible time. All the predicted 𝑇 𝑖𝑛𝑡,𝑅𝐶 sequences, which are 1 day long, are concatenated then compared with the reference indoor temperature 𝑇 𝑖𝑛𝑡,𝑟𝑒𝑓 . Statistics on absolute error (AE) over the whole simulated year are calculated for each tested method: mean absolute error (MAE), standard deviation and maximum AE. Table 3 shows the results for some of the tested methods. Contrary to expectation, the LSnew_week method (updating the 𝜃 𝑅𝐶 with newly identified values) performed worse than baseline. This could be explained by the instability of the classic identification step which induces some randomness in the prediction results. Therefore, a performance better than that of LSnew_week but poorer than the baseline method (which is between 0.87 and 0.91) can be considered plausibly desirable, which is the case for the Ridge_day methods shown in Table 3.

The prediction from some of the methods are shown in Figure 8 in comparison with the reference 𝑇 𝑖𝑛𝑡 over 2 days in March. In this example, reusing 𝜃 𝑅𝐶 from the previous year delivers the worst result. Reidentifying by least-squares optimization gave a better prediction but fails to reproduce the thermal dynamics of the building on the first day shown. The new method with metamodel (Ridge_day_cvWeek_ev1) produced the best prediction over the two days shown. On the other hand, the new methods are seen to fail on some other days of the year. 4. This can be due to the random weight initialization which is inherent to neural networks. This might also be explained by the small quantity or richness of training data. The MLP model is therefore not suitable for our purposes. 

Limits of the study

The ML identifier depends on the results of classical identification for its training thus it is limited by the weaknesses of this step (e.g. poor choice of identification sequence length). Furthermore, the ML model still does not incorporate knowledge of building physics and of RC model dynamics, limiting its potential.

The reference data also presents some limits: the building usage lacks randomness compared to reality because it is based on a weekly schedule which does not change between Year 1 and Year 2. Moreover, the weather file used are typical meteorological year data instead of normal, non-averaged weather data.

Conclusion

We developed and tested a method to expand grey-box thermal modelling of buildings by modelling the medium term evolution of the RC parameters in a 2 step approach: perform classic parameter identification by optimization then construct a model to predict the appropriate RC parameters, effectively learning the identification task while taking into account external factors. 2 classes of identifying models were usedlinear ridge regression and multi-layer perceptron, then compared to more naïve methods of readjusting RC parameters. Firstly, the test results quantified the merit of going from constant RC parameters to piecewise-static for year-long simulations (2.79°C MAE versus <1°C MAE). 2R2C models given by the new ML-driven identification method plausibly attained comparable prediction accuracy as classical identification method (0.89°C for ML-driven versus 0.91°C for classic identification).

More tests should be done to see if these conclusions can still apply to more complex RC model structures, using more realistic reference data. The presented method can also be applied to grey-box modelling of complex systems in other scientific domains where simplifying modelling assumptions and external disturbances are involved. 

Nomenclature

Figure 1 -

 1 Figure 1 -Classical RC modelling scheme using leastsquares (LS) identification

  Figure3show the additional information taken into account by the ML-enhanced RC method and Figure4summarizes the workflow of the expanded modelling method.

Figure 3 -

 3 Figure 3 -ML enhanced RC modelling scheme

Figure 5 :

 5 Figure 5: A 3D render of the studied house

Figure 6 -

 6 Figure 6-2R2C thermal network model used The model has 2 state variables, corresponding to the thermal masses modelled: thermal envelope temperature 𝑇 𝑒 and indoor temperature 𝑇 𝑖𝑛𝑡 . The 3 input variables are outdoor temperature 𝑇 𝑒𝑥𝑡 , heating power 𝑃 ℎ𝑒𝑎𝑡 , and solar irradiation 𝑃 𝑠𝑜𝑙 . To facilitate parameter identification, other heat fluxes 𝑃 𝑚𝑖𝑠𝑐 due to occupants' heat gain, electric appliances usage, and ventilation are also given to the model. The system equations associated to this model are:

Figure 7 -

 7 Figure 7 -Identified RC parameters from sliding 7 days windows, presented by pairs of capacitances, resistances and surface areas. Values from rejected identifications are marked as "x" Parameter sets having unsatisfactory R2 scores of identification, decided to be 𝑅2 ≤ 0.7, are excluded from the subsequent training of the metamodels in order to improve their robustness.Training of ML modelsThe training is done in Python with the scikit-learn package[START_REF] Pedregosa | Scikit-Learn: Machine Learning in Python[END_REF]. The 4 target variables 𝑅 𝑖 , 𝑅 𝑜 , 𝐶 𝑖 , 𝐶 𝑒 are log-transformed, considering their behavior in Figure7. The input features are standardized.

Figure 8 -

 8 Figure 8 -Predicted and actual indoor air temperature over 2 days of March on validation set. The predictions are reset to actual temperature at midnight because prediction is done in a day by day manner Using neural networks as the metamodel yielded highly inconsistent results, the extreme case being the MLP with fewer input features (MLP_day_cv71_ev0) attaining a lower MAE than the most informed MLP, as shown in Table4. This can be due to the random weight initialization which is inherent to neural networks. This might also be explained by the small quantity or richness of training data. The MLP model is therefore not suitable for our purposes. Table 4 -inconsistent results of MLP methods. All units are in °C

Table 1 :

 1 Table 1 Characteristics of the used weather files

		Year 1	Year 2
	avg. 𝑇 𝑒𝑥𝑡 (°C)	11.1	12.2
	std. 𝑇		

𝑒𝑥𝑡 (°C)

  , with the stride length of 1 day, with the objective of minimizing squared identification errors on 𝑇 𝑖𝑛𝑡 over the whole observation window. The parameter vector to be optimized, 𝜃 𝑜𝑝𝑡𝑖𝑚 , consists of 𝜃 𝑅𝐶 and the starting condition of state variables, which in this case is 𝑇 𝑒,𝑖𝑛𝑖𝑡 because its initial value has significant influence on the estimated value of RC parameters.𝜃 𝑜𝑝𝑡𝑖𝑚 = [𝑅 𝑖 , 𝑅 𝑜 , 𝐶 𝑖 , 𝐶 𝑒 , 𝐴 𝑖 , 𝐴 𝑒 , T e,init ]

	𝐶 𝑖 𝑑𝑇 𝑖𝑛𝑡 =	1 𝑅 𝑖	(𝑇 𝑒 -𝑇 𝑖𝑛𝑡 )𝑑𝑡 + (𝑃 ℎ𝑒𝑎𝑡 + 𝑃 𝑚𝑖𝑠𝑐 )𝑑𝑡	
	𝐶 𝑒 𝑑𝑇 𝑒 =	1 𝑅 𝑖	+𝐴 𝑖 𝑃 𝑠𝑜𝑙 𝑑𝑡 (𝑇 𝑖𝑛𝑡 -𝑇 𝑒 )𝑑𝑡 +	𝑅 𝑜 1	(𝑇 𝑒𝑥𝑡 -𝑇 𝑒 )𝑑𝑡	(4)
	{		+A e 𝑃 𝑠𝑜𝑙 𝑑𝑡			
	Model integration is done with the Euler scheme, with a
	timestep of 2 minutes.			
	Parameter identification			
	Identification is done on sliding observation windows of
	7 days width					

Table 2 -

 2 Parameter bounds and initial guesses for optimization

	Parameter	Min	Max	Initial guess
	𝑅 𝑖 (J/K)	5 × 10 -4	5 × 10 -2	1 × 10 -2
	𝑅 𝑜 (J/K)	5 × 10 -4	5 × 10 -2	1 × 10 -2
	𝐶 𝑖 (K/W)	1 × 10 5	5 × 10 7	1 × 10 6
	𝐶 𝑒 (K/W)	1 × 10 6	5 × 10 8	1 × 10 7
	𝐴 𝑖 (m²)	0.01	10	3
	𝐴 𝑒 (m²)	1	100	10
	𝑇 𝑒,𝑖𝑛𝑖𝑡			

Table 3

 3 

	-Prediction accuracy of different methods. All
	units are in °C		
		MAE	std. AE max AE
	Ridge_day_cvWeek_ev1	0.89	0.81	4.86
	Ridge_day_cvDay_ev1	0.88	0.69	4.36
	MLP_day_cvWeek_ev1	1.25	1.48	10.76
	LSnew_week	0.91	0.83	5.36
	LSreuse_week (baseline)	0.87	0.83	5.89
	LSreuse_year	2.79	2.27	8.85

Table 4 -

 4 inconsistent results of MLP methods.

				All units
	are in °C		
		MAE std. AE	max AE
	MLP_day_cvWeek_ev1	1.25	1.48	10.76
	MLP_day_cvDay_ev1	1.06	1.02	12.51
	MLP_day_cv71_ev0	0.86	0.70	7.14
	LSnew_week	0.91	0.83	5.36
	LSreuse_week (baseline)	0.87	0.83	5.89
	Although the ML-driven methods did not perform better
	than the baseline considering MAE, the Ridge methods
	achieved smaller standard deviation of error and lower
	maximum error. In other words, the Ridge methods
	appeared to produce more consistent predictions.
	At current configurations, the benefit of taking into
	account external variables and updating 𝜃 𝑅𝐶 more
	frequently are not significant. The identification sequence
	length, currently chosen to be 7 previous days, can be
	reconsidered. Performing identification on shorter
	sequences, e.g. 2 days or even 1 day, can allow capturing
	faster dynamics in 𝜃 𝑅𝐶 , notably the usage difference
	between weekdays and weekends, leading to more
	prediction accuracy gains from the ML-driven
	identification. On the other hands, identifying on shorter

  𝜃 𝑅𝐶parameters of the RC model 𝜃 𝑅𝐶,𝜇 (𝛿) -𝜃 𝑅𝐶 obtained by method 𝜇 and used to simulate day 𝛿 𝜃 𝑜𝑝𝑡𝑖𝑚parameters vector to be optimized LSleast-squares optimization 𝑇 𝑖𝑛𝑡indoor temperature 𝑇 𝑒𝑥𝑡outdoor temperature 𝑇 𝑒wall (envelope) temperature 𝑇 𝑖𝑛𝑡indoor temperature 𝐶 𝑖thermal capacity of indoor air 𝐶 𝑒thermal capacity of wall (envelope) 𝑅 𝑖 , 𝑅 𝑜thermal resistance of wall 𝐴 𝑖 , 𝐴 𝑒indoor and outdoor area receiving solar irradiation 𝑃 𝑠𝑜𝑙solar irradiation, assimilated with global horizontal irradiation (GHI) MAEmean absolute error RMSEroot-mean-square error
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