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Abstract

The purpose of this work is to define an adequate efficiency bound
in some models presenting some identification problems. We show how
it is possible to define such bounds in some regular semi-parametric
models (in the sense of Le Cam) when an identifying constraint
is available, despite the degeneracy of the information matrix. We
establish a new convolution theorem in this context. We illustrate
the computation of the information bound for some standard iden-
tifiability constraints, in some interesting models, including probit,
single-index, Anova models. We also show how a two-step procedure
still based on a preliminary estimator satisfying approximately the
constraint, allows us to obtain an efficient estimator of the parameters.

Keywords: semiparametric models, efficiency bounds, unidentifiable
parameters, Bahadur efficiency
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1 Introduction

The problem of asymptotic efficiency is an old statistical problem to which
Bahadur, Fischer, Cramér, and Rao have brought important contributions. In
particular, Bahadur (1960), (see also Shen, 2001 ) has shown that the notion
of Bahadur efficiency is strongly related to Fisher information in identifiable
regular parametric models. However, in many parametric and semiparametric
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models, the parameters of interest are not directly identifiable and can only
be estimated under some well-chosen identifiability constraints. Unless a clear
reparametrization of the problem is easy to implement, this makes the com-
putation and the notion of efficiency difficult to quantify. For instance, even
in some very simple models (with multidimensional parameters), the Fisher
Information matrix may be degenerate (not full rank) making the definition
of an efficiency bound (in all different senses) or a Cramér-Rao bound quite
problematic: recall that Rothenberg (1971) has shown that weak local identi-
fication of the parameter of interest is equivalent to the non-degeneracy of the
Fisher Information matrix in parametric models. In some parametric models,
it is possible to compute such a bound by a correct reparametrization of the
original (non-identifiable) parameters. Consider for instance the case of a pro-
bit model, in which we constrain the variance of the latent model to be equal to
1, then, in that case, the identification problem is easily handled and the effi-
ciency bound may be computed only over the remaining parameters. However,
reparametrization may be more complex in many semiparametric models, and
computation of the corresponding efficiency bound is even more problematic.
This problem appears in many semiparametric models including the following
models.

• Single index models (and their generalization, multiple index model) or slice
inverse regression (see Ma & Zhu, 2013). The parameters are generally iden-
tifiable only under some normalizing constraints (for instance the L2 norm of
the parameter vector say ∥β∥2 is fixed to one) and a sign constraint indicat-
ing the direction of at least one component. A spherical reparametrization as
suggested in the work of Ma and Zhu (2013) may be difficult to implement
in practice to get both an efficient estimator and an explicit computation of
the information matrix.

• Factor analysis and non-negative matrix factorization: the same problems
appear here as in single-index models. The direction of the cone to which
the data belongs should satisfy some constraints (see ?).

• Simultaneous equations problems in econometric theory: identifiability con-
ditions are also generally necessary but reparametrization of the model in
terms of structural equations with identifiable parameters is not always easy.

• Mixture models: identifiability constraints are also necessary and identifica-
tion becomes quite intricate for semi-parametric models.

• Neural network models: Fukumizu (1996) has obtained conditions for the
non-degeneracy of the Fisher Information matrix which essentially amount
to eliminating a layer(s) of the network (that is putting some parameters
equal to 0). See also Fukumizu (2003) for local conic reparametrization of
the model in this framework.

The purpose of this paper is to propose a general framework for computing
efficiency bounds in some non-identifiable semiparametric models when some
identifiability constraints are available. Despite some obvious connections, our
problem is different from the problem of obtaining efficiency bounds in an
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identifiable model, under some constraints on the parameters, as studied in
Stoica and Ng (1998) for parametric models, and in Susyanto and Klaassen
(2017) and Klaassen and Susyanto (2019) for semiparametric models. In our
case, the Fisher information of the original model is not invertible. One may
think that the approach of these authors may be extended by using a gener-
alized inverse of the Fisher information. However, this is not true as will be
shown in a simple example. Despite this fact, some ideas are quite similar: in
particular, the main idea in a parametric model is to project the score func-
tion in the space orthogonal to the gradients of the constraints. The same
techniques are applied to semiparametric models, extending arguments from
Bickel, Klaassen, Ritov, and Wellner (1998), Klaassen and Susyanto (2019)
and Kosorok (2008). The efficiency bound that we propose is itself degener-
ate and depends on the identifying constraint but enables one to recover the
right bounds for any reparametrization (satisfying the constraints). We also
show that the usual two-step procedure considered in Cheng (2013) based on
a preliminary estimator of the parameters (satisfying approximately the con-
straints up to order O(n−1/2) and an adequate estimator of the efficient score
function allows us to get efficient estimators of the parameters.

2 Efficiency bounds under identifiability
constraints

2.1 Background: Theory and Concepts

Consider a parametric model PΘ =
{
Pθ, θ ∈ Θ ⊂ Rk

}
which is supposed to be

dominated by a measure µ. The space Rk is endowed with a generic L2 norm
∥.∥. The set Θ is assumed to be an open set. Put pθ = dPθ

dµ . As in the theory

of Le Cam (see Le Cam, 1986) we use the reparametrization

s : Rk → L2 (µ)

θ 7→ s (θ) =
√
pθ,

(1)

which allows to consider s(θ) =
√
pθ as an element of an Hilbert space. In this

space, we recall the definition of quadratic differentiability (see Le Cam, 1986).
The model is said to be quadratically differentiable at θ ∈ Θ, if there exists

a gradient l̇θ ∈ Rk such that∫ (
p

1
2

θ+h − p
1
2

θ − 1

2
ht l̇θp

1
2

θ

)2

dµ = o(∥h∥2) as h→ 0.

Recall that differentiability in quadratic mean is essentially a smoothness
assumption allowing for some singularities in the model, which ensures that the
classical properties of maximum likelihood still hold. For example the Laplace
distribution with pθ(x) =

1
2 exp(− | x− θ |) is differentiable in quadratic mean

with gradient l̇θ given by l̇θ(x) = sign(x− θ).
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In a quadratically differentiable model, the Fisher information matrix is
defined by

I(θ) = E(l̇θ l̇θ
t
).

When a parametric model is not identifiable this matrix is not full rank
(see Rothenberg, 1971) so that the Fréchet-Darmois-Cramér-Rao information
bound can not be defined as the inverse of the matrix. In the same way,
Bahadur efficiency can not be obtained because of the degeneracy of Fisher
Information.

Definition 1 In the following, we say that a parametric model PΘ is regular (in
Le Cam sense) if for any θ ∈ Θ, pθ is quadratically differentiable and the Fisher
information exists and is positive semidefinite.

Assume now that θ ∈ Θ ⊂ Rk is not identifiable but that we have
l identifiability constraints of the form G(θ) = 0, where G : Rk → Rl is
some measurable function. This means that there exists a transformation ϕ :
Rk → Rk−l such that ϕ = ϕ(θ) is identifiable. However, such transformation
may not be explicit and sometimes difficult to exhibit.

Define the gradient matrix of the constraints in the set of the real matrices
of size (l, k),Ml, k(R), by Ġθ = dGθ

dθt . It is assumed to have full rank l. Introduce
Uθ in Mk, k−l(R) a matrix such that U tθUθ = Ik−l, whose columns form an

orthonormal basis for the null space of Ġθ that is such that

ĠθUθ = 0.

We now recall the notion of local regular estimators (see Bickel et al., 1998).

Definition 2 Let Tn be a
√
n − consistent estimator of θ. Define a sequence of

values θn = θ + h/
√
n , h ∈ Ck , endowed with the L2 norm and such that, for n

large enough, θn ∈ Θ. The statistics Tn is said to be locally regular at θ with limiting
distribution Z iff, for any h such that ∥h∥ ≤ M, where M is a positive constant, we
have

√
n(Tn − θn)

LPθn−→
n→∞

Z,

where
LPθn−→ means convergence in law under the distribution Pθn of the observations.

Intuitively, it means that the statistics Tn is asymptotically locally robust,
in that a little change in the parameter θn = θ + h/

√
n will not change the

limiting distribution Z of Tn when it is correctly centered by θn .
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2.2 Convolution theorem under identifiability constraints
in parametric models

2.2.1 Convolution theorem

The Hajek-Le Cam convolution theorem (see van der Vaart, 2000,Theorem
25.20, and Le Cam, 1986) is an important tool for defining the notion of efficient
estimators. The following result extends this theorem to parameters that are
not identifiable, up to a replacement of the inverse of Fisher Information bound
by the bound

Bθ = Uθ(U
t
θI(θ)Uθ)

−1U tθ.

The form of this bound may be understood as the generalized inverse of the
variance of a projected score. Let us introduce the orthogonal projection matrix
onto the columns of Uθ in Mk, k(R) given by

PU = Uθ(U
t
θUθ)

−1U tθ = UθU
t
θ.

Then the projected score PU
.

lθ has variance

V (PU
.

lθ) = UθU
t
θI(θ)UθU

t
θ,

which plays the role of the new Fisher information under the given constraints.
Then it is easy to see that the generalized inverse of this quantity is given by
Bθ. Indeed, using the fact that U tθUθ = Ik−l, we have

BθV (PU
.

lθ)Bθ = Uθ(U
t
θI(θ)Uθ)

−1U tθ[UθU
t
θI(θ)UθU

t
θ]Uθ(U

t
θI(θ)Uθ)

−1U tθ

= Uθ(U
t
θI(θ)Uθ)

−1(U tθI(θ)Uθ)(U
t
θI(θ)Uθ)

−1U tθ

= Uθ(U
t
θI(θ)Uθ)

−1U tθ = Bθ

and

V (PU
.

lθ)BθV (PU
.

lθ) = UθU
t
θI(θ)UθU

t
θ[Uθ(U

t
θI(θ)Uθ)

−1U tθ]UθU
t
θI(θ)UθU

t
θ

= Uθ(U
t
θI(θ)Uθ)(U

t
θI(θ)Uθ)

−1(U tθI(θ)Uθ)U
t
θ

= UθU
t
θI(θ)UθU

t
θ = V (PU lθ).

In the unbiased case, this formula also covers the identifiable case with some
constraints given by the function G on the parameter. Such constrained param-
eters have been considered in Stoica and Ng (1998), Susyanto and Klaassen
(2017) and Klaassen and Susyanto (2019) and their expressions can used

directly in that case when V (PU
.

lθ) is of full rank. Our proof covers unidentified
parametric models. In our case, since the original parameter is not identifi-

able, the matrix V (PU
.

lθ) is not directly invertible (as assumed in the paper of
Stoica & Ng, 1998).
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For reasons that will become clearer later, the quantity Bθ
.

lθ is called the
efficient score and we have as in the usual identifiable parametric case

V (Bθ
.

lθ) = Bθ.

Lemma 1 Consider a regular parametric model PΘ =
{
Pθ, θ ∈ Θ ⊂ Rk

}
, which

is quadratically differentiable in θ ∈ Θ. The function G : Rk → Rl defining the
constraints is assumed to be differentiable in θ. Let Tn be a locally regular estimator
of θ. Then, we have the following Hajek-Le Cam convolution theorem, under the
identifiability constraints,

√
n (Tn − θ)− 1√

n

n∑
i=1

Bθ
.
lθ (Xi)

1√
n

n∑
i=1

Bθ
.
l (Xi)

 LPθ−→
n→∞

(
∆Pθ

Zθ

)
,

where Zθ is distributed as a centered normal distribution N (0,Bθ) with variance-
covariance matrix Bθ and is independent from the asymptotic distribution ∆Pθ

.

Proof We follow the arguments of Bickel et al. (1998), Theorem 1 p. 24, with slight
modifications to take into account the identifiability constraints. Define the couple
of r.v.’s

(Rn, Vn) = (
√
n (Tn − θ) ,

1√
n

n∑
i=1

PU
.
lθ (Xi))

and denote (R, V ) its joint limit (for eventually a particular sub-sequence that we
denote by n by a slight abuse of notation, see a similar construction in Bickel et
al., 1998). By the CLT, the limiting distribution of the second component is V =
N(0, PU I(θ)PU ). Now define, for h ∈ Ck,

Wn(h) =

n∑
log(p

θ+
PU h√

n

(Xi))−
1√
n

n∑
log(pθ (Xi))

with limiting distribution htV − 1
2h
tPU I(θ)PUh.

Notice that under P
θ+

PU h√
n

we have Rn = R+ PUh+ oP (1) it follows that

EP
θ+

PU h√
n

exp
(
iatRn

)
→

n→∞
E(exp(iatR)) exp(iatPUh).

But by contiguity, we have as well

EP
θ+

PU h√
n

exp(iatRn) = EPθ
exp(iatRn +Wn(h)) + o(1).

It follows that, by identifying these two expressions at the limit that we have

EPθ
exp(iatR+ htV − 1

2
htPU I(θ)PUh) = E(exp(iatR)) exp(iatPUh),

yielding

EPθ
exp(iatR+ htV ) = E(exp(iatR)) exp(iatPUh+

1

2
htPU I(θ)PUh).
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For any b ∈ Rk, put ht = −i(a − b)tBθ then, using the fact that PUBθ = Bθ
and BθI(θ)Bθ = Bθ, we get

EPθ
exp(iatR− i(a− b)tBθV )

= EPθ
exp(iat(R− BθV ) + ibtBθV )

= E(exp(iatR)) exp

(
atPUBθ(a− b)− 1

2
(a− b)tBθPU I(θ)PUBθ(a− b)

)
= E(exp(iatR)) exp

(
atBθ(a− b)− 1

2
(a− b)tBθ(a− b)

)
.

It follows that, for b = 0,

EPθ
exp(iat(R− BθV ) = E(exp(iatR)) exp

(
1

2
atBθa

)
,

yielding

EPθ
exp(iat(R− BθV ) + ibtBθV ) = EPθ

exp(iat(R− BθV ) exp

(
−1

2
atBθa

)
exp

(
atBθ(a− b)− 1

2
(a− b)tBθ(a− b)

)
= EPθ

exp(iat(R− BθV ) exp(−1

2
btBθb).

Since this is the limiting characteristic function of (Rn − BθVn,BθVn), we conclude
that these two components are independent by the factorization of the characteristic
function and that the second component is Gaussian. From this, using again the fact
that BθPU = Bθ, we get the convolution theorem.

Notice that VPθ
(
√
n (Tn − θ) − 1√

n

n∑
Bθ

i=1

.
lθ (Xi)) = V ar(∆Pθ

) and by independence

we get
lim
n→∞

VPθ
(
√
n (Tn − θ)) ≥ VPθ

(Zθ) = BθI(θ)Btθ = Bθ.
It follows that the smallest variance of any regular estimator of Tn is given by Bθ
and Tn is efficient iff Tn is asymptotically a.s. linear with

√
n (Tn − θ) =

1√
n

n∑
i=1

Bθ
.
lθ (Xi) + o(1).

□

Remark 1 If we have an identifiable reparametrization ϕ = ϕ(θ) then we can choose

Uθ to be the orthogonalized version of
.
ϕ(θ)t in M(k,k−l).

Lemma 2 The efficiency bound for θ under the identifiability constraint G is given
by

Bθ = Uθ(U
t
θI(θ)Uθ)

−1U tθ,

where I(θ) is the Fisher information of the unconstrained likelihood. .

Proof The result follows immediately from the convolution theorem given before.
Indeed the smallest variance of Tn is obtained when V ar(∆Pθ

) = 0 and in that case
the variance of the estimator becomes Bθ. □
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2.2.2 Examples

Example 1 Consider a simple Probit model. For this, consider Y with Bernoulli

distribution B(1,Φ(µσ )) , θ =

(
µ
σ

)
, where Φ is the cdf of the standard normal

distribution. Only µ
σ and functions of this quantity are identifiable in this model.

One may propose the identifiability constraints σ = 1 but also µ = 1. This is a toy
example that illustrates the behavior of the tools we introduced before.

The log-likelihood is given by

lθ(y) = log(pθ(y)) = y log Φ(
µ

σ
) + (1− y) log(1− Φ(

µ

σ
))

so that the gradient or score function is given by

l̇θ =

 y
σ
ϕ(µ

σ )

Φ(µ
σ )

− (1−y)
σ

ϕ(µ
σ )

1−Φ(µ
σ )

−yµ
σ2

ϕ(µ
σ )

Φ(µ
σ )

+
(1−y)µ
σ2

ϕ(µ
σ )

1−Φ(µ
σ )


=

ϕ(µσ )(y − Φ(µσ ))

σΦ(µσ )(1− Φ(µσ ))

(
1

−µ
σ

)
,

yielding

I(θ) =
1

σ2

ϕ(µσ )
2

Φ(µσ )(1− Φ(µσ ))

(
1 −µ

σ

−µ
σ

µ2

σ2

)
.

Notice that I(θ) is obviously of rank 1. The generalized inverse of this matrix can be
obtained by singular value decomposition and is given by

I(θ)− = σ2Φ(
µ
σ )(1− Φ(µσ ))

ϕ(µσ )
2(1 + µ2

σ2 )2

(
1 −µ

σ

−µ
σ

µ2

σ2

)
.

Under the identifiability constraint G(θ) = σ − 1 = 0 we get Ġθ = (0, 1) and we
have

Uθ =

(
1

0

)
,

so that the efficiency bound is given by a straightforward calculus, by

Bθ =
Φ(µ)(1− Φ(µ))

ϕ(µ)2(1 + µ2)2

(
1 0
0 0

)
.

The upper left corner clearly gives the right bound for µ (which is identifiable now)
and since σ = 1 is constant we clearly have the bound for σ equal to 0. Notice that
clearly, the information will depend on the given constraint. Notice also that the
expression appearing in Stoica and Ng (1998) or Susyanto & Klaassen, 2017 and
Klaassen & Susyanto, 2019) are only valid when I(θ) is full rank. It does not hold if
one replaces the inverse with the generalized inverse, as could be expected. Indeed,
the expression given in Stoica and Ng (1998) would become

I−1
θ = I(θ)− − I(θ)−Ġtθ(Ġθ I(θ)−Ġtθ)

−1ĠθI(θ)
−.

A straightforward calculation shows in this example that the right bound is given by

I−1
θ = I(θ)− − 1

µ2

Φ(µ)(1− Φ(µ))

ϕ(µ)2(1 + µ2)2

(
1 −µ

−µ µ2

)(
0 0
0 1

)(
1 −µ

−µ µ2

)
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=
Φ(µ)(1− Φ(µ))

ϕ(µ)2(1 + µ2)2

(
1 −µ

−µ µ2

)
− Φ(µ)(1− Φ(µ))

ϕ(µ)2(1 + µ2)2

(
1 −µ

−µ µ2

)
= 0.

Example 2 We consider the following artificial linear model in order to explain later,
how the information matrix for a single index model is defined :

Y = cXtβ + ε , θ =

(
c
β

)
.

The residual ε is assumed to have known density f with Ef (ε | X) = 0 and Vf (ε |
X) = σ2 < ∞. The Xi are i.i.d with density g.

The identifiability condition c = 1 clearly leads to the usual linear regression
for which we can compute directly the Fisher information for β. However, we may
be rather interested, as in single-index models, by the direction of β assuming that
∥β∥2 = 1 and c > 0.

The likelihood of the model is given by

Πni=1f(yi − cxtiβ)g(xi).

It follows that the individual score is given by

l̇θ(y | x) =

(
x

t

β
cx

)
f ′(y − cxtβ)

f(y − cxtβ)

V (l̇θ(y | x)) = Ef

(
f ′(ε)
f(ε)

)2

E

((
xtβ
cx

)(
βtx cxt

))
= Ef

(
f ′(ε)
f(ε)

)2(
E(xtββtx) cE(xtβxt)

cE(xβtx) c2E(xxt)

)
= Ef

(
f ′(ε)
f(ε)

)2(
βtE(xxt)β cβtE(xxt)

cE(xxt)β c2E(xxt),

)
,

which is of course of rank k. To identify the model we ensure the constraint that
∥β∥2 = 1. For simplicity, we also assume that at least one of the coefficient is non
zero and more precisely β1 ̸= 0 then the matrix Ġθ = dGθ

dθt is given by

Ġθ = 2(βt, 0).

A matrix of dimension (k + 1, k) orthogonal to Ġθ is given by

Ũ1 =



−β2

β1
· · · −βk

β1
0

1 0 · · · 0

0 1
. . .

...
...

. . .
. . . 0

0 . . . 0 1


,

which can be straightforwardly orthogonalized by a Gram-Schmidt orthogonalization
technique (see below the examples in part 4).

Example 3 One-way factor analysis.
Consider the effect model Yi,j = µ + ai + ϵi,j for i = 1, . . . , I the experimental

units and j = 1, . . . , ni. Here ni is the number of experimental units in the treatment
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group i and n =
∑I
i=1 ni. Assume for simplicity that ϵi,j are i.i.d. N(0, σ2) and

that the design is balanced that is ni = n/I for all i. Several proposals have been
considered to identify the effect ai. One may choose a reference treatment and put
ai = 0. Another solution is to consider the treatment effects to satisfy

∑I
i=1 ai = 0,

which is easier to interpret. We will consider this last solution.
Let’s define the parameter of the model θ = (µ, a1, . . . , aI , σ). The log-likelihood

is given by

lθ =
n

2
log(2π)− n log(σ)− 1

2σ2

∑
i,j

(yi,j − µ− ai)
2

and the score function by

l̇θ =



− 1

σ2

∑
i,j

(yi,j − µ− ai)

− 1

σ2

n1∑
j=1

(y1,j − µ− a1)

...

− 1

σ2

nI∑
j=1

(yI,j − µ− aI)

−n

σ
+

1

σ3

∑
i,j

(yi,j − µ− ai)
2



.

That yields the Fisher information matrix

I(θ) =
1

σ2



1 I−1 · · · · · · I−1 0

I−1 I−1 0 · · · 0 0
... 0

. . . 0
...

...
...

... 0
. . . 0

...

I−1 0 · · · 0 I−1 0
0 0 · · · · · · 0 2


.

The matrix I(θ) is clearly not full of rank.

Under the identifiability constraint G(θ) =
∑I
i=1 ai = 0, we choose the gradient

matrix Ġθ = (0, 1, . . . , 1, 0) of length I +2. A matrix of size (I +2, I +1) orthogonal
to Ġθ is given by 

1 0 · · · · · · · · · 0
0 −1 −1 · · · −1 0
... 1 0 · · · 0

...
... 0 1

. . .
...

...
...

...
. . .

. . . 0 0
0 0 . . . 0 1 0
0 0 . . . 0 0 1


.

Its Gram-Schmidt orthogonalization Uθ can be easily computed and is given by



Sankhya A 2021 LATEX template

Efficiency bounds under identifiability constraints in semiparametric models 11

Uθ =



1 0 · · · · · · · · · 0

0 − 1√
2

− 1√
2
√
3

· · · − 1√
I(I+1)

0

... 1√
2

− 1√
2
√
3

· · · − 1√
I(I+1)

...

... 0
√

2
3 · · · − 1√

I(I+1)

...

...
... 0 · · · − 1√

I(I+1)
0

0 0 · · · 0
√

I
I+1 0

0 0 · · · 0 0 1


.

Notice that it does not depend on θ. Some lengthy but easy calculations yield the
efficiency bound

Bθ = σ2



1 0 · · · · · · · · · · · · 0
0 I − 1 −1 · · · · · · −1 0
... −1 I − 1 −1 · · · −1

...
... −1 −1 I − 1 −1

...
... −1 −1 · · ·

. . . −1 0
0 −1 · · · −1 −1 I − 1 0

0 0 · · · 0 0 1
2


.

Notice that the usual estimator of the individual effect Y i,.−Y n has precisely its vari-

ance equal to (I−1)σ2/n and is thus efficient. A straightforward computation shows
that the complete estimator Y n, Y i,. − Y n has the correct (degenerate) efficiency
bound (for simplicity we do not include the standard deviation which is orthogonal
to the other components and is only asymptotically efficient).

3 Semiparametric Efficiency bounds under
identifiability constraints

3.1 Notations

We now consider a semiparametric model (dominated by a measure µ) indexed
by two parameters θ ∈ Θ the parameter of interest and η ∈ H, the nuisance
parameter

P =
{
Pθ,η, θ ∈ Θ ⊂ Rk; η ∈ H

}
. (2)

We define L2 (Pθ,η) the Hilbert space of any real function with finite variance

with respect to Pθ,η and
◦
L2 (Pθ,η) the subset of L2 (Pθ,η) of functions with

null expectation. In the following
Pθ,η−→ will used for convergence in probability

according to the law Pθ,η of the observations and similarly
LPθ,η−→ is convergence

in distribution. Rather than using the heavy notation oPθ,η
(resp. OPθ,η

) we
will use oP (resp. OP ) when there is no possible confusion.
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We denote the Radon-Nikodym density

pθ,η =
dPθ,η
dµ

and the corresponding score in the quadratic sense in θ by l̇θ,η. When the
model is differentiable in the usual sense we have

l̇θ,η =
d log(pθ,η)

dθ
=

.
pθ,η
pθ,η

.

In the following, we assume that PΘ,H is regular in the sense that any paramet-
ric submodel in PΘ,H is regular in a parametric sense, that is, any submodel
is quadratically differentiable and the Fisher information exists and is positive
semidefinite. We refer to Bickel et al. (1998) for a more detailed presentation
of the following concept and recall only a few useful definitions.

3.2 Tangent spaces

We refer to Kosorok (2008) in particular part III for a nice introduction to
tangent space and their use in semiparametric models. The tangent set at a
given point P0 = Pθ,η is

T [Pθ,η,P] =
{
g ∈ L2 (Pθ,η) , such that there exists a regular path

(pt)t∈R ⊂ P; p0 = pθ,η with score g in t = 0

}
.

In other words, this tangent space is the set of all the scores (with finite
variance) of all the regular parametric models indexed by some real parameter
t, passing through pθ,η which can be constructed in the semiparametric model.

We then define the tangent space at P0 = Pθ,η as the closure of the span
of T [Pθ,η,P]

TL [Pθ,η,P] = Lin [T [Pθ,η,P]] .
We similarly define the tangent space according to parameter θ, as the tan-
gent space of any parametric model P1 (η0) =

{
Pθ,η0 ; θ ∈ Rk

}
, with a fixed

nuisance parameter say

Ṗ1 = TL [Pθ,η0 ,P1 (η0)] =
{
ct l̇θ,η0 ; c ∈ Rk

}
.

Similarly we consider for a fixed θ = θ0 the tangent space with respect to the
nuisance parameter in the model

P2 (θ0) = {Pθ0,η; η ∈ H}
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say

Ṗ2 = TL [Pθ0,η,P2 (θ0)]

= Lin

{
g ∈

◦
L2 (Pθ0,η) /∃ a parametric regular model (pt) ⊂ P2 (θ0) ;

such that p0 = pθ0,η with score g at t = 0} ⊂
◦
L2 (Pθ0,η)

}
.

As done by Bickel et al. (1998) we will assume that at a given point Pθ,η we
have

T [Pθ,η,P] = Ṗ1 + Ṗ2.

3.3 Definition of the efficiency bound and efficient scores
under identification constraints

We define ΠṖ⊥
2
as the projection onto the orthogonal complement of the nui-

sance tangent space (recall that it is a closed linear space so that the projection
exists). Define the orthogonalized score in the unconstrained model by

sθ,η = ΠṖ⊥
2
l̇θ,η.

This can be interpreted as the least favorable score among all parametric
models passing through the original model pθ,η .

Recall that Uθ is the matrix orthogonal to the gradients of the constraint,
depending only on the parameter θ. Then define as in the parametric case the
corresponding bound under the given identifiability constraints

Bθ,η = Uθ(U
t
θV (sθ,η)Uθ)

−1U tθ.

This in turn allows us to define the efficient score by

scθ,η = UθU
t
θsθ,η,

which can be seen as the projection onto the columns Uθ of the orthogonalized
score. The corresponding efficient influence function is then given by

ψθ,η = Bθ,ηscθ,η
= Uθ(U

t
θV (sθ,η)Uθ)

−1U tθUθU
t
θsθ,η

= Uθ(U
t
θV (sθ,η)Uθ)

−1U tθsθ,η

= Bθ,ηsθ,η.

Notice that V (ψθ,η) = Bθ,η.
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3.4 A convolution theorem for non-identifiable
parameters.

The following theorem establishes a convolution theorem in semiparametric
models which justifies that Bθ,η is the efficiency bound of the parameter θ
in the constrained model (notice that this bound is not full rank since the
parameter is linked by the constraints). Recall that a locally regular estimator
in a semiparametric model P is an estimator that is locally regular for any
sub-parametric model in P

Theorem 3 Hajek-Le Cam convolution theorem under identifiability constraints in
semiparametric models.

Assume that
(i) the statistics Tn estimating θ is locally regular
(ii) sθ,η belong to the closure of the tangent set
(iii) Bθ is well defined. Then we have

√
n (Tn − θ)− 1√

n

n∑
i=1

Bθ,ηsθ,η (Xi)

1√
n

n∑
i=1

Bθ,ηsθ,η (Xi)

 LPθ−→
n→∞

(
∆θ,η
Zθ,η

)
,

where Zθ,η is distributed a centered normal distribution N
(
0,Bθ,η

)
with variance

Bθ,η and it is independent from ∆θ,η. It follows that the minimal variance attainable
by any regular statistics is given by

Bθ,η = Uθ(U
t
θV (sθ,η)Uθ)

−1U tθ.

Proof The arguments are similar to the ones in Bickel et al. (1998) (Th. 2 p 63)
or van der Vaart (1989). Since sθ,η is in the closure of the tangent set, it can be
approximated by a sequence of parametric models in T

[
Pθ,η,P

]
. In each of these

submodels, Tn is still locally regular. Thus on these sub-models, the convolution
theorem of the first part holds, and taking the limit eventually of subsequences (which
is possible because we work in the closure of the tangent set), we get the results (take
Vn = Vn and replace Un by Rn and I−1 by Bθ,η). □

3.5 Efficient semiparametric estimation under
approximate constraints

A natural question is if we can estimate efficiently the parameter under the
identifiability constraints (at least asymptotically). A key assumption in the
semiparametric estimation is first to find, for a fixed value θ, an estimator
of the nuisance parameter η (maybe depending on θ). Assume, for any fixed
θ, that there exists a consistent ”estimator” of the nuisance parameter η say
η̂θ,n such that

η̂θ,n − η
Pθ,η→ 0 as n→ ∞.
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Define the profile log-likelihood function with estimated nuisance parameter
as in Severini and Wong (1992)

Ln(θ) =

n∑
i=1

log(pθ,η̂θ,n).

Then the maximum likelihood estimator with estimated nuisance parameter
under the identifiability constraint is defined as

θ̃n = arg max
θ; G(θ)=0

Ln(θ).

We will later assume that this estimator is defined uniquely. It should be
noticed that, in that case, the Lagrangian may be written

L = Ln(θ)− λtG(θ), with multipliers λ ∈ Rl,

so that the first-order condition becomes

·
Ln(θ)−

·
G
t

θλ = 0,

which in turn by multiplying by U tθ may be rewritten

U tθ
·
Ln(θ) = 0,

a fact that may simplify the search for an adequate candidate. If we can check
that, for some estimator θ̂n (may be the maximum likelihood estimator θ̃n),
Bθ̂n,η̂θ,nsθ̂n,η̂θ,n(x) − Bθ,ηsθ,η (x) = oP (1) uniformly in x then, by assuming

that the set of function in x {Bθ,ηsθ,η (x) , θ ∈ Θ, η ∈ H} is a Donsker class of
function and that the bias EPθ,η

Bθ̂n,η̂θ,nsθ̂n,η̂θ,n(x) is of order o(n
−1/2) then it is

easy by following the same arguments as Cheng (2013) or Cheng and Kosorok
(2009) that the constrained profile MLE will be asymptotically efficient (simply
replace their condition M1-M4 by the same assumptions on Bθ,ηsθ,η rather than
on the efficient score function). However, finding this m.l.e may be difficult in
practice and establishing its asymptotic validity may require specific structure
for the nuisance parameter (Severini & Wong, 1992).

For this reason, we will follow the iterated Newton-Raphson steps approach
of Cam (1960) (see also Cheng (2013) for extensions). Indeed a key proce-
dure in the semiparametric estimation literature is the one (or iterated) step
procedure based on an estimator of the efficient score, provided that an ini-
tial estimator of the parameter converging at rate

√
n is available. We can

proceed similarly here. Consider an initial estimator θ̂n satisfying the con-
straints G(θ̂n) = G(θ) = 0. This hypothesis may be actually relaxed to
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G(θ̂n) = oP (n
−1/2). Since we assume that asymptotically θ̂n

Pθ,η→
n→∞

θ, we will

clearly have G(θ) = 0. An initial estimator may be obtained as in Cheng (2013)
by using a grid of size proportional to n−1/2 following the procedure proposed
in Le Cam (1956).

Define the one-step estimator by

θ̂(1)n = θ̂n +
1

n

n∑
i=1

Bθ̂n,η̂θ̂n,n
sθ̂n,η̂θ̂n,n

(Xi) .

Notice that, intuitively, with this iteration procedure θ̂
(1)
n will automatically

satisfy the constraints (at least up to oP (n
−1/2)) since we will have by a

straightforward expansion

G(θ̂(1)n ) = G

(
θ̂n +

1

n

n∑
i=1

Bθ̂n,η̂θ̂n,n
sθ̂n,η̂θ̂n,n

(Xi)

)

= G(θ̂n) + Ġθ
1

n

n∑
i=1

Bθ,ηsθ̂n,η̂θ̂n,n
(Xi) + oP (n

−1/2)

= oP (n
−1/2) + 0 + oP (n

−1/2),

since we have ĠθBθ,η = ĠθUθ(U
t
θV (sθ,η)Uθ)

−1U tθ = 0 by construction of Ġθ
and Uθ.

We will make the following simplifying assumptions (other kinds of
hypotheses may be proposed according to the context).

H0 : The initial estimator is such that θ̂n − θ = OP (n
−1/2) and satisfies

G(θ̂n) = oP (n
−1/2).

H1 : For any fixed θ in the neighborhood of the true parameter value, η̂θ,n
is an estimator of η which is symmetric in the observations and bounded.
Moreover, we assume that we have the rate of convergence for some r ∈
]1/4, 1/2]

η̂θ,n − η = OP (n
−r).

H2 : The quantity Bθ,ηsθ,η (.) is continuous in both components θ and η for
H endowed with some metric inducing weak convergence.

H3 : Let θ̂n be the initial parameter estimator then we assume that the
”bias” of the estimated efficient score function is such that

EPθ,η

(
Bθ̂n,η̂θ̂n,n

sθ̂n,η̂θ̂n,n
(Xi)

)
= o(n−1/2).

H4 : The set of functions (in x) {sθ,η (x) , θ ∈ Θ, η ∈ H} is a Donsker class
of functions.



Sankhya A 2021 LATEX template

Efficiency bounds under identifiability constraints in semiparametric models 17

Then we have the following result ensuring that the iterated procedure
yields an efficient estimator satisfying asymptotically the constraints.

Theorem 4 Under the assumption H1 −H4, we have that

G(θ̂
(1)
n ) = oP (n

−1/2)

and
√
n(θ̂

(1)
n − θ)

LPθ,η−→
n→∞

N(0,Bθ,η).

Thus the one-step estimator is efficient.

To prove the theorem, we will make use of the following lemma. It is taken
from Bertail (2006). This result is very useful in semiparametric applications
in which some permutation invariance property is satisfied by the estimator of
the nuisance parameter.

Lemma 5 Assume X1, X2, . . . , Xn are i.i.d. random variables taking their values in
X and for each n, let ηn ∈ H be a symmetric function of the observations (invariant
by permutation of the observations). Let ω(x, t) x ∈ X t ∈ H be a function taking
its value in a separable Banach space, endowed with a norm ∥ ∥. Assume that there
exits a function Ω(x) such that for all t ∈ H,
(i) ∥ω(x, t)∥ ≤ Ω(x) with EΩ(X) < ∞ and

(ii) ω(x, t) is continuous in t. Then ηn
a.s.→ η implies that

Sωn =
1

n

n∑
i=1

ω(Xi, ηn)
a.s.→ E(ω(Xi, η)).

Moreover under the same conditions, if E(ω(Xi, η) = 0, we also have

Uωn =
1

n

n∑
i̸=j

ω(Xi, ηn)ω(Xj , ηn)
a.s.→ 0.

Proof : It is sufficient to write

Sωn = E (ω(X1, Gn) | Sn) ,

where Sn is the symmetric field containing all the symmetric functions of
X1, X2, . . . , Xn. By the extended backward martingale convergence of Black-
well and Dubins (1962), under (i) and (ii), Sωn converges with probability
one to E (ω(X1, η) | S∞). But by the Hewitt-Savage zero-one law, S∞ is non
trivial and therefore E (ω(X1, η) | S∞) is constant, equal to E (ω(X1, η)) .

Now apply similarly the same idea ω(Xi, ηn)ω(Xj , ηn) which is bounded
by H(Xi)H(Xj) to get the convergence of U-statistics to E(ω(Xi, η)ω(Xj , η))
and use the independence.
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Proof of Theorem 4: Define

I =
√
n(θ̂n − θ) +

1√
n

n∑
i=1

Bθ̂n,η̂θ̂n,n
sθ̂n,η̂θ̂n,n

(Xi)

− 1√
n

n∑
i=1

Bθ,η̂
θ̂n,n

sθ,η̂
θ̂n,n

(Xi)

II =
1√
n

n∑
i=1

Bθ,η̂
θ̂n,n

sθ,η̂
θ̂n,n

(Xi)−
1√
n

n∑
i=1

Bθ,ηsθ,η (Xi) .

From the convolution theorem, it is sufficient to show that

√
n
(
θ̂(1)n − θ

)
− 1√

n

n∑
i=1

Bθ,ηsθ,η (Xi) = oP (1).

By construction, this is equivalent to showing that I+ II = oP (1). Now under
H3 we can recenter the last term II to get

II =
1√
n

n∑
i=1

(Bθ,η̂
θ̂n,n

sθ,η̂
θ̂n,n

(Xi)− EPθ,ηBθ,η̂θ̂n,n
sθ,η̂

θ̂n,n
(Xi)) (3)

− 1√
n

n∑
i=1

Bθ,ηsθ,η (Xi) + o(1). (4)

Notice that by exchangeability of the variables inside the sum, we have
using lemma 5,

EPθ,η
∥ 1√

n

n∑
i=1

Bθ,η̂
θ̂n,n

sθ,η̂
θ̂n,n

(Xi)−
1√
n

n∑
i=1

Bθ,ηsθ,η (Xi) ∥2

≤ E∥Bθ,η̂
θ̂n,n

sθ,η̂
θ̂n,n

(X)− Bθ,ηsθ,ηX)∥2 + o(1) = o(1).

The last equality is a consequence of the hypothesis H2. It follows that II =
oP (1).

Now let’s consider the term I. Since G(θ̂n) = oP (n
1/2) and G(θ) = 0 we

have
.

Gθ(θ̂n − θ) = oP (n
1/2). Since we have the orthogonal decomposition

PUθ
+ P .

Gθ
= I, it follows that we have the identity

PU (θ̂n − θ) = (θ̂n − θ) + oP (n
−1/2).
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Following the same steps as Le Cam, we use the Local Asymptotic Normality
property as well as the asymptotic differentiability property

1√
n

n∑
i=1

sθ̂n,η̂n − 1√
n

n∑
i=1

sθ,η̂n = −I(θ, η)
√
n(θ̂n − θ) + oP (1)

= −I(θ, η)PU
√
n(θ̂n − θ) + oP (1),

where I(θ, η) = V (sθ,η). Using again hypothesis H2, we get

1√
n
Bθ,η̂n

n∑
i=1

sθ̂n,η̂n − 1√
n
Bθ,η̂n

n∑
i=1

sθ,η̂n = −Bθ,η̂nI(θ, η)PU
√
n(θ̂n − θ) + oP (1)

= −Bθ,ηI(θ, η)PU
√
n(θ̂n − θ) + oP (1)

= −PU
√
n(θ̂n − θ) + oP (1)

= −
√
n(θ̂n − θ) + op(1).

Notice that we use the fact that

Bθ,ηI(θ, η)PU = Uθ(U
t
θI(θ, η)Uθ)

−1U tθI(θ, η)UθU
t
θ = UθU

t
θ = PU .

Now remark that the term I is given by

I =
√
n(θ̂n − θ) + (Bθ̂n,η̂n − Bθ,η̂n)

1√
n

n∑
i=1

sθ̂n,η̂n

+
1√
n
Bθ,η̂n

n∑
i=1

sθ̂n,η̂n − 1√
n
Bθ,η̂n

n∑
i=1

sθ,η̂n

= (Bθ̂n,η̂n − Bθ,η̂n)
1√
n

n∑
i=1

sθ̂n,η̂n + oP (1).

Finally using the same continuity arguments as for II and the fact that the
class {sθ,η, θ ∈ Θ, η ∈ H} is Donsker (H4), this last quantity is oP (1).

Remark : In large dimensions, it may be difficult to choose a grid of size
n−1/2. An initial estimator may be obtained as in Cheng (2013) by using a grid
of size proportional to n−ψ,for some 1/4 ≤ ψ ≤ 1/2. In that case the rate of
convergence of the initial estimator may be sub-optimal of order n−ψ for some
1/4 ≤ ψ ≤ 1/2. If we relax the hypothesis concerning θ̂n to G(θ̂n) = oP (n

−ψ),
we can use the same iterated construction as Cheng (2013) and define

θ̂(i+1)
n = θ̂(i)n +

1

n

n∑
i=1

B
θ̂
(i)
n ,η̂

θ̂
(i)
n ,n

s
θ̂
(i)
n ,η̂

θ̂
(i)
n ,n

(Xi) , i = 1, . . . , k∗,
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up to some well chosen iteration number k∗ (see Cheng, 2013). We believe that
the same procedure as in Cheng (2013) allows to construct efficient estimators
of the parameter after a finite number of iterations. Since the calculations are
much more involved, we do not pursue this approach here.

4 Examples

We develop several examples of interest in the semiparametric literature
to show how the efficiency bound and the efficient score under a given
identifiability constraint can be straightforwardly calculated with our method.

Example 4 (continued, nonparametric latent variable models (probit)

Let Y ∼ B(1, F (Xtθ)) . This corresponds to a latent model in which one
considers

Y =

{
1 if U = Xtθ − ε ≥ 0
0 if U = Xtθ − ε < 0,

where U is the unobserved latent variable and ε is a random variable with
distribution F. In this model there are several possibilities to identify the
parameter θ (for instance by fixing the expectation and the variance of the
distribution F ). To exploit what we did before we will rather consider that
EF ε = 0 (or alternatively that there is no constant among the X) and that
∥θ∥2 = 1. Here the nuisance parameter is either η = F or f.

The log-likelihood is given by

.

lθ,F (y) = log(pθ,F (y)) = y logF (Xtθ) + (1− y) log(1− F (Xtθ)).

The gradient or score function is given by

lθ,F = Xt

(
y
f(Xtθ)

F (Xtθ)
− (1− y)

f(Xtθ)

1− F (Xtθ)

)
= Xt f(X

tθ)(y − F (Xtθ))

F (Xtθ)(1− F (Xtθ))
,

yielding

I(θ) = V
(
l̇θ,F (X,Y )

)
.

Notice that I(θ) is of rank k− 1. Now the tangent space is given by scores
associated with some likelihood of the form

lθ,Ft
(y) = y logFt(X

tθ) + (1− y) log(1− Ft(X
tθ))
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that is the tangent space Ṗ2 is generated by the gradients

∂lθ,Ft

∂t

∣∣∣∣
t=0

(y) = y
f(Xtθ)

F (Xtθ)
− (1− y)

f(Xtθ)

1− F (Xtθ)

=
f(Xtθ)

F (Xtθ)(1− F (Xtθ)
(y − F (Xtθ)).

The projection onto the orthogonal of the nuisance tangent space is thus
given by

sθ,F (y) = ΠṖ⊥
2
l̇θ,F = (X − E(X | Xtθ))t

f(Xtθ)(y − F (Xtθ))

F (Xtθ)(1− F (Xt))
.

Then we can use the same transformation Uθ as before. Indeed consider the
Gram-Schmidt orthonormalization (denoted by orth(.))

Uθ = orth




−β2

β1
. . . −βk

β1

1
Id

1



 ,

then we get the projected efficient score under the constraints given by

scθ,η(Y,X) = UθU
t
θ(X − E(X | Xtθ))t

f(Xtθ)(Y − F (Xtθ))

F (Xtθ)(1− F (Xt))
.

As a consequence, the semiparametric efficiency bound is given by

Bθ,η = Uθ

(
U tθV ar

(
(X − E(X | Xtθ))t

f(Xtθ)(y − F (Xtθ))

F (Xtθ)(1− F (Xtθ))

)
Uθ

)−1

U tθ

and the efficient influence function is given by

Bθ,ηscθ,η(Y,X) = Bθ,η(X − E(X | Xtθ))t
f(Xtθ)(Y − F (Xtθ))

F (Xtθ)(1− F (Xt))
.

There are several nuisance parameters in this expression that can be estimated
non-parametrically.

Example 5 Continue, One-way factor analysis with general residual distributions

If we do not assume the residuals to be Gaussian in example 3 but with
general distribution with a density f , we can still obtain the semiparametric
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efficient bound as in the Gaussian case. We denote by f ′ its derivative. Indeed
in a regression model, the tangent space of the nuisance parameter (here the
distribution of the residuals ϵ) and the tangent space corresponding to the
parameters of the model are orthogonal (see Bickel et al., 1998). It follows that
the score with respect to (µ, a1, . . . , aI) is simply given by

l̇θ =



−
∑
i,j

f ′

f
(yi,j − µ− ai)

−
n1∑
j=1

f ′

f
(y1,j − µ− a1)

...

−
nI∑
j=1

f ′

f
(yI,j − µ− aI)


.

As a consequence, as in the linear model (see Bickel et al., 1998)), the Fisher
Information is exactly the same as in example 3 but with 1/σ2 replaced by

E
(
f ′(ϵ)
f(ϵ)

)
provided that this quantity exists. The calculations are then exactly

the same and we conclude that again in a semiparametric model, the means
over each experimental unit recentered by the overall mean (satisfying the
constraints) are clearly efficient in the considered semiparametric sense.

Example 6 Mixture models (Bickel et al. (1998) p125-141)

Consider an exponential model of the form

f(x, θ, ξ) = exp(ξtT (x, θ)− b(x, θ) + c(θ, ξ)),

for θ ∈ Rk and ξ ∈ Rl and for some functions T (., .) : Rl+1 × Rk → Rl, b(., .):
Rl+1 × Rk → R continuously differentiable in θ, with derivative with respect

to θ,
.

Tθ and
.

bθ and with c(., .) :Rk × Rl → R.

The observations X = (Y,Z) ∈ R× Rl are taken from the mixture model∫
f(x, θ, ξ)η(ξ)dξ,

where η(ξ) is a mixing density that is unknown and which plays the role
of the nuisance parameter. Such models cover a lot of models including
error in variable models (see below). Most of the time some components in
θ are not identifiable (see for instance Example 2 in Bickel et al., 1998).
As a consequence, one may ask what are the corresponding efficient scores
under identifiability constraints. The efficient score without identification has
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been obtained in Bickel et al. (1998), corollary 1, p. 131 under the following
additional hypotheses :

(i) the exponential model is full rank, meaning that Vf(.,θ,ξ)(T (X, θ)) is full
rank (for any θ and ξ).

(ii) The quantity
∫
∥ξ∥2g(ξ)dξ <∞ and the maps∫
|
.

Tθ(, .) |2 f(x, θ, ξ)η(ξ)dξ <∞

∫
|
.

bθ(, .) |2 f(x, θ, ξ)η(ξ)dξ <∞

are continuous in θ.
(iii) The density η(ξ) is lower bounded on a open set. This rules out the

possibility to have a discrete measure for the mixture probability.
In that case the efficient gradient in Rk is given by

sθ,η(X) = (
.

Tθ(X, θ)− E(
.

Tθ(X, θ) | T (X, θ))E(ξ | T (X, θ))

+ ((
.

bθ(X, θ)− E(
.

bθ(X, θ) | T (X, θ))

Here to give a precise meaning to E(ξ | T (X, θ)), notice that the joint distri-
bution of (ξ,X) is given by η(ξ)f(x, θ, ξ) so that the conditional distribution
of U knowing X is in fact η(ξ)f(x, θ, ξ)/

∫
η(ξ)f(x, θ, ξ)dξ so that

E(ξ | T (X, θ) = v) =

∫
ξ exp(ξtv − b(x, θ) + c(θ, ξ))η(ξ)dξ∫
exp(ξtv − b(x, θ) + c(θ, ξ))η(ξ)dξ

.

Now, according to the considered model, several identifiability constraint
G : Rk → Rl, G with G(θ) = 0 can be introduced. As before if Ġθ =

dGθ

dθt is full

rank l and Uθ in Mk, k−l(R) is such that ĠθUθ = 0 and U tθUθ = Ik−l then
the constrained efficient gradient is given by the projected score

UθU
t
θsθ,η(X).

A particular case of this model is the restricted error in variable models
(see p. 127 of Bickel et al., 1998). In the following, we keep the same notations
as in this book. Consider the model

Y = α+ βZ⋆ + ε2,

but we observe Z given by
Z = Z⋆ + ε1
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In the simplest case, it is assumed that the residuals are Gaussian

(
ε1
ε2

)
∼

N

(
0,

(
σ2
1 0
0 σ2

2

))
and Z⋆ has density 1

ση(
.
σ ) with V arη(H) = 1. Thus, for

x = (y, z) and θ = (α, β, σ2
1 , σ

2
2 , σ

2), the likelihood is given by

f(x, θ, ξ) =
1

2πσ1σ2
exp(− 1

2σ2
1

(z − σξ)2 − 1

2σ2
2

(y − α− σβξ)2),

yielding T (x, θ) = σz
σ2
1
+ σβ(y−α)

σ2
2

and b(x, θ) = z2

2σ2
1
+ (y−α)2

2σ2
2
.The nuisance

parameter is η, the distribution of the Z⋆which is unobserved.
Identifiability (see discussions in (Kendall & Stuart, 1979), chap. 29) can

be obtained using the following constraints.
(i) The variance σ1, σ2 are proportionals that is σ2

1=c0σ
2
2 , where c0 is

known.
(ii) One of the variance σ2

1 or σ2
2 is known.

(iii) The reliability ratio given by σ2

σ2+σ2
1
is known. This can also be written

σ2 = c1σ
2
1 , for some known constant c1 .

In this simple case, it is always possible to plug the identifiability con-
straints in the likelihood and to make the calculation for a parameter of
dimension 4 instead of the original dimension. However, our approach is more
direct and only requires calculating the derivatives of T and b according to θ
which is immediate. For each of these restrictions the calculation of the matrix
Uθ are respectively given by

(i)

Uθ =


1 0 0 0
0 1 0 0
0 0 c0√

1+c20
0

0 0 1√
1+c20

0

0 0 0 1


(ii)

Uθ =


1 0 0 0
0 1 0 0
0 0 0 0
0 0 1 0
0 0 0 1


(iii)

Uθ =


1 0 0 0
0 1 0 0
0 0 1√

1+c21
0

0 0 0 1
0 0 c1√

1+c21
0

 .
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The efficiency bound and the efficient influence function can be easily
computed explicitly in all these cases.

Example 7 Single index model

Consider the model
Y = g(Xtβ) + ε,

where, as in example 2,X is the set of explanatory variable and ε some residual
independent of X, with density f .

Recall that a single index model (or pursuit regression model) is in between
the pure linear model and a nonparametric model (which would suffer from the
curse of dimension whenX is of large dimension). We look at the direction that
is linked to the response variable Y through a nonlinear function g. But since
g is a real function, we expect to estimate it at a reasonable non-parametric
rate. We assume that g has derivative g′.

Notice that, as in example 2, g is not identifiable up to a constant term.
In general, it is assumed that the first component of β is positive and that
∥β∥2 = 1. The parameter of interest is θ = β and the nuisance parameter is
given by η = (f, g).

The log-likelihood of one observation is given by

lθ,η(y, x) = log f(y − g(xtβ)).

It follows that the gradient with respect to β is given by

.

lθ,η(y, x) = xg′(xtβ)
f ′(y − g(xtβ))

f(y − g(xtβ))
= xg′(xtβ)

f ′(ε)

f(ε)
.

Similarly considering a path ηt = (ft, gt) inH the tangent space to the nuisance

parameters
.

P 2 is given by functions of the form

d

dt
log ft(y − gt(x

tβ)) |t=0 = g
(1)
0 (xtβ)

f ′(ε)

f(ε)

= b(xtβ)a(ε),

where a is a (centered) score function at ε.
It follows that we have the decomposition

.

lθ,η(y, x) = E(x | xtβ)tg′(xtβ)f
′(ε)

f(ε)
+ (x− E(x | xtβ))g′(xtβ)f

′(ε)

f(ε)
,

where the first term belong to the tangent space
.

P 2 and the second one is in
the orthogonal space . It follows that the efficient score without constraints is
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given by

sθ,η = (x− E(x | xtβ))g′(xtβ)f
′(ε)

f(ε)
.

Notice that βtsθ,η = 0 since (x−E(x | xtβ))tβ = xtβ−E(xtβ | xtβ) = 0 . It
follows that the Fisher information is degenerate (due to the non-identifiability
of the parameter β). Following what was done before, consider the Gram-
Schmidt orthonormalization (which can be computed explicitly with R or
Mathematica) matrix given by

Uθ = orth




−β2

β1
. . . −βk

β1

1
Id

1



 .

Then the constrained efficient score is given by

scθ,η = UθU
t
θ(x− E(x | xtβ))g′(xtβ)f

′(ε)

f(ε)

and the efficiency bound is given by

Bθ,η = Uθ(U
t
θV ((x− E(x | xtβ))g′(xtβ))Uθ)−1U tθ/If .

where

If = V

(
f ′(ε)

f(ε)

)
.

The corresponding efficient influence function is then given by

ψθ,η = Bθ,ηscθ,η.

Example 8 Partially linear single-index models

In this model, we have a structure of the form

Y = xtα+ g(xtβ) + ε

where now the parameter of interest is θ = (α, β)t, α ∈ Rp, β ∈ Rp.
As in example 4, g is not identifiable up to a constant term. Similarly,

it is assumed that the first (non-null) component of β is positive and that
∥β∥2 = 1. Moreover we need additional orthogonality constraints between α
and β to ensure that part of the linear term can not be ”swallowed” by the
function g. We thus assume that αtβ = 0
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If ε has density f then the log-likelihood of one observation is given by

lθ,η(y, x) = log f(y − xtα− g(xtβ)).

It follows that the gradient with respect to β is given by

.

lθ,η(y, x) =

(
x f

′(y−xtα−g(xtβ))
f(y−xtα−g(xtβ))

xg′(xtβ) f
′(y−xtα−g(xtβ))
f(y−xtα−g(xtβ))

)
=

(
x

xg′(xtβ)

)
f ′(ε)

f(ε)
.

Similarly considering a path ηt = (ft, gt) inH the tangent space to the nuisance

parameters
.

P 2 is given by functions of the form

d

dt
log ft(y − xtα+ gt(x

tβ)) |t=0 = g′(xtβ)
f ′t(ε)

ft(ε)

∣∣∣∣
t=0

= b(xtβ)a(ε)

where a is a (centered) score function at ε. It follows that we have the
decomposition

.

lθ,η(y, x) =

(
E(x | xtβ)

E(x | xtβ)g′(xtβ)

)
f ′(ε)

f(ε)
+

(
x− E(x | xtβ)

(x− E(x | xtβ))g′(xtβ)

)
f ′(ε)

f(ε)

where the first term belong to the tangent space
.

P 2 and the second one is in
the orthogonal space . Thus now the efficient score without constraints is given
by

sθ,η =

(
x− E(x | xtβ)

(x− E(x | xtβ))g′(xtβ)

)
f ′(ε)

f(ε)
.

Notice that βtsθ,η = 0 since (x− E(x | xtβ))tβ = xtβ − E(xtβ | xtβ) = 0.
Similarly if α is not orthogonal to β then consider the orthogonal decomposi-

tion α = Pβα + Pβ⊥α and Pβ = βtα
αtαβ and we have that (Pβα)

tsθ,η = 0 (this
shows that we need βtα = 0 to fully identify α). Now the identifiability

constraints are given by the function G(θ) =

 αtα− 1
βtβ − 1
αtβ,

 = 0 yielding

Ġθ =

 2αt 0
0 2βt

βt αt


ĠθUθ = 0.

First notice that the ratio βi

αi
can not always be the same (else it would

contradict the fact that the α and β are orthogonal). So up to some renum-
bering assume that α1 ̸= 0, β1 ̸= 0 and that β1

α1
α2 ̸= β2 then we should
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find a space

{(
x
y

)
, αtx = 0, βty = 0, βtx+ αty = 0, x ∈ Rp, y ∈ Rp

}
. This

amounts to finding the kernel of the projection on the columns of the matrix

A =

(
α 0 β
0 β α

)
,

which is given by Π = A(AtA)−1A. Some straightforward calculations show
that we have

Π =

(
ααt + ββt/2 βαt/2

αβt/2 ββt + ααt/2

)
.

The projection to the orthogonal complement of the column of A is given by

Π⊥ = I2p −Π.

We essentially need a base of the kernel of the matrix Π. Notice that ααt+
ββt/2 and ββt + ααt/2 are of rank 2 (since α and β are orthogonal). So if we
take the Gram-Schmidt orthogonalization of Π⊥ and only take the non-null
2p− 3 components, then, we get an orthonormal basis of the kernel of Π and
thus the matrix Uθ.

The constrained efficient score is now given by

scθ,η = UθU
t
θ(x− E(x | xtβ))g′(xtβ)f

′(ε)

f(ε)
.

Moreover, the efficiency bound is given by

Bθ,η = Uθ(U
t
θV ((x− E(x | xtβ))g′(xtβ))Uθ)−1U tθ/If ,

where

If = V

(
f ′(ε)

f(ε)

)
.

The corresponding efficient influence function is then given by

ψθ,η = Bθ,ηscθ,η.

5 Conclusion

In this paper, we consider some regular parametric and semiparametric mod-
els, which may not be strictly identifiable. Such models appear naturally in
many applications, including probit, mixture, single-index models, or even
ANOVA-type models. We define a notion of degenerate efficiency bound for
parameters that may be not identifiable. For this, we require the existence of
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an identifiability constraint. We obtain new convolution theorems for locally
regular statistics estimating these parameters and show how these bounds may
be calculated explicitly in many usual models. Since the exact computation
of the bound requires the computation of the Gram-Schmidt orthogonaliza-
tion of a well-chosen matrix, we give the explicit form of this matrix for many
interesting identifying constraints. These calculations may be adapted to other
interesting settings. In turn, the computation of the efficient score and of the
efficiency bounds allows building one-step estimators (satisfying approximately
the constraint) that attain the efficiency bound.
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