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c and Mélanie Zetlaoui a
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ABSTRACT
Handling large datasets and calculating complex statistics on huge datasets require
important computing resources. Using subsampling methods to calculate statistics
of interest on small samples is often used in practice to reduce computational com-
plexity, for instance using the divide and conquer strategy. In this article, we recall
some results on subsampling distributions and derive a precise rate of convergence
for these quantities and the corresponding quantiles. We also develop some standard-
ization techniques based on subsampling unstandardized statistics in the framework
of large datasets. It is argued that using several subsampling distributions with dif-
ferent subsampling sizes brings a lot of information on the behavior of statistical
learning procedures: subsampling allows to estimate the rate of convergence of dif-
ferent algorithms, to estimate the variability of complex statistics, to estimate confi-
dence intervals for out-of-sample errors and interpolate their values at larger scales.
These results are illustrated on simulations, but also on two important datasets,
frequently analyzed in the statistical learning community, EMNIST (recognition of
digits) and VeReMi (analysis of Network Vehicular Reference Misbehavior).

KEYWORDS
Scaling, big data, Subsampling, Convergence rate estimation, Confidence intervals
in statistical learning, Out-of sample error, EMNIST digits VeReMi

1. Introduction

The capacity to collect data has increased faster than our ability to analyze big datasets
with a huge number of individuals. The standard statistical tools or statistical learn-
ing algorithms, like machine-learning procedures, maximum likelihood estimations, or
general methods based on contrast minimization, are time-consuming in terms of opti-
mization despite their polynomial complexities or require to access the data too many
times. For these reasons, these approaches may be unsuitable for big data problems.
To remedy the apparent intractability problem of learning from databases of explosive
sizes and break the current computational barriers, we propose in this paper to use
some variations of subsampling techniques studied in Politis et al. (1999) and Bertail
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et al. (1999). Such approaches have been implemented in many applied problems and
developed for instance in Kleiner et al. (2014). In the framework of big data, they are
also at the core of some recent developments in survey sampling methods (Clémençon
et al., 2014; Bertail et al., 2015, 2017) applied to statistical learning procedures.

The universal validity of the subsampling methods is proved in Politis and Romano
(1994) and further developed in Bertail et al. (1999, 2004) for general converging or
diverging statistics. A good survey on the power of subsampling methodology is given
in Politis et al. (1999). More precisely, the subsampling distribution constructed with
a much smaller size than the original one is a correct approximation of the distribution
of the statistic of interest (possibly with an unknown rate of convergence), if the latter
has a non-degenerate distribution, that is continuous at some point of interest. As
mentioned in Hall (2003), such methods, close to bootstrap and subsampling ideas,
were already proposed in the works of Mahalanobis in the 1940s (see the reprint
Mahalanobis, 1958) but were abandoned because of the cost of paper: at that time,
calculations were carried out by hand. They have also been developed by Bretagnolle
(1983) and Bickel and Yahav (1988). See also the discussions about interpolations
and extrapolations in Bertail and Politis (2001), Bertail (1997), when the computer
capacities were not sufficient to handle even moderate sample sizes. Such methods are
themselves related to well-known numerical methods (see for instance Isaacson and
Keller, 1966; Har-Peled, 2011).

Most of these methods based on subsampling rely on an adequate standardization of
the statistics of interest. Such standardization may be hard to obtain for complicated
procedures including statistical learning procedures. It is even more complicated to
extrapolate to very large sample sizes. Indeed, the extrapolation of the distribution
of a statistic from smaller scales to a large one requires the knowledge of the rate of
convergence τn of the procedure of interest or at least an estimator of the latter, with
n being the size of the dataset. In many situations, this task is difficult because the
rate itself depends on the true generating process of the data.

In this paper, we present a variant of the subsampling distribution estimation
methodology studied by Bertail et al. (1999, 2004) to derive a consistent estimator
of the rate τ. and study its rate of convergence. We prove the asymptotic validity of
the method to construct asymptotically valid confidence intervals and give some pre-
cise rate of convergence, assuming that the centering of the subsampling distribution
satisfies some concentration inequality. What differs from previous works is the way
the subsampling distribution of the statistic of interest is centered. It allows precise
control of the rate of the approximation. In Bertail et al. (1999, 2004), the centering
quantity was the statistic of interest computed on the whole data set (which may not
be achievable in practice for big data, when the size n is very large), and the asso-
ciated rate of convergence was of the order of 1/ log n. Here, the centering quantity
is computed as the mean of the statistics of interest obtained on subsamples of size
bn. This yields for subsampling distribution, the expected rate of convergence of order√
bn/n plus a bias term of order (in regular cases) 1/

√
bn which is the rate at which

the true distribution based on a sample of size bn approaches the asymptotic distri-
bution. In that case, we obtain an optimal rate of n−1/4 for the choice bn = n−1/2.
Moreover, we show that the mean of the subsampling distribution (eventually approx-
imated by Monte Carlo simulations) yields attractive hyper-efficiency properties for
some slow algorithms (with a rate slower than

√
n). This estimator satisfies precisely

the required concentration inequality. We then use the extrapolation of this estima-
tion for large datasets to construct confidence intervals for many procedures that are
difficult to analyze otherwise. We show how this idea may be used in the case of ma-
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chine learning procedures to obtain confidence intervals for general risks. By enabling
the construction of confidence intervals for the test error rates or out-of-sample error
rates of various algorithms, it becomes easier to compare them. We also show how it
is possible to practically integrate the dynamic aspect of the big data environments
(especially in the case of streaming data flows).

These subsampling techniques are then implemented with potentially time-
consuming procedures (k-nearest neighbors, random forest, neural nets,...) first on
simulated data and next on two real databases, the EMNIST dataset, and the VeReMi
dataset. The implementation of simulated data is performed with the software R on
a standard machine and the implementation of real data illustrations with Python on
an Intel(R) Xeon(R) Gold 6154 CPU @ 3.00GHz machine with 144 cores and 250GB
RAM. We estimate the rate of convergence of several algorithms and obtain confidence
intervals for the out-of-sample risks of several standard algorithms. An interesting by-
product of the study is that using different subsampling sizes also allows for detecting
the instability of the procedures.

The article is organized as follows. Section 2 presents the state of the art of the
subsampling methods and introduces some estimators of the convergence rate of the
sample statistic distribution. Section 3 presents the two main results and a discussion
on the choice of the subsampling sizes. First, we prove the asymptotic validity of the
method to construct asymptotically valid confidence intervals. Then, we also prove that
the mean of the randomized subsampling distribution yields attractive hyper-efficiency
properties for some slow algorithms. Section 4 presents applications on simulated data
and on the VeReMi and EMNIST-digits datasets. Finally, the proofs are deferred to
the Appendix section.

2. Subsampling methods for big data

2.1. Definition

In Politis and Romano (1994) (see also Politis et al. (1999) for more a developed
framework and references) a general subsampling methodology has been proposed
for the construction of large-sample confidence regions for an unknown parameter
θ = θ(P ) ∈ Rq under very minimal conditions. Considering Xn = (X1, ..., Xn) an
i.i.d. sample, the construction of confidence intervals for θ requires an approximation
to the sampling distribution under P , generally unknown, of a standardized statistic
Tn = Tn(Xn). This statistic is assumed to be consistent for θ at some known rate τn.
For example, in the statistical learning methodology, θ may be the Bayes Risk and Tn
the estimated risk linked to a given algorithm (see section 3.3 for illustration). In the
framework of prediction, θ may be a value to predict and Tn a predictor.

To fix some notations, assume that there is a non-degenerate asymptotic distribution
for the centered re-normalized statistic τn(Tn− θ), denoted by K(x, P ), continuous in
x, such that for any real number x,

Kn(x, P ) ≡ Pr P {τn(Tn − θ) ≤ x} −→
n→∞

K(x, P ). (A1)

Recall that, in the framework of resampling techniques, we are interested in estimat-
ing the distribution of the original statistics Kn(x, P ) or more generally the sequence
of distributions Km(x, P ), m ≤ n. Indeed for big data, the statistic Tn itself may be
difficult to compute on the whole database (see the applications to the EMNIST and
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reduced EMNIST dataset in part 4.2).
Then the subsampling distribution with subsampling size bn, is defined by

Kbn(x | Xn, τ.) ≡ q−1
q∑
i=1

1{τbn(Tbn,i − Tn) ≤ x}, (1)

where q =
(
n
bn

)
and Tbn,i is a value of the statistic of interest, calculated on a subset

of size bn chosen from Xn. It was shown in Politis and Romano (1994) that the
the subsampling methodology is asymptotically valid. Precisely, under the following
assumptions on bn

bn −→
n→∞

∞, bn
n
−→
n→∞

0, (A2)

and

τbn
τn
−→
n→∞

0. (A3)

we have

Kbn(x | Xn, τ.)−Kn(x, P ) −→
n→∞

0,

uniformly in x over neighborhoods of continuity points of K(x, P ). The same result
holds if n is replaced by any sequence mn and the corresponding subsampling size bn
satisfies conditions (A2) and (A3).
Remark(On conditions A2-A3) The key point for this result is based on the fact
that, when Tn is replaced by θ in equation (1), one obtains a U -statistic of degree bn
whose variance is of order bn

n . Then the condition A2 ensures that the mean of this
U -statistic Kbn(x, P ) converges to a limiting distribution and that the variance of the
U -statistic converges to 0. The condition A3 allows replacing the true value of the
parameter by Tn. In that case, A3 ensures that this replacement does not affect the
limiting distribution. When choosing an adequate re-centering that may differ from Tn
(for instance the mean or median of the subsampling distribution), the condition A3
may be completely dropped as discussed below.

For large databases, computing q =
(
n
bn

)
values of the statistics Tbn,i may be unfea-

sible. In this case, it is recommended to use its Monte-Carlo approximation

K
(B)
bn

(x | Xn, τ.) = B−1
B∑
j=1

1{τbn(Tbn,j − Tn) ≤ x}, (2)

where {Tbn,j}j=1,...,B are now the values of the statistic calculated on B subsamples
of size bn taken without replacement from the original sample. It can be easily shown
by incomplete U -statistics arguments that if B is large then the error induced by the
Monte-Carlo step on the subsampling distribution is only of size

K
(B)
bn

(x | Xn, τ.)−Kbn(x | Xn, τ.) = OP

(
1√
B

)
,
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where the notation OP (.) refers to stochastic boundedness. We recall that ZB =
OP (aB) means that, for any ε > 0, there exists a finite δε > 0 and a finite Nε > 0 such
that, ∀B > Nε, Pr(|ZB/aB| > δε) < ε.

Then, if the error of Kbn(x | Xn, τ.) on the true distribution is controlled, it is
always possible to find a value of B (eventually linked to n) such that the Monte-
Carlo approximation is negligible. MacDiarmid’s inequality applied to the indicator
functions yields a precise control of the error at any probability error level δ.

The subsampling method is generally based on the centering by Tn computed on the
whole database. This centering may not be adapted for big data since the calculation
of Tn itself may be too complicated: the exact size may be unknown or the complexity
of the algorithm and the cost induced by retrieving all the information may be too
high. In the subsampling method, the main reason for using the centering by Tn is
simply due to the fact that under the condition A3, the convergence rate of Tn, τn, is
faster than τbn . Indeed :

τbn(Tbn,j − Tn) = τbn(Tbn,j − θ) + τbn(θ − Tn)

= τbn(Tbn,j − θ) +OP

(
τbn
τn

)
= τbn(Tbn,j − θ) + oP (1).

This suggests using any centering whose convergence rate is faster than τbn .
This is, for instance, the case if one constructs a subsampling distribution without

any centering or standardization with a subsampling size mn >> bn such that bn
mn
→ 0

and τbn
τmn
→ 0. In this case we have that 1

B

∑B
j=1 Tmn,j which is a proxy of 1

q

∑q
j=1 Tmn,j

(with an error of size 1/
√
B) converges to θ at a rate at least as fast as τmn

(provided
that the expectation of these quantities exists). The same results hold if one chooses
the median rather than the mean of the Tmn,j

′s (when considering the mean this
amounts to recenter at the median of means) as considered in Laforgue et al. (2019).

2.2. Rate of convergence for subsampling distributions

To our knowledge, the precise rate of convergence of subsampling distributions and
their Monte-Carlo approximations has not been investigated except in some very spe-
cific cases (and especially the mean). Actually, in general, this requires more precise
control of the centering factor and of the modulus of continuity of the asymptotic
distribution as well as some control on the rate of approximation to the asymptotic
distribution.

In the following, we denote by θ̂
n

any centering such that

τbn(θ − θ̂
n
) = oP (1). (3)

For reasons that appear clearly in the proofs and for further applications in statistical
learning, we assume that there is a concentration inequality for this estimator of the
following form: for some η > 0, there exists some universal constants Ci > 0 , i = 1, 2
such that

Pr
(
τbn |θ̂n − θ| > η

)
≤ C1 exp(− n

bn
C2η

2). (A4)
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In general, because the right rate of convergence of θ̂
n

is much more rapid than τbn ,
such concentration inequality holds for regular statistics. This is the case of the mean
or the moments for instance, under the existence of some exponential moments. We
will show later that the mean of the statistics computed on (all or a sufficiently large
number of) subsamples of well-chosen size bn satisfies such a requirement under min-
imal variance assumptions (see Laforgue et al. (2019) for other concentration results
for the median of means).

As in Götze and Rakauskas (2001), we need to control the (deterministic) conver-
gence rate of the true distribution to the asymptotic distribution (this actually plays
the role of the bias in approximating the true distribution). In general, this rate is
given by some Berry-Esseen theorems or Edgeworth expansions. For this we assume
that, for any n large enough, uniformly in x,

Kn(x, P )−K(x, P ) = O

(
1

nβ

)
, for some β > 0. (A5)

In regular cases, Berry-Esseen theorems yield typically a rate of approximation
n−1/2 with β = 1/2 but for instance, for symmetric statistics (or asymptotically χ2

distribution), we rather expect β = 1 .
We finally assume that we can locally control the modulus of continuity of the

asymptotic distribution at points of continuity K(., P ), by some increasing function
null at 0. To simplify we assume that the distribution is Lipschitz in neighborhoods
of continuity points (similar results but with different rates can be obtained under
Hölder assumptions). There exists L > 0, such that, at any point x of continuity of
K(., P ) and any y in a neighborhood of x.

|K(y, P )−K(x, P )| ≤ L|y − x|. (A6)

Since most of the time, the asymptotic distribution is differentiable with a bounded
derivative, the distribution is Lipschitz and this hypothesis is trivially satisfied.

For simplicity, we use the same notation as before and now define the subsampling
distribution with the centering θ̂

n
as

Kbn(x | Xn, τ.) ≡ q−1
q∑
i=1

1{τbn(Tbn,i − θ̂n) ≤ x},

and its Monte-Carlo approximation

K
(B)
bn

(x | Xn, τ.) = B−1
B∑
j=1

1{τbn(Tbn,j − θ̂n) ≤ x}.

The following result gives a new rate of convergence for Kbn(x | Xn, τ.) and

K
(B)
bn

(x | Xn, τ.) for the centering θ̂
n
. This rate will be denoted by

δβ(n) =

√
bn
n

+
1

bβn
.

Theorem 1 Assume that conditions A1 to A6 hold, then we have uniformly over
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the neighborhood of points of continuity of K (x ,P) (uniformly over R if K (x ,P) is
continuous)

Kbn(x | Xn, τ.)−Kbn(x, P ) = OP

(√
bn
n

)
,

K
(B)
bn

(x | Xn, τ.)−Kbn(x, P ) = OP

(√
bn
n

)
+OP

(
1√
B

)
.

Moreover, we have

Kbn(x | Xn, τ.)−K(x, P ) = OP (δβ(n)) ,

and

Kbn(x | Xn, τ.)−Kn(x, P ) = OP (δβ(n)) ;

if in addition n
bn

= 0(B), then the above hold upon replacing Kbn(x | Xn, τ.) with its

Monte-Carlo approximation K
(B)
bn

(x | Xn, τ.).
This result gives some precise results on how to choose the subsampling size and

the number of replications by optimizing the rate of the approximation. Typically for
β = 1/2, we can choose the optimal value bn = n1/2 and B = n1/2 which actually will
drastically reduce the computation costs in comparison to bootstrap procedures. In
this case, δβ(n) = n−1/4. For β = 1 (the symmetric case), we can choose bn = n1/3

and B = n2/3, and in this case, we get a better rate δβ(n) = n−1/3. It can be seen that
the smaller the bias in A5, the better the approximation, but in this case, the Monte
Carlo step will require more computations.

2.3. Estimating the convergence rate

The main drawback of this approach is the knowledge of the standardization (or rate)
τn. However, this rate may be easily estimated at least when the rate of convergence
is of the form τn = nαL(n) as shown in Bertail et al. (1999)). Here α is an unknown
real and L is a normalized slowly varying function, that is, such that L(1) = 1 and for

any λ > 0, limx→∞
L(λx)
L(x) = 1 (see Bingham et al. (1987)). For simplicity, we will now

assume that τn = nα. The general case τn = nαL(n) may be treated similarly with
additional assumptions on the slowly varying function (see Bertail et al. (1999)). In
any case, the estimator proposed in Bertail et al. (1999) may be used in our framework.
We now propose a simplified approach that is attractive in practice.

First, construct the subsampling without any standardization and denote for sim-
plicity

Kbn(x | Xn) ≡ Kbn(x | Xn, 1)

the subsampling distribution of the root (Tn − θ). Then we have

Kbn(x τ−1
bn
| Xn) = Kbn(x | Xn, τ.) (4)
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Let denote now F−1(t) the quantile transformation, i.e., F−1(t) = inf {x :
F (x) ≥ t} for a given distribution F on the real line and a number t ∈ (0, 1). The
following Lemma extends Lemma 1 of Bertail and Politis (2001) by providing a rate
of convergence for quantiles of subsampling distribution under natural assumptions
on the limiting distribution.

Lemma 1. Assume that K(x, P ) is strictly increasing at least in the neighborhood of
the quantile of interest K−1(t, P ) . Then under the conditions of Theorem 1, we have

K−1
bn

(t | Xn, τ.) = K−1(t, P ) +OP (δβ(n)−1).

Now, it is easy to see with the rate of convergence obtained in Theorem 1 that we
have by Lemma 1,

K−1
bn

(t | Xn, τ.) = τbn K
−1
bn

(t | Xn) (5)

= K−1(t, P ) (1 +OP (δβ(n))) , (6)

yielding

log
(
|K−1

bn
(t | Xn)|

)
= log

(
|K−1(t, P )|

)
− α log(bn) +OP (δβ(n)) .

If two different subsampling sizes satisfy the conditions stated before and are such
that bn1

= bn, bn1
/bn2

= e, then one gets

log
(
|K−1

bn1
(t | Xn)|

)
− log

(
|K−1

bn2
(t | Xn)|

)
= α+OP (δβ(n)) ,

uniformly in a neighborhood of t. Using sample sizes of the same order avoids the
complicated constructions used in Bertail et al. (2004) and suggests that the param-
eter α may be simply estimated by averaging this quantity over several subsampling
distributions. The rate that we obtain here is clearly better than the one obtained in
Bertail et al. (2004) : this is due to the concentration hypothesis (A4) and hypothesis
(A6). Again for the regular case β = 1/2, we can choose the optimal value bn1

= n1/2

and obtain a rate for α equal to n−1/4 which clearly improves over the log(n)−1 rate
obtained in Bertail et al. (2004). Due to the ”bias” term (involved by the asymptotic
approximation rate in A5), this rate can not be improved.

Computing these two subsampling distributions mainly requires the computation
of B × bn1

(1 + e) values of the statistic of interest (whose computation may be easily
distributed). Thus the resampling size should be chosen large enough not to perturb
too much the subsampling distributions but sufficiently small so that the cost of com-
puting these quantities is small in comparison to the global cost of computing a single
statistic over the whole database. Similarly as before, if we choose B = n1/2 then we
may replace the true subsampling distribution with the Monte-Carlo approximation
without changing the rate. However, for some very large datasets, one may wish to
choose a smaller B to have a lower computation cost, at the price of a worse approxi-
mation.

Notice that the previously described estimator of the rate parameter α involves the
difference of two log-subsample quantiles, which has the drawback of depending on
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the subsample centering. Such centering can be removed by considering an estimator
that involves the differencing of subsample quantiles before applying logarithms. For
any 0 < t1 < 1/2 < t2 < 1, at which the asymptotic distribution is strictly increasing,
we have

log
(
K−1
bn

(t2 | Xn)−K−1
bn

(t1 | Xn)
)

= log
(
K−1(t2, P )−K−1(t1, P )

)
− α log(bn) +OP (δβ(n)) .

For bn1
= bn →∞ and bn2

= bn1
/e, it follows that

log

(
K−1
bn1

(t2 | Xn)−K−1
bn1

(t1 | Xn)

K−1
bn2

(t2 | Xn)−K−1
bn2

(t1 | Xn)

)
= α+OP (δβ(n)) . (7)

By looking simply at two subsampling distributions, it is thus possible to estimate
the parameter α at a rate which is at least OP (δβ(n)). One may choose for instance
t1 = 0.75 and t2 = 0.25 , corresponding to the log of interquartiles.

3. Subsampling with estimated rates : some rate of convergence

3.1. Confidence intervals based on subsampling

For a given estimator of τn, typically τ̂n = nα̂, we will use

K̂n(x, P ) = Pr P { τ̂n(Tn − θ) ≤ x}.

Theorem 2 Assume A1 holds for τn = nα, for some α > 0 and some K(x, P )
continuous in x; assume also that assumption A2 holds. Let α̂ = α + oP ((log n)−1),
and τ̂n = nα̂. Then

∆n = sup
x
|Kbn (x | X n , τ̂.)− K̂n(x ,P)| = oP (1 ).

Let γ ∈ (0, 1), and let cn(1− γ) = K−1
bn

(1− γ | Xn, τ̂.) be the (1− γ)th quantile of the
subsampling distribution Kbn(x | Xn, τ̂.). Then

Pr P {τ̂n(Tn − θ) ≥ cn(1− γ)} −→
n→∞

γ. (8)

Thus with an asymptotic coverage probability of 1− γ, we have

−τ̂−1
n cn(1− γ) ≤ θ − Tn

and by symmetry,

θ − Tn ≤ −τ̂−1
n cn(γ).

If in addition conditions A1-A6 hold, if we choose an estimator of α which satisfies

α̂ = α+OP
(
δβ(n)−1

)
9



then the rate of the subsampling approximation with the estimated rate becomes

∆n = OP
(
log(n)δβ(n)−1

)
.

Remark: Notice that estimating the rate as we did before, only results in a loss of
log(n) in the subsampling distribution with an estimated rate. For β = 1/2 corre-
sponding to smooth parameters, the optimal rate will be log(n)/n1/4. For moderate
sample sizes, the subsampling approximation in Theorem 2 may be unsatisfactory.
But, for very large datasets, it can still lead to an acceptable approximation, as will
be seen in our applications.

Recall that K−1
bn

(1− γ | Xn, τ̂.) is the (1− γ)th quantile of the rescaled subsampling
distribution. Just like in Hall (1986) assume that B is such that (B + 1) × γ is an
integer (thus if γ = 5% or γ = 1%, B = 999 or B = 9999 is fine), the (1 − γ)th

quantile is defined uniquely and equal to τbn(T
((B+1)(1−γ))
bn

− θ̂n) where T
((B+1)(1−γ))
bn

is the (B + 1)(1− γ) largest value over the B subsampled values. It then follows that
the lower bound for θ − Tn is given by

θ − Tn ≥ −
τ̂bn
τ̂n

(T
((B+1)(1−γ))
bn

− Tn). (9)

A straightforward application of this result is to compare the generalization capa-
bility of statistical learning algorithms (see section 3.3) when n is so large that the
estimated risk Tn of most algorithms, even with polynomial complexity, may be hardly
computed in a reasonable time.

However, in some cases, it may be difficult to compute the statistics Tn on the whole
database. The preceding result also allows to build confidence intervals for θ based on
a single subsampling realization say θ̂mn

= Tmn
(Xi1 , ..., Ximn ) based on a different size

mn such that n >> mn >> bn. For this, assume that (B + 1) × γ/2 is an integer. In
that case, by combining (8) and (9), a two-sided confidence interval for θ is simply
given by

θ̂mn
− τ̂bn
τ̂mn

(
T

((B+1)(1−γ/2))
bn

− θ̂mn

)
≤ θ ≤ θ̂mn

− τ̂bn
τ̂mn

(
T

((B+1)γ/2)
bn

− θ̂mn

)
.

This interval suffers of course from lower precision due to information loss in not
being based on the whole data set. However, sometimes we can find an estimator
θ̂n that can be computed on the whole database. For instance, the mean of a given
subsampling distribution may be an adequate candidate in some cases (see part 3.2)
with a rate that satisfies conditions (3) and A4. In that case, a rescaled confidence
interval is simply given by

θ̂
n
− τ̂bn
τ̂n

(
θ̂

((B+1)(1−γ/2))
bn

− θ̂
n

)
≤ θ ≤ θ̂

n
− τ̂bn
τ̂n

(
θ̂

((B+1)γ/2)
bn

− θ̂
n

)
.

In our simulation studies and our applications, regarding the estimation of risks of
a learning algorithm (θ̂n will be itself an estimated risk), the variability of the data
may be so high that somehow there is very little difference between confidence intervals
computed with Tn or a subsampling estimator θ̂mn

. To explain this phenomenon, recall
that in statistical learning, the generalization error (see below) of an algorithm (or of
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an estimation procedure) can be decomposed into three terms

• the square of the bias, linked to erroneous assumptions in the learning algorithm
(for instance a linear assumption while the model is not linear);
• the variance, measuring the variability of the procedure or underlying estimator;
• the irreducible error of the model, that is, the variance of the intrinsic error.

From a statistical point of view, just consider the target model Yi = f(Xi) + εi for
some class of functions f ∈ F . The total L2-loss (or generalization error) of a predictor

f̂(x) at a point x is

E(Y − f̂(x))2 = (Ef̂(x)− f(x))2 + V ar(f̂(x)) + V ar(ε)

For big data, this last error is generally big due to the great variability of the obser-
vations whereas, at the same time, the bias and variance of the estimation procedure
are small due to the large dataset.

3.2. Improving rates by means of subsampling estimators

In the particular case when the recentering estimator θ̂n is chosen to be the mean
of the subsampling distribution, we show in the following theorem that there is a
concentration phenomenon at a speed that is sufficient to ensure conditions (3) and
A4. This result may be seen as a generalization of the hyper-efficiency results for
pooled estimators computed on partitioned data obtained in Banerjee et al. (2019).
For slow procedures (i.e., procedures with a convergence rate slower than

√
n), we

prove this super-efficiency phenomenon that is, a convergence rate faster than the
original rate and close to

√
n, for the mean of subsampling distribution under a simple

variance condition.
For simplicity, define the mean estimator θ̂qn = q−1

∑
Tbn,i

1≤i≤q
where q is either

(
n
bn

)
or

some deterministic B. In that case, the B subsamples are chosen uniformly over all
possible subsamples of size bn.

Notice that, when we consider all subsamples, θ̂qn is nothing else than a U-statistic
with a kernel Tbn(.) of degree bn . Recall that if Tbn is bounded by some constant
M (which will the case in the statistical learning procedures that we will study later)
and if the variance exists say V ar(τbnTbn) ≤ C <∞, then Hoeffding proved a Bernstein
type inequality (see also Arcones (1995)) which becomes here

Pr(|θ̂qn − E(Tbn)| > ε) ≤ 2 exp

(
−

n
bn
ε2M2

2C/τ2
bn

+ 2
3Mε

)

yielding (by changing ε into ε
√

bn
nτ2
bn

)

Pr(

√
n

bn
τbn |θ̂qn − E(Tbn)| > ε) ≤ 2 exp

− ε2M2

2C + 2
3Mετbn

√
bn
n


Thus if bn is chosen such that τbn

√
bn
n is bounded (which will be the case for the choice

of bn controlling the bias and is always true when bn is chosen very small), then we

11



will get an Hoeffding bound of type (A4). Moreover by a straightforward inversion of
the Bernstein inequality, we have

|θ̂qn − E(Tbn)| = OP (

√
bn
n

1

τbn
+
bn
n

)

which can be better than the rate of convergence of the original statistics τn. We state
this result under an unbiased condition (to avoid lengthy discussions on the form of
the bias).

Theorem 3 Assume that the statistics of interest Tn is an unbiased bounded esti-
mator of θ has rate τn ≤

√
n, under the assumptions A1-A2 and assuming that the

asymptotic variance is bounded uniformly in n, that is,

V ar(τnTn) ≤ C.

Then the rate of convergence of θ̂qn, for q =
(
n
bn

)
or q = B with B ≥ n/bn, is at least

τbn

√
n
bn

. Moreover, this estimator satisfies the concentration inequality A4.

Remark In particular, if τn = n1/2 then the subsampling mean estimator θ̂qn has
the same rate n1/2. But if τn = nα, α < 1/2 then this estimator has a better rate

of convergence given by n1/2/b
1/2−α
n . We can even choose bn = log(n) and thus a

rate close to
√
n asymptotically. Of course, there is no free lunch. In that case, we

need more computations of the subsampling estimator (at least n/ log(n) which may be
too much in practice). Moreover, it is emphasized in Banerjee et al. (2019) that this
estimator may not be locally regular which may be a drawback for some applications
where uniformity is needed.

3.3. Some subsampling results tailored to statistical learning

3.3.1. Subsampling prediction error

Let Dn = {(Xi, Yi), i = 1, ..., n} be i.i.d. with distribution P defined on (Ω,A,P),
taking their values in some measurable product space X ×Y. The (Xi, Yi)’s correspond
to independent copies of a generic r.v. (X,Y ). A predictor is a measurable function
φ : X → Y, x 7→ y = φ(x). To measure the risk of a predictor, we introduce the loss
function L : Y2 → R which is assumed to be bounded by some constant M . The Bayes
classifier is the one obtained by minimizing the expectation of the loss function over
all classifiers :

φ∗ = arg min
φ∈F

EPL(Y, φ(X)).

However, in the estimation procedure, we will only minimize over a given class of
function F corresponding to a specific algorithm. Moreover, since P is unknown, we
will approximate the expected loss by the empirical one and consider the estimator φ̂n

12



defined by

φ̂n =
def

φ̂n(F) = arg min
φ∈F

1

n

n∑
i=1

L(Yi, φ(Xi)).

One goal of statistical learning is to evaluate the generalization capability of the al-
gorithm measured by the discrepancy between the optimal risk θ∗ = EPL(Y, φ∗(X))

and the one evaluated on the resulting predictor φ̂n, say

∆n = EP (L(Y, φ̂n(X))|Dn)− EPL(Y, φ∗(X)).

Constructing confidence intervals for this quantity called prediction error can allow
us to distinguish between different algorithms. In the following, it is assumed that ∆n

(recentered thus at 0) converges asymptotically to a distribution K(x, P ) at a rate
τn = τn(P ), which is clearly unknown in most situations (even when one is able to
obtain concentration inequalities). Notice that ∆n which plays the role of Tn in our first
part is not really a statistics in the usual sense since we have taken expectation over
(X,Y ). However, using subsampling ideas we can still get a subsampling approximation
of the distribution of this quantity

Following the subsampling ideas exposed before, for any subsampling set of size

bn, D
(j)
bn

= {(Xi, Yi), i ∈ s
(j)
bn
}, with s

(j)
bn
⊂ {1, ..., n} for j = 1, .., q, we define the

subsampling counterpart of EPL(Y, φ̂n(X)|Dn) by

E(j)
bn

= EP (L(Y, φ̂
(j)
bn

(X))|D(j)
bn

),

evaluated at the estimator φ̂
(j)
bn

= arg min
φ∈F

1

bn

∑
i∈s(j)bn

L(Yi, φ(Xi)).

Since E(j)
bn

depends on the true distribution, we will estimate it by its empirical

version computed on the set D
(j)
bn = {(Xi, Yi), i ∈ s(j)

bn
}

Ê(j)
bn

=
1

n− bn

∑
i∈s(j)bn

L(Yi, φ̂
(j)
bn

(Xi)).

Let’s now define θ̂qn = Mean
1≤j≤q

(Ê(j)
bn

) and the subsampling distribution of the risk, on all

q =
(
n
bn

)
subsamples,

Kbn(x | Xn, τ.) = q−1
q∑
j=1

1{τbn(Ê(j)
bn
− θ̂qn) ≤ x}.

As before, we introduce the approximate subsampling distribution based only on B
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simulations where now θ̂Bn = Mean
1≤j≤B

(Ê(j)
bn

) defined by

K
(B)
bn

(x | Xn, τ.) = B−1
B∑
j=1

1{τbn(Ê(j)
bn
− θ̂Bn ) ≤ x},

where the Ê(j)
bn

, j = 1, ..., B are taken at random uniformly on the set of all subsamples.

We expect K
(B)
bn

(x | Xn, τ.) to be an estimator of

Kbn(x) = Pr
(
τbn(E(j)

bn
− θ∗) ≤ x

)
,

which is itself asymptotically close to the distribution of Pr P (τn∆n ≤ x).
Then, we apply the same rate estimation procedure as before to compute an

estimator of the convergence rate τ., say τ̂.. Applying the same arguments as in
Theorem 2 yields the following result.

Corollary 1 Assume that:

K
(B)
bn

(x | Xn, τ.)
Pr−→

n→∞
K(x, P ).

Moreover, under the same hypotheses as in Theorem 2, we have, with an estimated
rate of convergence,

K
(B)
bn

(x | Xn, τ̂.)
Pr−→

n→∞
K(x, P )

yielding a confidence interval for ∆n of level 1− γ given by

τ̂−1
n cn(γ/2) ≤ ∆n ≤ τ̂−1

n cn(1− γ/2)

where cn(t) is the quantile of order t of the distribution K
(B)
bn

(x | Xn, τ̂.).

Remark By the same arguments as in the proof of corollary 1, θ̂qn = Mean
1≤i≤q

(Ê(i)
bn

)

satisfies a concentration inequality around the true risk, provided that the variance of
the risk estimator has an asymptotic variance uniformly bounded. This is automatically
satisfied since the loss function L is assumed to be bounded. The problem reduces to
obtaining a concentration result for

K
(B)
bn

(x ) = B−1
B∑
j=1

1{τbn(E(j)
bn
− θ∗) ≤ x},

which is simply a U -statistic of degree bn.

3.3.2. Subsampling out-of-sample error or generalization error
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It is known in statistical theory that conditional risk or measurement of prediction
error may be too optimistic and could lead to the choice of an algorithm that overfits
the data. For this reason, it is often recommended to split the data (of size n) into two
parts, the training set called Dn,Tr of size nTrain = p0n, for some p0 > 1/2 and the
testing set say Dn,Test of size nTest = (1 − p0)n. To avoid unnecessary problems and
truncation, we assume that these sizes are integers. In our simulations we will choose
p0 = 0.7. The training and test sets are generally selected at random (practically using
first a random permutation of the data and selecting the nTrain first units for the
training set). In this framework, we are interested in the out-sample error estimator
or generalization error given by

Tn =
1

(1− p0)n

∑
j∈Dn,Test

L(Yj , φ̂nTrain(Xj)))

where now φ̂nTrain is determined on the training set Dn,Tr that is

φ̂nTrain = arg min
φ∈F

1

p0n

∑
i∈Dn,Tr

L(Yi, φ(Xi)).

Tn may be interpreted as an estimator of the predictive performance of the algorithm.
For a convergent algorithm, that is, an algorithm which yields a loss asymptotically
close to the Bayesian risk, we expect this quantity to converge to the unconditional
full risk θ = EPL(Yi, φ

∗(Xi)). In this framework, assuming that Tn − θ is converging
asymptotically to a non-degenerate distribution, we can apply straightforwardly the

results of parts 2 and 3. Indeed if we choose a subsample D
(k)
bn

size bn for some k =

1, ...,

(
n
bn

)
, we can divide as well this set into a training set D

(k)
bn,T r

of size p0bn and

a test set D
(k)
bn,T est

of size (1− p0)bn to construct the corresponding estimator

T (k)
bn

=
1

(1− p0)bn

∑
j∈D(k)

bn,Test

L(Yj , φ̂
(k)
bnTrain

(Xj)))

where now φ̂
(k)
bnTrain

is given by

φ̂nTrain = arg min
φ∈F

1

p0n

∑
i∈Dbn,Tr

L(Yi, φ(Xi)).

The subsampling distribution is then the usual one and we can obtain confidence
intervals for θ but also improve the convergence rate of Tn when it is not converging
at rate

√
n.

3.4. How to choose the ”optimal” subsampling sizes

The choice of the subsampling size is a delicate subject that has been discussed in
very few papers including Bickel and Sakov (2008); Götze and Rakauskas (2001);
Bickel et al. (2010); Politis et al. (1999) Chap.9. Our preceding results were essentially
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asymptotic. For instance, for β = 1/2 the optimal choice is of the form bn = C
√
n

for some constant C. But in practice the choice of the constant is crucial... The main
idea underlying most propositions is to construct several subsampling distributions
by using two different subsampling sizes say bn and kbn for k ∈]0, 1[ (we recommend
due to our preceding results k = 1/e). It is easy to see that when the subsampling
distribution is a convergent estimator of the true distribution then the distance d
between the subsampling distribution and the true one is stochastically equivalent to
d(Kbn ,Kkbn).

The idea is then to find the largest bn, which minimizes this quantity. Several dis-
tances (Kolmogorov distance, Wasserstein metrics, etc...) may be used.

Of course, for large datasets, such a method is very computationally expensive. We
recommend only choosing a limited range of values for bn and discretizing this range
so as to compute the distance d(Kbn ,Kkbn) only on a limited number of points and to
select the ones which minimize this quantity.

Other empirical approaches have been proposed to deal with the problem of the high
volatility of subsampling distributions for too large subsampling sizes (see for instance
Politis et al. (1999) chap. 9). The idea is simply to look at the quantiles of subsampling
distributions and to find the largest value such that the quantile remains stable. Some
empirical arguments to understand the principle underlying this idea are given in
Bertail (2011). Indeed a subsampling distribution may simply be seen as a U -statistic
but with varying kernel of increasing size bn and its quantiles the inverse of a U-process.
The main tools for studying the behavior of subsampling distribution are Hoeffding
decomposition of the U -statistic and empirical process theory as considered in Arcones
and Gine (1993); Heilig and Nolan (2001). The difficulty in choosing the subsampling
size is that, in comparison to U -statistics with a fixed degree, the linear part of the
U -statistic is not always the dominating part in the Hoeffding decomposition. For
rather small or moderate bn, it can be shown that the U -statistic is asymptotically

normal with a convergence rate of order
√

n
bn

. However, when bn becomes too large,

the remainder in the Hoeffding decomposition dominates and the U -statistic behaves
very erratically. This explains why the quantiles of subsampling distributions behave
erratically as soon as bn is too large.

3.5. Subsampling in a growing environment

In many fields, data are now collected online. As a consequence, the size of the database
may evolve quickly in time. Then, one may wish to update previous estimations with-
out accessing the whole database again. How is it possible to update the subsampling
distributions taking into account the new incoming data, when the size of the database
is large and increases? To solve this problem, we present a very simple sequential al-
gorithm.

The idea is as follows: assume that at time t, we have obtained a subsample without
replacement of size bn (uniformly) from the original data. That is the probability of a

given subsample is
(
n
bn

)−1
. At the time t + 1, the new sample size is n + 1. Then for

this newcomer, proceed as follows:

• Draw a Bernoulli r.v. Z with parameter 1− bn/(n+ 1)
• keep the original subsample if Z = 1, with probability 1− bn/(n+ 1),
• else with probability bn/(n + 1), choose one element of the current subsample

(without replacement, uniformly with probability 1/bn) and replace it with this
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newcomer.

If several newcomers arrive at the same time, then use sequentially the same al-
gorithm by increasing the size of the population. Notice that this algorithm may be
easily implemented sequentially to update all the subsamples already obtained by
Monte Carlo simulations at some given time.

The arguments below show that the resulting algorithm is the realization of sub-
sampling without replacement from the total new population.

It may be simply proved by recurrence (McLeod and Bellhouse, 1983). Indeed,

assume that the probability of the original sample is
(
n
bn

)−1
then

• if Z = 1, the probability of the new sample is
(
n
bn

)−1 × (1− bn
n+1) =

(
n+1
bn

)−1

• if Z = 0, the probability of the new sample is
(
n
bn

)−1× bn
n+1( 1

bn
+ n−bn

bn
) =

(
n+1
bn

)−1
.

It follows that the corresponding subsample at any step is actually a subsample
obtained without replacement from the total current population.

If we want to increase the size of the subsample, starting from a subsample of size bn
in a population of size n then we simply draw uniformly without replacement from the
n− bn remaining outside sample, observations with probability 1/(n− bn). It may be
sometimes easier (for instance using Apache Spark) to use sampling with replacement.
It is known in that case that when bn is small enough such that bn√

n
→ 0, then the

probability to draw the same individual twice converges to 0. Indeed, when bn√
n
→ 0, by

Stirling formula, we have
( nbn)
nbn → 1, so that with and without replacement samplings

are asymptotically equivalent under this condition.

4. Some empirical results

4.1. Simulation results

In this simulation section, the implementations were executed under R on a standard
PC with a 5GHz Intel processor and 2G of Ram. The purpose is to show that we
might gain a lot in terms of computation times for a large database and that using our
confidence intervals for risks in a simple pattern recognition framework makes sense.

4.1.1. Maximum likelihood estimation for a simple logistic model

The purpose of this example is to explore the feasibility and the computer performance
of the procedures described before in an estimation framework. We consider here a very
simple toy model to highlight some inherent difficulties with subsampling. Consider
a linear logistic regression model with parameter θ = (β0, β) ∈ R × Rd. Let X be
a d-dimensional marginal vector of the input random variables. The linear logistic
regression model related to a pair (X,Y ) can be written as

Pθ{Y = +1 | X} =
exp(β0 + βTX)

1 + exp(β0 + βTX)
.

In high-dimension i.e., when d is very large and for very large n, the computation
of the full parametric maximum likelihood estimator (MLE) of θ may be difficult to
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obtain in a reasonable time. We assume that d << n but also that the subsampling
sizes which will be used are such that d << bn.

For unbalanced populations (a lot of 1’s in comparison with 0’s and vice versa), the
probability to get a subsample with only unit values (or zeros) is high and the MLE
will not be convergent (a similar problem appears if the labels are fully separated).
This is by no means contradictory with the asymptotic validity of subsampling in this
case: it has been shown in Le Cam (1990) that the true variance of the MLE in a
finite population is +∞. Subsampling simply reproduces this fact on a smaller scale.
In that case, one should condition on the fact that the ratio of the numbers of 1’s by
the number of 0’s is not too small (or not too close to 1). Else, the subsample should
be eliminated. We fix this ratio to 3% in our simulations.

In the following, we simulate the toy logistic model

Yi =

{
1 if 3Xi + εi > 0
0 else

with Xi ∼ N(0, 1) and εi independent logistic random variables with mean 0 and
variance 1. We choose respectively n = 106 and n = 107. We present the results for
two randomly generated data set of large size, n (with one regressor variable here) and
Table 1 shows the averages and sample variances of B = 999 subsample copies of the
MLE (i.e., for fitting a logistic model) based on subsample draws of size bn and bn/e
(when estimating the rate of convergence). In this example, the statistics Tn to which
we apply our results is thus the MLE of the parameter β

Even for reasonable sizes, our estimation procedure proved to be useful. For instance
in R, with 1 GB of memory, the usual libraries (sampleSelection, glm) fail to estimate
the model with a size of n = 107 observations (for capacity reasons), whereas it takes
only 12s to get subsampling based confidence bound with B = 999 replications of the
procedure and bn = n1/3. Here, it is not required to estimate the rate of convergence
since the rate τn = n1/2 is known, but we did it and present the result with an estimated
rate with J = 2 subsampling distributions as proposed in this paper, one with size
bn and the other with size bn/e. If we estimate the rate of convergence with J = 29
subsampling distributions based on subsampling sizes equal to n1/3+j/(3(J−1)), j =
0, . . . , 28, as done in the paper Bertail et al. (1999), then one gets quite similar results
in terms of variance of the MLE but with 999× 29 simulations : it then takes around
14 times more time to complete these tasks on the same computer. We notice that the
mean trick (pooled estimator) does not improve the MLE theoretically but allows a
quicker and more feasible computation of the recentering factor.

The mean of the estimations of β (and the variances) over the B = 999 repeti-
tions with the subsampling procedure are given in Table 1 for different values of bn
n1/3, n1/2, n2/3 given in the table and on the whole sample with the corresponding
total execution times. ˆvar1/2 gives a rescaled estimator of the variance (to compare
with the estimator of the variance on the whole database). That is, we compute the
variance of the subsampling distribution say s2

bn,n
and then extrapolate the variance to

the original size by computing τbns
2
bn,n

/τn. When the rate is unknown the same trick is

applied with an estimated rate. The estimated variance ˆvar(βn)1/2 ) is here obtained
using the Hessian of the likelihood function at the MLE using the glm function: 107

is the order of the largest size for which we have been able to obtain estimator of this
quantity in R with this simple model.
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Table 1. MLE variance estimations for a logistic model with n = 106, 107.

subsample (B = 999 replications) whole sample

n bn β̂bn ˆvar1/2 time
β̂n

( ˆvar(βn)1/2 )
time

n1/3 ≈ 100 3.19 0.0064 13 s 2.992
106 n1/2 ≈ 1000 3.022 0.0063 36 s (0.0061)

n2/3 ≈ 10000 2.996 0.0060 3.26 mn 28.75 s

n1/3 ≈ 215 3.10 0.0020 41 s 2.998
107 n1/2 ≈ 3162 3.009 0.0020 1.25 mn (0.0019)

n2/3 ≈ 46415 2.998 0.0019 12 mn 4.69 mn

Notice that even with a size of n1/3, we were able to get the correct order for the
variance. In estimating β = 3, the bias in Table 1 can be large for small subsampling
sizes but almost vanishes for n2/3. For this size, we get the same order as the one on
the MLE on the whole database : but in terms of computation, n2/3 is already too big,
since in that case we were able to proceed with the MLE on the whole database in less
than 5 minutes (whereas it takes 12 minutes to replicate 999 times the procedure on
the n2/3 sample size). But for n1/2, we get a gain of 4 (and 12 for n1/3) for a similar
accuracy: of course, this strongly depends on the degree of accuracy that one wishes
to obtain on the parameter of interest and on the capacity of the computer.

4.1.2. Estimation of the out-of-sample error with k-nearest-neighbor algorithm.

Consider a simple pattern recognition framework. Assume that
{(X1, Y1), . . . , (XN , YN )} is a sample of i.i.d. random pairs taking their values
in some measurable product space X × {−1,+1}. In this standard binary classifica-
tion framework, the multidimensional r.v.’s X are used to predict the binary label
Y . The distribution P can also be described by the pair (F, η) where F (dx) denotes
the marginal distribution of the input variable X and η(x) = P{Y = +1 | X = x},
x ∈ X , is the conditional distribution. The goal is to build a measurable classifier
φ : X 7→ {−1,+1} with minimum risk defined by

L(Y, φ(X))
def
= I{φ(X) 6= Y }, (10)

where I{.} is the indicator function. It is well-known that the Bayes classifier φ∗(x) =
2I{η(x) > 1/2} − 1 is a solution of the risk minimization problem over the collection
of all classifiers defined on the input space X .

It is now possible to apply the different subsampling procedures to different classes
of functions (or algorithms) to estimate their prediction capability as described in part
3.3. We focus here on the out-of-sample errors. In this simulation part, we propose the
use of F1 : a parametric logit model, F2 : the k-nearest neighbor method. We will also
consider random forest models, SVM and neural networks in the case studies of part
4.2.

It is known that, under some regularity assumptions, the four methods are consistent
so that, asymptotically, the approximation error ∆n converges to 0 a.s.. For F1, it is
known that the rate of convergence of the empirical risk is

√
n; however for the other

algorithms, even if some bounds exist on the generalization capability, the rate of
convergence is not clear. Our method will allow us to evaluate the different algorithms
and the rate of convergence of the algorithms.
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Considering the same simulated data as in 4.1.1, we now use the subsampling
method to estimate the out-of-sample errors of k-nearest neighbor (KNN) method
and logit models on several subsampling sizes and compare them to that obtained
on the full database. We consider a training set equal to 0.7n and a test set of size
0.3n (similar results have been obtained for other test sets). The computation times in
Table 2 clearly show the computation gains. A striking result is for n = 107 because it
takes almost 5 hours to get an estimator of this quantity on the whole sample whereas
the subsampling method takes (at worst) 15 minutes with n2/3. Table 2 presents the
average of out-of-sample errors (over B=999 subsamples) of the subsampling distribu-
tion. It seems that even with a size of order n1/3 we still get a good approximation in
less than 45 seconds. With the subsampling method by using an extrapolated variance
as described in 4.1.1, we are also able to estimate the variance of the out-of-sample
error (given in parenthesis in the table over the estimation on the whole sample).

Table 2. Estimation of the out-of-sample error by subsampling and on the whole sample - KNN model

KNN subsample (B = 999 replications) whole sample
n bn out-of-samp. error time out-of-samp. err time

n1/3 0.1177 4.79 s 0.1158 5.252 mn
106 n1/2 0.1165 5.76 s (0.008)

n2/3 0.1167 43.5 s

n1/3 0.1166 44.7 s 0.1141 4h57mn
107 n1/2 0.1163 50.7 s (0.006)

n2/3 0.1161 15.35 mn

To evaluate the performance of our confidence intervals, we have repeated the pre-
ceding procedure M=500 times. First, for independent realizations (L=999), we eval-
uate the risk over the whole dataset and average this risk to have an idea of the true
risk (average in Table 3). Then for m=1 to M=500 different samples, we construct
confidence intervals for the risks of two methods: the one associated with the logistic
regression and the one associated with KNN. We give in Table 3 the average of the
lower (Lower) and upper (Upper) bounds of the confidence intervals. The coverage
(cover) probability of our intervals is obtained by computing the number of times the
”true risk” associated with the procedure belongs to the confidence intervals.

Table 3 shows that the intervals constructed with an interpolated variance using
the average as re-centering factor is quite large in terms of errors even for quite large
sample sizes and seem to be a little bit too conservative. However in this example we
obtain narrower and clearly more accurate results for the Logit model which seems
reasonable, since the data itself is generated in this true model.

Table 3. Risk, confidence intervals and coverage probability: KNN and logit models

Method KNN Logit
size Lower Upper average cover Lower Upper average cover
n = 106 0.032 0.207 0.118 0.98 0.012 0.110 0.066 0.96
n = 107 0.046 0.185 0.115 0.96 0.017 0.108 0.061 0.96

These simulations show that it is possible to compare in a reasonable time the out-
of-sample errors for several competing methods (with confidence intervals). We should
mention that the computational time is not reasonable for neural networks because
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they require a long time to be trained and the parameters should be well-calibrated
for each simulation. Despite this problem we also have implemented also this method
in the case studies below.

4.2. Two case studies on real data sets

In this section, the implementation is performed in Python using the libraries NumPy,
SciPy, Sklearn, Tensorflow, on an Intel(R) Xeon(R) Gold 6154 CPU @ 3.00GHz ma-
chine with 144 cores and 250GB RAM.

4.2.1. Tested models

Subsampling techniques are implemented on potentially time-consuming procedures
(Decision Tree DT(Breiman et al., 1984), Random Forest RF(Breiman, 2001), Sup-
port Vector Machine SVM(Chang and Lin, 2011), Neural nets (3 types: NeuralNet
which is a fully connected multi-layer perceptron with one hidden layer (Rumelhart
et al., 1986), NeuralNet3 which is a deeper multi-layer perceptron with three hid-
den layers, ConvNet (LeCun et al., 1989) which is a special architecture of a neural
net that takes account of the hierarchical pattern in data and is commonly used in
computer vision), a logit model Logit(McCullagh and Nelder, 1983), and K-nearest
neighbors KNN.

Note that ConvNet is only used on MNIST data set as it is mainly used on image
processing and that no hierarchical pattern exists between the features of VeReMi
dataset.

The hyperparameters of all tested models were not specifically optimized to do the
task on both data sets. We kept the default values found in sklearn that are based on
recommendations from the original authors.

4.2.2. Description of the datasets

Vehicular Reference Misbehavior (VeReMi)

The VeReMi (Vehicular Reference Misbehavior) data set (see van der Heijden et al.
(2018)) contains data about the detection of misbehavior in vehicular networks, a
particularly sensitive topic in cooperative autonomous driving. The purpose of this
application is to compare the relative risks of several algorithms and their confidence
intervals. The VeReMi data set comprises N = 424, 810 individuals and only 12 vari-
ables.

EMNIST digits

The well-known EMNIST data set studied for instance in LeCun et al. (1995) con-
tains binary images of handwritten digits and the corresponding true digits; the well-
known purpose is to find an algorithm that correctly recognizes the digit, see Cohen
et al. (2017). The EMNIST data set comprises N = 240, 000 images and 784 variables
(28× 28 pixels for each image).

A smaller version of this database is the MNIST digits popularized by Lecun. The
data set comprises N = 60, 000 images. This version of the database is used to check
whether the estimation of the convergence rate is similar when based on a smaller data
set. We refer to this database as ”Lecun MNIST data set”.
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4.2.3. Comparison of the performances of the tested models

Computing Out-of-sample errors
Figures 1, 2 and 3 provide the estimation of the out-of-sample errors of several mod-
els with 90% confidence intervals as well as the computing times for each of them,
according to subsampling sizes, for the VeReMi and EMNIST digits data sets. The
methodology is described in sections 3.1 and 3.2: B is set to 999, bn is ranging from
N1/3 to N2/3 similarly to what we did in the previous section, with the estimation of
J = 29 subsampling distributions. For VeReMi, we observe the superiority of the two
tree-based approaches (RF and DT), and the lower performance of the KNN approach
in terms of errors, but DT would clearly be preferred as its computing time does not
explode as that of RF.

For the EMNIST digit, most confidence intervals overlap for subsampling sizes up to
bn = 4, 000 although ConvNet and SVM show the lowest errors. From this error plot,
we can not conclude that their superiority is significant. In terms of computing times,
SVM would clearly be preferred to ConvNet as the computing time for the latter is
greater than 6 hours for bn = 4, 000.

For Lecun MNIST data set, only 6 models were compared, and SVM and RF have
the best performances in terms of errors, with SVM showing lower computing times.
Note that the computing times on this data set 4 times smaller are also 4 times better.

The RF, NeuralNet and SVM models have a higher execution time than other mod-
els for all subsampling sizes. In particular, for the VeReMi data set where the number
of variables is very small, NeuralNet has a relatively smaller execution time compared
to Random Forests due to the reduced number of parameters in the network. This
changes for the EMNIST digit, where the number of features is bigger and Neural-
Net takes longer to train. The simpler models KNN, DT, and Logit take relatively
smaller execution times. Overall all execution times increase with subsampling sizes
with different rates for each model.
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Figure 1. Comparison of Out-of-sample errors and their associated computing times from 6 different models

according to the subsampling size, VeReMi data set.
For errors, 90% confidence intervals are provided.
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Figure 2. Comparison of Out-of-sample errors and their associated computing times from 8 different models

according to the subsampling size, EMNIST digit data set.
For errors, 90% confidence intervals are provided.
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Figure 3. Comparison of Out-of-sample errors and their associated computing times from 6 different models

according to the subsampling size. Lecun MNIST dataset.
For errors, 90% confidence intervals are provided.

Figures 4 shows the extrapolation to the full dataset sizes of the out-of-sample
errors. It requires the computation of the estimated convergence rate presented in the
next section, that is, the computation of the J = 29 subsampling distributions (the
results with only J = 2 are quite similar).

For VeReMi, RF, and DT perform the best, similarly to each other. For EMNIST,
Convnet clearly outperforms the other models, SVM is next. For Lecun MNIST, SVM,
and RF do not differ much and we can see that NeuralNet behaves better on the
N = 240, 000 EMNIST data set than the 60, 000 Lecun MNIST data set.

In comparison with the Out-of-sample errors on the full dataset (Table 4, 5), the
order of best to worst performing methods matches the one with the extrapolated
error. Except for KNN on the VeREMi data set where the introduction of the full
data helped achieve much better performance.

Estimation of the convergence rates
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Figure 4. Comparison of Out-of-sample errors from 6 or 8 different models, with 90% confidence intervals,
extrapolated to the full dataset size.

For VeReMi N = 424, 810, for EMNIST digit, N = 240, 000, for Lecun MNIST, N = 60, 000
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Table 4. Summary statistics of Out-of-sample errors from different models on the full EMNIST data set size

Logit RF SVM DT KNN NeuralNet
count 10 10 10 10 10 10
mean 0.062435 0.019450 0.011373 0.080225 0.018935 0.028037
std 0.000742 0.000503 0.000431 0.001078 0.000345 0.000926
min 0.061417 0.019000 0.010604 0.078000 0.018542 0.026792
10% 0.061623 0.019056 0.010792 0.078844 0.018617 0.027110
50% 0.062375 0.019208 0.011385 0.080719 0.018844 0.028010
90% 0.063517 0.020296 0.011827 0.081125 0.019500 0.028950
max 0.063667 0.020333 0.011958 0.081125 0.019500 0.029812

Table 5. Summary statistics of Out-of-sample errors from different models on the full VeReMi dataset size

logit RF SVM DT Knn NeuralNet
count 10 10 10 10 10 10
mean 0.254134 0.000194 0.254134 0.001743 0.030807 0.254228
std 0.001391 0.000050 0.001391 0.000208 0.000526 0.001340
min 0.251442 0.000141 0.251442 0.001565 0.029849 0.251677
10% 0.252957 0.000152 0.252957 0.001587 0.029933 0.252948
50% 0.253878 0.000177 0.253878 0.001671 0.030920 0.254172
90% 0.255643 0.000262 0.255643 0.002120 0.031286 0.255632
max 0.255738 0.000294 0.255738 0.002130 0.031402 0.255738

We estimate here the rate of convergence τn as nα using 2 and 29 different values of
subsampling size: in terms of estimation, the rate is of the same order. See figures 5 to
11 to understand why: just pick two points (not too close) among all subsampling sizes
and it somehow gives the right slope. However, it seems that using more subsampling
distributions as in Bertail et al. (2004) gives more precise results (we thus only give
these estimators in Table 6 and 7). As described at the end of section 2.3, we consider
here a regression of log range, on the log of the subsampling size. We propose 3 different
ranges, either the inter-quartile-range (percentiles at 25% and 75%) denoted IQR, or
an inter-percentile range with length 80% denoted IPR80 (percentiles at 10% and
90%), or with length 90% denoted IPR90 (percentiles at 5% and 95%). Individual
graphs showing the slope α of each model/IPR choice are postponed to the appendix
(see Figures B1,B2,B3,B4,B5,B6,B7) and results are summarized in Tables 6 and 7.
For both data sets, we observe that the results are quite stable when changing the IPR
approach as can be seen from the figures in the appendix, or using only 2 subsampling
distributions. For VeReMi, we observe that RF and DT have faster convergence rates
(α ≈-.65) than the 4 other models (α ≈ −1/2). These models also reached the lowest
Out-of-sample errors. For EMNIST, we tested two more models: a Neural Net with 3
layers and a Convolution Net to see how the rates of convergence would be impacted.
We observe that here, Logit, DT and NeuralNet3 models have α ≈ −1/2 while KNN
and RF have α ≈ −2/3, and SVM and ConvNet have α ≈ −3/4, NeuralNet being
closer to α ≈ −.6. Again, the models with faster convergence rates are also those with
lower out-of-sample errors. However, we see that the convergence rates do depend on
the learning problem as we observe for instance that DT is very efficient in the VeReMi
case (12 features) and not in the EMNIST case (784 features).
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Table 6. Estimation of the convergence rates of the 6 different models, with 3 different methods - the

VeReMi data set

Model IQR IPR80 IPR90
NeuralNet -0.487 -0.500 -0.499
Logit -0.493 -0.513 -0.498
KNN -0.497 -0.506 -0.493
SVM -0.510 -0.494 -0.504
RF -0.595 -0.636 -0.635
DT -0.611 -0.624 -0.630

Table 7. Estimation of the convergence rates of the 8 different models, with 3 different methods - the
EMNIST data set

Model IQR IPR80 IPR90
Logit -0.558 -0.560 -0.562
NeuralNet3 -0.560 -0.514 -0.525
DT -0.567 -0.542 -0.533
NeuralNet -0.591 -0.587 -0.578
KNN -0.657 -0.655 -0.673
RF -0.688 -0.675 -0.687
ConvNet -0.722 -0.753 -0.750
SVM -0.773 -0.754 -0.757

Table 8 also compares the EMNIST IQR results with the Lecun MNIST IQR results.
The smaller dataset shows somehow lower rates than the larger one.

Table 8. Estimation of the convergence rates of the 6 different models (IQR method), comparison of

EMNIST data set (N = 240, 000) and Lecun MNIST data set (N = 60, 000)

Model EMNIST Lecun MNIST
Logit -0.558 -0.564
RF -0.688 -0.656
DT -0.567 -0.518
KNN -0.657 -0.641
NeuralNet -0.591 -0.427
SVM -0.773 -0.682
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Appendix A. Appendix A

This appendix is dedicated to the proof of the theorems and the corollary of this
article.

A.1. Proof of Theorem 1 from section 2.2

Introduce the U -statistic

Vbn(x) = q−1
q∑
i=1

1{τbn(Tbn,i − θ) ≤ x}.

Then, we have the simple decomposition

Pr (|Kbn(x | Xn, τ.)−Kbn(x, P )| > ε)

≤ Pr(|Kbn(x | Xn, τ.)− Vbn(x)| > ε/2) + Pr(|Vbn(x)−Kbn(x, P )| > ε/2).

Since EP [Vbn(x)] = Kbn(x, P ) and Vbn is a U -statistic of degree bn with kernel bounded
by 1, we have by Hoeffding’s inequality

Pr(|Vbn(x)−Kbn(x, P )| > ε) ≤ 2 exp

(
− n
bn
ε2/2

)
.

Now, we can write using the same argument (twice), for any η > 0,

Pr(|Kbn(x | Xn, τ.)− Vbn(x)| > ε/2) = Pr(|Vbn(x− τbn |θ̂n − θ| |)− Vbn(x)| > ε/2)

≤ Pr
(
τbn |θ̂n − θ| > η

)
+ Pr(|Vbn(x− η )− Vbn(x)| > ε/2)

≤ Pr
(
τbn |θ̂n − θ| > η

)
+ Pr(|Vbn(x− η )−Kbn(x− η, P )| > ε/6)+

Pr(|Kbn(x, P )− Vbn(x)| > ε/6) + Pr(Kbn(x− η, P )−Kbn(x, P )| > ε/6)

≤ Pr
(
τbn |θ̂n − θ| > η

)
+ 4 exp(− n

bn
ε2/72)

+ Pr(|Kbn(x− η, P )−Kbn(x, P )| > ε/6)

But since Kbn(x, P ) is supposed to be continuous at x (at least asymptotically), for n
large enough, the last term is 0 for a well chosen η. More precisely, under A5 and the
Lipschitz condition A6, we have

|Kbn(x− η, P )−Kbn(x, P )| ≤ |Kbn(x− η, P )−K(x− η, P )|+

|Kbn(x, P )−K(x, P )|+ |K(x− η, P )−K(x, P )|

≤ O(b−βn ) + Lη

It follows that if we choose η such that η < ε/12L, for n large enough the last term
vanishes. Now for this choice, we get that, by hypothesis (A4), for some non-negative
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constants M1 and M2, we also have an exponential inequality for Kbn(x | Xn, τ.) of
the form

Pr (|Kbn(x | Xn, τ.)−Kbn(x, P )| > ε) ≤M1 exp(− n
bn
ε2/M2)

This proves the first result.

Now, the distribution K
(B)
bn

(x | Xn, τ.) is obtained (conditionally to the data) by
sampling with replacement over all possible subsamples. According to this resampling

plan, the K
(B)
bn

(x | Xn, τ.) concentrates around its mean Kbn(x, P ), by Hoeffding’s

inequality, at a rate 1/
√
B . Thus by combining with the preceding results, we get an

error of size OP

(√
bn
n

)
+ OP

(
1√
B

)
. Notice that, when B >> n

bn
, we get that the

final error is of order OP

(√
bn
n

)
.

Now for the last propositions, just notice that we have the decomposition

Kbn(x | Xn, τ.)−K(x, P ) = Kbn(x | Xn, τ.)−Kbn(x, P ) +Kbn(x, P )−K(x, P )

and

Kbn(x | Xn, τ.)−Kn(x, P ) = Kbn(x | Xn, τ.)−K(x, P ) +K(x, P )−Kn(x, P )

Now use assumption A5 and the preceding results to conclude.

A.2. Proof of Lemma 1 from section 2.3

For any ε > 0, we know from Theorem 1 in section 2.2, that there exists some L = Lε,

Pr P {|Kbn(x | Xn, τ.)−K(x, P )| ≥ L/δβ(n)} ≤ ε (A1)

uniformly in x. Put ηn = L
δβ(n) and define the quantile z = K−1

bn
(t − ηn | Xn, τ.),

then Kbn(z | Xn, τ.) ≥ t − ηn. Combining this with (A1) implies that z ≥ K−1(t −
2ηn, P ).with probability at most ε. Similarly, define y = K−1(t, P ), then we have y ≥
K−1
bn

(t − ηn| Xn, τ.) with probability at most ε. Hence, for any t and any ε > 0, we
have the inequality :

Pr P
(
K−1(t− 2ηn, P ) ≤ K−1

bn
(t− ηn | Xn, τ.) ≤ K−1(t, P )

)
≤ 2ε. (A2)

This clearly yields , for ε→ 0+, that

K−1
bn

(t | Xn, τ.) = K−1(t, P ) + oP (1).

But, by assumption A6 and using the Inverse function theorem for Lipschitz, strictly
increasing continuous functions that, there exists an L

′

ε such that

|K−1(t− 2ηn, P )−K−1(t, P )| ≤ L′

εηn
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Using again (A2) twice, we get that

K−1
bn

(t | Xn, τ.) = K−1(t, P ) +OP (ηn)

= K−1(t, P ) +OP (δβ(n)−1),

uniformly in the neighborhood of t.

A.3. Proof of Theorem 2 from section 3.1

The proof follows the same lines as Bertail et al. (1999). For any x, consider

Kbn(x | Xn, τ̂.) ≡ q−1
q∑
i=1

1{bα̂n(Tbn,i − θ̂n) ≤ x}

= q−1
q∑
i=1

1{bα̂n(Tbn,i − θ)− bα̂n(θ̂n − θ) ≤ x}

and define the correctly recentered U -statistic

Un(x) = q−1
q∑
i=1

1{bα̂n(Tbn,i − θ) ≤ x}

and the event

En = {bα̂n|θ̂n − θ| ≤ ε},

for some ε > 0.
Since α̂ = α+oP ((log n)−1), we have as well nα̂ = nα(1+oP (1)) and bα̂n = bαn(1+oP (1)).
Notice for the last statement of the theorem, that if

α̂ = α+OP (δβ(n)−1),

we get

nα̂ = nα(1 +OP (log(n)/δβ(n)))

and

bα̂n = bαn(1 +OP (log(bn)/δβ(n)))).

Conditions A2 imply that Pr(En) −→
n→∞

1; hence, with probability tending to one, we

get that

Un(x− ε) ≤ Kbn(x | Xn, τ̂.) ≤ Un(x+ ε).

Let us show that Un(x) converges to K(x, P ) in probability. For this, introduce the
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U -statistic with varying kernel defined by :

Vn(x) = q−1
q∑
i=1

1{bαn(Tbn,i − θ) ≤ x},

which is the equivalent of Un(x), with the true rate rather than the estimated one.
Recall that since Vn(x) is a U -statistic of degree bn, such that bn

n → 0, by Hoeffding’s

inequality, we have Vn(x) = K(x, P ) +OP (1/
√

(bn/n)) as n→∞ in probability.
Now, for any ε1 > 0, we have that, with probability tending to 1,

Un(x) = q−1
q∑
i=1

1

{
bαn(Tbn,i − θ) ≤

bαn
bα̂n
x

}
≤ Vn(x+ ε1).

A similar argument shows that we also have Un(x) ≥ Vn(x − ε1) with probability
tending to one. But we have Vn(x+ ε1)→ K(x+ ε1, P ) and Vn(x− ε1)→ K(x− ε1, P )
in probability. Therefore, letting ε1 → 0, we have that Un(x)→ K(x, P ) in probability
as required.

Proving that we have

K̂n(x, P )−K(x, P )→ 0 as n→∞.

follows now by the same arguments as before by recalling that

K̂n(x, P ) = Pr

(
τn(Tn − θ) ≤ x

τn
τ̂n

)
= Pr(τn(Tn − θ) ≤ x(1 + oP (1))

and using the continuity of the limiting distribution.
The second part of the theorem is a straightforward consequence of the uniform

convergence of Kbn(x | Xn, τ̂.)−K̂n(x, P ) to 0, over the neighborhood of any continuity
point of the true limiting distribution.

The last result is obtained by the same arguments, by just replacing ε by
εlog(n)δβ(n)−1. In that case, the probability of the event En is controlled by assump-
tion A4. All the approximations oP (1) then becomes OP (log(n)δβ(n)−1) using the
same arguments as in Theorem 1. Similarly ε1 can be replaced by ε1log(bn)δβ(n)−1

which is anyway smaller than OP (log(n)δβ(n)−1).

Proof of corollary 1 from section 3.3.1

Recall that θ̂qn = 1
q

∑
1≤j≤q

Ê(j)
bn
. Notice first that the value Ê(j)

bn
is close to E(j)

bn
at a rate

√
n− bn that can be controlled by standard arguments on sums. Indeed, by Hoeffding’s
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inequality, we have that, for some constant M > 0,

Pr

(
|Ê(j)
bn
− E(j)

bn
| > x

)
= ED(j)

bn

P
D

(j)

bn

(
Ê(j)
bn
− E(j)

bn
> x|D(j)

bn

)
≤ 2 exp

(
−2x2(n− bn)

M2

)
so that we have

Pr

(
sup

j=1,...,B
|Ê(j)
bn
− E(j)

bn
| > x

)
≤ 2B exp

(
−2x2(n− bn)

M2

)
.

Now, notice that the subsampling distribution may be written

K
(B)
bn

(x | Xn, τ.) = B−1
B∑
j=1

1{τbn(E(j)
bn
− θ∗ + a(j)

n ) ≤ x}

with a
(j)
n = Ê(j)

bn
− E(j)

bn
+ θ∗ − θ̂qn.

As in the proof of Theorem 1, consider the event Ebn = {τbn sup
j=1,...,B

|̂E(j)
bn
− E(j)

bn
| < ε}.

Then, by the preceding Hoeffding’s inequality, using the fact that B = nγ , we get :

Pr(Ecbn) ≤ exp

(
−2ε2(n− bn)

τ2
bn
M2

+ γ ln(n)

)
, (A3)

which goes to 0 under our assumptions on bn. It follows that Pr(Ebn)→ 1 as n→∞.
As in the proof of Theorem 3, we have a Bernstein inequality for τbn |θ̂qn−θ

∗| . Now, ap-

ply the same arguments as in Theorem 3, with Tbn,i = E(i)
bn

to get that, some constants
C1, C2 and for our bn, for any fixed ε > 0

Pr

(
τbn

√
n

bn
|θ̂q
n
− θ∗| > ε

)
≤ C1 exp

(
−C2ε

2
)

+ Pr(Ecbn)

From this and equation (A3), we get that |θ̂qn − θ∗| = OP

(
τ−1
bn

√
bn
n

)
.

This result and again equation (A3) imply that the τbna
(j)
n ’s are uniformly small.

Using the continuity of the limiting distribution as in the proof of Theorem 1, it follows
that it is sufficient to study the subsampling distribution

K
(B)
bn

(x) = B−1
B∑
j=1

1{τbn(E(j)
bn
− θ∗) ≤ x}.

which is exactly the one of the U -statistics of Theorem 1, so that the preceding results
apply.
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Appendix B. Appendix B

B.1. Detailed results on VeReMi dataset

B.1.1. IQR

n_b: 29n_b: 29n_b: 29n_b: 29n_b: 29n_b: 29n_b: 29n_b: 29n_b: 29n_b: 29n_b: 29n_b: 29n_b: 29n_b: 29n_b: 29n_b: 29n_b: 29n_b: 29n_b: 29n_b: 29n_b: 29n_b: 29n_b: 29n_b: 29n_b: 29n_b: 29n_b: 29n_b: 29n_b: 29
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Figure B1. Estimation of convergence rate, based on IQR, VeReMi dataset, N = 424, 810
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B.1.2. IPR80
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Figure B2. Estimation of convergence rate, based on IPR80, VeReMi dataset, N = 424, 810
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B.1.3. IPR90
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Figure B3. Estimation of convergence rate on IPR90, VeReMi dataset, N = 424, 810
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B.2. Detailed results on EMNIST digit dataset
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Figure B4. Estimation of convergence rate, based on IQR, EMNIST digit dataset, N = 240, 000
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B.2.2. IPR80

n_b: 29n_b: 29n_b: 29n_b: 29n_b: 29n_b: 29n_b: 29n_b: 29n_b: 29n_b: 29n_b: 29n_b: 29n_b: 29n_b: 29n_b: 29n_b: 29n_b: 29n_b: 29n_b: 29n_b: 29n_b: 29n_b: 29n_b: 29n_b: 29n_b: 29n_b: 29n_b: 29n_b: 29n_b: 29

Slope: 0.5424Slope: 0.5424Slope: 0.5424Slope: 0.5424Slope: 0.5424Slope: 0.5424Slope: 0.5424Slope: 0.5424Slope: 0.5424Slope: 0.5424Slope: 0.5424Slope: 0.5424Slope: 0.5424Slope: 0.5424Slope: 0.5424Slope: 0.5424Slope: 0.5424Slope: 0.5424Slope: 0.5424Slope: 0.5424Slope: 0.5424Slope: 0.5424Slope: 0.5424Slope: 0.5424Slope: 0.5424Slope: 0.5424Slope: 0.5424Slope: 0.5424Slope: 0.5424

−3.0

−2.5

−2.0

−1.5

−1.0

4 5 6 7 8
Subsampling size (log)

Lo
g 

In
te

r 
P

er
ce

nt
ile

 R
an

ge
 0

.1
, 0

.9

Generalization error − DT

n_b: 29n_b: 29n_b: 29n_b: 29n_b: 29n_b: 29n_b: 29n_b: 29n_b: 29n_b: 29n_b: 29n_b: 29n_b: 29n_b: 29n_b: 29n_b: 29n_b: 29n_b: 29n_b: 29n_b: 29n_b: 29n_b: 29n_b: 29n_b: 29n_b: 29n_b: 29n_b: 29n_b: 29n_b: 29

Slope: 0.655Slope: 0.655Slope: 0.655Slope: 0.655Slope: 0.655Slope: 0.655Slope: 0.655Slope: 0.655Slope: 0.655Slope: 0.655Slope: 0.655Slope: 0.655Slope: 0.655Slope: 0.655Slope: 0.655Slope: 0.655Slope: 0.655Slope: 0.655Slope: 0.655Slope: 0.655Slope: 0.655Slope: 0.655Slope: 0.655Slope: 0.655Slope: 0.655Slope: 0.655Slope: 0.655Slope: 0.655Slope: 0.655

−3

−2

−1

4 5 6 7 8
Subsampling size (log)

Lo
g 

In
te

r 
P

er
ce

nt
ile

 R
an

ge
 0

.1
, 0

.9

Generalization error − KNN

n_b: 29n_b: 29n_b: 29n_b: 29n_b: 29n_b: 29n_b: 29n_b: 29n_b: 29n_b: 29n_b: 29n_b: 29n_b: 29n_b: 29n_b: 29n_b: 29n_b: 29n_b: 29n_b: 29n_b: 29n_b: 29n_b: 29n_b: 29n_b: 29n_b: 29n_b: 29n_b: 29n_b: 29n_b: 29

Slope: 0.5598Slope: 0.5598Slope: 0.5598Slope: 0.5598Slope: 0.5598Slope: 0.5598Slope: 0.5598Slope: 0.5598Slope: 0.5598Slope: 0.5598Slope: 0.5598Slope: 0.5598Slope: 0.5598Slope: 0.5598Slope: 0.5598Slope: 0.5598Slope: 0.5598Slope: 0.5598Slope: 0.5598Slope: 0.5598Slope: 0.5598Slope: 0.5598Slope: 0.5598Slope: 0.5598Slope: 0.5598Slope: 0.5598Slope: 0.5598Slope: 0.5598Slope: 0.5598

−3.5

−3.0

−2.5

−2.0

−1.5

−1.0

4 5 6 7 8
Subsampling size (log)

Lo
g 

In
te

r 
P

er
ce

nt
ile

 R
an

ge
 0

.1
, 0

.9

Generalization error − LOGIT

n_b: 29n_b: 29n_b: 29n_b: 29n_b: 29n_b: 29n_b: 29n_b: 29n_b: 29n_b: 29n_b: 29n_b: 29n_b: 29n_b: 29n_b: 29n_b: 29n_b: 29n_b: 29n_b: 29n_b: 29n_b: 29n_b: 29n_b: 29n_b: 29n_b: 29n_b: 29n_b: 29n_b: 29n_b: 29

Slope: 0.6745Slope: 0.6745Slope: 0.6745Slope: 0.6745Slope: 0.6745Slope: 0.6745Slope: 0.6745Slope: 0.6745Slope: 0.6745Slope: 0.6745Slope: 0.6745Slope: 0.6745Slope: 0.6745Slope: 0.6745Slope: 0.6745Slope: 0.6745Slope: 0.6745Slope: 0.6745Slope: 0.6745Slope: 0.6745Slope: 0.6745Slope: 0.6745Slope: 0.6745Slope: 0.6745Slope: 0.6745Slope: 0.6745Slope: 0.6745Slope: 0.6745Slope: 0.6745

−3

−2

−1

4 5 6 7 8
Subsampling size (log)

Lo
g 

In
te

r 
P

er
ce

nt
ile

 R
an

ge
 0

.1
, 0

.9

Generalization error − RF

n_b: 29n_b: 29n_b: 29n_b: 29n_b: 29n_b: 29n_b: 29n_b: 29n_b: 29n_b: 29n_b: 29n_b: 29n_b: 29n_b: 29n_b: 29n_b: 29n_b: 29n_b: 29n_b: 29n_b: 29n_b: 29n_b: 29n_b: 29n_b: 29n_b: 29n_b: 29n_b: 29n_b: 29n_b: 29

Slope: 0.7544Slope: 0.7544Slope: 0.7544Slope: 0.7544Slope: 0.7544Slope: 0.7544Slope: 0.7544Slope: 0.7544Slope: 0.7544Slope: 0.7544Slope: 0.7544Slope: 0.7544Slope: 0.7544Slope: 0.7544Slope: 0.7544Slope: 0.7544Slope: 0.7544Slope: 0.7544Slope: 0.7544Slope: 0.7544Slope: 0.7544Slope: 0.7544Slope: 0.7544Slope: 0.7544Slope: 0.7544Slope: 0.7544Slope: 0.7544Slope: 0.7544Slope: 0.7544

−4

−3

−2

−1

4 5 6 7 8
Subsampling size (log)

Lo
g 

In
te

r 
P

er
ce

nt
ile

 R
an

ge
 0

.1
, 0

.9

Generalization error − SVM

n_b: 29n_b: 29n_b: 29n_b: 29n_b: 29n_b: 29n_b: 29n_b: 29n_b: 29n_b: 29n_b: 29n_b: 29n_b: 29n_b: 29n_b: 29n_b: 29n_b: 29n_b: 29n_b: 29n_b: 29n_b: 29n_b: 29n_b: 29n_b: 29n_b: 29n_b: 29n_b: 29n_b: 29n_b: 29

Slope: 0.5867Slope: 0.5867Slope: 0.5867Slope: 0.5867Slope: 0.5867Slope: 0.5867Slope: 0.5867Slope: 0.5867Slope: 0.5867Slope: 0.5867Slope: 0.5867Slope: 0.5867Slope: 0.5867Slope: 0.5867Slope: 0.5867Slope: 0.5867Slope: 0.5867Slope: 0.5867Slope: 0.5867Slope: 0.5867Slope: 0.5867Slope: 0.5867Slope: 0.5867Slope: 0.5867Slope: 0.5867Slope: 0.5867Slope: 0.5867Slope: 0.5867Slope: 0.5867

−3.5

−3.0

−2.5

−2.0

−1.5

−1.0

4 5 6 7 8
Subsampling size (log)

Lo
g 

In
te

r 
P

er
ce

nt
ile

 R
an

ge
 0

.1
, 0

.9

Generalization error − NeuralNet

n_b: 29n_b: 29n_b: 29n_b: 29n_b: 29n_b: 29n_b: 29n_b: 29n_b: 29n_b: 29n_b: 29n_b: 29n_b: 29n_b: 29n_b: 29n_b: 29n_b: 29n_b: 29n_b: 29n_b: 29n_b: 29n_b: 29n_b: 29n_b: 29n_b: 29n_b: 29n_b: 29n_b: 29n_b: 29

Slope: 0.5141Slope: 0.5141Slope: 0.5141Slope: 0.5141Slope: 0.5141Slope: 0.5141Slope: 0.5141Slope: 0.5141Slope: 0.5141Slope: 0.5141Slope: 0.5141Slope: 0.5141Slope: 0.5141Slope: 0.5141Slope: 0.5141Slope: 0.5141Slope: 0.5141Slope: 0.5141Slope: 0.5141Slope: 0.5141Slope: 0.5141Slope: 0.5141Slope: 0.5141Slope: 0.5141Slope: 0.5141Slope: 0.5141Slope: 0.5141Slope: 0.5141Slope: 0.5141

−3.0

−2.5

−2.0

−1.5

−1.0

4 5 6 7 8
Subsampling size (log)

Lo
g 

In
te

r 
P

er
ce

nt
ile

 R
an

ge
 0

.1
, 0

.9

Generalization error − NeuralNet3

n_b: 29n_b: 29n_b: 29n_b: 29n_b: 29n_b: 29n_b: 29n_b: 29n_b: 29n_b: 29n_b: 29n_b: 29n_b: 29n_b: 29n_b: 29n_b: 29n_b: 29n_b: 29n_b: 29n_b: 29n_b: 29n_b: 29n_b: 29n_b: 29n_b: 29n_b: 29n_b: 29n_b: 29n_b: 29

Slope: 0.7533Slope: 0.7533Slope: 0.7533Slope: 0.7533Slope: 0.7533Slope: 0.7533Slope: 0.7533Slope: 0.7533Slope: 0.7533Slope: 0.7533Slope: 0.7533Slope: 0.7533Slope: 0.7533Slope: 0.7533Slope: 0.7533Slope: 0.7533Slope: 0.7533Slope: 0.7533Slope: 0.7533Slope: 0.7533Slope: 0.7533Slope: 0.7533Slope: 0.7533Slope: 0.7533Slope: 0.7533Slope: 0.7533Slope: 0.7533Slope: 0.7533Slope: 0.7533

−4

−3

−2

−1

4 5 6 7 8
Subsampling size (log)

Lo
g 

In
te

r 
P

er
ce

nt
ile

 R
an

ge
 0

.1
, 0

.9

Generalization error − ConvNet

Figure B5. Estimation of convergence rate, based on IPR80, EMNIST digit dataset, N = 240, 000
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B.2.3. IPR90
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Figure B6. Estimation of convergence rate, based on IPR90, EMNIST digit dataset, N = 240, 000
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B.3. Detailed results on Lecun MNIST digit dataset

B.3.1. IQR
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Figure B7. Estimation of convergence rate, based on IQR, Lecun MNIST digit dataset, N = 60, 000
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