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Abstract Handling large datasets and calculating complex statistics on huge
datasets require important computing resources. Using subsampling methods
to calculate statistics of interest on small samples is often used in practice
to reduce computational complexity, such as the divide and conquer strategy.
In this article, we recall some results on subsampling distributions and de-
rive a precise rate of convergence for these quantities and the corresponding
quantiles. We also develop some standardization techniques based on subsam-
pling unstandardized statistics in the framework of large datasets. It is argued
that using several subsampling distributions with different subsampling sizes
brings a lot of information on the behavior of statistical learning procedures:
subsampling allows to estimate the rate of convergence of different algorithms,
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to estimate the variability of complex statistics, to estimate confidence inter-
vals for out-of-sample errors and interpolate their value at larger scales. These
results are illustrated on simulations, but also on two important datasets, fre-
quently analyzed in the statistical learning community, EMNIST (recognition
of digits) and VeReMi (analysis of Network Vehicular Reference Misbehavior).

Keywords Subsampling - Convergence rate estimation - Confidence
intervals - Out-of sample error - EMNIST digits - VeReMi
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1 Introduction

The capacity to collect data has increased faster than our ability to analyze
big datasets with a huge number of individuals. The standard statistical tools
or statistical learning algorithms, like machine-learning procedures, maximum
likelihood estimations, or general methods based on contrast minimization,
are time-consuming in terms of optimization despite their polynomial com-
plexities or require to access the data too many times. For these reasons, these
approaches may be unsuitable in big data problems. To remedy the apparent
intractability problem of learning from databases of explosive sizes and break
the current computational barriers, we propose in this paper to use some vari-
ations of subsampling techniques studied in [7]. Such approaches have been
implemented in many applied problems and developed for instance in [26]. In
the framework of big data, they are also at the core of some recent develop-
ments on survey sampling methods [18, 9, 10] applied to statistical learning
procedures.

The universal validity of the subsampling methods is proved in [33] and
further developed in [7, 8] for general converging or diverging statistics. More
precisely, the subsampling distribution constructed with a much smaller size
than the original one is a correct approximation of the distribution of the
statistic of interest (possibly with an unknown rate of convergence), if the latter
has a non-degenerate distribution that is continuous at some point of interest.
As mentioned in [22], such methods, close to bootstrap and subsampling ideas,
were already proposed in the works of Mahalanobis in the 1940’s [see the
reprint  30] but were abandoned because of the cost of paper: at that time,
calculations were carried out by hand. They have also been developed by [12]
about bootstrap and Richardson extrapolation ([see also the discussions about
interpolations and extrapolations in 6, 4]), when the computer capacities
were not sufficient to handle even moderate sample sizes. Such methods are
themselves related to well-known numerical methods [see for instance 25, 23].

Most of these methods based on subsampling rely on an adequate stan-
dardization of the statistics of interest. Such standardization may be hard to
obtain for complicated procedures including statistical learning procedures. It
is even more complicated for extrapolation to very large sample sizes. Indeed,
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the extrapolation of the distribution of a statistic from smaller scales to a
large one requires the knowledge of the rate of convergence 7, of the proce-
dure of interest or at least an estimator of the latter, with n being the size
of the dataset. In many situations, this task is difficult because the rate itself
depends on the true generating process of the data.

In this paper, we present a variant of the subsampling distribution esti-
mation methodology studied by [7, 8] to derive a consistent estimator of the
rate 7. and study its rate of convergence. We prove the asymptotic validity
of the method to construct asymptotically valid confidence intervals and give
some precise rate of convergence, assuming that the centering of the subsam-
pling distribution satisfies some concentration inequality. What differs from
previous works is the way the subsampling distribution of the statistic of in-
terest is centered. It allows precise control of the rate of the approximation.
In [7, 8], the centering quantity was the statistic of interest computed on the
whole data set (which may not be achievable in practice for big data, when
the size n is very large), and the associated rate of convergence was of the
order of 1/logn. Here, the centering quantity is computed as the mean (or
median) of the statistics of interest obtained on subsamples of size b,. This
yields for subsampling distribution, the expected rate of convergence of order
\/bn/n plus a bias term which in regular cases in typically of order 1/v/b,
which is the rate at which the true distribution based on a sample of size b,
approaches the asymptotic distribution. In that case we obtain an optimal
rate of n=1/4 for the choice b, = n~/2. Moreover, we show that choosing the
subsampling mean yields attractive hyper-efficiency properties for some slow
algorithms (with a rate slower than \/n). This estimator satisfies precisely the
required concentration inequality. We then use the extrapolation of this esti-
mation for large datasets in order to construct confidence intervals for many
procedures that are difficult to analyze otherwise. We show how this idea may
be used in the case of machine learning procedures to obtain confidence inter-
vals for general risks. This allows proposing a confidence interval for the test
error rate of different algorithms, facilitating their comparison. We also show
how it is possible to practically integrate the dynamic aspect of the big data
environments (especially in the case of streaming data flows).

Subsampling techniques are implemented with potentially time-consuming
procedures (random forest, k-nearest neighbors, neural nets,...) first on sim-
ulated data and next on two real databases, the EMNIST dataset, and the
VeReMi dataset. The implementation of simulated data is performed with the
software R on a standard machine and the implementation of real data il-
lustrations with Python on an Intel(R) Xeon(R) Gold 6154 CPU @ 3.00GHz
machine with 144 cores and 250GB RAM. We estimate the rate of convergence
of several algorithms and obtain confidence intervals for the out-of-sample risks
of several standard algorithms. An interesting by-product of the study is that
using different subsampling sizes also allows detecting the instability of the
procedures.

The article is organized as follows. Section 2 presents the state of the art of
the subsampling methods and introduces some estimators of the convergence
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rate of the sample statistic distribution. Section 3 presents the two main results
and a discussion on the choice of the subsampling sizes. First, we prove the
asymptotic validity of the method to construct asymptotically valid confidence
intervals. Then, we also prove that the median of the randomized subsampling
distribution yields attractive hyper-efficiency properties for some slow algo-
rithms. Section 4 presents applications on simulated data and on the VeReMi,
and EMNIST-digits datasets. Finally, the proofs are deferred to the Appendix
section.

2 Subsampling methods for big data
2.1 Definition

In Politis and Romano [33], a general subsampling methodology has been ex-
hibited for the construction of large-sample confidence regions for a general
unknown parameter § = (P) € R? under very minimal conditions. Consider-
ing X, = (Xy, ..., X,) an i.i.d. sample, the construction of confidence intervals
for 0 requires an approximation to the sampling distribution under P, generally
unknown, of a standardized statistic T;, = T,,(X,,). This statistic is assumed
to be consistent for § at some known rate 7,. For example, in the statistical
learning methodology, § may be the Bayes Risk and T, the estimated risk
linked to a given algorithm. In the framework of prediction, f may be a value
to predict and T,, a predictor.

To fix some notations, assume that there is a non-degenerate asymptotic
distribution for the centered re-normalized statistic 7,,(7;, — ), denoted by
K(z, P), continuous in z, such that for any real number z,

K,(xz,P)=Prp{r, (T, —0) <z} — K(z,P). (A1)

n—oo

Then the subsampling distribution with subsampling size b,,, is defined by
q
Ky, (x| X,m)=¢7" ) Hm, (Th, — Tn) <}, (1)
i=1

where ¢ = (bz) and T3, ; is a value of the statistic of interest, calculated on
a subset of size b, chosen from X . It was shown in Politis and Romano [33]
that the subsampling methodology is asymptotically valid. Precisely, under
the following assumptions on b,

bn,
b, — oo, — 0, (A2)
n—o0 n n—oo
and
T (A3)
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we have
Ky (2] X,,7.)— Ky(z,P) — 0,
n— oo

uniformly in  over neighborhoods of continuity points of K (x, P).
Remark(ON CONDITIONS A2-A3) The key point for this result is based on
the fact that, when T;, is replaced by 6 in equation (1), one obtains a U -statistic
of degree b,, whose variance is of order %. Then the condition A2 ensures that
the mean of this U-statistic Ky, (x, P) converges to a limiting distribution and
that the variance of the U-statistic converges to 0. The condition A8 allows to
replace the true value of the parameter by T,,. In that case A8 ensures that this
replacement does not affect the limiting distribution. When choosing an ade-
quate re-centering (for instance the median of the subsampling distribution),
the condition A8 may be completely dropped as discussed below.

For large databases, computing ¢ = (bZ) values of the statistics T3, ; may
be unfeasible. In this case, it is recommended to use its Monte-Carlo approxi-
mation

n

B
EP (@] X, 1) =B Un, (Th,; — Tu) < b, 2)
j=1

where {T,, j}j=1,...5 are now the values of the statistic calculated on B sub-
samples of size b,, taken without replacement from the original population. It
can be easily shown by incomplete U-statistic arguments that if B is large then
the error induced by the Monte-Carlo step on the subsampling distribution is
only of size

KD (0| Xvm) = Ko | Xam) =00 (=)

where the notation Op (.) refers to stochastic boundedness. We recall that
Zp = Op(ap) means that, for any ¢ > 0, there exists a finite 6. > 0 and a
finite N > 0 such that, VB > N, P(|Zg/ap| > d.) < €.

Then, if the error of K;, (x| X,,,7.) on the true distribution is controlled,
it is always possible to find a value of B (eventually linked to n) such that
the Monte-Carlo approximation is negligible. MacDiarmid’s inequality applied
to the indicator functions allows to have a precise control of the error at any
probability error level 4.

The subsampling method is based on the centering by 7T;,. This centering
may not be adapted for big data since the calculation of T, itself may be
too complicated : the exact size may be unknown or the complexity of the
algorithm and the cost induced by retrieving all the information may be too
high. In the subsampling method, the main reason for using the centering by
T, is simply due to the fact that, under the condition A3, the convergence
rate of T},, 7,, is faster than 7. Indeed :

o, (To, .5 — Tn) = 70, (To, 5 — 0) + 7, (0 — Ty,)

=70, (Tv,.; — 0) + Op (Tb”>

Tn

=1, (Tb,,,; — 0) +op(1).
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This suggests to use any centering whose convergence rate is faster than 7, .

This is for instance the case if one constructs a subsampling distribution
without any centering nor standardization with a subsampling size m,, >> b,
such that f;—z — 0 and % — 0. In this case we have that % Zle T, .j
?:1 Ty, .; (with an error of size 1/v/B) converges to
0 at a rate at least as fast as 7,,,, (provided that the expectation of these
quantities exists). The same results holds if one chooses the median rather
than the mean of the 7, . 's (when considering the mean this amounts to

recenter at median of means) as considered in Bertail et al. [7].

which is a proxy of %

2.2 Rate of convergence for subsampling distributions

To our knowledge the precise rate of convergence of subsampling distributions
and their Monte-Carlo approximations has not been investigated except in
some very specific cases (and especially the mean). Actually, in general, this
requires a more precise control of the centering factor and of the modulus of
continuity of the asymptotic distribution as well some control on the rate of
approximation to the asymptotic distribution. To do so will make additional
assumptions. R
In the following, we denote by 6, any centering such that

(0 —0,)=op(1). (3)

For reasons that appear clearly in the proofs and for further applications in
statistical learning, we assume that there is a concentration inequality for this
estimator of the following form: for some n > 0, there exists some universal
constants C; > 0,4 = 1,2 such that

~ n
P (Tbnw" 9> n) < Crexp(—-Cor?). (A4)

In general, because the right rate of convergence of 5 is much more rapid
than 75, , such concentration inequality holds for regular statistics. This is
the case of the mean or the moments for instance, under the existence of
some exponential moments. We will show later that the mean of the statistics
computed on (all or a sufficient large number of) subsamples of well chosen
size b,, satisfies such a requirement under minimal variance assumptions.

As in [20], we need to control the (deterministic) convergence rate of the
true distribution to the asymptotic distribution (this actually plays the role of
the bias in approximating the true distribution). In general, this rate is given
by some Berry-Esseen theorems or Edgeworth expansions. For this we assume
that, for any n large enough, uniformly in =z,

K,(z,P)— K(z,P)=0 (;ﬁ) , for some 8 > 0. (A5)
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In regular cases, Berry-Esseen theorems yields typically a rate of approx-
imation n~%/2 with 3 = 1/2 but for instance for symmetric statistics (or
asymptotically x? distribution), we rather expect 3 =1 .

We finally assume that we can locally control the modulus of continuity of
the asymptotic distribution at point of continuity K (z, P), by some increasing
function w null at 0. To simplify we assume that the distribution is Lipschitz
in neighborhoods of continuity points (similar results but with different rates
can be obtain under Holder assumptions). There exists L > 0, such that, at
any point z of continuity of K (., P) and any y in a neighborhood of z.

|K(y, P) — K(z,P)| < Lly — z|. (A6)

Since most of the times the asymptotic distribution are differentiable with a
bounded derivative the distribution is Lipschitz and this hypothesis is trivially
satisfied.

For simplicity, we use the same notation as before and now define the
subsampling distribution with the centering 6, as

q
Kbn ('r | Xn? T) = qil Z I{Tbn (Tbn;i - en) S '1:}’
i=1

and its Monte-Carlo approximation

n

B
KPP (@] X, 7) =B 1Yn, (T, —0,) <z},
j=1

The following result gives a new rate of convergence for K; (z | X,,,7)
and Kéf)(x | X,,,7.) for the centering 6 . This rate will be denoted by

by, 1

Theorem 1 Assume that conditions A1 to A6 hold, then we have uniformly
over neighborhood of points of continuity of K(x,P) (uniformly over R if
K(z, P) is continuous)

Kbn((E | XnaT.) _Kbn(l',P) =0p ( bn) ,

n

K (x| X,,7) = Ky, (2, P) = Op (ﬁ) +Op (\/IE) :

Moreover, we have
Ky, (x| X,,,7) = K(z, P) = Op (d3(n)),

and
Ky, (x| X,,,7.) — Kn(z, P) = Op (6s(n)) -
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If in addition B = O(n/by,,), then the same results also hold for the Monte-
Carlo approximation K,Sf)(x | X,,, 7).

This result gives some precise results on how to choose the subsampling size
and the number of replications by optimizing the rate of the approximation.
Typically for § = 1/2, we can choose the optimal value b,, = n'/? and B = n'/?
which actually will drastically reduce the computation costs in comparison to
bootstrap procedures. In this case, d5(n) = n~/4. For 8 = 1 (the symmetric
case), we can choose b, = n'/? and B = n?/3, and in this case, we get a
better rate d5(n) = n~'/3. It can be seen that the smaller the bias, the better
the approximation, but in this case the Monte-Carlo step will require more
computations.

2.3 Estimating the convergence rate

The main drawback of this approach is the knowledge of the standardization
(or rate) 7,. However, this rate may be easily estimated at least when the
rate of convergence is of the form 7,, = n*L(n) as shown Bertail et al. [7]).
Here « is an unknown real and L is a normalized slowly varying function, that
is such that L(1) = 1 and for any A > 0, lim, 0o % = 1 (see Bingham
et al. [14]). For simplicity, we will now assume that 7, = n®. The general
case T, = n®L(n) may be treated similarly with additional assumptions on
the slowly varying function (see Bertail et al. [7]). In any case, the estimator
proposed in Bertail et al. [7] may be used in our framework. We now proposed
a simplified approach which is satisfying in practice.

First, construct the subsampling without any standardization and denote
for simplicity

Ky, (v ] X,) = Kp, (x| X, 1)

the subsampling distribution of the root (T;, — #). Then we have
Ky (x7 ' | X,) = Ky, (¢ | X,,7) (4)

Let denote now F~1(t) the quantile transformation, i.e. F~1(t) = inf {z :
F(z) > t} for a given distribution F' on the real line and a number ¢ € (0,1).
The following Lemma extends Lemma 1 of Bertail and Politis [6] by providing
a rate of convergence for quantiles of subsampling distribution under natural
assumptions on the limiting distribution.

Lemma 1. Assume that K(x, P) is strictly increasing at least in the neigh-
borhood of the quantile of interest K~1(t, P) . Then under the conditions of
Theorem 1, we have

K, ' (t] X,,7.) =K '(t,P) + Op(s(n)~").

ADpy .

Now, it is easy to see with the rate of convergence obtained in Theorem 1
that we have by Lemma 1,
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KN X,,7) =7, K, ' (] X,) (5)
= K7'(t, P) (14 Op (d5(n))) (6)

yielding
log (£, (t | X,)I) = log (|IK~'(t, P)|) — alog(bn) + Op (95(n)).

It follows that, if two different subsampling sizes satisfying the conditions
stated before, are such that b,, = by, by, /b, = €, then one gets

log (155, (¢ X,)1) —log (151 (t] X,)I) = o+ Op (9a(n))

uniformly in a neighborhood of ¢. Using sample sizes of the same order avoids
the complicated constructions used in Bertail et al. [8] and suggests that the
parameter o may be simply estimated by averaging this quantity over several
subsampling distributions. The rate that we obtain here is clearly better than
the one obtained in Bertail et al. [8] : this is due to the concentration hypothesis
(A4) and hypothesis (A6). Again for the regular case § = 1/2, we can choose
the optimal value b,, = n'/? and obtain a rate for a equal to n~'/* which
clearly improves over the log(n)~! rate obtained in Bertail et al. [8]. Due to
the "bias” term (involved by the asymptotic approximation rate in A5), this
rate can not be improved.

Computing these two subsampling distributions mainly requires the com-
putation of B x by, (1+e€) values of the statistic of interest (which calculus may
be easily distributed). Thus the resampling size should be chosen large enough
not to perturb too much the subsampling distributions but sufficiently small
so that the cost in computing these quantities is small in comparison to the
global cost of computing a single statistic over the whole database. Similarly
as before is we choose B = n'/2? then we may replace the true subsampling
distribution by the Monte-Carlo approximation without changing the rate.
However for some very large datasets it may be preferable to loose in terms of
approximation to have a lower computation cost.

The drawback of the previous method is that it depends on the re-centering
of the subsampling distribution. In order to improve it let’s consider a regres-
sion of log range, on the log of the subsampling size, for any 0 < #; < 1/2 <
ty < 1, at which the asymptotic distribution is strictly increasing, we have

log (K, ' (t2 | X,,) — K, !t | X))
=log (K~ !(t2, P) — K~ '(t1, P)) — alog(b,) + Op (65(n)).
For b,,, = b, — oo and b, = by, /e, it follows that

(| X K (0] X,)
0g - =
Kyl (] X,) — K (] X,)

ng

) =a+0p(dz(n)). (7)
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By looking simply at two subsampling distributions, it is thus possible to
estimate the parameter « at a rate which is at least Op (dg(n)). One may
choose for instance t; = 0.75 and t; = 0.25 , corresponding to the log of
inter-quartiles, a choice used in the simulations in section 5.

3 Subsampling with estimated rates : some rate of convergence
3.1 Confidence intervals based on subsampling

For a given estimator of 7, typically 7, = n®, we will use

~

K, (z,P)=Prp{ 7o(T, — 0) < z}.
Theorem 2 Assume A1 holds for 7, = n®, for some a > 0 and some

K(z,P) continuous in x; assume also that assumption A2 holds. Let & =
a+op((logn)™t), and 7, = n®. Then

A, =sup|K,, (¢ | X,,7) — K(z,P)| = op(1).
T

Let v € (0,1), and let c,(1—7y) = Kb*nl(l—'y | X,,,7) be the (1—~)" quantile
of the subsampling distribution Ky (x| X,,,7.). Then

A
Pr p{70(T5 — 0) > cu(1 — )} njgo - (8)
Thus with an asymptotic coverage probability of 1 — v, we have
e, (1-9)<0-T,

and by symmetry,
0—T, < -7, cn(v).

If in addition conditions A1-A6 holds, if we choose an estimator of o which
satisfies
a=a+0p (55(77,)71)

then the rate of the subsampling approximation with estimated rate becomes
A, = Op (log(n)ds(n)~") .

Remark: Notice that estimating the rate as we did before, only results in a
loss of log(n) in the subsampling distribution with estimated rate. For = 1/2
corresponding to smooth parameters, the optimal rate will be log(n)/ n'/4. For
moderate size this approximation is quite unsatisfactory but, for very large
dataset, it can still lead to acceptable approximation, as will be seen in our
applications.

Recall that Kl;l(l — v | X,,7) is the (1 — 7)™ quantile of the rescaled
subsampling distribution. Just like in [21] assume that B is such that (B+1)x~y
is an integer (thus if v = 5% or v = 1%, B = 999 or B = 9999 is fine), the

(1 — )" quantile is defined uniquely and equal to 7, (Tlfy(LBH)(l_v)) —0,)
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where Tb(,(LB—i_l)(l_A/)) is the (B + 1)(1 — ) largest value over the B subsampled
values. It then follows that the bound of 6§ — T, is given by

0T, > — o (B0 5. (9)
Tn
A straightforward application of this result is to compare generalization
capability of statistical learning algorithm, when n is so large that most al-
gorithms, even with polynomial complexity, may be hardly computed in a
reasonable time. However, in some cases, it may be difficult to compute the
statistics 7;, on the whole database.
The preceding result also allows to build confidence intervals for 6 based
on a single subsampling realization say 0, = Tin, (Xi,, ..., Xi,, ) based on a
different size m,, such that n >> m,, >> by,. For this, assume that (B+1)x~/2
is an integer. In that case, by combining (8) and (9), a two-sided confidence
interval for 6 is simply given by

B, — o (700 5, Y <0 <7, - Tou (7217 3,,.).

n = =
T’m n Tm n

which unfortunately is not on the right scale. However, if we can find an
estimator 6,, that can be computed on the whole database (7}, or the mean of
a given subsampling distribution may be candidates in some cases) with a rate
which satisfies conditions (3) and A4, a rescaled confidence interval is simply
given by

G _Ton (@T(BH)(l—v/?)) _ gn) <9<f - ((Z)T(B+1)v/2) _q ) .

n - n - n n
Tn Tn

In our simulation study, the variability of the data may be so high that
somehow there is very little difference between confidence intervals computed
with 6, or a subsampling estimator 6,,,. The “model error” is so large in
comparison to the fluctuation error that using m,, instead of n does not make
so much difference.

3.2 Improving rates by means of subsampling estimators

In the particular case when the recentering estimator §n is chosen to be the
mean of the subsampling distribution, we show in the following theorem that
there is a concentration phenomenon at a speed which is sufficient to ensure
conditions (3) and A4. This result may be seen as a generalization of the
hyper-efficiency results for pooled estimators computed on partitioned data
obtained in [3]. For slow procedure (i.e. procedures with convergence rate
slower than \/n), we prove this super-efficiency phenomenon (i.e. a convergence
rate faster than the original rate and close to v/n) for the mean of subsampling
distribution under a simple variance condition.
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For simplicity, define the mean estimator 5% = ¢ '3 T, where q is
1<i<q

either (g;) or some deterministic B. In that case, the B subsamples are chosen
uniformly over all possible subsamples of size b,.

Notice that, when we consider all subsamples, 62 is nothing else than a
U-statistics with a kernel Ty, (.) of degree b,, . Recall that if T3, is bounded
by some constant M (which will the case in the statistical learning procedures
that we will studied later) and if the variance exists say Var(n, T3, ) < C < oo,
then Hoeffding proved a Bernstein type inequality (see also [1]) which becomes
here

P(|02 — B(T,)| > ¢) < 2exp —ﬂ
" " - 2C/72 + 3 Me

yielding (by changing ¢ into ¢ nl;’é )
hTI,

e?M?
2C + 2Mem,, /22

n

P(y |57, 108 — E(Ty,)] > ) < 2exp

Thus if b, is chosen such that Tbn\/% is bounded (which will be the case
for the choice of b,, controlling the bias and is always true when b,, is chosen
very small), then we will get an Hoeffding bound of type (A4). Moreover by a
straightforward inversion of the Bernstein inequality, we have

~ by, 1 b
01 — E(Ty,)| = Op({) = — + =
0% — E(Ty,)| = Op( . )
which can be better than the rate of convergence of the original statistics 7,.
We state this result under an unbiased condition (to avoid lengthy discussions

on the form of the bias).

Theorem 3 Assume that the statistics of interest T}, is an unbiased bounded
estimator of 6 has rate 7, < \/n, under the assumptions A1-A2 and assuming
that the asymptotic variance is bounded uniformly in n, that is
Var(r,T,) < C.

Then the rate of convergence of tz)\%, forq= (b") or q = B with B > n/b,, is at
least ,, ,/3-. Moreover, this estimator satisfies the concentration inequality
Aj4.

Remark In particular, if 7, = n'/? then the subsampling mean estimator 531
has the same rate n*/2. But if 7,, = n®, « < 1/2 then this estimator has a better

rate of convergence given by nl/g/b}/%a. We can even choose b,, = log(n) and
thus a rate close to \/n asymptotically. Of course, there is no free lunch. In
that case we need more computations of the subsampling estimator (at least
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n/log(n) which may be too much in practice). Moreover it is emphasized in
[3] that this estimator may not be locally regular which may be a drawback for
some applications where uniformity is needed.

3.3 A subsampling result tailored to statistical learning

Let D, = {(X;,Y:), ¢ = 1,...,n} be i.id. with distribution P defined on
(12, A, P), taking their values in some measurable product space X x ). The
(X;,Y;)’s correspond to independent copies of a generic r.v. (X,Y). A predictor
is a measurable function ¢ : X — Y, z — y = ¢(z). To measure the risk of
a predictor, we introduce the loss function L : Y2 — R which is assumed to
be bounded by some constant M. The Bayes classifier is the one obtained by
minimizing the expectation of the loss function over all classifiers :

¢* = arg (r;lelg EpL(Y, $(X)).

However, in the estimation procedure, we will only minimize over a given
class of function F corresponding to a specific algorithm. Moreover, since P
is unknown, we will approximate the expected loss by the empirical one and
consider the estimator ¢,, defined by

n

bn = ¢n(F) = argmin 1 Z L(Yi, ¢(X5)).

def peEF N £
i=1

One goal of statistical learning is to evaluate the generalization capability of
the algorithm measured by the discrepancy between the optimal risk 6* =
EpL(Y,¢*(X)) and the one evaluated on the resulting predictor ¢,,, say

Ay = Bp(L(Y,¢n(X))|Dy) — EpL(Y, 6" (X)).

Constructing confidence intervals for this quantity is of prime importance since
it can allow us to distinguish between different algorithms. In the following, it
is assumed that A, converges asymptotically to a distribution K(z, P) at a
rate 7, = 7,,(P) which is clearly unknown in most situations (even when one
is able to obtain concentration inequalities).

Following the subsampling ideas exposed before, for any subsampling set
of size b,,, Dl(,]n) ={(X;,Y7),i € séjn)h with slgi) c{1,..,n}forj=1,.,q, we
define the subsampling counterpart of EpL(Y, an(X )) by

9 = Ep(L(Y, 0 (X)) D),

oy 1
evaluated at the estimator qﬁgj) = argmin— z L(Y;, (X3)).

peF n .
iEsﬁJn)
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Since Eé] ) depends on the true distribution, we will estimate it by its em-

pirical version computed on the set ﬁl(i) ={(X,,Y;),i € sgi’)}

—

- 1 .
&) = i 3 Lo (X))

iesl(?i)

Let’s now define 5;{ = %\/ie,zin(é'éj )) and the subsampling distribution of the risk,
<i<qg

on all g = (b'i) subsamples,
q —_—
Ky, (2] X,07) = 7" Y Un, (&7 —03) <a).
j=1

As before, we introduce the approximate subsampling distribution based only

on B simulations where now 9\5} = Mean (Séj )) defined by
1<j<B n

B —
K (x| X,,7)=B" S 1{n, (&7 —87) < al,
j=1

where the Séi) , j =1,..., B are taken at random uniformly on the set of all

subsamples. We expect Kéf)(x | X,,,7.) to be an estimator of
Ky () =P (Tbn (5151) —60") < x) ,

which is itself asymptotically close to the distribution of Pr p(7, 4, < x).

Then, we apply the same rate estimation procedure as before to compute
an estimator of the convergence rate 7, say 7.. Applying the same arguments
as in Theorem 2 yield the following result.

Corollary 1 Assume that:

KM (@) X, m) 25 K(z,P).

n—oo
Moreover, under the same hypotheses as in Theorem 2, we have, with estimated

rate of convergence,

K@) X,,7) 25 K(, P)

n—oo

yielding a confidence interval for A, of level 1 — v given by
%glcn('y/?) <A4,< 7A—n_1cn(1 —7/2)
where ¢, (t) is the quantile of order t of the distribution Kéf)(x | X

7).

n?
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Remark By the same arguments as in the proof of corollary 1, é\z = {\gegn(é‘éi))
1<q "

satisfies a concentration inequality around the true risk, provided that the vari-
ance of the risk estimator has an asymptotic variance uniformly bounded. This
is automatically satisfied since the cost function L is assumed to be bounded.
The problem reduces to obtaining a concentration result for

B
K& (@) =B 1{n, (€9 - 07) < a},

j=1

which is simply a U-statistic of degree b, .

Example : Pattern recognition Assume that {(X1,Y1), ..., (Xn,Yn)}
is a sample of i.i.d. random pairs taking their values in some measurable prod-
uct space X x {—1,+1}. In this standard binary classification framework, the
r.v.’s X are used to predict the binary label Y. The distribution P can also be
described by the pair (F,n) where F(dz) denotes the marginal distribution of
the input variable X and n(z) =P{Y = +1 | X =z}, z € X, is the conditional
distribution. The goal is to build a measurable classifier ¢ : X — {—1,+1} with
minimum risk defined by

LY, ¢(X)) < 1{g(X) # Y}, (10)

where I{.} is the indicator function. It is well-known that the Bayes classifier
¢*(x) = 2I{n(x) > 1/2} — 1 is a solution of the risk minimization problem
over the collection of all classifiers defined on the input space X'. In this case,
we have simply:

n

On(F) = argmin ~ S Io(X,) £ Vi) (1)

i=1

It is now possible to apply the subsampling procedure to different classes of
functions (algorithm) to estimate their prediction capability. In the simulation
studies, we propose the use of F; : a parametric logit model , 75 : the k-
nearest neighbor method, F3 : random forest models. It is known that under
some regularity assumptions that the three methods are consistent so that
asymptotically the approximation error vanishes. For Fj, it is known that
the rate of convergence of the empirical risk is y/n; however for the other two
algorithms, even if some bounds exist on the generalization capability, the rate
of convergence is not clear. Our method will allow us to evaluate the different
algorithms and the rate of convergence of the algorithms.

3.4 How to choose the ”optimal” subsampling sizes

The choice of the subsampling size is a delicate subject which has been dis-
cussed in very few papers including [11, 20, 13]. Our preceding results were
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essentially asymptotic. For instance for § = 1/2 the optimal choice is of the
form b, = C'/n for some constant C. But in practice the choice of the con-
stant is crucial... The main idea underlying most propositions is to construct
several subsampling distributions by using two different subsampling sizes say
b, and kb,, for k €]0, 1[ (we recommend due to our preceding results k = 1/e).
It is easy to see that when the subsampling distribution is a convergent esti-
mator of the true distribution then the distance d between the subsampling
distribution and the true one is stochastically equivalent to d(K5p, , Kip, )-

The idea is then to find the largest b,, which minimizes this quantity.
Several distances (Kolmogorov distance, Wasserstein metrics etc...) may be
used.

Of course, for large datasets, such method is very computationally expen-
sive. We recommend only to choose a limited range of values for b, and to
discretize this range so as to compute the distance d(Kjp, , Kgp, ) only on a
limited number of points and to select the ones which minimize this quantity.

Another empirical approach has been proposed in [5] to deal with the
problem of the high volatility of subsampling distributions for too large sub-
sampling sizes. Indeed a subsampling distribution, as well as its quantiles, may
simply be seen as a U-statistic but with varying kernel of increasing size b,,. The
main tools for studying the behavior of subsampling distribution are Hoeffding
decomposition of the U-statistic and empirical process theory as considered
in [2, 24]. The difficulty for choosing the subsampling size is that, in compar-
ison to U-statistics with fixed degree, the linear part of the U-statistic is not
always the dominating part in the Hoeffding decomposition. For rather small
or moderate b,, it can be shown that the U-statistic is asymptotically normal

with a convergence rate of order ,/;=. However, when b, becomes too large,
n

the remainder in the Hoeffding decomposition dominates and the U-statistic
behaves very erratically. Then the idea is simply to look at the quantiles of
subsampling distributions and to find the largest value such that the quantile
remains stable.

3.5 Subsampling in a growing environment

In many fields, data are now collected online, so that the size of the database
may evolve quickly in time. Then, one may wish to update previous estimations
without having to access to the whole database again. How is it possible to
use the techniques exposed before when the size of the database is large and
increases so fast that taking new subsamples may be too computer-expensive?
To solve this problem, we present a very simple sequential algorithm.

The idea is as follows: assume that at time ¢, we have obtained a subsample
without replacement of size b, (uniformly) from the original population n.
That is the probability of a given subsample is (bj) ~'. At time ¢ + 1, the new
sample size is n + 1. Then for this newcomer, proceed as follows:

— Draw a Bernoulli rv Z with parameter 1 — b,,/(n + 1)
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— keep the original subsample if Z = 1, that is with probability 1—b,,/(n+1),

— else with probability b, /(n+1), choose one element of the current subsam-
ple (without replacement, uniformly with probability 1/b,) and replace it
with this newcomer.

If several newcomers arrive at the same time, then use sequentially the same
algorithm by increasing the size of the population. Notice that this algorithm
may be easily implemented sequentially to update all the subsamples already
obtained at some given time.

The arguments below show that the resulting algorithm is the realization
of subsampling without replacement from the total new population.

It may be simply proved by recurrence [32]. Indeed, assume that the prob-

ability of the original sample is (b" ) ! then

— if Z =1, the probability of the new sample is (b" ) ' (1— nbil) = (”b+1) !
— if Z = 0, the probability of the new sample is (br;)—l X nbj;l (ﬁ + ";f" =
(o™
brn ’

It follows that the corresponding subsample at any step is actually a sub-
sample obtained without replacement from the total population.

If we want to increase the size of subsample, starting from a subsample
of size b, in a population of size n then we simply draw uniformly in the
n — b, remaining observation an individual (with probability 1/(n — b,)). It
may be sometimes easier (for instance using Apache Spark) to use sampling
with replacement. It is known in that case that when b,, is small enough such
that % — 0, then the probability to draw the same individual twice converges
to 0, for large n. Indeed, when b—\/% — 0, by Stirling formula, we have (be",;?

— 1,
so that with and without replacement samplings are asymptotically equivalent
under this condition.

4 Some empirical results
4.1 Simulation results
In this simulation section, the implementations were executed under R on a

standard PC with a 5GHz Intel processor and 2G of Ram. The purpose is to
show that we might gain a lot in term of computation for large database.

4.1.1 Mazimum likelihood estimation for a simple logistic model

The purpose of this example is to explore the feasibility and the computer
performance of the procedures described before in an estimation framework.
We consider here a very simple parametric model to highlight some inherent
difficulties with subsampling. Consider a linear logistic regression model with
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parameter § = (85, 3) € R x R%. Let X be a d-dimensional marginal vector
of the input random variables. The linear logistic regression model related to
a pair (X,Y) can be written as

exp(fo + BT X)
1 +exp(fo + BTX)

Po{Y = +1| X} =

In high-dimension ¢.e. when d is very large and for very large n, the computa-
tion of the full parametric maximum likelihood estimator (MLE) of § may be
difficult to obtain in a reasonable time. We assume that d << n but also that
the subsampling sizes which will be used are such that d << b,.

For unbalanced populations (a lot of 1’s in comparison with 0’s and vice
versa), the probability to get a subsample with only unit values (or zeros)
may be high and the MLE will not be convergent (a similar problem appears
if the labels are fully separated). This is by no means contradictory with the
asymptotic validity of subsampling in this case: it has been shown in [27]
that the true variance of the MLE estimator in a finite population is 4o0.
Subsampling simply reproduces this fact on a smaller scale. In that case, one
should condition on the fact that the ratio of the numbers of 1’s to the number
of 0’s is not too small (or not too close to 1). Else, the subsample should be
eliminated. We fix this ratio to 3% in our simulations.

In the following, we simulate the toy logistic model

Y, = 1if3X;+¢;,>0
0 else

with X; ~ N(0,1) and ¢; independent logistic random variables. We choose
respectively n = 10% and n = 107.

Even on reasonable sizes, our estimation procedure may be useful. For
instance in R, with 1 GB of memory, the usual libraries (sampleSelection, glm)
fail to estimate the model with a size of n = 107 observations (for capacity
reasons), whereas it takes only 12s to get a bound with B = 999 replications
of the procedure and a subsampling size of the order b,, = n'/3. Here, it is not
required to estimate the rate of convergence since the rate 7, = n'/? is known.
In that case, the mean trick (pooled estimator) does not improve the MLE
estimator theoretically but allows a quicker and feasible computation of the
recentering factor. The true extrapolated bound obtained by subsampling is of
the same order as the true one, with an error on the variance less than 105, for
all simulations. If we estimate the rate of convergence with J = 29 subsampling
distributions based on subsampling sizes equal to n!/3t7/B(J=1) 5 =, . 28,
the largest subsampling size is of order n?/3, then one gets similar results but
with 999 x 29 simulations : it then takes 6 min to complete these tasks on the
same computer.

The mean of the estimations of 8 (and the variances) over the B = 999
repetitions with the subsampling procedure are given in Table 1 for different
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1/3 .1/2 .2

subsampling sizes n'/3 n'/2,n?/3 and on the whole sample with the corre-
sponding total execution times. var'/? gives a rescaled estimator of the vari-
ance (to compare with the estimator of the variance on the whole database)

Table 1 MLE variance estimations for a logistic model with n = 10, 107.

subsample (B = 999 replications) whole sample
n
n bn an varl/? time (v&r(ﬁn)1/2 )
time
ni/3 100 3.19  0.0064 13s 2.992
10% | nl/2x~1000 3.022 0.0063 36 s (0.0061)
n2/3 210000 2.996 0.0060 3.26 mn 28.75 s
nl/3 =~ 215 3.10  0.0020 41s 2.998
107 | n'/2 3162 3.009 0.0020 1.25 mn (0.0019)
n2/3 ~ 46415 2.998  0.0019 12 mn 4.69 mn

Notice that even with a size of n'/3, we were able to get the correct order
for the variance. The bias may be important for small subsampling size but
almost vanish for n?/3. With a subsampling size of order n?/? = 46,415 even
if the model is true, we get the same order as the one on the MLE on the
whole database : but in terms of calculus, n%/3 is already too big, since in that
case we were able to proceed the m.l.e on the whole database in less than 5
minutes (whereas it takes 12 minutes to replicates 999 time the procedure on
the n2/3 sample size). But for n'/2, we get a gain of 4 (and 12 for n'/3) for a
similar accuracy : of course, this strongly depends on the degree of accuracy
that one wishes to obtain on the parameter of interest and on the capacity of
the computer.

4.1.2 Estimation of the out-of-sample error with k-nearest-neighbor algorithm.

Considering the previous example, we now use the subsampling method to esti-
mate the out-of-sample errors of k-nearest neighbor (KNN) estimators on sev-
eral subsampling sizes and compare them to that obtained on the full database.
We consider a training set equal to 0.7n and a test set of size 0.3n (similar re-
sults have been obtained for other test sets). The computation times in Table 2
clearly show the computation gains. A striking result is for n = 107 because it
takes almost 5 hours to get an estimator of this quantity on the whole sample
whereas the subsampling method takes at the worst 15 minutes with n?/3. It
seems that even with a size of order n'/? we still get a good approximation in
less than 45 seconds. With the subsampling method by using an extrapolated
variance, we are also able to estimate the variance of the out-of-sample error
(in parenthesis in the table), which shows that the estimation is quite accurate.
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Table 2 Estimation of the out-of-sample error by subsampling and on the whole sample -
KNN model

KNN subsample (B = 999 replications) whole sample
n bn, out-of-samp. error time out-of-samp. err time
nl/3 0.1177 4.79 s 0.1158 5.252 mn
106 nl/2 0.1165 5.76 s (0.008)
n2/3 0.1167 43.5 s
nl/3 0.1166 44.7 s 0.114082 4h57mn
107 nlt/2 0.1163 50.7 s (0.006)
n2/3 0.1161 15.35 mn

Notice that, for this data, the out-of-sample error of the logistic model is
better (of order 0.050 for both sizes) : it is due to the fact that the data has
been simulated with a true logistic model. These simulations show that it is
possible to compare in a reasonable time the out-of-sample errors for several
competing methods (with confidence intervals). This is what is done in the
next paragraph for real data.

4.2 Two case studies on real data sets

In this section, the implementation is performed in Python using the libraries
NumPy, SciPy, Sklearn, Tensorflow, on an Intel(R) Xeon(R) Gold 6154 CPU
@ 3.00GHz machine with 144 cores and 250GB RAM.

4.2.1 Tested models

Subsampling techniques are implemented on potentially time consuming pro-
cedures (Decision Tree DT[16], Random Forest RF[15], Support Vector Ma-
chine SVM[17], Neural nets (3 types: NeuralNet which is a fully connected
multi-layer perceptron with one hidden layer [34], NeuralNet3 which is a
deeper multi-layer perceptron with three hidden layers, ConvINet [28] which
is a special architecture of a neural net that takes account of the hierarchi-
cal pattern in data and is commonly used in computer vision), a logit model
Logit[31], and K-nearest neighbours KNN.

Note that ConvNet is only used on MNIST data set as it is mainly used on
image processing, and that no hierarchical pattern exist between the features
of veremi dataset.

The hyperparameters of all tested models were not specifically optimized
to do the task on both datasets. We kept the default values found in sklearn
that are based on recommendations from original authors.

4.2.2 Description of the datasets

Vehicular Reference Misbehavior (VeReMi)
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The VeReMi (Vehicular Reference Misbehavior) dataset (see [35]) contains
data about detection of misbehavior in vehicular networks, a particular sensi-
tive topic in cooperative autonomous driving, see https://veremi-dataset.
github.io/. The purpose of this application is to compare the relative risks
of several algorithms and their confidence intervals. The VeReMi dataset com-
prises N = 424,810 individuals and only 12 variables.

EMNIST digits

The well known EMNIST dataset, studied for instance in [29], contains bi-
nary images of handwritten digits and the corresponding true digits; the well-
known purpose is to find an algorithm which correctly recognizes the digit,
see https://www.nist.gov/itl/products-and-services/emnist-dataset
and [19]. The EMNIST dataset comprises N = 240,000 images and 784 vari-
ables (28 x 28 pixels for each image).

A smaller version of this database is the MNIST digits popularized by
Lecun. The dataset comprises N = 60,000 images. This version of the data
base is used to check whether the estimation of the convergence rate is similar
when based on a smaller dataset. We’ll refer to this database by ” Lecun MNIST
dataset”.

4.2.3 Comparison of the performances of the tested models
Computing Out-of-sample errors

Figures 1, 2 and 3 provide the estimation of the out-of-sample errors of
several models with 90% confidence intervals as well as the computing times
for each of them, according to subsampling sizes, for the VeReMi and EMNIST
digits datasets. The methodology is described in sections 3.1 and 3.2: B is set to
999, b,, is ranging from N'/3 to N?/3 similarly to what we did in the previous
section, with the estimation of J = 29 subsampling distributions.

For VeReMi, we observe the superiority of the two tree based approaches
(RF and DT), and the lower performance of the KNN approach in terms of
errors, but DT would clearly be preferred as its computing time does not
explode as that of RF.

For EMNIST digit, most confidence intervals overlap for subsampling sizes
up to b, = 4,000 although ConvNet and SVM show the lowest errors. From
this error plot, we can not conclude that their superiority is significant. In
terms of computing times, SVM would clearly be preferred to ConvNet as the
computing time for the latter is greater than 6 hours for b,, = 4, 000.

For Lecun MNIST dataset, only 6 models were compared, and SVM and RF
have the best performances in terms of errors, SVM showing lower computing
times. Note that the computing times on this dataset 4 times smaller are also
4 times better.

Overall, the models RF, NeuralNet and SVM have a higher execution time
than other models for all subsampling sizes. In particular, for VeReMi dataset
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where the number of variables is very small, NeuralNet have a relatively smaller
execution time compared to Random Forests due to the reduced number of
parameters in the network. This changes for EMNIST digit, where the number
of features is much bigger and NeuralNet take longer to train. The simpler
models KNN, DT, and Logit take relatively smaller execution times. Overall
all execution times increase with subsampling size with different rates for each
model.

Computing times on VeReMi dataset
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Fig. 1 Comparison of Out-of-sample errors and their associated computing times from 6
different models according to the subsampling size, VeReMi dataset.
For errors, 90% confidence intervals are provided.
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Computing times on EMNIST digit dataset
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Fig. 2 Comparison of Out-of-sample errors and their associated computing times from 8
different models according to the subsampling size, EMNIST digit dataset.
For errors, 90% confidence intervals are provided.
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Computing times on Lecun MNIST dataset
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Fig. 3 Comparison of Out-of-sample errors and their associated computing times from 6
different models according to the subsampling size. Lecun MNIST dataset.
For errors, 90% confidence intervals are provided.

Figures 4 shows the extrapolation to the full dataset sizes of the out-of-
sample errors. It requires the computation of the estimated convergence rate
presented in next section, that is the computation of the J = 29 subsampling
distributions.

For VEREMI, RF and DT perform the best, and similarly to each other.
For EMNIST, Convnet clearly outperforms the other models, SVM is next.
For Lecun MNIST, VM AND RF do not differ much and we can see that
NeuralNet behaves better on the N = 240,000 EMNIST dataset than the
60,000 Lecun MNIST dataset.



Scaling by subsampling for big data, with applications to statistical learning

25

In comparison with the Out-of-sample errors on the full dataset (Table 3,
4), the order of best to worst performing methods matches the one with the ex-
trapolated error. Except for KNN on VeREMi dataset where the introduction

of the full data helped achieve a much better performance.

Table 3 Summary statistics of Out-of-sample errors from different models on the full EM-
NIST dataset size

Logit RF SVM DT KNN  NeuralNet
count 10 10 10 10 10 10
mean  0.062435 0.019450 0.011373  0.080225 0.018935 0.028037
std 0.000742  0.000503  0.000431 0.001078  0.000345 0.000926
min 0.061417  0.019000 0.010604  0.078000  0.018542 0.026792
10% 0.061623  0.019056  0.010792 0.078844  0.018617 0.027110
50% 0.062375 0.019208 0.011385 0.080719 0.018844 0.028010
90% 0.063517  0.020296 0.011827 0.081125 0.019500 0.028950
max 0.063667 0.020333 0.011958 0.081125 0.019500 0.029812

Table 4 Summary statistics of
VeReMi dataset size

Out-of-sample errors from different models on the full

logit RF SVM DT Knn  NeuralNet
count 10 10 10 10 10 10
mean  0.254134  0.000194 0.254134 0.001743  0.030807 0.254228
std 0.001391  0.000050 0.001391  0.000208  0.000526 0.001340
min 0.251442 0.000141 0.251442 0.001565 0.029849 0.251677
10% 0.252957  0.000152  0.252957  0.001587  0.029933 0.252948
50% 0.253878  0.000177  0.253878  0.001671  0.030920 0.254172
90% 0.255643  0.000262  0.255643  0.002120 0.031286 0.255632
max 0.255738  0.000294  0.255738 0.002130 0.031402 0.255738
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Fig. 4 Comparison of Out-of-sample errors from 6 or 8 different models, with 90% confi-
dence intervals, extrapolated to the full dataset size.

For VeReMi N = 424,810, for EMNIST digit, N = 240,000, for Lecun MNIST, N = 60,000
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Estimation of the convergence rates

We estimate here the rate of convergence 7, as n®. As described at the
end of section 2.3, we consider here a regression of log range, on the log of
the subsampling size. We propose 3 different ranges, either the inter-quartile-
range (percentiles at 25% and 75%) denoted IQR, or an inter percentile range
with length 80% denoted IPR80 (percentiles at 10% and 90%), or with length
90% denoted IPR9I0 (percentiles at 5% and 95%). Individual graphs showing
the slope a of each model/IPR choice are postponed to the appendix and
results are summarized in Tables 5 and 6. For both datasets, we observe that
the results are quite stable when changing the IPR approach. For VeReMi,
we observe that RF and DT have faster convergence rates (o ~-.6) that the
4 others models (o &= —1/2). These models also reached the lowest Out-of-
sample errors. For EMNIST, we tested two more models: a Neural Net with
3 layers and a Convolution Net to see how the rates of convergence would
be impacted. We observe that here, Logit, DT and NeuralNet3 models have
a =~ —1/2 while KNN and RF have a &~ —2/3, and SVM and ConvNet have
a &~ —3/4, NeuralNet being closer to a = —.6. Again, the models with faster
convergence rates are also those with lower out-of-sample errors. However,
we see that the convergence rates do depend on the learning problem as we
observe for instance that DT is very efficient in the VeReMi case (12 features)
and not in the EMNIST case (784 features).

Table 5 Estimation the convergence rates of the 6 different models, with 3 different methods
- the VeReMi dataset

Model IQR IPR80 IPR90
NeuralNet  -0.487 -0.500 -0.499
Logit -0.493 -0.513  -0.498
KNN -0.497 -0.506  -0.493
SVM -0.510 -0.494 -0.504
RF -0.595 -0.636  -0.635
DT -0.611 -0.624 -0.630

Table 6 Estimation the convergence rates of the 8 different models, with 3 different methods
- the EMNIST dataset

Model IQR IPR80 IPR90
Logit -0.558 -0.560 -0.562
NeuralNet3 -0.560 -0.514  -0.525
DT -0.567 -0.542  -0.533
NeuralNet -0.591 -0.587 -0.578
KNN -0.657 -0.655  -0.673
RF -0.688 -0.675 -0.687
ConvNet -0.722  -0.753  -0.750

SVM -0.773  -0.754  -0.757
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Table 7 also compares the EMNIST IQR results with the Lecun MNIST
IQR results. The smaller dataset shows somehow lower rates than the larger
one.

Table 7 Estimation the convergence rates of the 6 different models (IQR method), com-
parison of EMNIST dataset (N = 240,000) and Lecun MNIST dataset (N = 60, 000)

Model EMNIST  Lecun MNIST
Logit -0.558 -0.564
RF -0.688 -0.656
DT -0.567 -0.518
KNN -0.657 -0.641
NeuralNet -0.591 -0.427

SVM -0.773 -0.682
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A Appendix A

This appendix is dedicated to the proof of the theorems and the corollary of this article.

A.1 Proof of Theorem 1 from section 2.2

Introduce the U-statistic
q
Vo, () =g~ ! Z Yo, (Th,, i — 0) <z}
i=1

Then, we have by a simple decomposition

P(|Ky, (x| X,,7.) = K, (2, P)| > €)

S P(Ky,, (x| X, 7) = Vo, (@) > €/2) + P([Vb,, (2) — Kb, (, P)| > €/2).
Since Ep [V, (x)] = Ky, (z, P) and V4, is a U-statistic of degree by, with kernel bounded by
1, we have by Hoeffding’s inequality

P(|Vs, () — Ky, (z, P)] > €) < 2exp (—bﬁa?/z) .
n

Now, we can write using the same argument (twice), for any n > 0,

P(|Ks, (@ | X,,7) = Vb, (@) > £/2) = P(IVs, (@ = 75,18, = 0] [) = Vb,, (@)] > £/2)
< P (7,10, =01 > 1) + P(Vh, (x =) = Vb, (@)] > £/2)
< P (7,10, =01 > 1) + P(Vi,, (z =) = Ky, (e = 1, P)| > &/6)+
P(|Kp,, (z,P) — Vp, ()| > €/6) + P(Kp, (x —n, P ) — Ky, (x, P)| >¢/6)
< P (7018, — 61 > n) + dexp(—3-<*/72)
+ Py, (2 =1, P) = Ko, (2, P)| > ¢/6)

But since Kj, (x, P) is supposed to be continuous at z (at least asymptotically), for n large
enough, the last term is O for a well chosen 7. More precisely, under A5 and the Lipschitz
condition A6, we have

|Kbn(17_777P)_Kbn(z7P)| S |Kbn(33—77’P)—K($—777P)|+

|Kp,, (z, P) — K(z, P)| + |K(z —n, P) — K(z, P)]|
<O, %)+ Ln

It follows that if we choose n such that n < e/12L, for n large enough the last term vanishes.
Now for this choice, we get that, by hypothesis (A4), for some non negative constants M;
and M3z, we also have an exponential inequality for K; (x| X, ,7.) of the form

n
P(|Ky, (x| X,,7.) - Ky, (z,P)| > ) <M eXp(—F62/M2)
n

This proves the first result.

Now, the distribution Kéj?(w | X,,,7.) is obtained (conditionally to the data) by sam-
pling with replacement over all possible subsamples. According to this resampling plan,
the Klgf)(m | X,,,7.) concentrates around its mean Kj (x,P), by Hoeffding’s inequality,
at a rate 1/ VB . Thus by combining with the preceding results, we get an error of size
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Op (\/g) + Op (ﬁ) Notice that, when B >> %, we get that the final error is of
order Op (\/g)

Now for the last propositions, just notice that we have the decomposition

Ky, (x| X,,,7.)— K(z,P) =Ky, (x| X,,,7.) — Ky, (¢, P) + Ky, (x, P) — K(z, P)
and

Ky, (x| X,,,7.)— Kn(z,P) =Ky, (x| X,,,7.) — K(z, P) + —K(x, P) — Kn(z, P)

Now use assumption A5 and the preceding results to conclude.

A.2 Proof of Lemma 1 from section 2.3

For any € > 0, we know from Theorem 1 in section 2.2, that there exists some L = L.,
Prp{|Ky, (z | X,,7) - K(z, P)| > L/ég(n)} < e (12)

uniformly in z. Put n, = % and define the quantile z = Kl;Ll(t - | X,,T),
then K, (z | X,,,7.) > t — nn. Combining this with (12) implies that z > K=1(t —
21, P).with probability at most €. Similarly, define y = K~1(¢, P), then we have y >
Kb_n1 (t — nn| X,,,7.) with probability at most . Hence, for any ¢ and any € > 0, we have
the inequality :

Prp (K7 (t =200, P) < K (b= 1n | X,007m) < K7L P)) < 2. (13)

This clearly yields , for e — 0%, that
KNt X, ) = K7t P) + op(1).

But, by assumption A6 and using the Inverse function theorem for Lipschitz (strictly in-
creasing continuous) functions that, there exists an L; such that

’
|K~(t = 20n, P) = K~ (t, P)| < Lt
Using again (13) twice, we get that

Ky 't X, m) = K~ (t, P) + Op (1)
K=Y(t, P) + Op(d5(n)~1),

uniformly in the neighborhood of ¢.

A .3 Proof of Theorem 2 from section 3.1

The proof follows the same lines as [7]. For any x, consider

q
" b (T, i — 0n) < 7}
=1

Ky, (z] X,,,7.)

q
=q 'Y b (Th,,i — 0) — b3 (0n — ) <}

i=1
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and define the correctly recentered U-statistic

q
Un(z) =q 'Y 1{b5(Th, ; — 0) <z}

i=1
and the event R
En = {b5|0n — 0] <€},
for some € > 0. i X
Since & = a + op((logn)™1), we have as well n® = n®(1+ op(1)) and bE = b3 (1 + op(1)).
Notice for the last statement of the theorem, that if

& =a+0p(da(n)~"),

we get .

n = n®(1 + Op(log(n) /35 (n)))
and A

by = by (14 Op(log(bn)/d5(n)))).
Conditions A2 imply that P(E,) — 1; hence, with probability tending to one, we get

n—oo
that
Un(ZB - 6) < Kbn ((E ‘ Xnaa:) < Un(iﬂ + 6)'

Let us show that U, (z) converges to K(z, P) in probability. For this, introduce the
U-statistic with varying kernel defined by :

q
Va(z) =q 1> 1{b3(Ty, i — 0) < x},
=1

which is the equivalent of Uy, (z), with the true rate rather than the estimated one. Recall
that since V;,(z) is a U-statistic of degree by, such that %" — 0, by Hoeffding’s inequality,
we have Vi, (z) = K(z, P) + Op(1/4/(bn/n)) as n — oo in probability.

Now, for any €1 > 0, we have that, with probability tending to 1,

(o1

q
— o bn
Un(z) = ¢ 121{bn(Tbn,i -0) < b@x} < Va(z + ).
=1

n

A similar argument shows that we also have U, (z) > Vi, (z — €1) with probability tending to

one. But we have Vi, (z +¢€1) = K(z + €1, P) and V,(z — €1) = K(z — €1, P) in probability.

Therefore, letting €1 — 0, we have that Uy, (z) — K(z, P) in probability as required.
Proving that we have

Kn(z,P)— K(z,P) — 0 as n — oo.

follows now by the same arguments as before by recalling that

Rn(x,P)=P (Tn(Tn —0) < x;")

Tn

= P(tn(Tn — 0) < z(14+o0p(1))

and using the continuity of the limiting distribution.

The second part of the theorem is a straightforward consequence of the uniform conver-
gence of Ky, (z | X,,,7.) — Kn(z, P) to 0, over the neighborhood of any continuity point of
the true limiting distribution.

The last result is obtained by the same arguments, by just replacing € by elog(n)dg(n) 1.
In that case the probability of the event E, is controlled by assumption A4. All the ap-
proximations op (1) then becomes Op(log(n)dz(n)~!) using the same arguments as in The-
orem 1. Similarly €; can be replaced by ellog(bn)(S,g(n)’l which is anyway smaller than
Op (log(n)3s(n) ).
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Proof of corollary 1 from section 3.3

Recall that 0f = % > Slgj). Notice first that the value €b(j> is close to Séj) at a rate
1<j<q " " "

v/n — by, that can be controlled by standard arguments on sums. Indeed, by Hoeffding’s
inequality, we have that, for some constant M > 0,

P (\g;gg — e > ) = B0 P (g;gg —e > I\Dggg)

212(n7bn))

< 2exp (7 e

so that we have

~D i 222 (n — by)
P sup W _gl) >z §2Bexp(77).
<j1,m,B| b~ En | M?

Now, notice that the subsampling distribution may be written

B
Ky (@] X, 7) = B7' Y Un, (67 — 6" +aif)) <2}
i=1

with aff) = £ — &) + 0+ — B3,

As in the proof of Theorem 1, introduce the event Ey = {7, sup |€b(j> — Séj)| < e}
j=1,...,.B " "

Then, by the preceeding Hoeffding’s inequality, using the fact that B = n7, we get :

2e2(n — by)

P(E;,) < exp (— T +vln<n>>, (14)

which goes to 0 under our assumptions on by,. It follows that P(Ep_ ) — 1 as n — oo.
As in the proof of Theorem 3, we have a Bernstein inequality for 7, |§Z — 6*| . Now, apply

the same arguments as in Theorem 3, with Ty, ; = E,E? to get that, some constants C'1, Ca
and for our by, for any fixed € > 0 '

P (Tbm / b£|6’AZ -0 > s) < Crexp (—C2e?) + P(E;)
n

From this and equation (14), we get that |93 — %] = Op (Tglwb—g) .

This result and again equation (14) imply that the 'rbnagbﬂ’s are uniformly small. Using
the continuity of the limiting distribution similarly to the proof of Theorem 1, it follows
that it is sufficient to study the subsampling distribution

B
KP(2) = B~YY 1n,, (£ — 0%) < a}.
j=1

which is exactly the one of the U-statistics of Theorem 1, so that the preceding results apply.
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B Appendix B

B.1 Detailed results on VeReMi dataset

B.1.1 IQR
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Fig. 5 Estimation of convergence rate, based on IQR, VeReMi dataset, N = 424,810
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B.1.2 IPR80
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Fig. 6 Estimation of convergence rate, based on IPR80, VeReMi dataset, N = 424,810
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B.1.3 IPR90
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Fig. 7 Estimation of convergence rate, based on IPR90, VeReMi dataset, N = 424,810
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B.2 Detailed results on EMNIST digit dataset

B.2.1 IQR
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Fig. 8 Estimation of convergence rate, based on IQR, EMNIST digit dataset, N = 240,000
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B.2.2 IPRSO
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B.2.3 IPR90
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Fig. 10 Estimation of convergence rate, based on IPR90, EMNIST digit dataset, N =
240, 000



Scaling by subsampling for big data, with applications to statistical learning 39

B.3 Detailed results on Lecun MNIST digit dataset

B.3.1 IQR
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