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Abstract

Applications of generative models for genomic data have gained significant momentum in the past few
years, with scopes ranging from data characterization to generation of genomic segments and functional
sequences. In our previous study, we demonstrated that generative adversarial networks (GANs) and
restricted Boltzmann machines (RBMs) can be used to create novel high-quality artificial genomes (AGs)
which can preserve the complex characteristics of real genomes such as population structure, linkage
disequilibrium and selection signals. However, a major drawback of these models is scalability, since the
large feature space of genome-wide data increases computational complexity vastly. To address this issue,
we implemented a novel convolutional Wasserstein GAN (WGAN) model along with a novel conditional
RBM (CRBM) framework for generating AGs with high SNP number. These networks implicitly learn
the varying landscape of haplotypic structure in order to capture complex correlation patterns along the
genome and generate a wide diversity of plausible haplotypes. We performed comparative analyses to
assess both the quality of these generated haplotypes and the amount of possible privacy leakage from
the training data.

As the importance of genetic privacy becomes more prevalent, the need for effective privacy
protection measures for genomic data increases. We used generative neural networks to create large
artificial genome segments which possess many characteristics of real genomes without substantial
privacy leakage from the training dataset. In the near future with further improvements in haplotype
quality and privacy preservation, large-scale artificial genome databases can be assembled to provide
easily accessible surrogates of real databases, allowing researchers to conduct studies with diverse
genomic data within a safe ethical framework in terms of donor privacy.

Author summary: Generative modelling has recently become a prominent research field in genomics,
with applications ranging from functional sequence design to characterization of population structure.
We previously used generative neural networks to create artificial genome segments which possess many
characteristics of real genomes but these segments were short in size due to computational requirements.
In this work, we present novel generative models for generating artificial genomes with larger sequence
size. We test the generated artificial genomes with multiple summary statistics to assess the haplotype
quality, overfitting and privacy leakage from the training dataset. Our findings suggest that although
there is still room for improvement both in terms of genome quality and privacy preservation,
convolutional architectures and conditional generation can be utilised for generating good quality,
large-scale genomic data. In the near future with additional improvements, large-scale artificial genomes
can be used for assembling surrogate biobanks as alternatives to real biobanks with access restrictions,
increasing data accessibility to researchers around the globe.
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Introduction 1

Machine learning is an important staple in modern genomic studies. There have been numerous 2

applications in demographic inference [1], detecting natural selection [2] , genome-wide association 3

studies [3] and functional genomics [4], many of which became state of the art [5, 6]. In the recent few 4

years, generative machine learning approaches for the genomics field have also begun to gain research 5

interest thanks to algorithmic advances and widespread availability of computational resources 6

[7, 8, 9, 10, 11]. Broadly speaking, generative machine learning involves the utilisation of generative 7

models which are trained to model the distribution of a given dataset so that new data instances with 8

similar characteristics to the real data can be sampled from this learned distribution. Especially since 9

the introduction of generative adversarial networks (GANs) in the preceding decade [12], generative 10

modelling has become a widely-researched subject with a diverse scope of applications such as image and 11

text generation [13, 14], dimensionality reduction [15] and imputation [16]. 12

The amount of genetic data, both in sequence and SNP array formats, is now increasing at an 13

unmatched rate, yet its accessibility remains relatively low. The main reason for this is the crucial 14

protocols prepared to protect the privacy of donors. Genetic data belongs to a special category similar to 15

private medical records in the General Data Protection Regulation (GDPR) [17] and is defined as 16

protected health information in the Health Insurance Portability and Accountability Act (HIPAA) [18]. 17

Although these protective measures are vital, they create an accessibility issue for researchers who must 18

go through these protocols and, in many circumstances, might have to commit to collaborations to 19

conduct research or simply test ideas. In our previous study, we introduced the concept of high quality 20

artificial genomes (AGs) created by generative models as a possible future solution for this problem and 21

as an alternative to other methods such as differential privacy [19] and federated learning [20]. We 22

demonstrated that AGs can mimic the characteristics of real data such as allele frequency distribution, 23

haplotypic integrity and population structure, and can be used in applications such as genomic 24

imputation and natural selection scans [21]. However, our previous models lacked the capacity to 25

generate large-scale genomic regions due to the computational requirements caused by the high number 26

of parameters defining the fully connected architectures. In this study, we present two novel 27

implementations better adapted to large sequential genomic data: (i) generative adversarial networks 28

with convolutional architecture and Wasserstein loss (WGAN) [22], and (ii) restricted Boltzmann 29

machines with conditional training (CRBM) [23] used together with an out-of-equilibrium procedure [24]. 30

In more detail, we implemented a WGAN with gradient penalty (WGAN-GP) [25] which involved a deep 31

generator and a deep critic architecture, multiple noise inputs at different resolutions for the generator 32

[26], trainable location-specific vectors for preserving the positional information [27], residual blocks to 33

prevent vanishing gradients [28] and packing for the critic to eliminate mode collapse [29]. For the 34

CRBM, we used the more efficient out-of-equilibrium training scheme differently from our previous study 35

and developed a novel procedure for conditionally training multiple RBMs based on shared genomic 36

regions [30]. We assessed the AGs generated by these models with multiple statistics measuring data 37

quality and possible privacy leakage. First, we compared the new models with the ones from [21] using 38

the same 10,000 SNPs extracted from the 1000 Genomes human dataset [31] and then trained these 39

models with a larger 65,535-SNP dataset to generate long sequence AGs. We performed multiple tests to 40

evaluate (i) the quality of the generated haplotypes via allele frequency spectrum, linkage disequilibrium, 41

population structure and complex haplotypic integrity analyses such as 3-point correlations and 42

distribution of k-mer motifs; and (ii) privacy preservation via distance-based metrics, membership 43

inference attacks and overfitting/underfitting scores. 44

Materials and Methods 45

Data 46

The two sets of 1000 Genomes [31] data we used include: (i) 10,000 SNPs from chromosome 15 (between 47

27,379,578 - 29,625,035 base pairs, ∼2 megabase pairs) identical to the ones picked by [21], and (ii) 48

2/20

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 17, 2023. ; https://doi.org/10.1101/2023.03.07.530442doi: bioRxiv preprint 

https://doi.org/10.1101/2023.03.07.530442
http://creativecommons.org/licenses/by-nc/4.0/


65,535 SNPs from chromosome 1 between 534,247 - 81,813,279 base pairs, ∼80 megabase pairs) within 49

the Omni 2.5 genotyping array framework. Further downsampling of the array framework was performed 50

to create a dataset with a reasonable SNP number for faster training trials and the specific number of 51

65,535 SNPs was decided to be in the form of (2n - 1) for easy implementation of convolutional scaling. 52

For the 10,000-SNP dataset, we used padding with zeros to match the (2n - 1) form. Both datasets have 53

the same 2504 individuals and 5008 phased haplotypes used for training the models. The data format is 54

the same as [21] where the rows are phased haplotypes and columns are positions which hold alleles 55

represented by 0 (reference) and 1 (alternative). 56

WGAN implementation 57

We implemented a Wasserstein GAN with gradient penalty (WGAN-GP) consisting of a critic which 58

estimates the earth mover’s distance between real and generated data distributions, and a generator 59

which generates new genomic data from Gaussian noise (Fig 1). Unlike the discriminator in naive GAN 60

which performs a classification task, the critic provides a “realness” score (an approximation of 61

Earth-mover’s distance) for generated and real samples. WGAN loss function is as follows: 62

Ex[C(x)]− Ez[C(G(z))] 63

where C is the critic, G is the generator, x is real data point and z is Gaussian noise. The critic function 64

C must be Lipschitz continuous; thus, the original study relied on weight clipping to enforce an upper 65

bound for the gradient [22]. However, we designed a WGAN with gradient penalty (WGAN-GP) rather 66

than weight clipping, as GP was shown to be a better alternative [25]. In our implementation, the critic 67

uses convolution layers whereas the generator uses convolution and transposed convolution layers (Fig 68

1a). Both the generator and the critic have trainable location-specific vectors as additional channels at 69

every block except for the residual blocks. These vectors, similar to the ones integrated by [27] in their 70

autoencoder, consist of trainable variables that allow the models to preserve positional information which 71

would otherwise diminish due to the invariance of convolution operations. In addition to this, the 72

generator has two noise channels at every block. This gives the generator flexibility to decide at which 73

depth the mapping to latent space can occur. We also implemented “packing” to overcome mode 74

collapse by adjusting the discriminator to take multiple samples as input [29]. In our implementation, 75

the input sample number for the discriminator was set to 3 intuitively, to match the 3 main population 76

modes (Africa, West Eurasia, Asia) observable in the 1000 Genomes data. The initial length of the input 77

for the generator is 4, which is gradually transformed into features of larger sizes until it reaches the 78

sequence size of 65,535 or 16,383 in the output (Fig 1b). 79
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Figure 1. Wasserstein GAN (WGAN) model for the 65,535-SNP dataset. a) Representation
of the generator, critic and residual blocks. Channel dimensions are not proportional and do not reflect
the real implementation. The generator block has one trainable location-specific variable (blue) and
two latent space vectors (red) as additional channels concatenated to the input. The critic block has
one trainable location-specific variable (blue) as an additional channel concatenated to the input. b)
Architecture of the WGAN model. White rectangles correspond to generic generator and critic blocks
whereas grey rectangles correspond to generic residual blocks. Numbers in parentheses above blocks show
channels and length, respectively (C, L). Dotted connections are residual connections where the input
value is added to the output value of the block before passing to the next block. Yellow input and output
blocks differ from the generic ones for proper dimension adjustments.

The generator layers are followed by batch normalisation and leaky ReLU activation (alpha = 0.01) 80

except for the final layer which has a sigmoid activation. The critic layers are followed by instance 81

normalisation and leaky ReLU activation (alpha = 0.01) except for the final layer which is a fully 82

connected layer with no activation. We used Adam optimizer to train both the generator and the critic 83

with a learning rate of 0.0005 and β1, β2 = (0.5, 0,9). β1 was set to 0.5 as suggested by [13]. For each 84

batch training of the generator, the critic was trained 10 times as suggested by the authors of the 85

original WGAN [22]. We assessed the outputs of the generator at each epoch during training via PCA. 86

We stopped training when generated and real genome clusters visually overlapped in PC space 87

(components 1 to 4). In the case of 65,535-SNP data, this initial training was not sufficient to reach a 88

good overlap of higher degree principal components, thus, we performed a second brief training (up to 89

200 epochs) with 10-fold lower generator learning rate (0.00005). Our WGAN architecture for the 90

10,000-SNP data was conceptually the same as for the 65,535-SNP data, but shallower with fewer blocks. 91
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All WGAN models were coded with python-3.9 and pythorch-1.11 [32]. The detailed python scripts can 92

be accessed at https://gitlab.inria.fr/ml_genetics/public/artificial_genomes. 93

RBM implementation 94

An RBM is a generative stochastic neural network [33] defined as a probability distribution over a set of 95

visible units, s, representing SNPs in our case, and hidden units, τ , where both type of variables interact 96

via a pairwise weight matrix w and the local biases θ and η help to adjust the mean value of each unit: 97

p(s, τ) = 1
Z exp(

∑
ia wiasiτa +

∑
i θisi +

∑
a ηaτa) 98

In this study, we used binary units {0, 1} for both the visible and hidden nodes, and the number of 99

hidden units was chosen to be about the same order as the number of visible ones. The likelihood of such 100

model is given by: 101

L =
∑M

m=1

[∑
i θis

(m)
i +

∑
a log(1 + exp(

∑
i wias

(m)
i + ηa))

]
−M log(Z) 102

where the index m is indexing the samples of the dataset (M being the total number of samples) and Z 103

is the normalization constant, or partition function, of the probability distribution. 104

Learning an RBM consists in maximising this likelihood using gradient descent in order to optimize 105

the weights and biases w, θ and η. In our implementation, the training was based on the 106

out-of-equilibrium method [34, 24]. The main difference with the more conventional learning is that the 107

sampling which is done to compute the correlation of the model is performed in a very precise way: a 108

random initial condition is chosen amongst a certain probability distribution p0(x) (kept fixed during the 109

learning), and a fix (all along learning) number of Monte Carlo steps is done during the training. When 110

using this particular training procedure, in order to sample new data, it is enough to generate the Monte 111

Carlo chains following the same dynamical process: same initial conditions p0(x) and same number of 112

MC steps. In the provided experiments, the initial conditions were chosen uniformly at random (each 113

unit having equal probability to be 0 or 1) and the number of MC steps was either 100 (for the 114

65,535-SNP dataset) or 200 (for the 10,000-SNP dataset) but the qualitative results were mostly not 115

affected. The learning rate of the model was chosen such that the eigenvalues of the learning weight 116

matrix are smoothly increasing during the first epochs from almost zero to values of ∼ O(1). 117

For the generation of very long sequences, we designed a novel procedure based on conditional-RBMs 118

(CRBMs) [35, 23] (Fig 2). The CRBM consists in the learning of correlation patterns conditionally to 119

some input variables. Hence, instead of considering all the dataset X, we separate it into two parts 120

X = XP ∪XI , and the CRBM will learn to generate XI (the inferred variables) based on XP (the 121

pinned variables). Therefore, we design a gradient that will learn how to generate the variables XI given 122

that we provide the variables Xp. In practice, denoting s as the variables to be inferred and x as the 123

pinned ones, we will maximize the following quantity: 124

p(s ∈ I|x ∈ P ) = 1
Z exp(

∑
ia wiasiτa +

∑
i θisi +

∑
a ηaτa +

∑
a τa

∑
j wjaxj) 125

Therefore, for each sample of the dataset, this construction is similar to a classical RBM with additional 126

biases for the hidden nodes which depend on the pinned variables. During the learning, we infer the 127

parameters of the model such that when showing a configuration of pinned variables XP , the model will 128

generate a sample that is correlated to it accordingly. This conditional model can be used to learn very 129

long chains of variables. Let us consider that we have a dataset with 100,000 input variables. We can 130

learn initially a regular RBM on the first 10,000 input variables. In parallel, we can also learn a 131

conditional RBM on the input variables si with i in [5,000:15,000] using the first 5,000 variables as 132

pinned variables. Therefore, this second RBM will, given 5,000 pinned variables, learn how to generate 133

the 5,000 following ones. The same procedure is repeated with various input sets, always using the first 134

5,000 input nodes as pinned variables. Once learning is completed for all the RBMs, we can proceed 135

using the following sequential method to generate new data: 136

1. Use the first RBM (non-conditional) to generate the first 10,000 input. 137
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2. Use the first CRBM to generate the next [10,000:15,000] inputs. To do that, we use the generated 138

nodes [5,000:10,000] as pinned variables and generate the rest. 139

3. We follow the same procedure until we finally generate the whole 100,000 variables. 140

Figure 2. Illustration of the learning and sampling of a large sequence using a “classical”
and a conditional RBM (CRBM). Initially, we train RBM1 (left) and RBM2 (right) in parallel.
Both RBMs are essentially trained in a similar manner: random inputs are drawn and k MC steps are
performed before computing the gradient and updating the weights using gradient descent. The difference
for the CRBM (RBM2) is that half of the variables in the visible layer are pinned (crossed squares) to
the real data during training while the rest is generated conditionally on these pinned variables. After
training both machines, we can sample a complete new sequence. To do so, we start from random input
and perform k MC steps to generate the first part of the sequence (light yellow-red) using RBM1. Then,
we use half of this generated sequence (light red) as the pinned visible variables of the RBM2 (crossed
squares) and initialise the rest as random input. We perform k MC steps on RBM2 while keeping the
pinned variables fixed to generate the rest of the sequence (light blue). The letters next to arrows show
the order of this sampling procedure.

This method was used to generate the large-scale 65,535-SNP dataset. We first trained a “normal” 141

RBM on the first 5,000 input variables. Then, we made a set of 10,000 conditional RBM, where the first 142

5,000 variables were used as pinned variables. All the models were trained with 1000 hidden nodes, and 143

a learning rate of β = 0.005. The learning dynamics uses the Rdm-k method: each chain was generated 144

starting from the uniform Bernoulli distribution, with k=100 for the training of the RBM and the 145

CRBMs. A recurrent issue with RBM (or training in general) is to decide when to stop the training. 146

While in supervised setting it is easy to monitor the loss function (or the number of correctly classified 147

samples), it is not the case for RBM since the partition function is intractable. In this work, the learning 148

was affected by the small number of samples given the dimension of the inputs. Therefore (and to avoid 149

overfitting), the meta-parameters such as the number of hidden nodes and the number of epochs were 150

fixed a posteriori, by investigating various trained machines with different values of these parameters and 151

choosing the one giving a good AATS score. The detailed python scripts can be accessed at 152

https://gitlab.inria.fr/ml_genetics/public/artificial_genomes. The RBM implementations 153

are based on the pytorch library and handle GPU to perform both training and sampling. Another 154

example of the out-of-equilibrium code applied to images can be found at 155

https://github.com/AurelienDecelle/TorchRBM. 156
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VAE implementation 157

The VAE [36] architecture is very similar to the GAN architecture but somehow reversed: the encoder is 158

an analogue to the critic and the decoder is an analogue to the generator (Supp fig S1). The last layer of 159

the encoder outputs two vectors containing means (µ) and standard deviations (σ) so that the latent 160

space can be sampled based on these values and fed to the decoder. The loss function consists of the 161

reconstruction term, which measures the likelihood of the generated genomes (via log loss in our 162

implementation), and the regularisation term which is the Kullback-Leibler divergence between the 163

standard normal distribution and the prior distribution of the latent space. The regularisation term 164

directs the latent space towards a standard normal distribution. After training completion, this allows 165

sampling of new latent points from the standard distribution which are further transformed into new 166

data points (new genomic sequences) through the decoder. 167

Each layer in our implementation is followed by batch normalisation and leaky ReLU with alpha set 168

to 0.01, except for the final layers. The decoder final layer is followed by a sigmoid function, whereas the 169

encoder final µ and σ layers have linear activation. We used Adam optimizer with default settings and 170

the learning rate set to 0.001. Similarly to the WGAN, we evaluated the training based on coherence of 171

the PCA performed on real and generated genomes (components 1 to 4). We could not successfully train 172

a VAE model which generates plausible AGs for the 65,535-SNP dataset. Further architecture and 173

hyperparameter optimization is needed to better assess VAE models in this context. VAE models were 174

coded with python-3.9 and pythorch-1.11 [32]. The detailed python scripts can be accessed at 175

https://gitlab.inria.fr/ml_genetics/public/artificial_genomes. 176

Nearest Neighbour Adversarial Accuracy (AATS) 177

Similarly to [21], we assessed the overfitting/underfitting characteristics of AGs using the AATS score 178

[37]. AATS is calculated as follows: 179

AAtruth = 1
n

∑n
i=1 1(dTS(i) > dTT (i)) 180

AAsyn = 1
n

∑n
i=1 1(dST (i) > dSS(i)) 181

AATS = 1
2 (AAtruth +AAsyn) 182

where n is the number of samples in each dataset (real and generated), dTS(i) is the distance between 183

the real (truth - T) sample indexed by i and its nearest neighbour in the generated (synthetic - S) 184

dataset, dTT (i) is the distance between a real sample i and its nearest neighbour in the real dataset, 185

dST (i) is the distance between a generated sample i and its nearest neighbour in the real dataset, dSS(i) 186

is the distance between a generated sample i and its nearest neighbour in the generated dataset, and 1 is 187

the indicator function which returns 1 if the argument is true and 0 otherwise. Based on this equation, 188

an AATS value below 0.5 indicates overfitting and an AATS value above 0.5 indicates underfitting. We 189

additionally obtained a privacy score in another analysis where we separated the datasets into two 190

equal-sized train and test sets (2504 phased haplotypes each). The score is defined as follows: 191

Privacy score = Test AATS − Train AATS 192

where Test AATS (resp. Train AATS) is the AATS computed with the test (resp. training) samples as 193

truth. The expected value for the privacy score is 0 when there is no privacy leakage, with higher scores 194

indicating higher leaks. 195

Summary statistics 196

For the 65,535-SNP dataset, LD was computed only on a subset of pairs in order to fasten computation. 197

To sample these pairs in an efficient way (i.e. approximately uniformly along the SNP distance log scale 198

without computing the full matrix of SNP distances), we used the script from [38]. The remaining 199

summary statistics (allele frequencies, haplotypic pairwise distances, PC scores, 3-point correlations and 200
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LD for the 10,000-SNP dataset) were computed as in [21] using the publicly available scripts at 201

https://gitlab.inria.fr/ml_genetics/public/artificial_genomes. For the radar plots, we 202

transformed the scores so that they span values between 0 and 1, where 0 represents poor performance 203

and 1 high or perfect performance. Precisely, we used the allele frequency correlation for alleles with low 204

frequency (<= 0.2) for the Allele frequency score and correlation of SNPs separated by random 205

distances for the 3−point correlations score. For the Pairwise distance score, we used the Wasserstein 206

distance between the distributions of haplotypic pairwise distances of real and generated data. We 207

performed min-max scaling, using the value for a simple binomial generator model (from [21]) for the 208

lowest bound 0. For the other scores, we used the following equations: 209

Overfitting = 1− (0.5−min(AAtruth, 0.5))− (0.5−min(AAsyn, 0.5)) 210

Underfitting = 1− (max(AAtruth, 0.5)− 0.5)− (max(AAsyn, 0.5)− 0.5) 211

LD = 1−
∑

(LDreal − LDgenerated)
2/

∑
LD2

real 212

where LDgenerated and LDreal are average LD values for bins in the LD decay analyses (Fig 5c, Supp 213

fig S2b). Overfitting and Underfitting equations were formulated to focus on below and above 0.5 214

AATS sweet spot, respectively, to provide a better resolution in terms of overfitting/underfitting 215

assessment. 216

To analyze the correlation of k-mer haplotypes between real and generated genomes, we divided 217

10,000-SNP and 65,535-SNP genomes into non-overlapping windows of size 4 and 8. We counted the 218

number of occurrences of each unique motif in these windows and assessed the correlation of these counts 219

between real and generated genomes for each window. 220

Nearest neighbour chain analysis 221

Since AATS scores for the CRBM AGs were anomalous, we perfomed a nearest neighbour chain analysis 222

for further investigation. For this analysis, the frequencies of all observable patterns for the nearest 223

neighbour chains of size 2 to 5 were computed. A pattern indicates the succession of data type 224

(synthetic/S or truth/T) when starting from a point (the first letter) and moving successively to the 225

nearest neighbour, then the nearest neighbour of the nearest neighbour, and so on until reaching the 226

chain size. Hamming distance was used for identifying the nearest neighbours. 227

Membership inference attacks 228

We performed membership inference attacks on WGAN and RBM generated AGs using the approach 229

proposed in [39]. We trained the WGAN and RBM models using half of the haplotypes (2504) of the 230

10,000-SNP data and kept the rest as test set. We considered the two following scenarios: a white-box 231

attack where the adversary has access to the original critic optimized weights and architecture, and a 232

black-box attack where the adversary has only access to the WGAN architecture (without its weights) 233

and generated samples. For both scenarios, we also assume the adversary knows the size of the original 234

training set and has a collection of samples some of which are suspected to belong to the training set. 235

For the white-box attack, we used the already trained critic to score all the samples (a total of 5008 236

samples consisting of 2504 from training and 2504 from test sets) and sorted them based on these scores. 237

The top n ranking samples are then predicted as belonging to the training set. For the black-box attack, 238

we trained new models on generated AGs, using the exact same architecture as the previously trained 239

WGAN, and the same stopping criterion, but we overtrained further up to 5000 epochs to induce 240

overfitting. Since this attack is model agnostic, we trained one model on WGAN AGs and one on RBM 241

AGs. Similar to the white-box attack, all samples are scored by the critic after the training and the top 242

n ranking samples are assigned to the training set. In our experiments, n varies such that we assign 1%, 243

10%, 25%, or 50% of the total 5008 samples to the training set. The computed accuracy is simply the 244

percentage of correct assignments for each value of n. 245
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Results 246

Comparisons with the previous models 247

As our GAN concept has changed substantially compared to the previous models both in terms of 248

architecture and loss functions, we initially performed training and analysis on 1000 Genomes data with 249

the same 10,000 SNPs as [21] to be able to conduct one-to-one comparisons. For these tests, we 250

additionally implemented a new RBM scheme along with a new variational autoencoder (VAE) which 251

has a very similar architecture to our WGAN model. We used the VAE as a supplementary benchmark 252

since the encoder-decoder form of the VAE can be seen as an analogue to the critic-generator form of the 253

WGAN model. The objective function of VAE, on the other hand, is substantially different, which allows 254

us to assess the robustness of the architecture we used (see Materials and Methods). 255

Figure 3. Principal component and allele frequency analyses of artificial genomes with
10,000-SNP size. a) Density plot of the PCA of combined real and artificial genome datasets. Density
increases from red to blue. (b) Allele frequency correlation between real (x-axis) and artificial (y-axis)
genome datasets. Bottom figures are zoomed at low frequency alleles (from 0 to 0.2 overall frequency in
the real dataset). Values presented inside the figures are Pearson’s r, ordinary least squares regression
slope and intercept.

Based on the PCAs, all models generated AGs which could capture the population structure of the 256
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data, albeit new WGAN and RBM models were better at representing the real PC densities compared to 257

the other models (Fig 3a). In our previous study, we reported that the GAN model had difficulty 258

learning low frequency alleles observed in real genomes. The new WGAN and RBM showed improvement 259

in capturing the real allele frequency distribution, especially for the low frequency (<=0.2) alleles with 260

correlation coefficients for previous GAN (GAN prev), previous RBM (RBM prev), VAE, WGAN and 261

RBM being 0.94, 0.83, 0.94, 0.96 and 0.99, respectively (Fig 3b). In terms of LD structure, RBM 262

generated AGs seemed to have the closest decay scheme to the real data while WGAN, GAN and VAE 263

generated AGs all had similar results without substantial difference (Supp fig S2). In addition, the new 264

WGAN and RBM models preserved 3-point correlations better than the other models (Supp fig S3). To 265

assess whether AGs could preserve short motifs in real genomes, we also analyzed the correlation of 266

non-overlapping 4-mer and 8-mer motifs between real and generated datasets (Supp fig S4). AGs 267

generated by all models showed high correlation and good fit overall, although RBM prev had the 268

highest variance despite the high correlation coefficient. 269

None of the models have produced identical sequences and no full sequences were copied from the 270

training dataset except for the benchmark VAE. In addition, the distribution of haplotypic pairwise 271

differences between real and generated datasets overlapped well with the distribution of haplotypic 272

pairwise differences within the real dataset (Supp fig S5). The AATS scores for GAN prev, RBM prev, 273

VAE, WGAN and RBM were 0.73 (AAtruth = 0.57, AAsyn = 0.89), 0.49 (AAtruth = 0.46, AAsyn = 274

0.52), 0.48 (AAtruth = 0.47, AAsyn = 0.50), 0.82 (AAtruth = 0.77, AAsyn = 0.87) and 0.47 (AAtruth = 275

0.47, AAsyn = 0.47), respectively. These values indicate underfitting (a hypothetical extreme case 276

demonstrated in Fig 4a) for GAN generated AGs, and slight overfitting (a hypothetical extreme case 277

demonstrated in Fig 4b) for the RBM and VAE generated AGs (Supp fig S6). Although the new WGAN 278

demonstrated slightly more underfitting than the previous GAN, the gap between the two components of 279

AATS (AAtruth and AAsyn) was decreased (see Materials and Methods for the details of the 280

terminology). We previously hypothesised that the low value of AAtruth and high value of AAsyn for the 281

previous GAN might be due to the generator creating AGs based on averages from a local set of samples 282

in small pockets (extreme case demonstrated in Fig 4c). This can be seen as a generative aberration 283

which does not generalise to the whole dataset but is observed only regionally in small subsections of the 284

data. We do not observe this behaviour in the new WGAN model. A general comparison of all the 285

models based on multiple aggregated statistics is provided in Supp fig S7. 286

Generating large-scale genomic data 287

Following the main motivation of the study, we trained the new WGAN and CRBM models on 1000 288

Genomes data with 65,535 SNPs. The WGAN model for this data was deeper compared to the model 289

used for the 10,000-SNP data (see Materials and Methods). We again implemented a VAE similar to the 290

WGAN architecture yet we could not train this model with satisfactory results (see Discussion). Both 291

WGAN and CRBM generated AGs were able to capture the real population structure and PCA modes 292

quite well (Fig 5a) along with allele frequencies (correlation coefficient for low frequency alleles being 293

0.97 for both models; Fig 5b), yet WGAN AGs had substantially more fixed alleles which had low 294

frequency in the real dataset (Supp fig S8). Since computation of the full correlation matrix is very 295

intensive due to large sequence size, we calculated an approximation of the LD decay based on a subset 296

of SNP pairs (see Materials and Methods). AGs generated by both models had on average lower LD 297

than real genomes, similarly to our previous findings (Fig 5c). In 3-point correlation analysis, CRBM 298

performed better than WGAN for SNP triplets seperated by 1, 4, 16, 64, 256, 512 and 1024 SNPs. 299

However, the score was similar for SNP triplets seperated by random distances (WGAN = 0.43, CRBM 300

= 0.41; Supp fig S9). Furthermore, 4-mer and 8-mer motif distributions both for WGAN and CRBM 301

generated AGs seemed to be similar to real genomes (Supp fig S10). 302

Similarly to the 10,000-SNP dataset, neither of the models produced identical sequences and no full 303

sequences were copied from the training dataset. WGAN captured the haplotypic pairwise distribution 304

better than CRBM (pairwise distance radar score for WGAN = 1.00, CRBM = 0.94; Supp fig S11) but 305

the two main peaks in real data were correctly represented by both models (Supp fig S12)). The AATS 306

value for WGAN AGs showed underfitting (AATS = 0.91) whereas the value for CRBM was slightly 307

10/20

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 17, 2023. ; https://doi.org/10.1101/2023.03.07.530442doi: bioRxiv preprint 

https://doi.org/10.1101/2023.03.07.530442
http://creativecommons.org/licenses/by-nc/4.0/


Figure 4. Schematic representation of different problematic training outcomes for generative
models. Distances to the nearest neighbours are denoted by dxx where x can be T (truth/real) and S
(synthetic/generated). a) An extreme case of underfitting (or optimization issue) in which the nearest
neighbours of real data points are real and the nearest neighbours of synthetic data points are synthetic,
revealing two distinct clusters (AATS >> 0.5). b) An extreme case of overfitting in which the nearest
neighbours of real data points are systematically synthetic and vice versa (AATS << 0.5). c) An extreme
case of a specific type of generative aberration in which the nearest neighbours of both real and synthetic
data points are synthetic (AAsyn >> 0.5 and AAtruth << 0.5). Hypothetically, this might occur when
the generator generates new instances based on average information from a small collection of samples,
causing low local variation. d) An extreme case of a specific type of generative aberration in which the
nearest neighbours of both real and synthetic data points are real (AAsyn << 0.5 and AAtruth >> 0.5).
This might possibly be observed when the generative model learns the main modes in real data but fails
to mimic the densities and generates instances in the axes of the main modes with high variance.

above the 0.5 sweet spot (AATS = 0.56; Fig 5d. However, there was a huge contrast between AAtruth 308

and AAsyn values for CRBM AGs (AAtruth = 0.86, AAsyn = 0.26), which might be an indication of the 309

anomaly depicted in Fig 4d. This is the opposite of what we observed for the previous GAN (GAN prev) 310

model and might be due to AGs which exist outside the real data space as can be seen from the PCA 311

analysis (Fig 4a, Supp fig S13). A general comparison of the two models based on multiple aggregated 312

statistics is provided in Supp fig S11. 313

To further investigate the anomaly for the CRBM AGs, we performed a nearest neighbour chain 314

analysis (Table 1). Starting with a synthetic point, we observed substantially higher frequencies for 315

chains of true data points (ST, STT, STTT, STTTT) compared to chains of synthetic data points (SS, 316

SSS, SSSS, SSSSS). 317

Table 1. Nearest neighbour chain analysis. Frequencies of series of generated (synthetic - S) and real
(truth - T) samples in chains of nearest neighbours (from size 2 to 5). To avoid loops, a sample was
removed once reached in the chain. Expected frequency for chains of size 2 is 0.25, size 3 is 0.125, size 4
is 0.0625 and size 5 is 0.03125.

SS ST SSS SST STT

0.1258 0.3742 0.0519 0.0739 0.3267

TT TS TTT TTS TSS

0.4389 0.0611 0.3965 0.0424 0.0167

STS SSSS STTT SSSSS STTTT

0.0475 0.0240 0.2891 0.0110 0.2575

TST TTTT TSSS TTTTT TSSSS

0.0444 0.3593 0.0061 0.3270 0.0017
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Figure 5. Principal component, allele frequency and linkage disequilibrium (LD) analyses
of artificial genomes with 65,535-SNP size. a) Density plot of the PCA of combined real genomes
and artificial genomes generated by WGAN and CRBM. Density increases from red to blue. b) Allele
frequency correlation between real and artificial genome datasets. Bottom figures are zoomed at low
frequency alleles (from 0 to 0.2 overall frequency in the real dataset). Values presented inside the figures
are Pearson’s r, ordinary least squares regression slope and intercept. The dashed black line is the identity
line. c) LD decay approximation for real (grey), WGAN generated (blue) and CRBM generated (red)
genomes (see Materials and Methods for details). d)Nearest neighbour adversarial accuracy (AATS) of
artificial genomes generated by different models for the 65,535-SNP dataset. Values below 0.5 (black
line) indicate overfitting and values above indicate underfitting.

Membership inference attacks and privacy leakage 318

Assessing privacy leakage and performing membership inference attacks require an additional test set but 319

we could not obtain good quality AGs using a subset of 65,535-SNP dataset. Therefore, we trained the 320

new WGAN and RBM models using half of the samples from the 10,000-SNP dataset (2504 haplotypes). 321

AGs generated via the WGAN model had similar summary statistics to the AGs generated via the model 322

trained with the whole dataset. For the RBM model, results were slightly worse but better than the 323

previous RBM model (RBM prev) trained with the whole dataset (Supp fig S14a-c). AATS analysis 324

showed underfitting for WGAN AGs (AATS = 0.80, AAtruth = 0.76, AAsyn = 0.83) and almost perfect 325
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scores for RBM AGs (AATS = 0.50, AAtruth = 0.49, AAsyn = 0.51). Based on the test set, WGAN AGs 326

had good privacy score (0.03) and RBM AGs showed possible privacy leakage (0.23) (Supp fig S14d). 327

Furthermore, both white-box attack on WGAN AGs and black-box attack on RBM AGs reached high 328

accuracies (WGAN: 1%: 0.82, 10%: 0.826, 25%: 0.754, 50%: 0.677; RBM: 1%: 0.84, 10%: 0.70, 25%: 329

0.62, 50%: 0.57) for detecting a portion of the training samples whereas black-box attack on WGAN 330

AGs produced substantially lower accuracies (1%: 0.56, 10%: 0.55, 25%: 0.54, 50%: 0.51), suggesting 331

relatively better privacy preservation. The distribution of the critic scores for train and test samples also 332

showed that the black-box attack on WGAN AGs was mainly unsuccessful for differentiating training 333

and test samples (Supp fig S15). 334

Discussion 335

In this study, we implemented generative neural networks for large-scale genomic data generation and 336

assessed various characteristics of the artificial genomes (AGs) generated by these networks. Initially, we 337

generated AGs from the 10,000-SNP dataset to be able to compare to the previous results from [21]. For 338

this dataset, we introduced a new RBM training scheme, a convolutional WGAN and a convolutional 339

VAE. Both WGAN and new RBM models substantially improved the quality of AGs in terms of all 340

summary statistics. For the 65,535-SNP dataset, we used a similar WGAN architecture (which is 341

essentially deeper in comparison to the architecture for the 10,000-SNP dataset) and a conditional RBM 342

(CRBM) protocol. AGs generated by these new models preserve population structure, allele frequency 343

distribution and haplotypic integrity of real genomes reasonably well with little or no privacy leakage 344

from the training data. Generative models trained with similar-sized genomic data have been reported in 345

the literature but the main goal of these studies was characterization of population structure via 346

dimensionality reduction and the generated genomes did not possess good haplotypic integrity [27, 40]. 347

There have been other studies focusing on demographic parameter estimation [41] and data generation 348

[8, 9, 10, 11] for population genetics but these only included training with smaller genomic segments. 349

The upscaling to a larger sequence size in comparison to our previous study is an essential step for 350

AGs to be utilised in real-life applications as publicly accessible alternatives for sensitive genomic 351

samples, yet obstacles remain. Although we could generate substantially larger sequences by 352

incorporating convolutions for the WGAN and a conditional approach for the RBM, training these large 353

models requires computational time and fine-tuning in most cases. The WGAN is usually preferred over 354

naive GAN in literature as it mitigates hyperparameter optimization and provide more stable training 355

[22]. However, we had to go through multiple combinations of architectures and hyperparameter values 356

to reach satisfying results. Even then, the training in our application involved further adjustment of the 357

generator learning rate after a certain epoch to capture the details of the population structure observable 358

in higher PC dimensions. This second round of training was helpful but some of the runs did not reach 359

an acceptable equilibrium (i.e., generated genomes had low quality after training), especially when 360

experimenting with reduced training sample sizes. For future applications, automated architecture and 361

hyperparameter tuning methods can help significantly for finding the optimal combinations without 362

extensive trial and error [42, 43]. VAEs might be seen as better alternatives in terms of training stability 363

compared to GANs since they do not suffer from the difficulty of balancing two networks in an 364

adversarial manner, yet we could not obtain high-quality AGs for the 65,535-SNP dataset. Presumably, 365

considerably better outcomes can be achieved with further architectural, hyperparameter and loss 366

function exploration, which is outside the scope of this study. 367

Another future research direction for the generative models could be the exploration of alternative 368

stopping criteria for the training. Unlike image generation, where the generated outcomes can be 369

assessed easily by visual inspection, assessment of generated genomic data is not trivial. For VAE and 370

WGAN models, we decided to use PCA plots for initial inspection and as the stopping criterion since the 371

highest variation in most genomic datasets is due to population structure which PCA captures well. This 372

PCA match, inspected visually or measured through Wassertein distance, had been used previously as 373

the stopping criterion [21, 8]. Although an obvious candidate for the stopping criterion of WGAN is the 374

convergence of the critic’s loss to a value close to zero (since this loss provides an estimation for the 375
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Earth mover’s distance between real and generated data), we observed that it does not always coincide 376

with good PCA outcomes for the AGs. For the RBM models, we had to inspect AATS score instead 377

since overfitting was a more prominent issue. A possible alternative to these would be using some 378

aggregate statistics crafted based on multiple summary statistics related to LD, site frequency spectrum, 379

ancestry and overfitting scores. 380

The other approach we presented to incorporate large-scale data was the conditional training of 381

RBMs. Instead of a single training of a large and deep model as in the case of WGAN, CRBM training 382

includes multiple training runs of a small model. A main advantage of this method is that any sequence 383

size can theoretically be generated as long as the positional conditionality is not broken over the target 384

genome segment. Therefore, the only bottleneck in terms of computation is the time needed to train all 385

the RBMs. Currently, the learned weights are specific to each machine and no parameters are shared 386

between RBMs. This advantageously allows parallel training when needed, but produces a large number 387

of parameters to be optimized since the number of weights and biases has to be multiplied by the 388

number of machines. Further studies could investigate whether parameter sharing between machines (i.e., 389

between regions) and/or within each machine (through convolutions) is advantageous or instead 390

complicates training. In addition, many datasets also present a difficulty during training, because the 391

equilibrating time for Markov chains diverges as the training goes on, causing issues for sampling (and 392

re-sampling) [44]. To overcome this, we relied on out-of-equilibrium training as described in Materials 393

and Methods. While this approach improved training stability and also the quality of the generated 394

samples with respect to other approaches, it has the disadvantage that the learned features cannot be 395

easily interpreted. 396

For the assessment of overfitting and underfitting, we utilised the AATS score and haplotypic 397

pairwise distances as in [21]. An interesting finding was the large difference between two terms of the 398

AATS score (AAtruth and AAsyn) for AGs generated by the CRBM even though the averaged AATS 399

score was good. Interestingly, this is the opposite of what we had observed for our previously published 400

GAN model and possibly points to the type of generative aberration demonstrated in Fig 4d. In fact, it 401

is known that the likelihood function used to infer the parameters of RBMs tends to create potentially 402

spurious modes -that do not match any region of the dataset-, which might explain these patterns. For 403

further investigation, we performed a nearest neighbour chain analysis since we would expect the nearest 404

neighbours of the nearest neighbours for CRBM AGs to be mostly real genomes with this anomaly 405

(Table 1). High frequency of ST, STT, STTT, STTTT and low frequency of SS, SSS, SSSS, SSSSS 406

measurements provide additional evidence that what we observe for the CRBM AGs is possibly similar 407

to the scenario seen in Fig 4d. To the best of our knowledge, this type of anomaly for generative models 408

has not been reported in literature and could have been missed by classical evaluation metrics. Such 409

complex overfitting/underfitting phenomena require vigilance and further investigation in future 410

generative studies. 411

We furthermore performed membership inference attacks on AGs generated by WGAN and RBM 412

models to assess possible privacy leakage. While the white-box attack on WGAN AGs and black-box 413

attack on RBM AGs produced high accuracy for detecting a portion of the samples used in training, 414

black-box attack on WGAN AGs was mainly not successful (Supp fig S15). This indicates that even if 415

the model architecture is available publicly and the adversary is in possession of some samples from the 416

training dataset, it is not trivial to pinpoint the training samples via this attack without access to the 417

model weights. We highlight that providing the critic’s weights of a GAN is not useful to the general 418

user interested only in its generative properties, the white-box is thus a conservative attack (i.e., 419

unrealistically beneficial for the adversary). Similarly, both the white and black-box attacks are 420

conservative for evaluating privacy leaks as they assume that the adversary has the huge advantage of 421

already possessing some genetic sequences from the original training set. However, it is crucial to 422

underline here that this is only a single type of attack and more research on privacy preservation is 423

essential before AGs are used in real-life scenarios [45]. 424

Despite these issues which remain to be further studied, additional improvements in model training 425

and increased privacy guarantees for generated genomes can pave the way for the first artificial genome 426

banks in the near future, accelerating global access to the vast amount of restricted genomic data. Unlike 427
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conventional approaches for genomic simulations, generative neural networks do not require a priori 428

information about the target dataset (such as underlying evolutionary history), allow the generated data 429

to be utilized alongside real data and provide substantially better privacy outcomes in comparison to 430

haplotype copying methods [21]. 431
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Supplementary Figures

Figure S1. Architecture of the variational autoencoder (VAE) model for the 10,000 SNP
dataset. Generic blocks of the encoder and decoder (white rectangles) are conceptually the same with
the generic critic and generator blocks respectively (Fig 1a), except that there are no latent space channels
concatenated to the input and no additional noise vectors at each block. The major difference from
WGAN in terms of architecture is the last block of the encoder, which encodes mu and sigma as the
mean and the standard deviation of the generated distribution, which are used to sample the latent space.
Dotted connections are residual connections where the input value is added to the output value of the
block before passing to the next block. Numbers in parentheses above blocks show channels and length,
respectively (C, L).

Figure S2. Comparative linkage disequilibrium (LD) analysis of artificial genomes generated
by different models for the 10,000-SNP data. a) LD heatmap based on r2 matrices. Sections
below diagonals correspond to LD in real genomes and sections above diagonals correspond to LD in
artificial genomes. b) LD decay as a function of SNP distance. SNPs were binned based on distance
and average LD was calculated. c) LD decay correlation between real and artificial datasets. x axis
corresponds to real LD bins and y axis corresponds to generated LD bins. Sites fixed in any of the
datasets were removed for all the LD calculations.

Figure S3. 3-point correlation analysis of SNP triplets for the 10,000-SNP data with
inter-SNP distances of 1, 4, 16, 64, 256, 512 and 1024 (from left to right, top to bottom).
The last panel (bottom right) shows correlation for triplets of SNPs drawn randomly. In each plot,
drawing order (z-order) of each AG group is shuffled.

Figure S4. Analysis of small haplotype motifs between real and generated 10,000-SNP
datasets for a) 4-mer and b) 8-mer non-overlapping windows. For each unique k-mer in each window,
number of occurrences in the real dataset was compared to the same number in the AG dataset. Each
point corresponds to the occurrence number in real (x-axis) and AG (y-axis) datasets. Values presented
inside the figures are Pearson’s r, ordinary least squares regression slope and intercept.

Figure S5. Distribution of haplotypic pairwise difference within (left figure) and between
(right figure) 10,000-SNP datasets.

Figure S6. Nearest neighbour adversarial accuracy (AATS) of artificial genomes generated
by different models for the 10,000-SNP dataset. Values below 0.5 (black line) indicate overfitting
and values above indicate underfitting. See Materials and Methods for the details of the metrics.

Figure S7. Radar plot comparing artificial genomes generated by different models for the
10,000-SNP dataset. Values closer to 0 indicate poor performance whereas values closer to 1 indicate
good performance. See Materials and Methods for the details of the representative statistics.
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Figure S8. Analysis of fixed alleles in artificial genomes with 65,535 SNPs. Left figures show
the number of fixed alleles in artificial genomes (x axis) versus the frequency of these alleles in the real
dataset (y axis). Right figures show the distribution of the frequency of alleles fixed in the artificial
dataset but not fixed in the real dataset.

Figure S9. 3-point correlation analysis of SNP triplets for the 65,535-SNP data with
inter-SNP distances of 1, 4, 16, 64, 256, 512 and 1024 (from left to right, top to bottom) for
a) WGAN and b) CRBM AGs. The last panels (bottom right) shows correlation for triplets of SNPs
drawn randomly. In each plot, drawing order (z-order) of each AG group is shuffled.

Figure S10. Analysis of small haplotype motifs between real and generated 65,535-SNP
datasets for a) 4-mer and b) 8-mer non-overlapping windows. For each unique k-mer in each window,
number of occurrences in the real dataset was compared to the same number in the AG dataset. Each
point corresponds to the occurrence number in real (x-axis) and AG (y-axis) datasets. Values presented
inside the figures are Pearson’s r, ordinary least squares regression slope and intercept.

Figure S11. Radar plot comparing artificial genomes generated by WGAN and CRBM
models for the 65,535-SNP dataset. Values closer to 0 indicate poor performance whereas values
closer to 1 indicate good performance. See Materials and Methods for the details of the representative
statistics.

Figure S12. Distribution of haplotypic pairwise difference within (left figure) and between
(right figure) 65,535-SNP datasets.

Figure S13. Principal component analysis (PCA) of combined real and artificial genomes
with 65,535 SNPs.

Figure S14. Analysis of WGAN and RBM generated AGs using 2504 samples from 10,000-
SNP dataset. a) Principal component analysis (PCA) of combined real and artificial genomes. b)
Allele frequency correlation between real (x-axis) and artificial (y-axis) genome datasets. Bottom figures
are zoomed at low frequency alleles (from 0 to 0.2 overall frequency in the real dataset). Values presented
inside the figures are Pearson’s r, ordinary least squares regression slope and intercept. c) Nearest
neighbour adversarial accuracy (AATS) of artificial genomes generated by different models and the test
set. Values below 0.5 (black line) indicate overfitting and values above indicate underfitting. d) Privacy
score for WGAN and RBM generated AGs. Values close to 0 indicate no privacy leakage.

Figure S15. Membership inference attack on generated 10,000-SNP genomes. a) White-box
attack (adversary has access to the model architecture and weights) on WGAN AGs and black-box
attacks with auxiliary information (adversary has only access to the model architecture) on b) WGAN
and c) RBM AGs. For all attacks, the adversary is assumed to know the size of the training set (2504 in
this analysis) and possesses a set of samples (5008 in this analysis) suspected of belonging to the training
data. For each attack, the critic scores the samples and the adversary sets a threshold for assigning the
top n scoring samples to the training dataset. Figures in the upper row show the accuracy of attacks
depending on these thresholds (assigned samples ranging from the top 1% to the top 50%). The red
dashed lines indicate the accuracy if the n samples were chosen randomly and not based on their scores.
Figures in the lower row show the distribution of the critic score for train and test datasets. See Materials
and Methods for more details.

20/20

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 17, 2023. ; https://doi.org/10.1101/2023.03.07.530442doi: bioRxiv preprint 

https://doi.org/10.1101/2023.03.07.530442
http://creativecommons.org/licenses/by-nc/4.0/

