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Abstract. We consider the stationary (time-independent) Navier-Stokes equations in the whole three-

dimensional space, under the action of a source term and with the fractional Laplacian operator (−∆)α/2

in the diffusion term. In the framework of Lebesgue and Lorentz spaces, we find some natural sufficient
conditions on the external force and on the parameter α to prove the existence and in some cases nonexistence
of solutions. Secondly, we obtain sharp pointwise decaying rates and asymptotic profiles of solutions, which
strongly depend on α. Finally, we also prove the global regularity of solutions. As a bi-product, we obtain
some uniqueness theorems so-called Liouville-type results. On the other hand, our regularity result yields a
new regularity criterion for the classical (with i.e. α = 2) stationary Navier-Stokes equations.
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1. Introduction

This paper considers the 3D incompressible, stationary and fractional Navier-Stokes equations in the
whole space R

3:

(−∆)
α
2 ~u+ (~u · ~∇)~u + ~∇P = ~f, div(~u) = 0, α > 0.
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Here, the functions ~u : R3 → R
3 and P : R3 → R are the velocity and the pressure of the fluid respectively,

while ~f : R3 → R
3 represents a given external force acting on this equation. Moreover, with a minor loss of

generality, we set the viscosity constant equal to one.

The divergence-free property of ~u yields to easily deduce the pressure P from the velocity ~u and the

external force ~f by the expression

(1) P =
1

−∆
div
(
(~u · ~∇)~u− ~f

)
.

This fact allows us to focus our study on the velocity ~u and to consider the equations:

(2) (−∆)
α
2 ~u+ P

(
(~u · ~∇)~u

)
= P(~f), div(~u) = 0, α > 0,

where P stands for the Leray’s projector.

One of the main features of equation (2) is the fractional Laplacian operator (−∆)
α
2 in the diffusion term.

Recall that this operator is defined at the Fourier level by the symbol |ξ|α, whereas in the spatial variable
we have

(−∆)α/2~u(t, x) = Cα p.v.

∫

R3

~u(t, x) − ~u(t, y)

|x− y|3+α
dy,

where Cα > 0 is a constant depending on α, and p.v. denotes the principal value.

Experimentally, this operator has been successfully employed to model anomalous reaction-diffusion pro-
cess in porous media models [22, 23] and in computational turbulence models [26, Chapter 13.2]. In these
last models, the term (−∆)

α
2 is used to characterize anomalous viscous diffusion effects in turbulent fluids

which are driven by the parameter α.

Mathematically, in the setting of bounded and smooth domains Ω ⊂ R
3, linear and nonlinear fractional

elliptic equations have been extensively studied in the setting of Lp-spaces, see for instance [1, 4, 8, 11, 12,
13, 24, 28] and the references therein. Motivated by these works, this article is devoted to develop a theory
for the equation (2) in the framework of Lebesgue spaces and in the more general setting of Lorentz spaces.
Our main objective is to understand the effects of the parameter α in the qualitative study of this equation,
precisely, the existence and nonexistence of Lp-solutions and Lp,q-solutions, pointwise decaying properties,
asymptotic profiles and regularity properties. Moreover, it is worth highlighting the previously cited works
are not longer valid in R

3 due to the lack of some of their key tools, for instance, the embedding properties of
Lp(Ω)- spaces and compact Sobolev embeddings. We thus use different approaches to study these qualitative
properties.

In the case α = 2, equations (2) coincide with the classical stationary Navier-Stokes equations

(3) −∆~u+ P
(
(~u · ~∇)~u

)
= P(~f), div(~u) = 0.

The Lp-theory for these equations was studied in [5], where the authors exploit powerful tools of Lorentz
spaces to study some of the aforementioned qualitative properties, mainly the existence and asymptotic
profiles of solutions.

In this paper, we generalize some of their results to the fractional case of equation (2) and we highlight
some interesting phenomenological effects, principally due to the fractional Laplacian operator. Going further,
we also develop a new approach to study the global regularity of solutions. This result has two main
consequences, on the one hand, for the classical case (when α = 2) we obtain a new regularity criterion for
weak solutions to the equation (3) and, on the other hand, for the fractional case (when 5

3 < α < 2) our

regularity result yields some uniqueness properties of solutions to the homogeneous (with ~f ≡ 0) equation
(2). This last result is of independent interest and it is also known as the Liouville-type problem for the
fractional Navier-Stokes equations.
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Main results. Recall that for a measurable function f : R3 → R and for a parameter λ ≥ 0 we define the
distribution function

df (λ) = dx
({

x ∈ R
3 : |f(x)| > λ

})
,

where dx denotes the Lebesgue measure. Then, the re-arrangement function f∗ is defined by the expression

f∗(t) = inf{λ ≥ 0 : df (λ) ≤ t}.

By definition, for 1 ≤ p < +∞ and 1 ≤ q ≤ +∞ the Lorentz space Lp,q(R3) is the space of measure functions
f : R3 → R such that ‖f‖Lp,q < +∞, where:

‖f‖Lp,q =





q

p

(∫ +∞

0

(t1/pf∗(t))qdt

)1/q

, q < +∞,

sup
t>0

t1/pf∗(t), q = +∞.

It is worth mentioning some important properties of these spaces. The quantity ‖f‖Lp,q is often used as
a norm, even thought it does not verify the triangle inequality. However, there exists an equivalent norm
(strictly speaking) which makes these spaces into Banach spaces. On the other hand, these spaces are
homogeneous of degree − 3

p and for 1 ≤ q1 < p < q2 ≤ +∞ we have the continuous embedding

Lp,q1(R3) ⊂ Lp(R3) = Lp,p(R3) ⊂ Lp,q2(R3).

Finally, for p = +∞ we have the identity L∞,∞(R3) = L∞(R3).

In our first result, we find some conditions on the external force ~f and a range of values of the parameter
α to construct Lp-weak solutions and Lp,q-weak solutions to equation (2). For this, we shall perform the

following program: at point (A) below, first we solve this equation in the Lorentz space L
3

α−1 ,∞(R3). This

particular space is invariant under the natural scaling of equations (2): (~u, P, ~f) 7→ (~uλ, Pλ, ~fλ), where

~uλ(x) = λα−1~u(λx), Pλ(x) = λ2α−2P (λx) and ~fλ(x) = λ3α−3 ~f(λx), λ > 0,

and this fact allows us to apply the Picard iterative scheme to the fixed point problem:

(4) ~u = (−∆)−
α
2 P(div(~u⊗ ~u)) + (−∆)−

α
2 P(~f).

Precisely, by a sharp study of the kernel associated to the operator (−∆)−
α
2 P(div(·)) we are able to prove

the estimate ‖(−∆)−
α
2 P(div(~u⊗ ~u))‖

L
3

α−1
,∞ . ‖~u‖2

L
3

α−1
,∞

, provided that 1 < α < 5
2 .

To the best of our knowledge, this well established procedure does not work for 0 < α < 1 nor 5
2 ≤ α,

and these cases will be matter of (far from obvious) future research. Consequently, from now on, we set
1 < α < 5

2 .

Continuing with our program, at points (B) and (C) below we prove some persistence properties of L
3

α−1 -
solutions. Specifically, we find a range of values for the parameter p for which these solutions also belong to
the Lp-space or the Lp,q-space, as long as the external force verifies additional suitable conditions.

Theorem 1.1. Let 1 < α < 5
2 . Assume that (−∆)−

α
2 ~f ∈ L

3
α−1 ,∞(R3). There exists an universal quantity

ε0(α) > 0, which only depends on α, such that if

‖(−∆)−
α
2 P(~f)‖

L
3

α−1
,∞ < ε0(α),

then the following statements hold:

(A) The equation (2) has a solution ~u ∈ L
3

α−1 ,∞(R3) satisfying and uniquely defined by the condition

‖~u‖
L

3
α−1

,∞ ≤ 2‖(−∆)−
α
2 P(~f)‖

L
3

α−1
,∞ .
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(B) Let 3
4−α < p < +∞. Assume that (−∆)−

α
2 ~f ∈ Lp(R3), then the solution constructed above verifies

~u ∈ Lp(R3). Moreover, this fact holds in the space Lp,q(R3) with 1 ≤ q ≤ +∞.

(C) Finally, for the end point p = 3
4−α , assume that (−∆)−

α
2 ~f ∈ L

3
4−α

,∞(R3). Then the solution

constructed at point (A) verifies ~u ∈ L
3

4−α
,∞(R3). Moreover, for the end point p = +∞ it holds

~u ∈ L∞(R3), provided that (−∆)−
α
2 P(~f) ∈ L∞(R3).

Some comments are in order. As mentioned, at point (B) we show the existence of Lp-solutions and
Lp,q-solutions (with 1 ≤ q ≤ +∞) for the range of values 3

4−α < p < +∞, while, at point (C), we prove

the existence of L
3

4−α
,∞-solutions and L∞-solutions. The main remark is that these results are optimal, and

later in Theorem 1.3 below we prove the non-existence of Lp,q-solutions for 1 ≤ p ≤ 3
4−α and 1 ≤ q < +∞.

In the setting of Sobolev spaces, existence of weak solutions to equation (2) has been proven in [11] and

[28]. In the first work, for a divergence-free external force ~f ∈ Ḣ−1(R3) ∩ Ḣ−α
2 (R3), the authors use the

Schaefer fixed point theorem to obtain a weak Ḣ
α
2 -solution as the limit of a regularized problem. This

approach allow them to consider the range 0 < α < 2, but they lose uniqueness. On the other hand, in the
second work [28], the authors perform a Galerkin-type method to construct a weak suitable Ḣ

α
2 -solution

with 1 < α < 2. As before, their uniqueness is still an open problem.

Our approach is completely different and it strongly exploits the structure of equation (4). This approach
seems to have some advantages in the study of equation (2). First, as was already mentioned, we are
able to obtain optimal results when studying the existence of Lp-solutions. On the other hand, the main

assumption of the external force: (−∆)−
α
2 P(~f) ∈ L

3
α−1 ,∞(R3) allows us to consider a variety of external

forces, for instance, when α = 2, one can considers a very rough external force ~f = (c1δ0, c2δ0, c3δ0), where
δ0 denotes the Dirac mass at the origin and c1, c2, c3 ∈ R are suitable numerical constants. Moreover, when

α 6= 2, one can consider homogeneous external forces |~f(x)| ∼ c
|x|2α−4 , with x 6= 0 and c > 0. Finally, in

contrast to [11, 28], equation (4) allows us to study sharp asymptotic profiles and pointwise decaying rates
of solutions to equation (2).

In our next result, for θ ≥ 0 we use the homogeneous weighted L∞-space

L∞
θ (R3) =

{
f ∈ L∞

loc(R
3 \ {0}) : ‖f‖L∞

θ
= ess supx∈R3 |x|θ|f(x)| < +∞

}
,

where we have the identity L∞
0 (R3) = L∞(R3). By recalling the continuous embedding L∞

α−1(R
3) ⊂

L
3

α−1 ,∞(R3), it is natural to solve equation (4) in the smaller scale invariant space L∞
α−1(R

3), for small

external forces verifying (−∆)−
α
2 P(~f) ∈ L∞

α−1(R
3). Thereafter, by following the ideas of Theorem 1.1, we

find a range of values for the parameter θ for which pointwise decaying properties on the external force are
propagated to solutions.

Theorem 1.2. Let 1 < α < 5
2 . Assume that the external force ~f verifies (−∆)

α
2 P(~f) ∈ L∞

α−1(R
3). There

exists an universal quantity 0 < ε1(α) < ε0(α), which only depends on α, such that if

‖(−∆)
α
2 P(~f)‖L∞

α−1
< ε1(α),

then the following statements hold:

(A) The equation (2) has a solution ~u ∈ L∞
α−1(R

3) satisfying and uniquely defined by the condition

‖~u‖L∞
α−1

≤ 2‖(−∆)−
α
2 P(~f)‖L∞

α−1
.

(B) If 0 ≤ θ ≤ 4− α and (−∆)−
α
2 P(~f) ∈ L∞

θ (R3) the solution obtained above holds ~u ∈ L∞
θ (R3).

Pointwise decaying properties of solutions allow us to deduce some interesting facts, which we shall explain
in the following corollaries and propositions.
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First, by point (B) above we directly obtain the following estimate, which shows an explicit decaying rate
of solutions to equation (2).

Corollary 1.1. Within the framework of Theorem 1.2, assume that (−∆)
−α
2 P(~f) ∈ L∞(R3) ∩ L∞

4−α(R
3).

Then, there exist a numerical constant C > 0 such that

(5) |~u(x)| ≤
C

1 + 2|x|α−1 + |x|4−α
.

As noticed, this decaying rate in driven by the parameter α in the fractional Laplacian operator in equation
(2). Moreover, the main remark is that this decaying rate is also optimal and in Theorem 1.3 below we show
that solutions to equation (2) cannot decay at infinity faster than 1

|x|4−α .

Both non-existence results in Lebesgue and Lorentz spaces as well as the optimality of the decaying rate
above are obtained by sharp asymptotic profiles of solutions to equations (2). For this, we remark that the
kernel associated to the operator (−∆)−

α
2 P(div(·)) is obtained as a tensor mα = (mi,j,k)1≤i,j,k≤3, where

mi,j,k(x) is an homogeneous function of order 4 − α and smooth outside the origin (see Lemma 2.3 below

for all the details). Moreover, we recall that for i = 1, 2, 3 the term mα(x) :

∫

R3

(~u ⊗ ~u)(y)dy is defined by

(
mα(x) :

∫

R3

(~u ⊗ ~u)(y)dy

)

i

=

3∑

j,k=0

mi,j,k(x)

(∫

R3

uj(y)uk(y)dy

)
.

Proposition 1.1. Under the same hypotheses of Theorem 1.2, assume that (−∆)
−α
2 P(~f) ∈ L∞

0 (R3) ∩
L∞
4−α(R

3). Then, the solution ~u has the following asymptotic profile as |x| → +∞:

(6) ~u(x) = (−∆)−
α
2 Pf +mα(x) :

∫

R3

(~u⊗ ~u)(y)dy +





O
(

1
|x|9−3α

)
if α 6= 2,

O
(

log |x|
|x|5−α

)
if α = 2.

This asymptotic profile will allow us to prove the next theorem.

Theorem 1.3. Let 1 < α < 5
2 . There exists an external force ~f ∈ S(R3), such that the associated solution

~u does not belong to Lp,q(R3) for all 1 ≤ p ≤ 3
4−α and 1 ≤ q < +∞. Moreover, for 1 ≪ |x| this solution

verifies the estimate from below 1
|x|4−α . |~u(x)|.

We continue with the qualitative study of weak Lp-solutions to equations (2). To introduce our next

result, first it is worth recalling that in the setting of Sobolev spaces regularity of weak Ḣ
α
2 -solutions has

been studied in [28]. Precisely, in the spirit of the celebrated Caffarelli, Kohn and Nirenberg theory [7], the

authors show a partial Hölder regularity result for suitable weak Ḣ
α
2 -solutions, with 1 < α < 2. On the

other hand, very recently the authors of [11] show global regularity of weak Ḣ
α
2 -solutions to equation (2)

in the homogeneous case when ~f ≡ 0. Specifically, the range of values 5
3 < α < 2 and the fact that ~f ≡ 0

allow them to apply a bootstrap argument and to conclude that weak Ḣ
α
2 -solutions are C∞-solutions. This

argument also holds in the range 1 < α ≤ 5
3 as long as the (strong) supplementary hypothesis ~u ∈ L∞(R3)

is assumed.

In our next result, we shall perform a different approach to prove global regularity of weak Lp-solutions
to fractional stationary Navier-Stokes equations. We emphasize that this theorem is independent of the
previous ones, since here we shall assume the existence of weak Lp-solutions and we are mainly interested in
studying their maximum gain of regularity from an initial regularity on the external force. Of course, this
result holds for solutions constructed in Theorem 1.1.
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Theorem 1.4. Let 1 < α and let max
(

3
α−1 , 1

)
< p < +∞. Let ~f ∈ Ẇ−1,p(R3) be an external force and let

~u ∈ Lp(R3) be a weak solution of equation (2) associated to ~f . If the external force verifies ~f ∈ Ẇ s,p(R3),

with 0 ≤ s, then it holds ~u ∈ Ẇ s+α,p(R3) and P ∈ Ẇ s+α,p(R3) + Ẇ s+1,p(R3).

Let us briefly explain the general strategy of the proof. The information ~u ∈ Lp(R3) (with max
(

3
α−1 , 1

)
<

p < +∞) and the framework of parabolic (time-dependent) fractional Navier-Stokes equations, allows us to
prove that ~u ∈ L∞(R3). Consequently, we are able to get rid of this supplementary hypothesis used in [11].
Thereafter, we use a sharp bootstrap argument applied to equations (4) and (1) to obtain the regularity
stated above.

In this regularity result, the assumption ~f ∈ Ẇ−1,p(R3) is essentially technical. On the other hand, the

parameter 0 ≤ s measures the initial regularity of the external force ~f , which yields a gain of regularity of
weak Lp-solutions to the order s + α. This (expected) maximum gain of regularity is given by the effects
of the fractional Laplacian operator in equation (2). See Remark 5 below for all the details. Moreover, as
pointed out in [11, 28], the study of regularity in the case 0 < α ≤ 1 is (to our knowledge) a hard open
problem.

When handling the fractional case (with α 6= 2) one of the key tools to prove this result is the fractional
Leibniz rule, so-called the Kato-Ponce inequality, which is stated in Lemma 2.2 below. To our knowledge, this
inequality is unknown for larger spaces than the Lp-ones and this fact imposes our hypothesis ~u ∈ Lp(R3).
However, at Appendix 7, we show that the classical case (with α = 0) allows us to prove a more general
regularity result for equation (3) in the larger setting of Morrey spaces.

As a direct corollary of Theorem 1.4, for the particular homogeneous case when ~f ≡ 0:

(7) (−∆)
α
2 ~u+ (~u · ~∇)~u+ ~∇P = 0, div(~u) = 0, α > 1,

and for the range of values 3
α−1 < p < +∞, we obtain that weak Lp-solutions to this equation are C∞-

functions. This particular result is of interest in connection to another important problem related to equation
(7).

Regularity of weak solutions is one of the key assumptions when study their uniqueness. We easily observe
that ~u = 0 and P = 0 is a trivial solution to (7) and we look for some functional spaces in which this solution
in the unique one. This problem is so-called the Liouville-type problem for fractional stationary Navier-
Stokes equations. A formally energy estimate and the divergence-free property of velocity ~u heuristically
show that ‖~u‖

Ḣ
α
2
= 0, which yields to conjecture that the only Ḣ

α
2 -solution to this equation is the trivial

one ~u = 0. However, this problem is still out of reach even in the classical case when α = 2.

We thus look for some additional hypothesis on the velocity ~u which yield the wished identity ~u = 0.
For the classical stationary Navier-Stokes equations (with α = 2) there is a large amount of literature on
the Liouville problem, see for instance [10, 17, 18, 27] and the references therein. However, Liouville-type
problems for the fractional case (with α 6= 2) have been much less studied by the research community. In

[29], the authors show that smooth solutions to (7) vanish identically when ~u ∈ Ḣ
α
2 (R3) ∩ L

9
2 (R3), with

0 < α < 2. On the other hand, very recently, for the range of values 3
5 < α < 2 the authors of [11] solve

the Liouville-type problem when ~u ∈ Ḣ
α
2 (R3)∩Lp(α)(R3). Here, the parameter p(α) depends on α and it is

close (in some sense) to the critical value 6
3−α . By Sobolev embeddings we have Ḣ

α
2 (R3) ⊂ L

6
3−α (R3) and

this last value is the natural one to solve this problem. However, the identity p(α) = 6
3−α cannot be reached

and the information ~u ∈ Lp(α)(R3) remains an additional hypothesis.

In our next result, we study the Liouville-type problem for a different range of values of p.

Proposition 1.2. Let 5
3 < α ≤ 2, let 3

α−1 < p ≤ 9
2 and let ~u ∈ Ḣ

α
2 (R3) ∩ Lp(R3) be a solution to the

equation (7). Then it holds ~u = 0 and P = 0.
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The proof is mainly based on some Caccioppoli-type estimates established in [10] and [11]. These estimates
work for smooth enough solutions and in this sense Theorem 1.4 is useful. On the other hand, for the classical
case α = 2 we recover the result proven in [10, Theorem 1] (for 3 < p ≤ 9

2 ) and this proposition can be

seen as its generalization to the fractional case. It is worth mentioning the constraint 5
3 < α ensures that

3
α−1 < 9

2 . Finally, by following some of the ideas in [18] we think that this result can be extended for 9
2 < p.

Organization of the rest of the paper. The Section 2 is essentially devoted to present the necessary
preliminaries to deal with the proofs of our main results. In Section 3, we prove the existence of weak
solutions solutions of the stationary fractional Navier-Stokes in the setting of Lebesgue and Lorentz spaces
stated in Theorem 1.1. In Section 4, we present the proofs of the pointwise estimates and asymptotic profiles
stated in Theorem 1.2 and Proposition 1.1, respectively. In Section 5, we prove the nonexistence result stated
in Theorem 1.3. While in Sections 6 and 7 we prove the Theorem 1.4 and Proposition 1.2, related to the
regularity of weak solutions and a Liouville-type result, respectively. Finally, at the of the paper we present
an appendix where we state a new regularity criterion for the classical stationary Navier-Stokes equations
in the setting of Morrey spaces.

2. Preliminaries

In this section, we summarize some well-known results which will be useful in the sequel. We start by the
Young inequalities in the Lorentz spaces. In particular, the involved constants are explicitly written since
they will play a substantial role in our study. For a proof we refer to [9, Section 1.4.3].

Proposition 2.1 (Young inequalities). Let 1 < p, p1, p2 < +∞ and 1 ≤ q, q1, q2 ≤ +∞. There exists a
generic constant C > 0 such that the following estimates hold:

(1) ‖f ∗ g‖Lp,q ≤ C1‖f‖Lp1,q1 ‖g‖Lp2,q2 , with 1+ 1
p = 1

p1
+ 1

p2
, 1

q ≤ 1
q1
+ 1

q2
, and C1 = C p

(
p1

p1−1

)(
p2

p2−1

)
.

(2) ‖f ∗ g‖Lp,q ≤ C2‖f‖L1 ‖g‖Lp,q , with C2 = C p2

p−1 .

(3) ‖f ∗ g‖L∞ ≤ C3‖f‖Lp,q ‖g‖Lp′,q′ , with 1 = 1
p + 1

p′ , 1 ≤ 1
q + 1

q′ and C3 = C
(

p
p−1

)(
p′

p′−1

)
.

Next, the key result in the proof of our theorems related to the existence of solutions is the classical Picard
fixed point scheme, which we present in the following

Theorem 2.1 (Picard’s fixed point). Let (E, ‖ · ‖E) be a Banach space and let u0 ∈ E be an initial data
such that ‖u0‖E ≤ δ. Assume that B : E × E → E is a bilinear application. Assume moreover that

‖B(u, v)‖E ≤ CB‖u‖E‖u‖E,

for all u, v ∈ E. If there holds
0 < 4δCB < 1,

then the equation ~u = B(~u, ~u)+~u0 admits a solution ~u ∈ E, which is the unique solution verifying ‖~u‖E ≤ 2δ.

Thereafter, when studying the regularity of weak solutions we shall use the following lemmas.

Lemma 2.1 (Lebesgue-Besov Embedding). Let 1 < p < +∞. Then, for all t > 0, there exist C > 0 such
that the following estimate holds

t
3

αp ‖e−t(−∆)
α
2 f‖L∞ ≤ C‖f‖Lp.

Proof.

Recall first the continuous embedding Lp(R3) ⊂ Ḃ
− 3

p
,∞

∞ (R3) (see for instance [20, Page 171]) where the

homogeneous Besov space Ḃ
− 3

p
,∞

∞ (R3) can be characterized as the space of temperate distributions f ∈

S ′(R3) such that ‖f‖
Ḃ

− 3
p
,∞

∞

= sup
t>0

t
3
2p ‖et∆f‖L∞ < +∞. Thereafter, by [21, Page 9] we have equivalence

‖f‖
Ḃ

− 3
p
,∞

∞

≃ sup
t>0

t
3
αp ‖e−t(−∆)

α
2 f‖L∞, from which we obtain the wished estimate. �
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Lemma 2.2 (Fractional Leibniz rule). Let α > 0, 1 < p < +∞ and 1 < p0, p1, q0, q1 ≤ +∞. Then, there
exist C > 0 such that the following estimate holds

‖(−∆)
α
2 (fg)‖Lp ≤ C ‖(−∆)

α
2 f‖Lp0 ‖g‖Lp1 + ‖f‖Lq0 ‖(−∆)

α
2 g‖Lq1 ,

where 1
p = 1

p0
+ 1

p1
= 1

q0
+ 1

q1
.

The proof of this estimate can be consulted in [16] or [25]. Finally, given an α > 0, let pα(t, x) the

convolution kernel of the operator e−t(−∆)
α
2 and Kα(t, x) = (Kα,i,j,k(t, x))1≤i,j,k≤3 the tensor of convolution

kernels associated to the operator e−t(−∆)
α
2
P(div(·)).

Lemma 2.3 (Lemma 2.2 of [30]). For all t > 0, there exist a numerical constant C > 0 depending on α
such that the following estimates hold:

(1) ‖pα(t, ·)‖L1 ≤ C,

(2)
∥∥∥~∇pα(t, ·)

∥∥∥
L1

≤ C t−
1
α ,

(3) ‖Kα(t, ·)‖L1 ≤ C t−
1
α .

3. Existence of weak solutions in Lebesgue and Lorentz spaces: proof of Theorem 1.1

First recall that equation (2) can be rewritten as the (equivalent) fixed point problem (4) where, for the
sake of simplicity, we shall denote

(8) B(~u, ~u) = −(−∆)−
α
2 P(div(~u⊗ ~u)).

In the next propositions, we shall prove each point stated in Theorem 1.1. in the next propositions.

Proposition 3.1. Let 1 < α < 5
2 . Assume that (−∆)−

α
2 ~f ∈ L

3
α−1 (R3). There exists an universal quantity

η0(α) > 0, which depends on α, such that if ‖(−∆)−
α
2 P(~f)‖

L
3

α−1
,∞ = δ < η0(α) then the equation (4) has a

solution ~u ∈ L
3

α−1 ,∞(R3) satisfying and uniquely defined by ‖~u‖
L

3
α−1

,∞ ≤ 2δ.

Proof.

Let us start by estimating the bilinear term B(~u, ~u). For this we shall need the following technical lemma.

Lemma 3.1. For 1 < α < 4 we have B(~u, ~u) = mα ∗ (~u⊗ ~u), where mα = (mi,j,k)1≤i,j,k≤3 is a tensor with
mi,j,k ∈ C∞(

R
3 \ {0}

)
∩ L1

loc(R
3) a homogeneous function of degree α− 4. Moreover, for all x 6= 0 we have

|mα(x)| ≤ c|x|α−4.

Proof.

Recall that we have P(~ϕ) = ~ϕ+ ( ~R⊗ ~R)~ϕ, where ~R = (Ri)1≤i≤3 with Ri =
∂i√
−∆

the i-th Riesz transform.

Then we obtain

B(~u, ~u) = −
1

(−∆)
α
2
(P(div(~u⊗ ~u))) =


−

3∑

j=1

3∑

k=1

(δi,j +RiRj)
∂k

(−∆)
α
2
(uj uk)




1≤i≤3

=




3∑

j=1

3∑

k=1

mi,j,k ∗ (uj uk)




1≤i≤3

= mα ∗ (~u⊗ ~u).

By a simple computation we write m̂i,j,k(ξ) = −

(
δi,j +

ξiξj
|ξ|2

)
iξk
|ξ|α

. We thus have that m̂i,j,k ∈ C∞(R3\{0})

is a homogeneous function of degree 1−α and then mi,j,k ∈ C∞(R3 \ {0}) is homogeneous function of degree
α− 4.

With this information, for all x 6= 0 we can write |mα(x)| ≤ c|x|α−4. Moreover, since 1 < α we have
−3 < α− 4, which yields mα ∈ L1

loc(R
3). Lemma 3.1 is proven. �
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Observe that the estimate |mα(x)| ≤ c|x|α−4 for all x 6= 0 allows us to conclude that mα ∈ L
3

4−α
,∞(R3).

Then, we apply the first point of Proposition 2.1, where we set the parameters p = 3
α−1 , p1 = 3

4−α and

p2 = p
2 = 3

2(α−1) , and we obtain

‖mα ∗ (~u⊗ ~u)‖
L

3
α−1

,∞ ≤ C1‖mα‖
L

3
4−α

,∞ ‖~u⊗ ~u‖
L

3
2(α−1)

.

Remark 1. The condition 1 < p2 yields the constraint α < 5
2 . We thus set 1 < α < 5

2 .

Thereafter, by the Hölder inequalities and by the identity B(~u, ~u) = mα ∗ (~u⊗ ~u) we have

(9) ‖B(~u, ~u)‖
L

3
α−1

,∞ ≤ CB(α)‖~u‖
2

L
3

α−1
,∞

, with CB(α) = C1‖mα‖
L

3
4−α

,∞ .

Thus, for the constant CB(α) give above, now we set δ small enough:

(10) δ <
1

4CB(α)
= η0(η),

and by Theorem 2.1 we finish the proof of Proposition 3.1. �

With this first result, now we are able to prove that this solution also belongs to the space Lp(R3) with
3

4−α < p < +∞. In the (more general) case of the Lorentz space Lp,q(R3) (with 1 ≤ q ≤ +∞) the proof
follows the same lines, so it is enough to focus in the case of the Lebesgue spaces.

Proposition 3.2. With the same hypothesis of Proposition 3.1, assume in addition that (−∆)−
α
2 ~f ∈ Lp(R3)

with 3
4−α < p < +∞. There exists an universal quantity ε0(α) < η0(α), which only depends on α, such that

if δ < ε0(α) then the solution ~u ∈ L
3

α−1
,∞(R3) to the equation (4) constructed in Proposition 3.1 verifies

~u ∈ Lp(R3) with 3
4−α < p < +∞.

Proof.

The solution ~u ∈ L
3

α−1 ,∞(R3) to the problem (4) is obtained as the limit of the sequence (~un)n∈N, where

(11) ~un+1 = B(~un, ~un) + ~u0, for n ≥ 0 and ~u0 = (−∆)−
α
2 P(~f).

We shall use this sequence to prove that ~u ∈ Lp(R3). For this we write

‖~un+1‖Lp ≤ ‖B(~un, ~un)‖Lp + ‖~u0‖Lp .

For the last expression above, we use our assumption (−∆)−
α
2 ~f ∈ Lp(R3) to directly obtain ~u0 ∈ Lp(R3).

On the other hand, in order to estimate the bilinear term, we recall that by Lemma 3.1 we have B(~un, ~un) =

mα∗(~un⊗~un) wheremα ∈ L
3

4−α
,∞(R3). Therefore, by the first point of Proposition 2.1 (with the parameters

p1 = 3
4−α , p2 = 3p

3+p(α−1) and q = p, q1 = +∞, q2 = p2) we have

(12) ‖B(~un, ~un)‖Lp ≤ C1(α, p)‖mα‖
L

3
4−α

,∞ ‖~un⊗~un‖
L

3p
3+p(α−1)

, C1(α, p) = Cp

(
3

7− α

)(
3p

(4− α)p− 3

)
.

Remark 2. The constant C1(α, p) defined above blows-up at p = 3
4−α and p = +∞. This fact yields the

constraint 3
4−α < p < +∞.

Thereafter, from the estimate given in (12) and by the Hölder inequalities we can write

(13) ‖B(~un, ~un)‖Lp ≤ C1(α, p)‖~un‖Lp ‖~un‖
L

3
α−1

,∞ .

Moreover, recall that the sequence defined in (11) verifies the uniform estimate ‖~un‖
L

3
α−1

,∞ ≤ 2δ, where

δ =
∥∥∥(−∆)−

α
2 P(~f)

∥∥∥
L

3
α−1

,∞
. Then we get

‖B(~un, ~un)‖Lp ≤ 2 δ C1(α, p)‖~un‖Lp .

We thus have the following recursive estimate

(14) ‖~un+1‖Lp ≤ 2 δ C1(α, p)‖~un‖Lp + ‖~u0‖Lp , for all n ≥ 0.
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At this point, we need to find an additional constraint on the parameter δ to obtain the control

(15) 2 δ C1(α, p) <
1

2
.

Below we shall need this inequality. Now, in order to get this control, we need to consider the following
cases of the parameter p ∈ ( 3

4−α ,+∞). First, note that since α < 5
2 we have 3

4−α < 2 < 3
α−1 , and then, we

split the interval ( 3
4−α ,+∞) = ( 3

4−α , 2)∪ [2, 9
α−1 ]∪ ( 9

α−1 ,+∞). Moreover, only for technical reasons, first we

need to consider the interval [2, 9
α−1 ] since the estimates in the other intervals are based on the ones proven

in [2, 9
α−1 ].

The case p ∈ [2, 9
α−1 ]. We get back to the expression of the quantity C1(α, p) given in (12) and we define

0 < M(α) = max
p∈[2, 9

α−1 ]
C1(α, p) < +∞. Then, we set the additional constraint on the parameter δ (which

already verifies (10)) as follows:

(16) 2δM(α) <
1

2
,

and for all p ∈ [2, 9
α−1 ] we have the wished control (15). Therefore, we get back to the inequality (14) to

write

‖~un+1‖Lp ≤
1

2
‖~un‖Lp + ‖~u0‖Lp , for all n ≥ 0,

hence we obtain the uniform control

(17) ‖~un+1‖Lp ≤

(
+∞∑

k=0

1

2k

)
‖~u0‖Lp , for all n ≥ 0.

We conclude that the sequence (~un)n∈N is uniformly bounded in the space Lp(R3) and then we have ~u ∈
Lp(R3) with p ∈ 2 δ C1(α, p) <

1
2 . Moreover, recall that this fact holds as long as the parameter δ verifies

both conditions (10) and (16), which can be jointly written as

(18) δ < min

(
1

4CB(α)
,

1

4M(α)

)
= ε0(α).

The constraint above allows us to prove that ~u ∈ Lp(R3) with p ∈ [2, 9
α−1 ]. Now, we shall use this same

constraint to prove that ~u ∈ Lp(R3) in the cases p ∈ ( 3
4−α , 2) and p ∈ ( 9

α−1 ,+∞).

The case p ∈ ( 3
4−α , 2). We get back to equation (4). Recall that our assumption (−∆)−

α
2 (~f) ∈ Lp(R3)

yields that ~u0 ∈ Lp(R3) with p ∈ ( 3
4−α , 2). On the other hand, recalling that (−∆)−

α
2 (~f) ∈ L

3
α−1 ,∞(R3) we

also have ~u0 ∈ L
3

α−1 ,∞(R3) (where 2 < 3
α−1 ) and by a standard interpolation argument we get ~u0 ∈ L2(R3).

Consequently, by the uniform control given in (17) and by the constraint (18) we obtain ~u ∈ L2(R3).

With this information at out disposal, we can prove that B(~u, ~u) ∈ L
3

4−α
,∞(R3). Indeed, since ~u ∈ L2(R3)

we get ~u ⊗ ~u ∈ L1(R3), and moreover, since B(~u, ~u) = mα ∗ (~u ⊗ ~u) with mα ∈ L
3

4−α
,∞(R3), by the second

point of Proposition 2.1 we have

(19) B(~u, ~u) ∈ L
3

4−α
,∞(R3).

Finally, by the estimate (9) we also have B(~u, ~u) ∈ L
3

α−1 ,∞(R3) (recall that 2 < 3
α−1 ) and by well-known

interpolation inequalities we get B(~u, ~u) ∈ Lp(R3) with p ∈ ( 3
4−α , 2). Consequently, by the identity (4) we

have ~u ∈ Lp(R3).

The case p ∈ ( 9
α−1 ,+∞). We follow similar ideas of the previous case. First remark that we have

~u0 ∈ Lp(R3) with p ∈ ( 9
α−1 ,+∞) (recall that 9

α−1 < p) and since ~u0 ∈ L
3

α−1 ,∞(R3) by the interpolation



A Lp-THEORY FOR FRACTIONAL STATIONARY NAVIER-STOKES EQUATIONS 11

inequalities we obtain ~u0 ∈ L
4

α−1 ∩ L
9

α−1 (R3) where 4
α−1 ,

9
α−1 ∈ [2, 9

α−1 ]. Thus, always by the uniform

control (17) and the constraint (18) we obtain ~u ∈ L
4

α−1 ∩ L
9

α−1 (R3) and then ~u ∈ L
6

α−1 ,2(R3).

With this information we can prove that B(~u, ~u) ∈ L∞(R3). Indeed, since ~u ∈ L
6

α−1 ,2(R3) we obtain

~u⊗ ~u ∈ L
3
α
,1(R3). Moreover, since mα ∈ L

4
α−1 ,∞(R3) by the third point of Proposition 2.1 we have

(20) B(~u, ~u) ∈ L∞(R3).

Finally, as we also have B(~u, ~u) ∈ L
3

α−1 ,∞(R3) we use again the interpolation inequalities to obtain B(~u, ~u) ∈
Lp(R3) with p ∈ I3, which yields ~u ∈ Lp(R3).

Proposition 3.2 in now proven. �

In order to finish the proof of Theorem 1.1, with the information obtained in the expressions (19) and
(20) we are able to prove our last proposition.

Proposition 3.3. With the same hypothesis of Proposition 3.1, the following statement holds:

(A) If (−∆)−
α
2 (~f) ∈ L

3
4−α

,∞(R3) then we have ~u ∈ L
3

4−α
,∞(R3).

(B) If (−∆)−
α
2 P(~f) ∈ L∞(R3) then we have ~u ∈ L∞(R3).

Proof.

The proof is straightforward. For the first point, we just recall that we have (−∆)−
α
2 (~f) ∈ L

3
4−α

,∞(R3) ∩

L
3

α−1 ,∞(R3) and then we obtain ~u0 ∈ Lp(R3) with p ∈ [2, 9
α−1 ]. We thus have the information given

in (19) which yields ~u ∈ L
3

4−α
,∞(R3). The second point follows the same arguments by assuming that

(−∆)−
α
2 P(~f) ∈ L∞(R3). Proposition 3.3 is proven. �

Gathering together Propositions 3.1, 3.2 and 3.3 we conclude the proof of Theorem 1.1. �

4. Pointwise estimates and asymptotic profiles

4.1. Proof of Theorem 1.2. We start this section by proving the following useful lemma.

Lemma 4.1. Let 1 < α < 5
2 and let θ1, θ2 two positive constants such that α− 1 < θ1 + θ2 < 3. Moreover,

let B(~u, ~u) the bilinear form defined in (8). The following statements holds:

(1) There exists a constant 0 < C1 = C1(α, θ1, θ2) such that

‖B(~u, ~u)‖L∞
1−α+θ1+θ2

≤ C1‖~u‖L∞
θ1
‖~u‖L∞

θ2
.

(2) There exists a constant 0 < C2 = C2(α) such that

‖B(~u, ~u)‖L∞
4−α

≤ C2

(
‖~u‖2L∞

3
2

+ ‖~u‖2L2

)
.

Proof.

The fact that B(~u, ~u) = mα ∗ (~u⊗ ~u) and Lemma 3.1 yield the estimate

B(~u, ~u) =

∫

R3

mα(x− y) : (~u⊗ ~u)(y)dy ≤ C‖~u‖L∞
θ1
‖~u‖L∞

θ2

∫

R3

1

|x− y|4−α|y|θ1+θ2
dy.

Is easy to see that the last integral can be bounded by C1|x|
α−1−θ1−θ2 , with 0 < C1 = C1(α, θ1, θ1). Then,

we can write

|B(~u, ~u)| ≤
C1

|x|1−α+θ1+θ2
‖~u‖L∞

θ1
‖~u‖L∞

θ2
,

and thus the first result follows.
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To prove the second part, for x 6= 0 we start by splitting the domain R
3 into { |x|

2 > |y|} and { |x|
2 ≤ |y|},

and then

B(~u, ~u) =

∫

|x|
2 >|y|

mα(x− y) : (~u⊗ ~u)(y)dy +

∫

|x|
2 ≤|y|

mα(x− y) : (~u⊗ ~u)(y)dy

= I1 + I2.

To deal with the integral I1, we note that the integration domain {|y| ≤ |x|
2 } yields |x − y| ≥ |x| − |y| ≥

|x| − |x|
2 = |x|

2 . By mixing Lemma 3.1 with the last inequality we obtain

|I1| ≤ C

∫

|x|
2 >|y|

1

|x− y|4−α
|~u(y)|2dy ≤

C

|x|4−α

∫

|x|
2 >|y|

|~u(y)|2dy ≤
C

|x|4−α
‖~u‖2L2 .

For the integral I2, we have

|I2| ≤ C‖~u‖2L∞
3
2

∫

|x|
2 ≤|y|

1

|x− y|4−α

1

|y|3
dy.

The fact that |x|
2 ≤ |y| yields

∫

|x|
2 ≤|y|

1

|x− y|4−α

1

|y|3
dy ≤

1

|x|

∫

|x|
2 ≤|y|

1

|x− y|4−α

1

|y|2
dy.

Is straightforward to see that the last integral can be bounded by C2|x|
3−α, with 0 < C2 = C2(α), and thus

we can conclude

|I2| ≤
C2

|x|4−α
‖~u‖2L∞

3
2

.

The lemma is then proved. �

Now, in the next propositions, we prove each point stated in Theorem 1.2.

Proposition 4.1. Let 1 < α < 5/2. Assume that (−∆)−
α
2 P(~f) ∈ L∞

α−1(R
3). There exists a universal

quantity 0 < η1(α) < ε0(α) such that if ‖(−∆)−
α
2 P(~f)‖L∞

α−1
= δ < η1(α) then the equation (2) has a solution

~u ∈ L∞
α−1(R

3) satisfying and uniquely defined by the condition ‖~u‖L∞
α

≤ 2δ.

Proof.

From Theorem 1.1 we have a solution ~u of equation (2) in the space L
3

α−1 ,∞(R3). In view of our hypotheses

for (−∆)
α
2 P(~f) ∈ L∞

α−1(R
3) to conclude that ~u belongs to L∞

α−1(R
3), we shall to prove

‖B(~u,~v)‖L∞
α−1

≤ C‖~u‖L∞
α−1

‖~v‖L∞
α−1

,

with C independent of ~u and ~v. This fact follows directly by taking θ1 = θ2 = α − 1 in Lemma 4.1. Now,
considering

‖(−∆)−
α
2 Pf‖L∞

α−1
< η1(α) < ε0(α),

where ε0(α) is the constant of Theorem 1.1, by applying Picard’s fixed-point Theorem 2.1 we obtain the
existence and uniqueness of the solution ~u in L∞

α−1(R
3). �

Remark 3. The solution constructed previously also belongs to L
3

α−1 ,∞(R3) since L∞
α−1(R

3) ⊂ L
3

α−1 ,∞(R3).

Proposition 4.2. With the same hypotheses of Proposition 4.1, assume that (−∆)−
α
2 P(~f) ∈ L∞

θ (R3), with
0 < θ ≤ 4 − α. There exists a universal quantity ε1(α) < η1(α) such that if δ < ε1(α) then the solution
~u ∈ L∞

α−1(R
3) constructed by Proposition 4.1 verifies ~u ∈ L∞

θ (R3).

Proof.

By assumption we have (−∆)−
α
2 P(~f) ∈ L∞

θ (R3), then considering the sequence such that ~un+1 = ~u0 +

B(~un, ~un) (with ~u0 = (−∆)−
α
2 P(~f)) and Lemma 4.1 with θ1 = θ, θ2 = α− 1 , we obtain the estimate

(21) ‖B(~un, ~un)‖L∞
θ

≤ C1(α, θ)‖~un‖L∞
α−1

‖~un‖L∞
θ

for 0 < θ < 4− α.
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Remark 4. The positive constant C1(α, θ) depends continuously of θ ∈ (0, 4 − α) and it blows-up at θ = 0
and θ = 4− α.

On the other hand, recall that by the Picard iterative schema applied to the approximation ~un we have
the uniform control

‖~un‖L∞
α−1

≤ 2‖~u0‖L∞
α−1

= 2δ.

Then, by (21) we get

(22) ‖~un+1‖L∞
θ

≤ 2 δ C1(α, θ)‖~un‖L∞
θ
+ ‖~u0‖L∞

θ
, for 0 < θ < 4− α.

As in the proof of Proposition 3.2, we need to find an additional constraint on δ to get

(23) 2 δ C1(α, θ) <
1

2
,

which we will use later. To obtain this inequality, we split (0, 4−α] = (0, α−1
2 )∪ [α−1

2 , 3
2 ]∪ (32 , 4−α] (remark

that 1 < α < 5/2 yields 3
2 < 4 − α). Moreover, only for technical reasons, first we shall consider the case

θ ∈ [α−1
2 , 3

2 ] and then we will study the cases θ ∈ (0, α−1
2 ) and θ ∈ (32 , 4− α].

The case θ ∈ [α−1
2 , 32 ]. We define the quantity 0 < N(α) = max

θ∈[α−1
2 , 32 ]

C1(α, θ) < +∞. Then, we set the

additional constraint on δ

2δN(α) <
1

2
,

which yields (23), and by following the same arguments in (17) we obtain that ~u ∈ L∞
θ (R3).

The case θ ∈ (32 , 4 − α]. Recall that (−∆)−
α
2 P(~f) ∈ L∞

α−1(R
3) ∩ L∞

θ (R3) and then (−∆)−
α
2 P(~f) ∈

L∞
3
2

(R3). Thus, by the case above we get ~u ∈ L∞
3
2

(R3).

Before going further let consider the following useful result.

Lemma 4.2. Let θ1, θ2 > 0 and p > 1 such that 3
θ1

< p < 3
θ2
. Then L∞

θ1
(R3) ∩ L∞

θ2
(R3) ⊂ Lp(R3).

Proof.

The inclusions L∞
θ1
(R3) ⊂ L

3
θ1

,∞
(R3) and L∞

θ2
(R3) ⊂ L

3
θ2

,∞
(R3) yield

(24) L∞
θ1 ∩ L∞

θ2 (R
3) ⊂ L

3
θ1

,∞ ∩ L
3
θ2

,∞(R3).

By hypothesis and interpolation of Lorentz spaces, we can write

(25) L
3
θ1

,∞
∩ L

3
θ2

,∞
(R3) ⊂ Lp,p(R3).

Then, by mixing (24) and (25) we conclude the proof. �

Thus, considering Lemma 4.2 and the fact that (−∆)−
α
2 P(~f) ∈ L∞

α−1(R
3)∩L∞

θ (R3), we get (−∆)−
α
2 P(~f) ∈

L2(R3). Thus, by Proposition 3.2 we have ~u ∈ L2(R3), and by Lemma 4.1 we obtain B(~u, ~u) ∈ L∞
4−α(R

3).

Recalling that we also have B(~u, ~u) ∈ L∞
α−1(R

3), and moreover, since α − 1 < 3
2 , we get B(~u, ~u) ∈ L∞

θ (R3),

which yields ~u ∈ L∞
θ (R3).

The case θ ∈ (θ, α−1
2 ). Similar arguments as above yield ~u ∈ L∞

α−1 ∩ L∞
α−1
2

, and then ~u ∈ L∞
θ+α−1

2

(R3).

From Lemma 4.1 we obtain B(~u, ~u) ∈ L∞
θ (R3), and then ~u ∈ L∞

θ (R3). With this we conclude the proof of
Proposition 4.2. �

Gathering together Propositions 4.1 and 4.2 we finish with the proof of Theorem 1.2. �

In this point we stress the fact that Corollary 1.1 follows directly as a consequence of Proposition 4.2.
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4.2. Proof of Corollary 1.1. We begin by stressing that there exist a numerical constant C such that

|(−∆)
−α
2 P(~f)| ≤ C, |(−∆)−

α
2 P(~f)| ≤

C

|x|α−1
, |(−∆)−

α
2 P(~f)| ≤

C

|x|4−α
,

and

|B(~u, ~u)| ≤ C, |B(~u, ~u)| ≤
C

|x|α−1
, |B(~u, ~u)| ≤

C

|x|4−α
.

Gathering the expressions above with the fact that ~u = (−∆)−
α
2 P(~f) + B(~u, ~u), we conclude the pointwise

estimate

(1 + 2|x|α−1 + |x|4−α)|~u(x)| ≤ C,

and then we obtain (5). With this we conclude the proof of Corollary 1.1. �

4.3. Proof of Proposition 1.1. With the information obtained in Propositions 4.1 and 4.2, we are able to
derive sharp asymptotic profiles of solutions.

Proof.

In the next we will prove that the bilinear term B(~u, ~u) has the following asymptotic profile as |x| → +∞:

(26) B(~u, ~u) = mα(x) :

∫

R3

(~u ⊗ ~u)(y)dy +





O
(

1
|x|9−3α

)
if α 6= 2,

O
(

log |x|
|x|5−α

)
if α = 2.

To this end, we consider the following descomposition of the bilinear term B(~u, ~u):

(−∆)−
α
2 Pdiv(u⊗ u)(x) =

∫

R3

mα(x− y) : (~u ⊗ ~u)(y)dy

=mα(x) :

∫

R3

(~u⊗ ~u)(y)dy

−mα(x) :

∫

|y|≥|x|/2
(~u⊗ ~u)(y)dy

+

∫

|y|≤|x|/2
(mα(x− y)−mα(x)) : (~u ⊗ ~u)(y)dy

+

∫

|x−y|≤|x|/2
mα(x− y) : (~u⊗ ~u)(y)dy,

+

∫

|y|≥|x|/2,|x−y|≥|x|/2
mα(x− y) : (~u⊗ ~u)(y)dy

= I1 + I2 + I3 + I4 + I5,

where we must estimate the terms from I2 to I5.

• Term I2. In this case we have

(27) I2 ≤ C|x|−(9−3α), as |x| → +∞.
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In fact, since ~u ∈ L∞
4−α(R

3), we have |~u ⊗ ~u(y)| ≤ C|y|−2(4−α). Then, considering that |mα(x)| ≤

C|x|−(4−α) and 0 < ε < 1, the change of variables ρ = |y| yields

I2 ≤ |x|−(4−α)

∫

|y|≥|x|/2
|y|−2(4−α)dy

≤ |x|−(4−α)

∫

|y|≥|x|/2
|y|−2(4−α)+ε−εdy

≤ |x|−(4−α)−ε

∫

|y|≥|x|/2
|y|−2(4−α)+εdy

≤ |x|−(4−α)−ε

∫ +∞

|x|/2

ρ2dρ

ρ2(4−α)−ε

≤C|x|−(4−α)−ε|x|−(5−2α)+ε = C|x|−(9−3α).

• Term I3. In this case we have

(28) I3 ≤





C

|x|9−3α
if α 6= 2,

C
log(|x|)

|x|5−α
if α = 2,

as |x| → +∞.

In fact, since |∇mα(x)| ≤ C|x|−(5−α), by the main value theorem with z = θ(x−y)+(1−θ)x (where
0 < θ < 1) we can write

|mα(x− y)−mα(x)| ≤ C|∇mα(z)||(x − y)− x| ≤ C|z|−(5−α)|y|.

By mixing z = θ(x− y) + (1− θ)x = x− θy with 0 < θ < 1 and |y| ≤ |x|/2, we obtain

|z| = |x− θy| ≥ |x| − θ|y| ≥ |x| − |y| ≥ |x| − |x|/2 = |x|/2,

and then

|mα(x− y)−mα(x)| ≤ C|z|−(5−α)|y| ≤ C|x|−(5−α)|y|.

Thus, we get

(29) I3 ≤ C|x|−(5−α)

∫

|y|≤|x|/2
|y||~u(y)|2dy.

Since 1 ≪ |x|, we can write
∫

|y|≤|x|/2
|y||~u(y)|2dy =

∫

|y|≤1

|y||~u(y)|2dy +

∫

1<|y|≤|x|/2
|y||~u(y)|2dy = I3,1 + I3,2.

To control the term I3,1 we stress the fact that u ∈ L2(R3), then

(30) I3,1 =

∫

|y|≤1

|y||~u(y)|2 ≤

∫

|y|≤1

|~u(y)|2 ≤ ‖~u‖2L2 .

Now, to deal with I3,2, the fact that |u(y)| ≤ C|y|−(4−α) and the change of variables ρ = |y| yield

(31) I3,2 ≤

∫

1<|y|≤|x|/2
|y||~u(y)|2dy ≤

∫ |x|/2

1

ρ2dρ

ρ7−2α
=





C

|x|4−2α
if α 6= 2

C log(|x|) if α = 2

Gathering together the estimations (31) and (30) in (29), we obtain (28).
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• Term I4. In this case the following pointwise estimate follows

(32) I4 ≤ C|x|−(9−3α), as |x| → +∞.

In fact, since |x− y| ≤ |x|/2 we can write

|y| = |x− (x− y)| ≥ |x| − |x− y| ≥ |x| − |x|/2 = |x|/2.

Then, considering |m(x− y)| ≤ C|x− y|−(4−α) and |u(y)|2 ≤ C|y|−2(4−α), we obtain

I4 ≤

∫

|x−y|≤|x|/2
|x− y|−(4−α)|y|−2(4−α)dy

≤ |x|−(4−α)

∫

|x−y|≤|x|/2
|x− y|−(4−α)|y|−(4−α)dy

≤ |x|−(4−α)

∫

R3

|x− y|−(4−α)|y|−(4−α)dy

≤ C|x|−(4−α)|x|−(5−α)

= C|x|−(9−3α).

• Term I5. In this case the following pointwise estimate follows

(33) I5 ≤ C|x|−(9−3α), as |x| → +∞.

In fact, since |y| ≥ |x|/2 y |x− y| ≥ |x|/2 we can write

I5 ≤

∫

|y|≥|x|/2,|x−y|≥|x|/2
|mα(x− y)| · |y|−2(4−α)dy ≤ C|x|−(4−α)

∫

|y|≥|x|/2
|y|−2(4−α)dy.

Considering similar arguments as in the case of term I2 we conclude (33).

Gathering together all the estimations obtained above we deduce the asymptotic profiles (6) and (26).
With this we conclude the proof of Proposition 1.1. �

5. Nonexistence result: proof of Theorem 1.3

Let us explain the general strategy of the proof. The term mα(x) :
∫
R3(~u ⊗ ~u)(y)dy in the asymptotic

profile (6), the fact that the tensor mα is an homogeneous functions of order 4 − α (see Lemma 3.1 below)

and a well-prepared external force ~f , will allow us to obtain the estimate from below

1

|x|4−α
. |~u(x)|, 1 ≪ |x|,

from which Theorem 1.3 directly follows.

However, one risks that the term mα(x) :
∫
R3(~u ⊗ ~u)(y)dy vanishes identically, and our starting point is

to study when this fact holds.

Proposition 5.1. Under the same hypotheses of Proposition 4.1, assume that (−∆)
−α
2 P(~f) ∈ L∞

0 (R3) ∩
L∞
4−α(R

3). Then, the term mα(x) :
∫
R3(~u ⊗ ~u)(y)dy vanishes identically on R

3, if and only if, there exist a
constant c ∈ R such that, for i, j = 1, 2, 3 we have

(34)

∫

R3

~ui~uj = c δi,j =:

{
c if i = j,

0 otherwise.
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Proof.

We note that applying Fourier transform to mα(x) :
∫
R3(~u ⊗ ~u)(y)dy we can write

(35)

3∑

j=1

3∑

k=1

m̂i,j,k(ξ)

∫

R3

uiuj =

3∑

j=1

3∑

k=1

−

(
δi,j −

ξiξj
|ξ|2

)
iξk
|ξ|α

∫

R3

~ui~uj

= Ri(ξ)
i

|ξ|α+2

∫

R3

~ui~uj,

where Ri(ξ) = −

3∑

j=1

3∑

k=1

δj,kξi|ξ|
2 − ξiξjξk. Thus, the vanishing condition:

∫
R3 ~ui~uj = cδi,j , if and only if

mα(x) :
∫
R3(~u⊗ ~u)(y)dy ≡ 0 follows by considering the expression above equal to 0 and the following result

of L. Brandolese and F. Vigneron in [6].

Lemma 5.1. For any numerical matrix A = (aj,k)1≤j,k≤3, let define the family of homogeneous polynomials

Qi(ξ) =

3∑

j=1

3∑

k=1

(
|ξ|2(δj,kξi + δi,kξj + δi,jξk)− 5ξjξiξj

)
aj,k, i = 1, 2, 3.

Then, the following assertions are equivalent:

(1) The matrix A is proportional to the identity matrix.
(2) Qi ≡ 0 for all indices i = 1, 2, 3.
(3) There exist an index 1 ≤ i ≤ 3 such that Qi ≡ 0.
(4) There exist an index 1 ≤ i ≤ 3 such that ∂iQi ≡ 0.

With this we conclude the proof of Proposition 5.1. �

With this proposition at our disposal, we shall construct a well-prepared external force ~f ∈ S(R3),
such that its associated solution to equation (2) does not verify the condition (34). Consequently, by the
asymptotic profile (6) this solution verifies

(36) C1

(
x

|x|

)
1

|x|4−α
≤ |~u(x)| ≤

C2

|x|4−α
, |x| ≫ 1,

where C2 and C1

(
x
|x|

)
are two positive numerical constants. As already explained, the estimate from below

yields the statements of Theorem 1.3.

Proposition 5.2. Let ~f0 be a divergence-free vector field satisfying the following assumptions:

• ~̂f0 ∈ C∞
0 (R3),

• 0 /∈ supp(~̂f0),

• the matrix



∫

(~̂f0)i(~̂f0)j
|ξ|2(4−α)

dξ




i,j

is not a scalar multiply of the identity matrix.

Then, there exist η0 > 0 such that the solution ~u of the stationary Navier-Stokes equation (2) with ~f = η~f0
and 0 < η ≤ η0 verifies the estimate (36).

Proof.

Let consider the positive constant ǫ1 = ǫ1(α) arising in Theorem 1.1 and η0 > 0 small enough satisfying

η0

∥∥∥(−∆)−
α
2 P ~f0

∥∥∥
L

3
α−1

,∞
≤ ǫ1,
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Thus, under the framework of Theorem 1.1, we know that for 0 < η ≤ η0 and ~f = η~f0, there exist an unique

solution ~u ∈ L
3

α−1 ,∞ ∩ L2 such that

‖~u‖
L

3
α−1

,∞ ≤ 2η‖(−∆)−
α
2 P(~f0)‖

L
3

α−1
,∞ .

To conclude (36), in the following we will prove that the solution constructed above does not satisfy the

orthogonality relation mentioned in Proposition 5.1. To this end, let consider ~u0 = η(−∆)−
α
2 P(~f0). By

considering ~u in the iteration scheme and (13) with p = 2 we can write

(37)

‖~u− ~u0‖L2 = ‖B(~u, ~u)‖L2

≤ C‖~u‖L2‖~u0‖
L

3
α−1

,∞

≤ 2Cη‖~u‖L2‖(−∆)−
α
2 P(~f0)‖

L
3

α−1
,∞ .

Thus,

‖~u‖L2 ≤ ‖~u0‖L2 + ‖~u− ~u0‖L2

≤ η‖(−∆)−
α
2 P(~f0)‖L2 + 2Cη‖~u‖L2‖(−∆)−

α
2 P(~f0)‖

L
3

α−1
,∞ .

By choosing η0 such that

η0 ≤
1

4C‖(−∆)−
α
2 P(~f0)‖

L
3

α−1
,∞

,

we obtain

(38) ‖~u‖L2 ≤ 2η‖(−∆)−
α
2 P(~f0)‖L2 .

Gathering together the previous estimation with (37) we conclude

(39) ‖~u− ~u0‖L2 ≤ 4Cη2‖(−∆)−
α
2 P(~f0)‖

L
3

α−1
,∞‖(−∆)−

α
2 P(~f0)‖L2 .

To continue, note that our assumptions on ~f0 yield
∫
(−∆)−

α
2 P(~f0)⊗ (−∆)−

α
2 P(~f0) 6= αI3, for α ∈ R.

This fact means that there exist different indices i and j such that either

∫ (
(−∆)−

α
2 P(~f0)

)
i

(
(−∆)−

α
2 P(~f0)

)
j
6= 0 or

∫ ∣∣∣
(
(−∆)−

α
2 P(~f0)

)
i

∣∣∣
2

6=

∫ ∣∣∣∣
(
(−∆)−

α
2 P(~f0)

)
j

∣∣∣∣
2

.

In the following we will study both cases. In fact, to deal with the first case above note that
∣∣∣∣
∫

~u2
i − ~u2

j − ((~u0)
2
i + (~u0)

2
j )

∣∣∣∣ =
∣∣∣∣
∫

(~ui − (~u0)i) ~ui +

∫
(~ui − (~u0)i) (~u0)i

+

∫
(~uj − (~u0)j) ~uj +

∫
(~uj − (~u0)j) (~u0)j

∣∣∣∣
≤ C ‖~u− ~u0‖L2 (‖~u‖L2 + ‖~u0‖L2) .

Considering (38) and (39) in the previous estimate we get

∣∣∣∣
∫

~u2
i − ~u2

j − η2
∫ (

(−∆)−
α
2 P(~f0)

)2
i
− η2

∫ (
(−∆)−

α
2 P(~f0)

)2
j

∣∣∣∣

≤ Cη3
∥∥∥(−∆)−

α
2 P(~f0)

∥∥∥
L

3
α−1

,∞

∥∥∥(−∆)−
α
2 P(~f0)

∥∥∥
2

L2
.
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Then, by imposing moreover

η0 ≤

∣∣∣∣
∫ (

(−∆)−
α
2 P(~f0)

)2
i
−

∫ (
(−∆)−

α
2 P(~f0)

)2
j

∣∣∣∣

C
∥∥∥(−∆)−

α
2 P(~f0)

∥∥∥
L

3
α−1

,∞

∥∥∥(−∆)−
α
2 P(~f0)

∥∥∥
2

L2

,

with C > 0 selected big enough, we conclude

∣∣∣∣
∫

~u2
i − ~u2

j

∣∣∣∣ ≥ η2
∣∣∣∣
∫ (

(−∆)−
α
2 P(~f0)

)2
i
−

∫ (
(−∆)−

α
2 P(~f0)

)2
j

∣∣∣∣

−

∣∣∣∣
∫

~u2
i − ~u2

j − η2
∫ (

(−∆)−
α
2 P(~f0)

)2
i
− η2

∫ (
(−∆)−

α
2 P(~f0)

)2
j

∣∣∣∣

≥ η2
∣∣∣∣
∫ (

(−∆)−
α
2 P(~f0)

)2
i
−

∫ (
(−∆)−

α
2 P(~f0)

)2
j

∣∣∣∣

− 12Cη3
∥∥∥(−∆)−

α
2 P(~f0)

∥∥∥
L

3
α−1

,∞

∥∥∥(−∆)−
α
2 P(~f0)

∥∥∥
2

L2

> 0.

Let consider now the case

∫ (
(−∆)−

α
2 P(~f0)

)
i

(
(−∆)−

α
2 P(~f0)

)
j
6= 0. Note that

∣∣∣∣
∫

~ui~uj −

∫
(~u0)i(~u0)j

∣∣∣∣ =
∣∣∣∣
∫

(~ui − (~u0)i) ~uj +

∫
(~u0)i (~uj − (~u0)j)

∣∣∣∣
≤ ‖~u− ~u0‖L2 (‖~u‖L2 + ‖~u0‖L2) .

Considering (38) and (39) in the expression above we obtain

∣∣∣∣
∫

~ui~uj − η2
∫ (

(−∆)−
α
2 P(~f0)

)
i

(
(−∆)−

α
2 P(~f0)

)
j

∣∣∣∣ ≤ 12Cη3
∥∥∥(−∆)−

α
2 P(~f0)

∥∥∥
L

3
α−1

,∞

∥∥∥(−∆)−
α
2 P(~f0)

∥∥∥
2

L2
.

Then, considering C > 0 big enough and by imposing moreover

η0 ≤

∣∣∣∣
∫ (

(−∆)−
α
2 P(~f0)

)
i

(
(−∆)−

α
2 P(~f0)

)
j

∣∣∣∣

C
∥∥∥(−∆)−

α
2 P(~f0)

∥∥∥
L

3
α−1

,∞

∥∥∥(−∆)−
α
2 P(~f0)

∥∥∥
2

L2

,

we can write
∣∣∣∣
∫

~ui~uj

∣∣∣∣ ≥ η2
∣∣∣∣
∫ (

(−∆)−
α
2 P(~f0)

)
i

(
(−∆)−

α
2 P(~f0)

)
j

∣∣∣∣

−

∣∣∣∣
∫

~ui~uj − η2
∫ (

(−∆)−
α
2 P(~f0)

)
i

(
(−∆)−

α
2 P(~f0)

)
j

∣∣∣∣

≥ η2
∣∣∣∣
∫ (

(−∆)−
α
2 P(~f0)

)
i

(
(−∆)−

α
2 P(~f0)

)
j

∣∣∣∣− Cη3
∥∥∥(−∆)−

α
2 P(~f0)

∥∥∥
L

3
α−1

,∞

∥∥∥(−∆)−
α
2 P(~f0)

∥∥∥
2

L2

> 0.

With this we conclude the proof of Proposition 5.2.
�
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6. Regularity of weak solutions: proof of Theorem 1.4

For the sake of clearness, we shall divide the proof of Theorem 1.4 into three main steps.

Step 1. The parabolic setting. Our starting point is to study the time-dependent fractional Navier-
Stokes equations:

(40)




∂t~v + (−∆)

α
2 ~v + P(~v · ~∇)~v = P(~f), div(~v) = 0, α > 1,

~v(0, ·) = ~v0,

where ~v0 denotes the (divergence-free) initial datum. For a time 0 < T < +∞, we denote C∗([0, T ], Lp(R3))
the functional space of bounded and weak−∗ continuous functions from [0, T ] with values in the space Lp(R3).
Then, we shall prove the following:

Proposition 6.1. Let 1 < α and let max
(

3
α−1 , 1

)
< p < +∞. Moreover, let ~f ∈ Lp(R3) and ~v0 ∈ Lp(R3)

be the external force and the initial data respectively. There exists a time T0 > 0, depending on ~v0 and ~f ,
and there exists a unique solution ~v ∈ C∗([0, T0], L

p(R3)) to equation (40). Moreover this solution verifies:

(41) sup
0<t<T0

t
3

αp ‖~v(t, ·)‖L∞ < +∞.

Proof.

The proof is rather standard, so we shall detail the main estimates. Mild solutions of the system (40) write
down as the integral formulation:

(42) ~v(t, ·) = e−t(−∆)
α
2 ~v0 +

∫ t

0

e−(t−s)(−∆)
α
2
P(~f)ds+

∫ t

0

e−(t−s)(−∆)
α
2
P(div(~v ⊗ ~v))(s, ·)ds,

where we shall denote

(43) B(~v,~v) =

∫ t

0

e−(t−s)(−∆)
α
2
P(div(~v ⊗ ~v))(s, ·)ds.

By the Picard’s fixed point argument, we will solve the problem (42) in the Banach space

ET =

{
g ∈ C∗([0, T ], L

p(R3)) : sup
0<t<T

t
3
αp ‖g(t, ·)‖L∞ < +∞

}
,

with the norm

‖g‖ET
= sup

0≤t≤T
‖g(t, ·)‖Lp + sup

0<t<T
t

3
αp ‖g(t, ·)‖L∞.

We start by studying the terms involving the data in equation (42). First, for the initial datum ~v0 ∈ Lp(R3) we

have
∥∥∥e−t(−∆)

α
2 ~v0

∥∥∥
Lp

≤ c‖~v0‖Lp , hence we obtain e−t(−∆)
α
2 ~v0 ∈ C∗([0, T ], Ṁ

2,p(R3)). Moreover, by Lemma

2.1 we have sup
0<t<T

t
3
αp

∥∥∥e−t(−∆)
α
2 ~v0

∥∥∥
L∞

≤ c‖~v0, ‖Lp . We thus get e−t(−∆)
α
2 ~v0 ∈ ET and it holds:

(44)
∥∥∥e−t(−∆)

α
2 ~v0

∥∥∥
ET

≤ c‖~v0‖Lp .

Thereafter, for the external force ~f recall that it is a time-independent function. Then we write
∥∥∥∥
∫ t

0

e−(t−s)(−∆)
α
2
P(~f)ds

∥∥∥∥
Lp

≤

∫ t

0

∥∥∥e−(t−s)(−∆)
α
2
P(~f),

∥∥∥
Lp

ds ≤ c
∥∥∥~f
∥∥∥
Lp

(∫ t

0

ds

)
,

to get

sup
0≤t≤T

∥∥∥∥
∫ t

0

e−(t−s)(−∆)
α
2
P(~f)ds

∥∥∥∥
Lp

≤ c T
∥∥∥~f
∥∥∥
Lp

.
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On the other hand, remark that by Lemma 2.1 we have

∥∥∥e−(t−s)(−∆)
α
2
P(~f)

∥∥∥
L∞

≤ c (t− s)−
3

αp

∥∥∥~f
∥∥∥
Lp

,

and then we can write

t
3
αp

∥∥∥∥
∫ t

0

e−(t−s)(−∆)
α
2
P(~f)ds

∥∥∥∥
L∞

≤ t
3

αp

∫ t

0

∥∥∥e−(t−s)(−∆)
α
2
P(~f)

∥∥∥
L∞

ds

≤ c t
3
αp

∫ t

0

(t− s)−
3
αp

∥∥∥~f
∥∥∥
Lp

ds ≤ c t
3
αp

∥∥∥~f
∥∥∥
Lp

(∫ t

0

(t− s)−
3
αp ds

)
≤ c t

∥∥∥~f
∥∥∥
Lp

.

We thus obtain

sup
0<t<T

t
3
αp

∥∥∥∥
∫ t

0

e−(t−s)(−∆)
α
2
P(~f)ds

∥∥∥∥
L∞

≤ c T
∥∥∥~f
∥∥∥
Lp

.

By the estimates above we get

(45)

∥∥∥∥
∫ t

0

e−(t−s)(−∆)
α
2
P(~f)ds

∥∥∥∥
ET

≤ c T
∥∥∥~f
∥∥∥
Lp

.

Now, we study the bilinear form B(~v,~v) defined in (43). Our starting point is to prove the estimate

(46) sup
0≤t≤T

‖B(~v,~v)‖Lp ≤ c T 1− 1
α
− 3

αp ‖~v‖2ET
, 1−

1

α
−

3

αp
> 0,

where remark that 1− 1
α − 3

αp > 0 as long as p > 3
α−1 . Indeed, we have

sup
0≤t≤T

‖B(~v,~v)‖Lp ≤ c sup
0≤t≤T

∫ t

0

∥∥∥e−(t−s)(−∆)
α
2 (div(~v ⊗ ~v))(s, ·)

∥∥∥
Lp

ds

≤ c sup
0≤t≤T

∫ t

0

1

(t− s)
1
α

‖~v(s, ·)⊗ ~v(s, ·)‖Lp ds

≤ c sup
0≤t≤T

∫ t

0

1

(t− s)
1
α s

3
αp

(s
3
αp ‖~v(s, ·)‖L∞)‖~v(s, ·)‖Lp ds

≤ c T 1− 1
α
− 3

αp ‖~v‖
2
ET

.

Thereafter, we shall prove the estimate:

(47) sup
0≤t≤T

t
3
αp ‖B(~v,~v)‖L∞ ≤ c T 1− 1

α
− 3

αp ‖~v‖
2
ET

, 1−
1

α
−

3

αp
> 0.

We write

sup
0≤t≤T

t
3
αp ‖B(~v,~v)‖L∞ ≤ sup

0<t<T
t

3
αp

∫ t

0

∥∥∥e−(t−s)(−∆)
α
2
P div (~v ⊗ ~v) (s, ·)

∥∥∥
L∞

ds = (a).
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Then, by the third point of Lemma 2.3 we can write:

(a) ≤ c sup
0≤t≤T

t
3
αp

∫ t

0

1

(t− s)
1
α

‖~v(s, ·)⊗ ~v(s, ·)‖L∞‖L∞ds

≤ c sup
0≤t≤T

t
3
αp

∫ t

0

ds

(t− s)
1
α s

6
αp

(
s

3
αp ‖~v(s, ·)‖L∞

)2
ds

≤ c

(
sup

0≤t≤T
t

3
αp

∫ t

0

ds

(t− s)
1
α s

6
αp

)
‖~v‖

2
ET

.

≤ c

(
sup

0≤t≤T

[
t

3
αp

∫ t/2

0

ds

(t− s)
1
α s

6
αp

+ t
3
αp

∫ t

t/2

ds

(t− s)
1
α s

6
αp

])
‖~v‖2ET

≤ c

(
sup

0≤t≤T

[
t

3
αp

− 1
α

∫ t/2

0

ds

s
6

αp

+ t
3

αp
− 6

αp

∫ t

t/2

ds

(t− s)
1
α

])
‖~v‖

2
ET

≤ c T 1− 1
α
− 3

αp ‖~v‖
2
ET

.

By the inequalities (6) and (47) we can write:

(48) ‖B(~v,~v)‖ET
≤ c T 1− 1

α
− 3

αp ‖~v‖2ET
, 1−

1

α
−

3

αp
> 0.

Once we have the estimates (44), (45) and (48) at our disposal, the proof of Proposition 6.1 follows from
well-known arguments. �

Step 2. Global boundness of ~u. With the help of the Proposition 6.1, we are able to prove the
following:

Proposition 6.2. Let 1 < α, max
(

3
α−1 , 1

)
< p < +∞ and 0 ≤ s. Let ~f ∈ Ẇ−1,p ∩ Ẇ s,p(R3) be the

external force and let ~u ∈ Lp(R3) be a weak solution to equation (2). Then we have ~u ∈ L∞(R3).

Proof.

First remark that by hypothesis on the external force and by interpolation (see [Chapter5][2]) we have
~f ∈ Lp(R3).

Then, in the initial value problem (40), we set the initial data ~v0 = ~u. Then, by Proposition 6.1 there
exists a time 0 < T0, and there exists a unique solution ~v ∈ C∗([0, T0], L

p(R3)) to equation (40), which arises
from ~u.

On the other hand, we have the following key remark: since ~u is a time-independent function we have
∂t~u = 0 and this function is also a solution of the initial value problem (40) with the same initial data ~u.
Moreover, we have ~u ∈ C∗([0, T ], L

p(R3)).

Consequently, in the space C∗([0, T ], L
p(R3)) we have two solutions of equation (40) with the same initial

data ~v0 = ~u: the solution ~v given by the Proposition 6.1 and the time-independent solution ~u. By uniqueness
we have the identity ~v = ~u and by (41) we can write

sup
0<t<T0

t
3
2p ‖~u‖L∞ < +∞.

But, as the solution ~u does not depend on the temporal variable we finally get ~u ∈ L∞(R3) and Proposition
6.2 is now proven. �

Step 3. Regularity of ~u and P . The global boundness of ~u obtained in the last step is the key tool to
prove the following:
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Proposition 6.3. Since ~f ∈ Ẇ−α,p ∩ Ẇ s,p(R3), with 1 < α, 0 ≤ s and max
(

3
α−1 , 1

)
< p < +∞, and since

~u ∈ Lp ∩ L∞(R3), we have ~u ∈ Ẇ s+α,p(R3) and P ∈ Ẇ s+α,p(R3) + Ẇ s+1,p(R3).

Proof.

Let us start by explaining the general strategy of the proof. For 0 ≤ s and 1 < α, we consider the quantities
0 < s + α and 0 < α − 1. Then, let k ∈ N be such that k(α − 1) ≤ s + α ≤ (k + 1)(α − 1). We thus

write s + α = k(α − 1) + ε, with 0 ≤ ε < α − 1. To prove that ~u ∈ Ẇ s+α,p(R3), first we shall prove that

~u ∈ Ẇ k(α−1),p(R3) and next we will verify that (−∆)
k(α−1)

2 ~u ∈ Ẇ ε,p(R3).

By an iteration process, we prove that ~u ∈ Ẇ k(α−1),p(R3). For the sake of simplicity, we consider the
following cases of k.

First, if k = 0 by our hypothesis we directly have ~u ∈ Lp(R3). Next, if k = 1, recall that ~u solves the
fixed point equation (4). Then we have

(−∆)
α−1

2 ~u = (−∆)−
1
2div(~u⊗ ~u) + (−∆)−

1
2P(~f).

For the first term on the right-hand side, recall that ~u ∈ Lp∩L∞(R3) and we get (−∆)−
1
2div(~u⊗~u) ∈ Lp(R3).

For the second term on the right-hand side, by our hypothesis ~f ∈ Ẇ−α,p ∩ Ẇ s,p(R3) with 1 < α and 0 ≤ s

and by interpolation (see [2, Chapter 5]) we have (−∆)−
1
2P(~f) ∈ Lp(R3). We thus get ~u ∈ Ẇα−1,p(R3).

Thereafter, if 2 ≤ k, we start by applying the operator (−∆)
α−1

2 to the identity and we get

(−∆)
2(α−1)

2 ~u = (−∆)
α−1

2 (−∆)−
1
2div(~u⊗ ~u) + (−∆)

α−1
2 (−∆)−

1
2P(~f).

As before, we shall prove that each term on the right-side belong to the space Lp(R3). For the first term,

we write (−∆)
α−1

2 (−∆)−
1
2div(~u ⊗ ~u) = (−∆)−

1
2 div((−∆)

α−1
2 (~u ⊗ ~u)). Thereafter, since (−∆)

α−1
2 ~u ∈

Lp(R3) and ~u ∈ L∞(R3) by Lemma 2.2 we write ‖(−∆)
α−1
2 (~u ⊗ ~u)‖Lp ≤ c‖(−∆)

α−1
2 ~u‖Lp‖~u‖L∞ , and

we have (−∆)
α−1

2 (−∆)−
1
2div(~u ⊗ ~u) ∈ Lp(R3). For the second term we write (−∆)

α−1
2 (−∆)−

1
2P(~f) =

(−∆)
2(α−1)−α

2 P(~f). Then, as 2(α − 1) − α ≤ k(α − 1) − α ≤ s (recall that s + α = k(α − 1) + ε), and

moreover, as ~f ∈ Ẇ−α,p ∩ Ẇ s,p(R3), we have (−∆)
2(α−1)−α

2 P(~f) ∈ Lp(R3). We thus get ~u ∈ Ẇ 2(α−1),p(R3).

By iterating this process until k we obtain that ~u ∈ Ẇ k(α−1),p(R3).

Finally, to prove that ~u ∈ Ẇ s+α,p(R3) we must verify that (−∆)
ε
2 (−∆)

k(α−1)
2 ~u ∈ Lp(R3). We thus write

(−∆)
ε
2 (−∆)

k(α−1)
2 ~u =(−∆)

ε
2

(
(−∆)

(k−1)(α−1)
2 (−∆)−

1
2 div(~u⊗ ~u) + (−∆)

(k−1)(α−1)
2 (−∆)−

1
2P(~f)

)

=(−∆)
ε+(k−1)(α−1)

2 (−∆)−
1
2div(~u⊗ ~u) + (−∆)

ε+(k−1)(α−1)−1
2 P(~f).

For the first term on the right-hand side, since (−∆)
k(α−1)

2 ~u ∈ Lp(R3) and ~u ∈ L∞(R3), by Lemma 2.2 we

have (−∆)
k(α−1)

2 (−∆)−
1
2div(~u ⊗ ~u) ∈ Lp(R3). Moreover, since (−∆)

(k−1)(α−1)
2 (−∆)−

1
2 div(~u ⊗ ~u) ∈ Lp(R3)

and 0 ≤ ε < α − 1, by interpolation we obtain (−∆)
ε+(k−1)(α−1)

2 (−∆)−
1
2div(~u ⊗ ~u) ∈ Lp(R3). On the other

hand, for the second term on the right-hand side, recall that s+α = k(α−1)+ε, hence ε+(k−1)(α−1)−1 = s.

Then, by our hypothesis ~f ∈ Ẇ s,p(R3) we directly have (−∆)
ε+(k−1)(α−1)−1

2 P(~f) ∈ Lp(R3). We thus obtain

~u ∈ Ẇ s+α,p(R3).

Remark 5. The initial regularity ~f ∈ Ẇ s,p(R3) stops this iterative process yielding that ~u ∈ Ẇ s+α,p(R3) is
the maximum gain of regularity for solutions.

Now, we study the pressure term P . Recall that P is related to the velocity ~u and the external force ~f
by the expression

P = (−∆)−1div(div(~u⊗ ~u))− (−∆)−1div(~f).
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For the first term on the right-hand side, since ~u ∈ Ẇ s+α,p(R3) and ~u ∈ L∞(R3), by Lemma 2.2 we get

(−∆)−1div(div(~u ⊗ ~u)) ∈ Ẇ s+α,p(R3). Moreover, for the second term on the right-hand side, we directly

have (−∆)−1div(~f) ∈ Ẇ s+1,p(R3). Proposition 6.3 is proven. �

With this we conclude the proof of Theorem 1.4. �

7. Liouville-type result: Proof of Proposition 1.2

The proof follows some of the main estimates performed in [11] and [10]. First, we consider ϕ ∈ C∞
0 (R3)

a positive and radial function such that ϕ(x) = 1 when |x| < 1/2 and ϕ(x) = 0 when |x| ≥ 1. Then, for
R ≥ 1, we define the cut-off function ϕR(x) = ϕ(x/R). Remark that supp(ϕR) ⊂ BR, where we denote
BR = {x ∈ R

3 : |x| ≤ R}.

On the other hand, since ~f ≡ 0 and since ~u ∈ Lp(R3) with 3
α−1 < p, by Theorem 1.4 we have ~u ∈ C∞(R3)

and P ∈ C∞(R3). Therefore, we can multiply each term in equation (7) by ϕR~u, then we integrate by parts
over R3 to obtain the estimate proven in [11, Estimate (4.5)]:

∫

BR
2

|(−∆)
α
4 ~u|2dx ≤

∫

BR

~∇ϕR ·

(
|~u|2

2
+ P

)
~u dx

+

∫

R3

(−∆)
α
4 ~u ·

(
ϕR((−∆)

α
4 ~u)− (−∆)

α
4 (ϕR~u)

)
dx

= I1 + I2.

(49)

By Hölder inequalities and the fact that supp(~∇ϕR) ⊂ C(R2 , R), where we denote C(R2 , R) = {x ∈ R
3 : R

2 <
|x| < R}, the term I1 was estimated in [10, Proof of Theorem 1] and we have

I1 ≤ CR2− 9
p ‖~∇ϕ‖Lr‖~u‖3

Lp(C(R
2 ,R))

, 1 =
1

r
+

3

p
,

and since p ≤ 9
2 we obtain

I1 ≤ C ‖~u‖3
Lp(C(R

2 ,R))
.

On the other hand, for 5
3 < α1 < α and 0 < α2 < α such that α1 + α2 = α ≤ 2, and for 1 < p1 < +∞ such

that 1/2 = 1/p1 + 1/p, the term I2 was estimated in [11, Page 13] as follows:

I2 ≤ C‖~u‖
Ḣ

α
2

(
‖(−∆)

α1
4 ϕR‖Lp1 ‖(−∆)

α2
4 ~u‖Lp + ‖(−∆)

α
4 ϕR‖Lp1 ‖~u‖Lp

)
.

By the localization properties of ϕR we can write

I2 ≤ C‖~u‖Ḣα

(
R−α1

2 + 3
p1 ‖(−∆)

α2
2 ~u‖Lp +R−α

2 + 3
p1 ‖~u‖Lp

)
.

Then, since α1 < α we have

I2 ≤ C‖~u‖Ḣα R
−α1

2 + 3
p1

(
‖(−∆)

α2
2 ~u‖Lp + ‖~u‖Lp

)
.

Here, remark that by hypothesis we have ‖~u‖Lp < +∞, and since ~f ≡ 0 by Theorem 2.1 we also have

‖(−∆)
α2
2 ~u‖Lp < +∞. Gathering the estimates on I1 and I2, we get back to (49) to obtain the following

local estimate∫

BR
2

|(−∆)
α
4 ~u|2dx ≤ C ‖~u‖3

Lp(C(R
2 ,R))

+ C‖~u‖Ḣα R
−α1

2 + 3
p1

(
‖(−∆)

α2
2 ~u‖Lp + ‖~u‖Lp

)
.

For the fist term on the right-hand side, since ~u ∈ Lp(R3) we have lim
R→+∞

‖~u‖3
Lp(C(R

2 ,R))
= 0. For the second

term on the right-hand side, we shall verify that −α1

2 + 3
p1

< 0. Indeed, by the relationship 1
2 = 1

p1
+ 1

p

a simple computation shows that the inequality −α1

2 + 3
p1

< 0 is equivalent to p < 6
3−α1

. Moreover, since
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p ≤ 9
2 this last inequality holds as long as 9

2 < 6
3−α1

, which is ultimately verified by the constrain 5
3 < α1.

With this we conclude the proof of Proposition 1.2. �

Appendix: New regularity criterion for classical stationary Navier-Stokes equations in

Morrey spaces

Let consider the classical stationary Navier-Stokes equations in the whole space R
3:

(50) −∆~u+ (~u · ~∇)~u + ~∇P = div(F), div(~u) = 0,

where, for the sake of simplicity, we have written the external force ~f as the divergence of a tensor F =
(Fij)1≤i,j≤3.

We shall name a very weak of equation (50) the couple (~u, P ) ∈ L2
loc(R

3) × D′(R3) which verifies this
equation in the distributional sense. Note that very weak solutions have minimal conditions to guarantee
that each term in equation (50) is well-defined as distributions. In particular, we let the pressure P to be a
very general object as we only have P ∈ D′(R3).

As the velocity ~u is a locally square integrable function, in order to improve their regularity we look for

some natural conditions on the local quantities

∫

B(x0,R)

|~u(x)|2dx, where B(x0,R) = {x ∈ R
3 : |x−x0| < R}.

Thus, the Morrey spaces appear naturally.

Recall that for 2 < p < +∞ the homogeneous Morrey space Ṁ2,p(R3) is the space of L2
loc-functions such

that

‖f‖Ṁ2,p = sup
R>0, x0∈R3

R
3
p

(
1

dx(B(x0, R))

∫

B(x0,R)

|f(x)|2dx

) 1
2

< +∞,

where dx(B(x0, R)) ∼ R3 is the Lebesgue measure of the ball B(x0, R). Here, the parameter p measures

the decaying rate of the local quantity

(
1

dx(B(x0, R))

∫

B(x0,R)

|f(x)|2dx

) 1
2

when R → +∞. Moreover, this

is an homogeneous space of order − 3
p , and the following chain of continuous embeddings holds Lp(R3) ⊂

Lp,q(R3) ⊂ Ṁ2,p(R3). We thus study the regularity of very weak solutions in a general framework.

For the parameter p given above and for a regularity parameter k ∈ N, we introduce the following
Sobolev-Morrey space

Wk,p =
{
f ∈ Ṁ2,p(R3) : ∂af ∈ Ṁ2,p(R3) for all multi-indice |a| ≤ k

}
.

Moreover, we denote by W k,∞(R3) the classical Sobolev space of bounded functions with bounded weak
derivatives until the other k. Finally, for 0 < s < 1, we shall denote by Ck,s(R3) the Hölder space of Ck-
functions whose derivatives are Hölder continuous functions with parameter s.

In this framework, we obtain a new regularity criterion for very weak solutions to equation (50).

Theorem 7.1. Let (~u, P ) ∈ L2
loc(R

3)×D′(R3) be a weak solution to (50), with F ∈ D′(R3). For k ≥ 0 and
3 < p assume that

(51) F ∈ Wk+1,p(R3) ∩W k+1,∞(R3).

Then, if the velocity field verifies

~u ∈ Ṁ2,p(R3),

it follows that ~u ∈ Wk+2,p(R3) and P ∈ Wk+1,p(R3). Moreover, we have ~u ∈ Ck+1,s(R3) and P ∈ Ck,s(R3)
with s = 1− 3

p .
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Recall that the external force acting on equation (50) is given by div(F). Then, by our assumption (51)
we have div(F) ∈ Wk,p, which yields a gain of regularity of very weak solution of the order k + 2. As in
Theorem 1.2, this maximum gain of regularity is given by the effects of the Laplacian operator in equation
(50).

On the other hand, in the particular homogeneous case F ≡ 0, very weak solutions to equation (50) verify

(~u, P ) ∈ C∞(R3), provided that ~u ∈ Ṁ2,p(R3) with 3 < p. As explained before introducing Proposition
1.2, this particular result is of interest in connection to the Liouville-type problem for equation (50) in the
setting of Morrey spaces [10].

Proof of Theorem 7.1.
The proof follows the main ideas in the proof of Theorem 1.4 (see Section 6), so we shall only detail the
main computations.

By well-known properties of Morrey spaces, Proposition 6.1 also holds in the (larger) space Ṁ2,p(R3) and
we can state

Proposition 7.1. For 3 < p, let div(F) ∈ Ṁ2,p(R3) and ~v0 ∈ Ṁ2,p(R3) be the external force and the
(divergence-free) initial data respectively. There exists a time T0 > 0, depending on ~v0 and div(F), and there

exists a unique solution ~v ∈ C∗([0, T0], Ṁ
2,p(R3)) to the Navier-Stokes equations:

∂t~v −∆~v + P(~v · ~∇)~v = P(~f), div(~v) = 0, ~v(0, ·) = ~v0.

Moreover this solution verifies sup
0<t<T0

t
3
2p ‖~v(t, ·)‖L∞ < +∞.

Moreover, by following the same ideas in the proof of Proposition 6.2, we obtain our key result

Proposition 7.2. Let 3 < p and 0 ≤ k. Let F ∈ Wk+1,p(R3) be the tensor let ~u ∈ Ṁ2,p(R3) be a very weak
solution to equation (50). Then we have ~u ∈ L∞(R3).

Finally, global boundness of the velocity ~u allows us to study its regularity.

Proposition 7.3. Since F ∈ Wk+1,p ∩ W k,∞(R3), with 3 < p, and since ~u ∈ Ṁ2,p ∩ L∞(R3), we have
~u ∈ Wk+2,p(R3) and P ∈ Wk+1,p(R3). Moreover, it holds ~u ∈ Ck+1,s(R3) and P ∈ Ck,s(R3) with s = 1− 3

p .

Proof.

As in the proof of Proposition 6.3, we consider the fixed point equation

(52) ~u = −(−∆)−1
P
(
div(~u⊗ ~u)

)
+ (−∆)−1

P(div(F)).

By using this equation, we shall prove that ∂a~u ∈ Ṁ2,p(R3) for all multi-indice |a| ≤ k + 2. We shall prove
this fact by iteration respect to the order of the multi-indices a, which we will denote as |a|. For the reader’s
convenience, in the following couple of technical lemmas we prove each step in this iterative argument.

Lemma 7.1 (The initial case). With the same hypothesis of Proposition 7.3, for |a| ≤ 2 and for 1 ≤ σ < +∞

we have ∂a~u ∈ Ṁ2σ,pσ(R3).

Proof.

Let |a| = 1. By equation (52) we write

(53) ∂a~u = −(−∆)−1
P
(
div∂a(~u⊗ ~u)

)
+ (−∆)−1

P(div∂a(F)),

where we will prove that each term on the right-hand side belongs to the space Ṁ2σ,pσ(R3). For the first

term, since ~u ∈ Ṁ2,p(R3) ∩ L∞(R3) by interpolation inequalities we have ~u ∈ Ṁ2σ,pσ(R3) for 1 ≤ σ <

+∞. Then, by Hölder inequalities we obtain ~u ⊗ ~u ∈ Ṁ2σ,pσ(R3). As |a| = 1 remark that the operator
(−∆)−1

P
(
div∂a(·) writes down as a linear combination of Riesz transforms and by their continuity in the

Morrey spaces [19, Lemme 4.2] we get that (−∆)−1
P
(
div∂a(~u⊗ ~u)

)
∈ Ṁ2σ,pσ(R3). Similarly, by (51) we get

(−∆)−1
P(div∂a(F)) ∈ Ṁ2σ,pσ(R3).
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Let |a| = 2. We get back to the expression (53) and following same ideas we can prove that each term on

the right-hand side belong to Ṁ2σ,pσ(R3). We just mention that for the first term we write a = a1+a2, with
|a1| = |a2| = 1. Then, to handle the term ∂a2(~u⊗~u), for i, j = 1, 2, 3 we write ∂i(uiuj) = (∂iui)uj +ui(∂iuj)

and we use the information ∂a1~u ∈ Ṁ2σ,pσ(R3), ~u ∈ L∞(R3) to obtain that (−∆)−1
P
(
div∂a(~u ⊗ ~u)

)
∈

Ṁ2σ,pσ(R3). �

Lemma 7.2 (The iterative process). With the same hypothesis of Proposition 7.3, for 1 ≤ m ≤ k and for

|a| ≤ m assume that ∂a~u ∈ Ṁ2σ,pσ(R3) (with 1 ≤ σ < +∞). Then it holds for |a| = k + 2.

Proof.

Let |a| = k+1. As before, we must verify that each term on the right-hand side of equation (53) belongs to

Ṁ2σ,pσ(R3). To handle the first term, we split a = a1 + a2, with |a1| = 1 and |a2| = k, and we write

(−∆)−1
P
(
div∂a(~u ⊗ ~u)

)
= (−∆)−1

P
(
div∂a1∂a2(~u⊗ ~u)

)
.

Then, to study the term ∂a2(~u ⊗ ~u), by the classical Leibniz rule (for simplicity we omit the constants), by
our hypothesis and the fact that ~u ∈ L∞(R3) we get

∂a2(uiuj) =
∑

|b|≤k

∂bui ∂
a2−buj ∈ Ṁ2σ,pσ(R3),

hence we obtain (−∆)−1
P
(
div∂a(~u ⊗ ~u)

)
∈ Ṁ2σ,pσ(R3). For the second term, by our assumption (51) we

have (−∆)−1
P(div∂a(F)) ∈ Ṁ2σ,pσ(R3). We thus get ∂a~u ∈ Ṁ2σ,pσ(R3) for |a| = k + 1

Let |a| = k + 2. Once we have the information above at our disposal, we just repeat again previous

arguments to conclude that ∂a~u ∈ Ṁ2σ,pσ(R3) for |a| = k + 2. �

The fact that ∂aP ∈ Ṁ2σ,pσ(R3) with |a| ≤ k+1 is a direct consequence of identity (1) (with ~f = div(F))
and our assumption (51) on the tensor F.

Finally, by the continuous embedding Ṁ2,p(R3) ⊂ Ṁ1,p(R3), and the following result:

Lemma 7.3 (Proposition 3.4 of [14]). Let f ∈ S ′(R3) such that ~∇f ∈ Ṁ1,p(R3), with p > 3. There exists a

constant C > 0 such that for all x, y ∈ R
3 we have |f(x)− f(y)| ≤ C ‖~∇f‖Ṁ1,p |x− y|1−

3
p .

We obtain that ~u ∈ Ck+1,s(R3) and P ∈ Ck,s(R3) with s = 1− 3
p . Thus, we conclude the proof of Theorem

7.1. �
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de mathématiques pures et appliquées, 88 (2007), pp. 64–86.
[7] L. Caffarelli, R. Kohn, and L. Nirenberg, Partial regularity of suitable weak solutions of the Navier–Stokes equations,

Commun. Pure Appl. Math, 35 (1982), pp. 771–831.
[8] L. Caffarelli and P. Stinga, Fractional elliptic equations, Caccioppoli estimates and regularity, Elsevier Annales de
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