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Developing new capabilities to predict the risk of intracranial aneurysm rupture and to improve
treatment outcomes in the follow-up of endovascular repair is of tremendous medical and societal
interest, both to support decision-making and assessment of treatment options by medical doctors,
and to improve the life quality and expectancy of patients. This study aims at identifying and
characterizing novel flow-deviator stent devices through a high-fidelity computational framework
that combines state-of-the-art numerical methods to accurately describe the mechanical exchanges
between the blood flow, the aneurysm, and the flow-deviator and deep reinforcement learning algo-
rithms to identify a new stent concepts enabling patient-specific treatment via accurate adjustment
of the functional parameters in the implanted state.
Keywords: Deep Reinforcement Learning; Proximal Policy Optimization; Neural Networks; Computational10
fluid dynamics; Open-loop flow control; Adjoint method11

INTRODUCTION12

An estimated 2-3 % of the population harbour intracranial aneurysms (IAs) [1, 2], a patho-13

logical, localized sac-like outpouching of the arterial wall, whose rupture is the leading cause of14

nontraumatic subarachnoid haemorrhage, associated with a high rate of morbidity and mortality15

and a significant economic burden [3]. The increased frequency at which unruptured IAs are being16

diagnosed, due to the widespread use of cross-sectional neuroimaging in routine clinical practice,17

poses a persistent dilemma for physicians. This is imputable to the lack of definitive guidelines18

for optimal management, which is due to the high prevalence of aneurysms along with low rup-19

ture rates (with the annual occurrence of subarachnoid haemorrhage being about 10 per 100.00020

persons [4]), and preventive treatment carrying risks of adverse complications [5].21

Aberrant vascular remodelling occurring through abnormal hemodynamic stress on blood vessels22

is believed to be a major factor in intracranial aneurysms pathophysiology, i.e., formation, growth,23

and stabilization or rupture [6]. The stress distribution, as determined by the blood flow and24

aneurysm geometry, elicits vascular remodelling via cell-mediated biologic pathways. This modifies25

the geometry, the stress, and drives further biologic processes, with rupture occurring when the26

stress on the aneurysm wall exceeds the yield strength of the material [7, 8]. This biomechanical27

approach has proven relevant in assessing rupture risk, with hemodynamic indices such as flow-28

induced pressure (the stress normal to the vascular wall) and wall shear stress (WSS, the viscous29

frictional force exerted parallel to the blood flow) identified as potentially significant determinants30

of aneurysm natural history [9–12].31

Preventive treatment of unruptured intracranial aneurysms consists in occluding the sac to pre-32

vent blood from flowing directly into the aneurysm, which in turn helps reduce the stress on its33

wall. The two main options have long been surgical clipping and coiling [13]. Clipping is invasive,34

as it requires performing a craniotomy and exposing the aneurysm before placing surgical clips35

across the neck. While highly e�ective, clipping is constrained to easily accessible aneurysms and36

operations generally bear a substantial complication risk. Endovascular procedures, such as stent-37

ing and coiling, minimize the operational risk by avoiding open skull surgery. The latter approach38

involves filling the aneurysm sac with flexible platinum wires that dampen out ingoing blood jets39

and contribute towards the occlusion of the bulge. Since the wires are contained by the sac, wide40
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neck IA or fusiform IA cannot be treated this way, due to the high risk of embolic disease and coil41

detachment.42

In recent years, the implantation of flow-diverter (FD) stents has gained increasing acceptance43

among the interventional and neurosurgical communities as an e�ective alternative treatment op-44

tion [14]. Such an approach consists in the endovascular deployment of flexible, highly conforming45

braided mesh devices along the parent artery and across the neck. The blood flow into the aneurysm46

is damped and redirected by the low porosity layer of FD wires covering the neck, reducing the47

overall circulation in the sac. The blood stagnation that follows a successful deployment causes a48

thrombus formation in the aneurysm cavity and a subsequent endothelialization of the neck [15].49

In some cases, the completely occluded aneurysm is progressively reabsorbed by the parent vessel,50

precluding regrowth by hemodynamic mechanisms. Flow diverter stents have started a break-51

through in the endovascular management of intracranial aneurysms (including many wide-necked52

and fusiform aneurysms that were previously considered untreatable) but their mechanism of ac-53

tion is not thoroughly understood, as about 5 to 25 % of aneurysms remain with circulation even54

after multiple-layer implantations [16].55

A substantial body of work is ongoing to improve aneurysm treatment outcomes by increasing56

the flow-diversion e�ect of the implanted stent [17, 18]. The functional performance is largely57

dependent on implantation (e.g., sizing, landing zone) and geometrical features (e.g., braid angle,58

wire density, wire diameter) with wire material properties also being an important contributor.59

Hemodynamically, we believe that the pore density is a key parameter, as it must be high enough60

to occlude the aneurysm sac satisfactorily [15], but not so high that it would trigger inflammatory61

remodelling associated with low-WSS values [19]. Nonetheless, there is currently a lack of empirical62

evidence supporting the superiority of one design over the others, meaning that the type of stent63

used for each patient is often based on the length of the lesion and the personal preference of the64

physician (even availability of stock). Therefore, the ability to design novel stent concepts from65

fast and accurate identification of patient-specific functional parameters is of utmost importance66

to provide clinical insight, optimize treatment decision-making, and improve prognosis. This has67

never been done before.68

In order to make progress towards this objective, the present study combines multi-physics com-69

putational fluid dynamics (CFD) and deep reinforcement learning (DRL) to prove the applicability70

of such an optimization workflow for patient-specific stent design. On the one hand, CFD has risen71

to a prominent position in the endovascular research community due to its potential for rupture72

risk prediction via objective, quantitative, and mechanism-based parameters [20, 21], and its con-73

tribution to the design, development and evaluation of endovascular management methods [22, 23].74

On the other hand, DRL has been shown to perform with unprecedented e�ciency in several areas,75

e.g., language processing [24], robotics [25, 26], autonomous driving [27], finance [28] or healthcare76

management [29, 30], including recent inroads in computational biomechanics [31].77

The e�orts for coupling CFD and DRL are developing rapidly, with a handful of pioneering78

studies providing insight into the performance improvements to be delivered in shape optimiza-79

tion [32–34] and flow control [35–37]; see [38] for a review. This is largely ascribed to the sustained80

e�orts and commitment of the machine learning community, which has allowed expanding the scope81

from computationally inexpensive, low-dimensional model reductions [39–41] to complex two- and82

three-dimensional Navier–Stokes systems [42–50]. Nonetheless, DRL has never been applied to83

hemodynamics computations (let alone biomedical flow computations in patient-specific geome-84

tries), even though we believe the field has matured up to the point where a breakthrough may be85

in reach for targeted control of unruptured intracranial aneurysms.86

RESULTS87

Pre-stent hemodynamics. Direct numerical simulations of the three-dimensional, incom-88

pressible Navier–Stokes equations performed with the Carreau–Yasuda rheological model of blood89

are used to investigate two patient-specific models of unruptured intracranial aneurysm. In the90

first place, the focus is drawn on the geometry labelled A, whose vascular information is provided91

in Figure 1. It is a side-wall, wide-neck aneurysm of the supraclinoid internal carotid artery (ICA),92

proximal to the ICA bifurcation into the anterior cerebral artery (ACA) and the middle cerebral93

artery (MCA); see Figure 1 for provision of the detailed vascular information. The posterior com-94

municating artery (PComA) is neglected, as it branches o� well past the aneurysm. The ophthalmic95
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Figure 1. Patient-specific geometries and datasets for the two ICA aneurysms investigated
in this study. The rightmost plot provides one period of the patient-specific inflow pulses used for the
CFD simulations. The range of Reynolds numbers in the parent vessel (based on the inlet diameter, inlet
velocity and infinite-shear rate viscosity) is 220-490 for patient A, and 160-370 for patient B (resp. at
diastole and systole).

artery (OA) is also neglected, although it branches o� at this section of the ICA, in the vicinity96

of the aneurysm. Nonetheless, we do not anticipate any significant e�ect on the hemodynamics97

given its patient-specific smallness (∼ 0.5 mm in diameter), plus this outflow is often neglected in98

numerical simulations as it is a common clinical practice to let flow diverters occlude it if no other99

viable option is present [51]. The simplified model therefore ultimately features a single source of100

inflow (the ICA) and two outflows (ACA/MCA).101

Figure 2. Pre-operative hemodynamics of aneurysm A. (a) Cut view of the employed anisotropic
tetrahedral mesh. (b) Velocity streamlines at systole.

The vessel walls, taken to be impermeable and rigid, are treated with body-fitted, unstructured102

adapted grids (see Figure 2a). The numerical solutions are customized to the patient (also labelled103

A) specific physiology using vascular geometries reconstructed from three-dimensional rotational104

angiography (3D-RA) images and pulsatile volumetric inflow rates adjusted to two-dimensional105

phase-contrast magnetic resonance imaging (2D-PCMRI) measurements. All quantities of interest,106

including velocity, WSS (the local, instantaneous, intra-saccular wall shear stress of pivotal impor-107

tance in this context), SAWSS (the instantaneous WSS spatially averaged over all intra-saccular108

positions), and TAWSS (the local WSS averaged over a cardiac cycle), are computed from parallel109

hemodynamics simulations run over two cardiac cycles (representing approximately 1.6 s of physi-110

cal time) with a reference inflow sequence of consecutive pulses starting in the end-diastolic state.111

This is because the solution has settled into regular, sinusoidal oscillations by the end of the first112

cycle, as obtained from preliminary comparison of WSS data over up to ten cardiac cycle.113

The peak-systolic streamlines in Figures 2 and 3 show that the flow remains close to parabolic114

in the inflow segment (hence reminiscent of Hagen–Poiseuille flow), but quickly becomes helical115
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Figure 3. Pre-operative normalized TAWSS of aneurysm A. (a) Proximal view. (b) Distal view.
The color scale has been adjusted to emphasize low/high WSS areas associated with remodelling and
rupture risk [52].

because the curved vessel geometry acts as a source of flow instability, as recently assessed in116

patient-specific geometries [53]. Most of the blood enters the aneurysm at the proximal part of the117

neck in the form of a high-speed jet (∼0.73 m/s in velocity magnitude), impinging on and reflecting118

o� the aneurysm wall, rolling up into complex vortical structures and finally swirling out of the119

bulge and to the outflow segments. This creates a strongly heterogeneous WSS pattern, with most120

of the distal part of the dome sustaining high WSS classically associated with aneurysm growth121

and rupture, as clearly illustrated in Figures 3a,b. Maximum local, instantaneous WSS values of122

more than ∼ 169 dyne/cm2 have been measured near the impaction zone, which is about 8 times123

normal WSS in cerebral arteries [52].124

Virtual stenting. Endovascular treatment is modeled by wrapping a distribution of identi-125

cal, cylindrical wires around a toroidal envelope inscribed in the arterial segment containing the126

aneurysm (half of them clockwise and the other counter-clockwise). In order to achieve hetero-127

geneous functional parameters (in the sense that the pre-deployment stent structure must have128

variable pore density and porosity), the proximal end section of the envelope is divided into four129

quadrants, each of which with a specific (possibly di�erent) number of uniformly distributed wires.130

The parametrization foresees the modification of six design variables: the number of wires in each131

group, their radius and a winding factor (the same for all wires) that controls the local braiding132

angle between wires. Given the di�erence in scales between the vascular vessels (about a few mm133

in diameter) and the stent strut thickness (about a few ten µm), we rely on a hybrid meshing134

approach wherein the stents are embedded in the body-fitted vascular grid [54, 55]. Anisotropic135

adaptation in the vicinity of the stent envelope, as shown in Figure 2a. We then use the monolithic136

immersed volume method (IVM [56]) together with anisotropic mesh adaptation in the vicinity of137

the stent envelope to solve the interaction between the blood flow and the stent material. This138

allows easy handling of any complex device whose struts may be in contact with, or form very139

small gaps with the vessel walls, without additionally conforming the vascular grid to the stent140

geometry.141

The proposed approach is first used to assess the ability of the method to capture numerically the142

flow diversion e�ect using a standard homogeneous stent strut distribution made of 24 wires (12 in143

each braiding direction, 3 in each group) with a radius set to 60 µm. We believe this is a reasonable144

compromise between desirability and feasibility, as thinner wires mirroring more accurately those145

of real medical stents (whose radii are in a range from about 15 to 30 µm) would escalate the CPU146

time and memory requirements (due to the need to embed large stent meshes and to additionally147

refine the vascular grids). All wires are braided with winding factor 25, that yields a braiding angle148

of 75○ and a porosity of about 68.5%, (pore density of 3.1 pores/mm2), all values estimated from149

a pre-deployment, cylindrical stent structure.150
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Figure 4. Post-operative, peak-systolic velocity streamlines of aneurysm A. (a) After treatment
with a homogeneous stent made of 24 wires. (b) After treatment with a 34 wire, non-uniformly braided
stent. The stent design is the result of the optimization provided in the following sections (see DRL
optimization).

Figure 5. Post-operative, normalized TAWSS of aneurysm A. (a,c) Proximal and distal views
after treatment with a homogeneous stent made of 24 wires. (b,d) Same as (a,c) after treatment with the
optimal, non-homogeneous stent provided by our DRL framework, made of 34 non-uniformly braided wires
(see Figure 6d). Values are normalized based on the maximum TAWSS encountered in the pre-operative
configuration (see Figure 3).

Visualizations of the inflow jet, intra-saccular flow pattern (Figure 4a) show that the stent sig-151

nificantly disrupts the blood flow, more of which is diverted away from the aneurysm and flows152

directly to the outflow segments. Nonetheless, the flow organization inside the aneurysm is essen-153
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tially reminiscent of its unstented counterpart, with blood entering at the proximal part of the neck154

and swirling in and out after impinging on the distal wall. The key di�erence lies in the inflow jet155

having lower velocity (about 0.60 m/s in velocity magnitude) and weaker shear, hence less vorticity,156

and ultimately less shear stress on the aneurysm wall. This is further illustrated by the TAWSS157

distributions in Figures 5a,c, where the instantaneous WSS peaks at about ∼ 120 dyne/cm2 . This158

represents a reduction of about 30% with respect to the unstented case illustrated in Figure 3,159

although we notice the persistence of a heterogeneous WSS pattern over the distal part of the160

dome.161

DRL optimization. The optimization objective considered herein consists of bringing back162

the post-operative value of MWSS (defined as the maximum of SAWSS over a full cardiac cycle)163

to a setpoint of half the pre-operative value, hence the reward164

r = − �MWSS −MWSSref� with MWSSref = MWSS0
2

, (1)

where the 0 subscript denotes a pre-stent quantity. This choice is intended to reduce high WSS165

associated with aneurysm growth and rupture, while avoiding low WSS conditions that might166

initiate apoptotic pathways via undesired vascular remodelling [19]. In practice, the MWSS0 for167

patient A is 76.6 dyne/cm2 (roughly half the maximum local, instantaneous value reported above),168

which yields a setpoint of 38.8 dyne/cm2 .169

Figure 6. Stent optimization along with deep reinforcement learning for aneurysm A. The fine
line represents the evolution per episode of the instant reward, while the thick line is the moving average
reward computed over the 100 latest values. The right vertical axis presents the relative variations of
MWSS with respect to the setpoint of half the pre-operative value. Representative stents generated over
the course of optimization are superimposed, with the stent generated at episodes 15, 25 and 35 shown in
(a-c) and the optimal stent predominantly generated after episode 55 shown in (d). The P/D labels indicate
the proximal and distal end sections of the stent, whose upper half is displayed from below (longitudinal
cut) to single out the region covering the aneurysm neck (shown by the red patch in (d)).

Single-step PPO, a reinforcement algorithm intended for situations where the optimal policy is170

independent of state [48], is used to evolve five (out the six) design parameters, as the wire radius171

has been set to 60 µm to keep the computational cost a�ordable, although it is a free parameter172

that could also be learnt from data. For each learning episode, the DRL agent (a deep neural173
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network) therefore outputs five discrete values: four values {nj∈1...4} between 3 and 7 in step of174

1 for the numbers of wires (one per set of equally spaced wires) and one value k between 20 and175

35 in steps of 5 for the winding factor, hence 2500 parameter combinations comprising between176

24 and 56 wires in total. The generated stent configurations have nominal braiding angles in a177

range from 65○ to 95○ and porosities in a range from 30.5% to 68.5% (pore densities between178

3.1 and 22.7 pores/mm2). all values estimated from pre-deployment, cylindrical stent structures.179

The reward evaluation proceeds from hemodynamics simulations run over two cardiac cycles, with180

MWSS computed over the second cycle, after which the network is updated for 32 epochs using 8181

environments and 2 steps mini-batches.182

A total of 68 episodes have been run for this case, which represents 544 simulations, each of183

which lasts 20 min using 32 cores, hence 5,760 h of total CPU cost (equivalently, 45 h of resolution184

time). A moving average reward is also computed as the sliding average over the 100 latest val-185

ues to assess convergence a posteriori (see Figure 6). The reward convergence history in Figure186

6 evidences the successful convergence of the PPO algorithm coupled with patient-specific hemo-187

dynamic simulations. After 50 episodes (representing 400 simulations, hence 400 out of the 2500188

possible designs), the DRL agent indeed starts to systematically pick the specific stent shown in189

Figure 6d, whose red patch singles out the region of interest located in front of the aneurysm neck.190

The latter is made of 34 wires (17 in each braiding direction, distributed into four groups of 5,191

3, 5 and 4 wires, respectively) braided with winding factor 25. This yields in a nominal average192

porosity of 55%, with pore densities (in deployed state) ranging between 2.3 to 16.0/mm2 in the193

neck region facing the aneurysm.194

Such a design is meant to be optimal for the patient specific aneurysm geometry and pulse,195

which is assessed now by comparing numerically the post-operative hemodynamics treated with196

the optimal stent designed by DRL (that earns a MWSS of 37.8 dyne/cm2 di�ering from the197

intended setpoint by 1%) and with the standard homogeneous stent considered so far (that earns198

a MWSS of 54.7 and is clearly inferior for the chosen reward). The peak-systolic streamlines in199

Figure 4 illustrates the di�erent flow deviation e�ect of the optimal stent. The latter successfully200

and adequately cuts down the inflow jet (that was inducing high WSS values on the distal part of201

the bulge, whose velocity magnitude is now about 0.47 m/s) while substantially altering the intra-202

saccular flow organization, found to involve fewer vortex structures, more parallel streamlines, and203

less swirling. We note that the optimal stent also substantially reduces the blood velocity at the204

exit of the aneurysm: 0.26 m/s, to be compared to 0.35 m/s without stent and using the standard,205

homogeneous stent. The result on the WSS distribution is even more patent, as Figure 5 shows206

that the DRL stent has completely eliminated the unstented area of maximum WSS (the local,207

instantaneous WSS now peaks at about 91 dyne/cm2 , which represents a reduction of about 45%208

with respect to the unstented case.) while restoring an almost homogeneous WSS pattern, which209

the homogeneous stent had failed to achieve.210

Generalizability study. For the sake of generalization (and in order to assess suitability for211

various aneurysm configurations), we apply now the DRL framework to a second patient-specific212

model of untreated, unruptured intracranial aneurysm (labelled B) whose vascular information is213

provided in Figure 1. It is a saccular, multilobulated aneurysm located on the ICA, at the junction214

with the ophthalmic artery (OA). The latter is thus retained in the model (as it cannot be cleanly215

removed), yet not occluded numerically, as we voluntarily let blood flow from the ICA into the216

OA across the stent to explore the model ability to handle more complex intra-aneurysmal flow217

conditions.218

Following the same steps as for the previous case, the pre-operative hemodynamics of this patient219

has been analyzed from numerical simulations customized to his/her physiology (both in terms of220

vascular geometry and inflow pulse) carried out over two cardiac cycles (representing 1.8s of physical221

time). The peak-systolic streamlines shown in Figures 7a show that the case has many similarities222

to that of patient A, as the flow quickly becomes helical, and most of the blood enters the aneurysm223

at the proximal part of the neck in the form of a high-speed jet (0.72 m/s in velocity magnitude),224

that traverses the entirety of the primary bulge, impinges on its distal wall, rolls up into complex225

vortical structures and finally swirls out to the outflow segments (including the OA). As illustrated226

in Figures 8a,c, this again yields a strongly heterogeneous WSS pattern, with high WSS values up227

to ∼ 146 dyne/cm2 in the vicinity of the neck and in most of the distal part of the dome, but low228

WSS in the daughter sac, that turns to be barely exposed to the blood flow environment.229

The DRL optimization has then been run in similar fashion over a total of 58 episodes (464230

simulations) using a setpoint of 36.3 dyne/cm2 (MWSS0 for this patient is 72.6 dyne/cm2 ,) and231
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Figure 7. Velocity streamlines of aneurysm B without and with DRL-optimized stent. (a)
Pre-operative state. (b) Post-operative flow after insertion of the optimal stent (see Figure 9d).

Figure 8. Normalized TAWSS of aneurysm B without and with DRL-optimized stent. (a,c)
Proximal and distal views in the pre-operative state. (b,d) Same as (a,c) after treatment with the optimal,
non-homogeneous stent provided by our DRL framework, made of 30 non-uniformly braided wires (see
Figure 9d). Values are normalized based on the maximum TAWSS encountered in the pre-operative
configuration (see Figure 3).

evaluated after convergence (accounted for when the agent outputs a majority of one specific design232

over several episodes). The reward convergence history in Figure 9 evidences good convergence233

after 45 episodes (representing 360 simulations, hence 360 out of the 2500 possible designs). The234

DRL agent then starts to sample the specific stent shown in Figure 9d, whose red patch singles235

out the region of interest located in front of the aneurysm neck. The latter earns a MWSS value236
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Figure 9. Stent optimization along deep reinforcement learning for aneurysm B. The fine line
represents the evolution per episode of the instant reward, while the thick line is the moving average reward
computed over the 100 latest values. The right vertical axis presents the relative variations of MWSS with
respect to the setpoint of half the pre-operative value. Representative stents generated over the course of
optimization are superimposed, with the stent generated at episodes 15, 25 and 35 shown in (a-c) and the
optimal stent predominantly generated after episode 45 shown in (d). P and D annotations indicate the
proximal and distal end sections of the stent, respectively.

is 37.2 dyne/cm2 , which di�ers from the intended setpoint by 3%. It is made of 30 wires (15 in237

each braiding direction, distributed into four groups of 5, 3, 4 and 3 wires, respectively) braided238

with winding factor 25. This yields in a nominal average porosity of 61%, with pore densities (in239

deployed state) ranging between 4.1 to 11.2/mm2 in the neck region facing the aneurysm. We note240

that the convergence is slightly less good than for patient A, which may be because the neck of241

aneurysm B is larger, but the same ranges of design parameters have been used for both patients.242

This o�ers more leeway by allowing more threads to fit into the region of interest of patient B,243

which, combined to the fact that only a small number of discrete winding factors are evaluated,244

increases the sharpness of the reward, known to be detrimental to the conservative policy updates245

of the PPO algorithm [48].246

Finally, the e�ciency of this design (in fact di�erent from the optimal determined for patient247

A) has been assessed by comparison of the pre- and post-operative hemodynamics computed after248

treatment with the optimal stent. The peak-systolic streamlines in Figure 7b show that the blood249

flow is adequately diverted away from the neck and into the parent vessel. The blood velocity is250

reduced at the entry (0.38 m/s in magnitude) but also at the exit of the aneurysm (0.23 m/s, to251

be compared to 0.43 m/s without stent), while swirling is essentially suppressed, as the inflow jet252

now merely slides along the distal wall. This considerably reduces the high distal values of WSS,253

as the maximum local, instantaneous WSS is now about 80 dyne/cm2 (again a reduction by about254

45% with respect to the unstented case). We also note an almost homogeneous WSS pattern is255

restored in Figures 8b,d, save for the low WSS region in the daughter sac, meaning that the latter256

could still grow on its own via inflammatory and apoptotic remodelling.257
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DISCUSSION258

Optimal stents feature a gradient of porosity. Reported results highlight the potential259

of DRL shape optimization for endovascular stenting of intracranial aneurysms. It should be260

emphasized the optimal designed generated by our DRL agent, all relative to the chosen reward261

functions, feature varying porosities in the region of interest (ROI) facing the aneurysm neck. This,262

by itself, could represent a breakthrough in the stent manufacturing industry, where such designs263

do not yet exist (to date, variable porosity can be achieved locally only by superposition of several264

flow-diverters, which increases the risk and the cost of the surgery). More importantly, the optimal265

porosity gradient di�ers for both aneurysms, which paves the way for developing novel devices266

tailored to the patient specific aneurysm, including (but not limited to) its geometry and pulse.267

The results show that the optimal stents successfully cut down the blood velocity at the entry and268

the exit of the aneurysm while also altering the swirling flow inside the aneurysm, either by subtly269

modifying the swirling direction (patient A), or by suppressing swirling altogether (patient B).270

Nonetheless, the complexity of the correlation between local porosity distribution, flow deviation271

and hemodynamics makes it di�cult to unravel the exact physical mechanism behind the e�ciency272

of this or that design, although it is common knowledge that the stent must allow blood in and out to273

avoid the occurrence of too-low WSS values, while su�ciently impeding the blood flow associated274

with the highest values of WSS in the aneurysm. From this perspective, the DRL approach is275

beneficial in two important respects: first, it is e�cient, even though the parameter spaces are large276

and it may be costly to identify optimal designs from simple parametric searches. Second, and more277

significantly, it succeeds in discovering optimal designs from unforeseen parameter combinations,278

without any priori knowledge or assumptions about hemodynamics concepts.279

CFD modelling assumptions and limitations. Computational blood flow modelling in280

intracranial aneurysms has tremendous potential, yet limited applicability in a clinical context281

because of the simplifying assumptions that are traditionally (and often implicitly) made [57,282

58]. Chief among them is the fact that walls are almost always assumed rigid, while arteries283

are compliant vessels, i.e., they deform under the shear stress of blood flow, with possibly large284

displacements impacting the WSS estimates (the authors in [59] report 10-30 % WSS reductions285

compared to rigid wall simulations). A two-way coupled fluid-structure interaction (FSI) analysis286

is thus necessary to solve accurately the mechanical exchanges between the blood flow and the287

arterial tissue, while also encompassing the stent deformation occurring under load conditions (by288

the blood flow and/or the arterial tissue), another important factor that may alter the porosity at289

the neck and impair the long-term e�ciency [60, 61]. One ongoing debate regarding the need to290

include the e�ects of compliance comes down to whether the uncertainties or inaccuracies in the291

data needed to model its e�ects may mask any perceived benefit of doing so: on the one hand, it292

has been acknowledged that improved computational models should incorporate patient-specific,293

spatially varying wall thicknesses, as uniform wall properties and thicknesses based on literature294

values will fail to represent inter- and intra-individual variations [62, 63]. On the other hand, it295

is feasible to measure individual wall properties by imaging and inverse modelling techniques, but296

such non-linear analyses introduce substantial uncertainties, for instance imaging can distort wall297

thickness measurements in a way that can be di�cult to detect or correct [64]. In this regards, it is298

reasonable and expedient to use a rigid wall model for the present purpose of showcasing the use of299

DRL techniques for image-based CFD hemodynamics optimization (without any consideration of300

being directly applicable real medical cases), while leaving to future research to more fully address301

this issue and close the methodological gap of providing high-fidelity hemodynamic data. Finally,302

achieving the fine deployment of the stent in the arterial vessel was not in the scope of this study. A303

realistic deployment, along with a more versatile stent parametrization would expand the possible304

configurations and surely lead to fascinating results, which could drastically impact the medical305

community.306

DRL reward function. There are two main aspects worth discussing regarding the DRL307

reward function used herein. First, the design of a feasible reward function is one of the challenges308

in reinforcement learning problems, but one that is barely discussed in the available literature. In309

the absence of best practice guidelines, it is essentially a trial-and-error exercise, with a human310

expert defining an initial reward function based on his/her knowledge of the problem, observing311

how the agent performs, then tweaking the reward function to achieve greater performance. We312

use here a reward function aligned with the objective function, meaning that when the agent313
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is learning to maximise this reward, it is also learning to minimize the distance between the314

post-stent maximum value of MWSS over a cardiac cycle and the setpoint of half the pre-stent315

value. This allows reducing WSS while preventing the occurrence of very low WSS values, which is316

consistent with the expected outcome of a stenting operation (in the absence of further quantitative317

information or reduction objectives). A more sophisticated approach to pursue in future work could318

be to force the WSS to remain in a physiological range (that could be defined from patient-specific319

data) at every point in the bulge, using for instance a local reward function defined as320

r = �
S

rloc(x)ds with rloc(x) =
�����������

WSS(x) −WSSinf if WSS(x) <WSSinf ,

0 if WSSinf ≤WSS(x) ≤WSSsup,

WSSsup −WSS(x) if WSSsup <WSS(x) .
(2)

Second, the reward uses MWSS as the sole predictor of aneurysm rupture, which implicitly321

assumes that a brief exposure to extended regions of high WSS is key towards predisposing the322

aneurysm wall to weakening and rupture. On the one hand, this su�ces to lay the foundation for323

future research in this field, given the wide acceptance of WSS as a key factor in the physiological324

and pathological response of cerebral arteries. On the other hand, a gap of knowledge remains325

on this issue (for instance, both high or low WSS have been separately correlated to aneurysmal326

formation and growth [9, 19, 20, 65, 66]), and enriched reward functions (encompassing the time327

and space-dependent influence of blood dragging at the aneurysm wall, both in magnitude and in328

direction) are likely needed to improve clinical relevance. In this regards, it is worth insisting that329

the presented framework is highly generalizable, in the sense that it can assess new concepts of flow-330

deviator stents with respect to any or any combination of the markers of disturbed blood flow that331

have surfaced in recent publications (WSS gradient, oscillatory shear index, relative residence time,332

to name a few), that reflect di�erent assumptions being made about the hemodynamic conditions333

driving the progression of intracranial aneurysms toward rupture [53, 67–70]. This falls under the334

scope of multi-objective DRL for which there are two main approaches. The most common way is335

to use a linear function to transform the multi-objective problem into a standard single-objective336

problem. Another interesting (but very costly) strategy is to explicitly separate the individual337

components of the reward function, in order to better understand the policy trade-o� (the related338

methods, based on the Pareto optimum, are not yet frequently applied to DRL problems).339

DRL algorithm. Future work should aim at further improving the flexibility of the proposed340

framework by allowing more realistic stent geometries (in terms of wire radius, number of wires),341

thus increasing the number of possible stent designs. Having a more continuous optimization space342

(by increasing the number of winding factors) will also undoubtedly improve the convergence of343

the PPO algorithm. From this standpoint, it should to be emphasized that this is a proof-of-344

concept study and that convergence and e�ciency (i.e., the number of stent designs that need to345

be evaluated to reach convergence) could be accelerated by hyper-parameter tuning or using pre-346

trained deep learning models (as is done for instance in transfer learning). Generally, the rather347

simplistic PPO framework could be substituted by a more elaborated algorithm, for instance Policy-348

based Optimization (PBO) [71], another single-step reinforcement algorithm that samples actions349

from full covariance matrices, and is theoretically better suited to represent higher order logic and350

to handle complex parameter interactions.351

Future research directions. The purpose of this study is to lay out the foundation for future352

research in this field. We anticipate that large-scale studies with long-term follow-up will allow353

developing more reliable risk-prediction models. As envisioned by Meng et al. [19], we picture that354

intracranial aneurysms could be sorted into di�erent categories associated with di�erent predictors355

reflecting di�erent growth and rupture mechanisms (say, high WSS and positive WSS gradient356

for narrow-necked aneurysms vs. low WSS and high fluctuations of WSS orientation for wide-357

necked aneurysms), at which point a high-fidelity DRL-CFD hemodynamics framework accurately358

modelling the elastic deformation of the parent artery will be instrumental in providing clinically359

relevant, patient-specific stent designs (except for the unpredictable delivery manipulations and360

variations of vessel geometry occurring during the intervention that still might impact the stent361

implantation). By then, it is reasonable to expect that further developments in the fast-moving field362

of deep reinforcement learning will allow for faster convergence and lesser execution load (using,363

e.g., auto-encoders and systematic state compression, or on-the-fly generation of surrogate models364

with uncertainty level prediction). This should set up a framework fast enough to inform design in a365
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matter of hours rather than days, which in turn will reliably augment the current clinical diagnostics366

capabilities. Another reason to push DRL forward in this context is the ability of neural networks367

to transfer knowledge from previous experiences, to quickly adapt to di�erent environments (i.e.,368

di�erent patient-specific numerical models of intracranial aneurysms, corresponding to new patients369

in practical applications) and e�ectively learn new tasks (i.e., di�erent rewards, to achieve further370

refinement of risk prediction). We expect that this will be a key feature to reduce learning time and371

improved neural network performance, as progress are made towards realizing the clinical utility372

of CFD for assessment of intracranial aneurysm rupture.373

METHODS374

Clinical and Imaging data. Images obtained from 3 Tesla MRI (magnetic resonance imag-375

ing) and 3D-DSA (digital subtractiob angiography) to create the adequate geometry for the simu-376

lation and the pulse to impose the flow. All images have been acquired at the University Hospital377

- LMU Munich.378

Stent model. Virtual stenting relies on a naive stent generator inspired by [72], in which 2n379

wires are wrapped around the toroidal envelope parametrized by380

((r cos ◊ +R) cos s

R
, (r cos ◊ +R) sin s

R
, r sin ◊) , (◊, s) ∈ [0; 2fi] × [0; l] , (3)

where r and R are the minor and major radii of the torus, and l is its centerline length. The381

wire centerlines follow hhelical curves generated from a circular basis, that in turn provides the382

sca�old for the struts. Circular profiles are then extruded along the splines to generate the final383

wires with diameter d = 60 µm. Nominal heterogeneous functional parameters (yet homogeneous384

within a given group of wires) functional parameters, e.g., braiding angle, porosity (the percentage385

ratio of the wire-free surface area) and pore density (the number of pores per unit surface area)386

are obtained by braiding two by two parallel wires from nj initial positions uniformly distributed387

in each quadrant of the proximal end section (labelled counter-clockwise, adjusting the origin of388

azimuthal angle for the first quadrant of the cylinder to be mapped into the upper outer quadrant389

of the torus). In practice, all wire paths are actually computed under a slowly varying envelope390

approximation using391

r(s) = rprox(1 − s

l
) + rdist

s

l
, (4)

to fit the weak variations in the minor radius caused by the irregular patient-specific vascular392

geometry. This is because the variations for the cases documented herein (by about 11% relative393

to the average value) have been found to be well modelled by a�ne transformations, but more394

complex analytical functions can be specified as well. Examples of generated stents are given on395

Figure 10.396

Computational domain and mesh. The medical imaging data of both patients is segmented397

using the 3D Slicer software. The entire proximal portion of the parent artery visible in the398

images is reconstructed, for which 3D Slicer outputs point coordinates and connectivity of the399

centerline, together with the corresponding vessel radius (as defined by the minimal distance from400

the centerline to the vessel boundary) and curvature. A non-shrinking filter [73] is used as an401

additional step of shape regularization to obtain smooth surface triangulation of the aneurysm402

lumen and connected vessel walls (which helps mitigate the e�ect of inner surface roughness).403

All vessels are truncated at some distance from the aneurysm bulge and extended with straight404

cylindrical pipes closed perpendicularly to their axis, to allow for flow development and ease the405

subsequent application of inflow/outflow boundary conditions.406

For each patient, three-dimensional unstructured isotropic meshes of the vascular domain and407

stent devices are generated with the Gmsh software [74], after which the vascular grid is finely and408

anisotropically refined with the method described in [75]. This allows evaluating any stent design409

sampled by DRL on the same vascular mesh, and thus yields considerable saving in the overall410

computational time. For the stent devices, 4 mesh points are allocated across any wire diameter,411

which is a reasonable compromise to assess feasibility while producing qualitative results to build412

on, as it yields a number of mesh elements that stands well below the few ten million elements413
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Figure 10. Stent generation examples. Homogeneous (a) and heterogeneous (b) braided structures
computed under a slowly varying envelope approximation for aneurysm A.

reported in previous studies [54, 55]. This in turn keeps the computational cost a�ordable, which414

is mandatory given that optimization requires evaluating the performance of hundreds of stent415

designs.416

Computational hemodynamics framework. The blood flow is mathematically modelled417

after the three-dimensional incompressible Navier–Stokes equations418

∇ ⋅u = 0 , fl(ˆtu +u ⋅ ∇u) = ∇ ⋅ (−pI + 2µ"(u)) , (5)

where u is the velocity field, p is the pressure, "(u) is the rate-of-deformation tensor, fl =1050419

kg/m3 is the constant blood density, and µ is the non-Newtonian blood viscosity evaluated from420

the Carreau–Yasuda law using zero-shear rate viscosity µ0 = 0.0456 Pa.s, infinite-shear rate viscosity421

µ∞ = 0.00320 Pa.s, relaxation time · = 10.03 s, power law index n = 0.344 and transition parameter422

a = 1.25 (all values for a hematocrit of 40 % and a temperature of 37 ○C). The instantaneous wall423

shear stress whose peak value over a cardiac cycle is used for reward evaluation is computed as424

WSS = 3n + 1
4n

µ“̇”sac , (6)

where “̇ = (2"(u) ∶ "(u))1�2 is the wall shear rate defined as the second invariant of the rate-of-425

deformation tensor, ”sac is a boolean representation of the aneurysm surface (obtained by embed-426

ding a portion of the adapted body-fitted grid truncated to remove the extra-aneurysmal domain),427

and the prefactor is the Weissenberg–Rabinowitsch correction for shear-thinning e�ects [76]. Since428

the elastic motion of the arterial wall is overlooked as a first approximation, simple open flow con-429

ditions are used, that consist of no-slip conditions at the solid nodes, zero-stress outflow conditions,430

and pulsatile, parabolic inflow condition431

u = 2Q(t)
fir2 �1 − ��x��

2

r2 �n , (7)

where ��x�� and n are respectively the distance to the centerline and the normal vector in the inlet432

section of the parent artery, and Q is the time-dependent, volumetric flow rate adjusted at each433

time step to 2D-PCMRI measurements of the patients cross-sectionally averaged blood velocity434

(using linear regression from the two closest data points whenever the simulation and acquisition435

times do not coincide).436
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Variational multiscale modeling. A stabilized weak form of Eq. (5) is solved with a finite437

element variational multiscale method (VMS [77–79]). Such an approach consists in splitting the438

solution into coarse and fine-scale components, each corresponding to a di�erent level of resolution.439

Only the large scales are fully represented and resolved at the discrete level. The fine scales are440

approximated in a way such that their e�ect into the large-scale equations is modelled after consis-441

tently derived source terms proportional to the residual of the resolved scale solution. Exhaustive442

details in [80] regarding the derivation of the stabilized formulations lead to the following weak443

form for the large scale444

(fl(ˆtu +u ⋅ ∇u) , w) + (2µ"(u) , "(w)) − (p , ∇ ⋅w) + (∇ ⋅u , q) =
�

K∈Th

[(·MRM , u ⋅ ∇w +∇q)K + (·CRC , ∇ ⋅w)K] , (8)

where ( , ) is the L2 inner product on the computational domain, ( , )K is the inner product on445

element K, w and q are relevant test functions for velocity and pressure, RC,M are the governing446

equations residuals447

−RC = ∇ ⋅u , −RM = fl(ˆtu +u ⋅ ∇u) +∇p (9)

and ·C,M are ad-hoc mesh-dependent stabilization parameters (comparable to local coe�cients of448

proportionality) defined in [81, 82].449

We solve Eq. (8) with an in-house VMS solver whose accuracy and reliability is assessed in450

a series of previous papers, see [82, 83] for a detailed mathematical formulation of the IVM in451

the context of finite element VMS methods, and [84, 85] for applications to non-Newtonian flows452

in complex geometry. Equal order, linear interpolation is used for spatial discretization of the453

velocity and pressure variables (as the inf-sup condition does not need to be satisfied due to the454

additional stabilization terms). Time-stepping is first-order accurate and combines explicit (for the455

VMS stabilization parameters), implicit (for the viscous, pressure and divergence terms), and semi-456

implicit integration schemes (for the time derivatives, convection terms and VMS source terms,457

using backward di�erentiation formula and Newton–Gregory backward polynomial). The time-step458

is set to 0.02 s, which allows distributing 40 and 46 points per cardiac cycle for aneurysm A and B,459

respectively. All linear systems are preconditioned with a block Jacobi method supplemented by460

an incomplete LU factorization, and solved with the GMRES algorithm, with tolerance threshold461

set to 10−6.462

Computational hemodynamics framework with deep reinforcement learning. The463

stent design is optimized solving a decision-making problem with reinforcement learning (RL),464

a process by which an agent learns to earn rewards through trial-and-error interaction with its465

environment. At each turn, the agent observes the state st of the environment and takes an466

action at, that prompts both the transition to the next state st+1 and the reward received rt.467

This repeats until the agent has learnt the succession of actions maximizing its cumulative reward468

over an episode (i.e., the reference unit for agent update, best understood as one instance of the469

scenario in which it takes actions). In the present context, the environment is a patient-specific470

CFD simulation of aneurysm hemodynamics after implantation of flow-diverting stent, that uses471

the computational hemodynamics framework described above. The agent is a policy represented472

by a deep neural network (a collection of artificial neurons that learns to represent a non-linear473

relation between input and output spaces, hence deep RL or DRL) trained with a RL algorithm, as474

reviewed in the next sections. The environment and the agent are coupled two-way, as illustrated475

in Figure 11 : on the one hand, the actions sampled by the DRL agent (a set of five variables476

corresponding to four number of wires and a winding factor ) are used to generate the stent meshes477

immersed in the CFD simulation. On the other hand, the reward function needed by the agent to478

learn (here, the maximum value of MWSS) is obtained by post-processing of the CFD data.479

DRL agent. A fully connected neural network is used, whose neurons are stacked in layers,480

each of which maps the biased weighted sum of their inputs through an activation function to481

produce their outputs and propagate the information forward from the input to the output layer via482

“hidden” layers (we use here 2 such hidden layers, each with 4 neurons feeding hyperbolic tangent483

activation functions). The network is trained with the single-step PPO algorithm, that learns484

a five-dimensional (four numbers of wires plus a winding factor) multivariate normal distribution485

whose mean and variance depend on the network weights and biases. Single-step PPO is a variation486
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Figure 11. Sketch of the present DRL-CFD action-loop. The CFD hemodynamics environment and
the DRL agent are coupled two-way through actions and rewards.

of the proximal policy optimization algorithm (PPO [25]) intended for situations where the optimal487

policy is independent of state, whose relevance for open-loop flow control is assessed in [48]. Just488

like PPO, it uses gradient ascent to maximize the surrogate loss489

Ea∼fi◊ �min� fi◊(a)
fi◊old(a) , 1 + ‘ sgn (Âfi◊(a))� Âfi◊(a)� , (10)

where fi◊(a) is the policy, i.e., a probability distribution of actions fi◊(a) parameterized by a set490

of free parameters ◊ (here the weight and biases of the deep neural network) that determines the491

agent behaviour, Âfi◊ is a biased estimator of the advantage function Afi◊ measuring the gain of492

taking action a over the average value (here its normalization to zero mean and unit variance),493

and ‘ is a clipping range defining how far away the new policy is allowed to go from the old. A494

positive (resp. negative) advantage increases (resp. decreases) the probability of taking action a,495

but always by a proportion smaller than ‘, otherwise the min kicks in (10) and its argument hits496

a ceiling of 1 + ‘ (resp. a floor of 1 − ‘). This conservatism inherited from the parent algorithm497

ensures that the current and new policies behave similarly (which prevents the agent from falling498

o� a cli� and restarting with a locally bad policy, in which case the performance may collapse499

drastically and never recover). Another trait shared by the two algorithms is the lack of necessity500

for assumptions regarding the optimization problem to be solved and for fine-tuning of the network501

hyper-parameters (i.e., those parameters not learnt from data).502

Where the two methods di�er is that PPO seeks the optimal set of actions a� earning the503

largest possible reward, while single-step PPO seeks the optimal state-action mapping f◊� such504

that a� = f◊�(s0), where s0 denotes some input state consistently fed to the agent for the optimal505

policy to eventually embody the transformation from s0 to a�. Starting from a random mapping f◊0506

from s0 to the policy determined by the free parameters initialization, the agent gets one attempt507

per episode at finding the optimal (i.e., it interacts with the environment only once per episode)508

before updating the policy. Another subtle di�erence is that PPO is actor-critic, i.e., it features an509

actor network that learns the policy, and a critic network that learns to estimate the advantage.510

Single-step PPO works without knowledge of the critic evaluations (and is thus not actor-critic)511

because the trajectory of state and actions consists of a single pair. The discount factor adjusting512

the trade-o� between immediate and future rewards can thus be set to “ = 1, in which case the513

advantage reduces to the whitened reward [48].514

Our single step PPO method is based on the default open-source implementation of Stable515

Baselines (https://github.com/openai/baselines/tree/master/baselines/ppo2), for which a custom516

OpenAI environment has been designed with the Gym library [86]. We have updated and connected517

the original code with our CFD library for simple reading and writing of the results (the code is518

shared publicly using the following link : https://github.com/jviquerat/pbo). The convergence519

properties are illustrated in Figure 12 for a minimization test problem of two- and five-dimensional520

Rosenbrock functions, whose global minimum is notoriously di�cult to catch for optimization521

algorithms and two-dimensional Branin function, that has two identical global minima. For this522

case, the single-step PPO-1 algorithm is benchmarked against classical (µ-⁄)-ES and CMA-ES523

evolutionary methods, all implemented in in-house production codes. To ensure a fair comparison,524

the initial parameters and starting points are identical for all methods. All runs are a�orded525

the same budget, namely 500 evaluations (20 episodes with 5 parallel environments in PPO-1,526

20 generations with 5 individuals per generation in evolutionary algorithms) for Rosenbrock and527

50 evaluations for Branin (10 episodes/generations with 5 parallel environments/individuals per528

generation). A large initial standard deviation is used by default, to ensure a good exploration of529
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the optimization domain. Finally, in order to emphasize flexibility and generalizability, all PPO530

runs are tackled without fine-tuning of the algorithm, i.e., all runs use the same meta-parameters531

as in Table I. Performances are averaged over 10 runs, with standard deviations shown as the light532

shade around. As could have been expected, the search e�ciency of CMA-ES yields the best overall533

performance, which reflects the benefit of e�ciently elongating the research area with respect to the534

local shape of the cost function. Among isotropic exploration methods, PPO-1 achieves final cost535

levels similar to (µ-⁄)-ES, with faster convergence and better performance at intermediate stages536

(the final performance level ultimately saturates for the Rosenbrock function because the minimum537

is in a long, narrow valley, and PPO-1/(µ-⁄)-ES use isotropically sampled approximations of the538

descent direction). The general picture to be drawn is that (i) PPO-1 exhibits strong performance539

compared to methods relying on similar isotropic search distributions, and (ii) anisotropic search540

distributions are mandatory to outperform more advanced methods on a consistent basis, an issue541

that is being addressed in current research e�orts by the authors [87].542

Figure 12. Benchmark minimization problems for the (a) two- and (b) five-dimensional Rosenbrock
functions, and (c) the two-dimensional Branin function, using the present PPO-1 algorithm and reference
(µ-⁄)-ES and CMA-ES evolutionary algorithms.

Parallel data collection. In practice, actions are distributed to several environments running543

in parallel, each of which executes a self-contained MPI-parallel CFD simulation and feeds data to544

the DRL algorithm (hence, two levels of parallelism related to the environment and the computing545

architecture). All simulations are performed on a workstation of AMD EPYC 7502 processors.546

The algorithm waits for the simulations running in all parallel environments to complete, then547

shu�es and splits the rewards data set collected from all environments into several bu�ers (or548

mini-batches) used sequentially to compute the loss and perform a network update. This repeats549

for several epochs, i.e., several full passes of the training algorithm over the entire data set (which550

ultimately makes the algorithm slightly o�-policy, since the policy network ends up being trained551

on samples generated by older policies). This simple parallelization technique is key to using DRL552

in the context of flow control applications, as estimating accurately the policy gradient requires553

assessing a su�cient number of actions drawn from the current policy, hence a large computational554

burden associated to reward computations for high-dimensional fluid dynamics problems (typically,555

the cost of a single call to the CFD solver times the number of evaluations required). In the556

same vein, it should be noted that the common practice in DRL studies to gain insight into the557

performances of the selected algorithm by averaging results over multiple independent training558

runs with di�erent random seeds is not tractable, as it would trigger a prohibitively large CPU559

cost. The same random seeds have thus been deliberately used over the whole course of the study560

to ensure a minimal level of performance comparison between the two cases.561
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32 Nb. epochs
8 Nb. environments
2 Size of mini-batches

5 × 10−3 Learning rate
0.3 Clipping range

Table I. PPO hyper parameters.
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