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Abstract: 

In the last decades, methodological advancements in the natural and exact sciences have 

increasingly been used to study the past. In this chapter, we review how such developments 

can be applied to address questions regarding Neanderthal identification, phylogeny, 

chronology, mobility, climate and diet. These examples illustrate how prehistoric studies are 

becoming inherently multi-disciplinary, as each research strategy brings forward a different 



type of information. Piecing these various data together can enrich our understanding of 

Neanderthals, allowing us to gain a more comprehensive view of our past.   

 

Key Words (5-10): Isotopes, Radiocarbon dating, Palaeoproteomics, Palaeogenetics, dental 

wear, diet, mobility, phylogeny, biomolecular palaeoanthropology  

 

1. Introduction  

What did Neanderthals eat, how did they move around the landscape, how are they related 

to other hominins, were they able to cope with changing climate and environment, until when 

did they exist? These are some of the questions that were almost impossible to answer a few 

decades ago. Fortunately, the use of new techniques during the past decades allows 

nowadays scientists to provide clearer answers to these essentials questions to understand 

human evolution. This chapter will present some of these new approaches and the main 

results regarding Neanderthal identification, phylogeny, chronology, mobility, climate and 

diet (Figure 15.1).  

< place Figure 15.1 around here > 

 

2. Neanderthals and their contemporaries  

Traditionally, morphological and increasingly geometric morphometric methods are used to 

determine the distribution of hominin populations in space and time. Once determined, 

subsequent debates often include aspects related to biological adaptation evident within the 

skeletal remains, or techno-typological and behavioural manifestations through association 

of hominin skeletal remains with the archaeological record. Recently, molecular methods 

have been adopted to address such and related aspects, first by the advent of ancient DNA 

analysis and more recently through the development of ancient protein analysis. Although 

both approaches have to work with fragmented, sometimes highly modified, ancient 

biomolecules, information retrieved from Neanderthal and other hominin fossils, as well as 

sediments, is starting to address biological and behavioral questions through a new, molecular 

lens. 

 



2.1. Ancient DNA 

The first Neanderthal DNA 

In 1984, two studies reported the retrieval of DNA from ancient tissues (Higuchi et al., 1984; 

Pääbo, 1984), thereby pioneering the field of ancient DNA research. The first Neanderthal 

DNA fragments, sequenced in 1997, pertained to a 379-base pair region of the mitochondrial 

(mt) genome of the Neanderthal type specimen. The Neanderthal mtDNA fell outside the 

variation of present-day mtDNA genomes, showing that Neanderthals did not contribute 

mtDNA to modern humans (Krings et al., 1997; see also Rosas et al., 2021 [Chapter 5 in this 

book]). Since then, the mitochondrial genome sequences of 25 Neanderthals have been 

reconstructed, originating from individuals who lived from western Europe to the Altai 

Mountains between ~38 and ~120 thousand years ago (ka) (Green et al., 2008; Briggs et al., 

2009; Gansauge and Meyer, 2014; Skoglund et al., 2014; Prüfer et al., 2014; Rougier et al., 

2016; Posth et al., 2017; Hajdinjak et al., 2018; Douka et al., 2019; Peyrégne et al., 2019; 

Mafessoni et al., 2020; Romandini et al., 2020), as well as that of a ~430 ka hominin from Sima 

de los Huesos in Spain (Meyer et al., 2014).  

 

Nuclear DNA from Neanderthals 

Mitochondrial DNA is a useful target when screening ancient samples for DNA preservation, 

due to its presence in multiple copies per cell. However, to gain a comprehensive view of the 

population from which an individual comes, one needs to recover and analyze nuclear DNA. 

In 2010, the first Neanderthal genome sequence was reconstructed, composed of nuclear 

DNA from three Neanderthal bones from Vindija Cave in Croatia (Green et al., 2010). 

Comparisons between this draft Neanderthal genome and the genomes of present-day 

humans revealed that Neanderthals had a greater genetic affinity to non-Africans than to 

Africans. From this, it was hypothesized that Neanderthals and ancient modern humans 

admixed outside of Africa, leaving the traces of Neanderthal DNA still found in genomes today. 

So far, the genomes of three Neanderthals have been sequenced to high coverage1 (27-fold 

or more) (Prüfer et al., 2014, 2017; Mafessoni et al., 2020), while low coverage (between 1- 

and 3-fold) genomes have been reconstructed from five other individuals (Prüfer et al., 2017; 

Hajdinjak et al., 2018), and sparse nuclear data have been generated from 12 more (Green et 

																																																								
1	Coverage	refers	to	the	average	number	of	sequenced	reads	that	cover	each	base	in	the	reference	
genome.	Higher	 coverage	 allows	 to	 overcome	 errors	 that	may	 affect	 the	 genetic	 data,	 such	 as	
sequencing	errors,	amplification	errors,	and	in	the	case	of	ancient	DNA,	base	modifications	due	to	
damage	over	time.	Therefore,	high-coverage	genomes	can	be	used	for	more	in-depth	analyses	than	
low-coverage	ones.				



al., 2010; Castellano et al., 2014; Meyer et al., 2016; Bockelmann et al., 2019; Peyrégne et al., 

2019). Among other things, analyses of these datasets revealed additional evidence for 

admixture between Neanderthals and modern humans (Kuhlwilm et al., 2016; Meyer et al., 

2016; Petr et al., 2020). By sequencing DNA from individuals across a large timescale and from 

different parts of the known Neanderthal range, it was shown that there was long-term 

genetic continuity in Neanderthal populations in western Europe, whereas there were 

population changes in the Caucasus and eastern Europe (Hajdinjak et al., 2018; Slon et al., 

2018; Peyrégne et al., 2019; Mafessoni et al., 2020). Lastly, the genetic evidence points to 

Neanderthals, particularly in the easternmost part of their range, living in smaller, more 

isolated populations than ancient modern humans (Sikora et al., 2017; Mafessoni et al., 2020). 

 

The Denisovans and their relationship to Neanderthals 

In 2010, the mtDNA genome of a phalanx from Denisova Cave was shown to fall basal to both 

Neanderthals and modern humans, suggesting that it belonged to a previously unknown 

group of archaic hominins (Krause et al., 2010b; see also Viola, 2021 [Chapter 4 in this book]). 

Its nuclear genome showed that this individual belonged to a sister-group to Neanderthals, 

henceforth dubbed the “Denisovans” (Reich et al., 2010; Meyer et al. 2012). The two groups 

split from each other ~400-440 ka and from modern humans ~520-630 ka (Prüfer et al. 2017). 

To date, three additional remains, all teeth from Denisova Cave, have been identified as 

pertaining to Denisovans based on their DNA (Reich et al., 2010; Sawyer et al., 2015; Slon et 

al., 2017b). Denisovans admixed with ancient modern humans, leaving genetic traces in some 

present-day populations (Reich et al., 2010). Denisovans also admixed with an unknown 

archaic hominin group that diverged more than one million years ago from the lineage leading 

to Denisovans, Neanderthals and modern humans (Prüfer et al., 2014). Lastly, traces of 

Neanderthal ancestry in the Denisovan genome sequenced to high coverage indicated that 

Neanderthals and Denisovans admixed as well (Prüfer et al., 2014). More direct evidence for 

admixture between the two groups was found when the genome of “Denisova 11”, a ~90 ka 

individual from Denisova Cave represented by a single bone fragment (Brown et al., 2016) was 

sequenced, as she was identified to be the daughter of a Neanderthal mother and a Denisovan 

father (Slon et al., 2018). 

  

How to sequence a Neanderthal? 

Since the early days of ancient DNA research, advances in sequencing technology have 

allowed the field to shift from strategies involving direct amplification of DNA fragments from 



an extract by PCR2 to library-based techniques. The latter have the advantage of allowing the 

sequencing all DNA fragments in an extract, even very short ones, while retaining the entirety 

of the fragments and allowing for their authentication based on damage patterns 

accumulating over time (Briggs et al., 2007; Krause et al., 2010a; Sawyer et al., 2012; Dabney 

et al., 2013; Skoglund et al., 2014). To generate sequencing data from a Neanderthal, one first 

removes a small amount of bone or tooth powder using a sterile drill. If needed, the powder 

can be treated to reduce the amount of contaminating bacterial and/or present-day human 

DNA affecting it (Korlević et al., 2015). DNA is then extracted, typically using a silica-based 

method adapted to recover short DNA fragments (Dabney et al., 2013; Glocke and Meyer, 

2017), and converted into a DNA library, ideally using a single-stranded, rather than double-

stranded, library preparation procedure to increase the efficiency of the conversion 

(Gansauge and Meyer, 2013; Gansauge et al., 2020). Optionally, DNA fragments containing 

uracils can be enriched for (Gansauge and Meyer, 2014; Slon et al., 2017b; Bokelmann et al., 

2019), as these residues are the result of the deamination of cytosine bases and constitute a 

hallmark of ancient DNA (Briggs et al., 2007). Following double-indexing and amplification 

(Kircher et al., 2012), the libraries can be sequenced directly by shotgun sequencing or 

undergo targeted enrichment for regions of interest (e.g., mtDNA or Y-chromosome, Maricic 

et al., 2010; Fu et al., 2013; Petr et al., 2020).  

 

The potential of DNA from sediments 

The generation of sequencing data from Neanderthals is often limited by the availability of 

skeletal remains. As an alternative, research has been developed to recover, isolate and 

identify ancient hominin mtDNA from sediment samples. The reconstruction of partial to full 

mtDNA genome sequences from sediments, as demonstrated using nine samples from four 

archaeological sites, showed the feasibility of recovering Neanderthal and Denisovan mtDNA 

from sediments even in the absence of skeletal remains (Slon et al., 2017a). This approach 

was recently applied to the site of Baishiya Karst Cave on the Tibetan plateau, where 

Denisovan mtDNA was recovered from four layers dated to between 100 and 45 ka, 

constituting the first paleogenetic evidence for the presence of Denisovans outside of 

Denisova Cave (Zhang et al., 2020). More recently, a strategy to recover nuclear DNA of 

Neanderthals and Denisovans was established, opening the possibility of conducting 

population genetic analyses on archaic hominins using sediments as a source material (Vernot 

et al., 2021). Although the complexity of sedimentary and stratigraphic contexts need to be 
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taken into account, the recovery of ancient DNA from sediments at additional sites may prove 

to be instrumental in retracing the dispersals of Neanderthals and Denisovans through time 

and space, at a higher resolution than is currently possible based on the fossil record.  

 

2.2. Palaeoproteomics 

In recent years, ancient protein analysis has emerged as an alternative or supplementary 

approach to identifying Neanderthals in the archaeological fossil record. Two approaches 

specifically have been proposed. The first, collagen peptide mass fingerprinting, primarily as 

a means to identify additional hominin fossils, the other, tandem mass spectrometry, to 

distinguish between hominin populations directly. Proteins are made up of a chain of amino 

acids linked together. The type and order of the amino acids that compose these protein 

sequences are, ultimately, determined by the DNA sequence of the relevant gene within the 

genome. As the nucleotide sequence might differ between individuals or species, the protein 

sequences might differ as well, providing an effective means to both assign taxonomic identity 

and conduct phylogenetic analysis. One can observe protein sequence differences directly (in 

the case of tandem mass spectrometry) or indirectly (in the case of peptide mass 

fingerprinting) using protein mass spectrometry methods, as most types of amino acids have 

a unique mass.  The applicability of this approach has been demonstrated for proteins 

preseved in bone, dentine, and enamel, as well as for extinct mammals (Welker et al., 2015), 

extinct great apes (Welker et al., 2019), and archaic hominins (Chen et al. 2020; Welker et al., 

2020).  

 

Collagen peptide mass fingerprinting. 

Collagen peptide mass fingerprinting, also known as Zooarchaeology by Mass Spectrometry 

(ZooMS), is a mass spectrometry-based tool to identify tissues rich in collagen type I, such as 

bone and dentine. Collagen type I is composed of three chains forming a triple helix, two of 

which derive from COL1α1 and one of which derives from the COL1α2 gene. The protein 

sequences translated from both genes differ from each other but also slightly from species to 

species (Buckley et al., 2009). Analysis of the peptide masses resulting after trypsin digestion 

produces a “barcode” that can be observed following MALDI-TOF MS analysis in which 

homologous peptides with a different sequence will have a different mass. Based on a 

selected set of peptide markers, which are selected as both their masses and peptide 



sequences are known for a range of relevant mammalian species, one can then achieve a 

taxonomic assignment (Buckley et al., 2009; Buckley et al., 2016; Kirby et al., 2013). Such 

identifications are generally at the subfamily level, but can be genus- or even species-specific. 

 ZooMS has found widespread application in a range of historical, archaeological, and 

even paleontological settings. In part, this is because collagen is the dominant organic 

component in bone and because of the long-term preservation of collagen compared to other 

proteins (Wadsworth and Buckley, 2014; Buckley and Wadsworth, 2014), as well as its longer 

survival in comparison to other biomolecules, such as DNA (Welker et al., 2015b). As a result, 

ZooMS has been shown to provide an effective means for taxonomic identifications across the 

Pleistocene, and even into the Pliocene (Rybczynski et al., 2013). Additionally, collagen 

peptide mass fingerprinting has relatively small sample size requirements, generally in the 5-

10 mg range, allowing sampling even of highly fragmentary bone specimens or unique objects. 

 In the context of Neanderthals, collagen peptide mass fingerprinting has been applied 

to a range of sites, primarily to discover new hominin remains by screening hundreds or even 

thousands of morphologically unidentifiable bone specimens. This has proven successful in a 

range of Eurasian sites, for example Grotte du Renne (Welker et al., 2016), Bacho Kiro (Hublin 

et al., 2020), Vindija (Devièse et al., 2017), and Denisova Cave (Brown et al., 2016; Douka et 

al., 2019). Based on the limits of the peptide markers selected, such ZooMS identifications 

are, strictly speaking, within the Pan/Homo clade. Additional information, either molecular, 

geographic, or chronological, could then allow determination of a hominin bone as a 

Neanderthal or some other hominin population. 

 The bone assemblages screened using ZooMS to identify hominin remains are 

themselves also informative on both ecological (Welker et al., 2015a) and behavioural (Sinet-

Mathiot et al., 2019; Bouchard et al., 2020) aspects of hominin occupation. For example, they 

might enhance the number and kind of bone specimens displaying anthropogenic traces, 

thereby providing a more substantiated, and potentially nuanced, view on Neanderthal 

dietary ecology. Likewise, due to its small sample requirements, ZooMS can also be used to 

taxonomically identity bone tools. This recently provided evidence that certain groups of 

Neanderthals selected Bos/Bison rib fragments to produce lissoirs, a type of bone tools first 

identified in association with Neanderthal occupations (Martisius et al., 2020; Soressi et al., 

2013). 

 



Shotgun proteomics 

As mentioned previously, ZooMS has limited taxonomic resolution and utilizes a single protein 

present in Pleistocene bone or dentine. In contrast, many hundreds of proteins are present in 

skeletal tissues during life, dozens of which can survive over prolonged timescales (Cappellini 

et al., 2012), even beyond the preservation of DNA (Welker et al., 2015b). By utilizing LC-

MS/MS technology, also known as tandem mass spectrometry, one can analyze all such 

surviving proteins at once, providing a complete look at the preserved proteome (Cappellini 

et al., 2012, 2018). 

 Not only do these proteins survive, but their sequences remain phylogenetically 

informative even when comparing the protein sequences of modern humans, Neanderthals, 

and Denisovans (Figure 15.2). By reconstructing the ancient protein sequences preserved in 

an ancient hominin specimen, and comparing these sequences with the known protein 

sequences from modern humans and the predicted protein sequences for extinct hominins 

like Neanderthals and Denisovans, one can propose a phylogenetic hypothesis on the 

placement of the ancient hominin. Such phylogenetic trees will be based on a comparatively 

small number of informative positions, primarily due to the high level of sequence 

conservation between closely related hominin populations. Still, in the absence of ancient 

DNA preservation and the prolonged timescales over which ancient proteomes survive, this 

approach is increasingly used in geographic regions and time periods for which no hominin 

biomolecular sequence data was available previously (Welker et al., 2020). 

 For example, on the basis of proteomic sequence evidence and mtDNA sequences, it 

has been proposed that Neanderthals were the hominin population responsible for the 

Châtelperronian artefacts at Grotte du Renne (Welker et al., 2016). This has some implications 

for our interpretation of Neanderthal extinction in western Europe, as it indicates the 

adoption of new kinds of symbolic behaviour towards their demise (Hublin, 2015). In similar 

ways, the identification of a hominin mandible recovered from the Tibetan Plateau, in China, 

and its subsequent identification as a “Denisovan”, in the broadest sense, by palaeoproteomic 

methods challenges the notion that archaic hominins would not have been able to colonize 

the high-altitude Himalayas during glacial periods (Chen et al., 2019).  

The recent recovery of even older Early and Middle Pleistocene hominin proteomes 

indicates that the limit for the preservation of hominin proteomes has not yet been reached 

(Welker et al., 2020). As a result, one can expect palaeoproteomics to provide phylogenetic 

information on (early) Neanderthal and other archaic hominin fossils, which will inform on the 



processes and order by which Neanderthal and archaic hominin acquired their morphological 

traits. In combination with the proteomic analysis of associated fauna and cultural material, 

such a proteomic framework of Middle and Late Pleistocene hominins will provide new 

information on their evolutionary trajectories.   

 

3. The radiocarbon dating and the last Neanderthal. Present status quo.   

3.1 The Radiocarbon from two-hands clock to three-hand precision 

 

From the out-of-date to the up-to-date radiocarbon calibration 

After Libby won the Nobel Prize for Chemistry in 1960, radiocarbon has evolved into a 

universal dating ‘clock’ and now represents the backbone of chronological reconstructions for 

the time up to 55,000 years ago. 

The radioactive isotope, 14C, is produced by cosmic radiation interacting with atmospheric 

nitrogen (Masarik and Beer, 2009) and enters the carbon cycle as 14CO2, which is well mixed 

within the atmosphere. Conventional 14C ages originally assumed that the initial atmospheric 
14C concentration, (D14C), has remained constant through time. However, it has been shown 

that the D14C levels have varied in the past (Stuiver and Braziunas, 1993; Suess, 1970), 

primarily due to changes in either the rate of 14C production in the atmosphere (a function of 

the geomagnetic field intensity and solar variability) or the distribution of 12C and 14C between 

different reservoirs in the global carbon cycle (atmosphere, biosphere, ocean). Detailed 

records of past changes in atmospheric D14C are therefore critical to the accuracy of 14C dating 

and form the basis of the calibration process of 14C ages. The IntCal working group has been 

responsible for the creation of an internationally agreed calibration data set, culminating in 

the most recent version, IntCal20 (Stuiver et al., 1998; Reimer et al., 2004, 2013, 2020). 

The archive that best records the 14C level of the atmosphere is tree-rings. In fact, trees 

incorporate atmospheric CO2 directly into their tissues via photosynthesis, avoiding 

complications from unknown changes in the local reservoir age of archives coupled indirectly 

to the atmosphere, such as marine corals, sediments, and speleothems. In addition, tree-ring 

chronologies are constructed and replicated using numerous individual trees, providing true 

annual calendar ages. Finally, trees provide a large amount of woody tissue for 14C dating, 

allowing precise, high-resolution chronologies to record even annual to decadal scale 14C 

variability. 



At present, the tree-ring based part of the calibration curve that is dendrochronologically 

linked reaches back to 13,900 cal BP (Calibrated ages Before Present). A brand-new method 

that connects floating tree-ring chronologies to the ice-core age scale through comparison 

with 10Be data measured in ice cores is added to the new IntCal20. This connection is possible 

due to the fact that 10Be and 14C are both produced in the atmosphere by the cascade of 

nuclear reactions induced by high-energy galactic cosmic rays. Therefore, 10Be and 14C are 

both influenced by changes in solar activity and geomagnetic field intensity that modulate the 

incoming galactic cosmic ray intensity ( Adolphi et al., 2017;	Muscheler et al., 2020;). 

The new IntCal20 incorporates the floating tree-ring sequences in three different sections 

(14,700 cal BP, 30,000 cal BP and 42,000 cal BP). The precision of the 14C measurements and 

the resolution of sampling is best visible in the 14,700 cal BP section, published in Adolphi et 

al. (2017). This section is on a decadal scale and demonstrates a substantial advance in the 

new IntCal20. Most importantly, the improvement of the precision of 14C measurements on 

tree-ring samples of 10 years resolution, would allow sequences on the time scale of a 

generation to be resolved  (Talamo et al., 2017).  

Before the tree-ring dataset interval (i.e., during glacial times) back to 55,000 years, the 

IntCal20 curve is composed of 14C data from marine and terrestrial archives (i.e., marine 

sediments from the Cariaco Basin and the Iberian and Pakistan margins; marine corals; varved 

sediment cores from Lake Suigetsu, Japan; and stalagmites from the Bahamas and from Hulu 

cave, China), which do not have the same high resolution as the tree-ring data and the 

speleothem and marine data do not directly reflect the atmospheric 14C concentration. 

However, between 48 to 40 ka cal BP the new IntCal20 shows more structure, which allows a 

better resolution and increased calendar age precision (Bard et al., 2020). This situation will 

favour the chronological reconstruction of the events that characterized our evolutionary past 

(Fig. 15.2).  

 

< place Figure 15.2 around here> 

 

From conventional to AMS measurements 

Since the 1950s gas proportional counters and liquid scintillation were used to detect and 

measure beta decay of 14C in archaeological samples (Kromer and Münnich, 1992). Obtaining 

a precise radiocarbon date with this method could take more than a week and required up to 

20 g of carbon. From c. 1980 the radiocarbon field improved with the creation of the 

Accelerator Mass Spectrometers (AMS) which directly counted the 12C, 13C, and 14C ions in a 



sample. This innovation has led to a real revolution in terms of sample size and measurement 

time. On the one hand, the dates obtained via AMS are made on very small samples (around 

500 mg), which require a more rigorous samples pretreatment due to the fact that reducing 

the sample size will result in an increase in exogenous carbon contamination (Ramsey, 2008; 

Taylor and Bar-Yosef, 2014). On the other hand, reducing the sample size reduces the 

destruction of precious archaeological samples, strengthening the archaeologists to further 

use the 14C method. 

Normally, all AMS laboratories convert pretreated samples into CO2, through combustion, and 

then into graphite. This requires between 500 - 1000 μg of carbon, yet direct measurement 

of the CO2 gas is possible and has the advantage of using only 5 - 100 µg carbon (Middleton, 

1984; Ramsey and Hedges, 1997). However, even if, with the CO2 gas, it was possible to further 

reduce the sample size the precision of the measurement would decrease (Ramsey et al., 

2004). Modifications to the gas ion source were possible thanks to the new MIni CArbon 

DAting System (MICADAS) that, in 2007, was developed at ETH Zurich at the Laboratory of Ion 

Beam Physics (Synal et al., 2007). The MICADAS is a compact AMS which is furnished with an 

ion source capable of accepting both solid and gas samples (Ruff et al., 2007, Synal et al., 

2007), and which greatly increases the level of precision possible for CO2 samples. The system 

was successfully applied in Fewlass et al. (2018, 2019) with the conclusion that samples older 

than 35,000 years are still challenging for obtaining high precision.  

 

The importance of constraints 

To securely evaluate the relationship between dated samples and their archaeological 

context, the Bayesian statistics approach should be taken. In fact, Bayesian techniques 

combine chronometric information (14C ages) with archaeological knowledge or ‘prior’ 

information (e.g., stratigraphy). This allows much finer chronologies to be built for the site in 

question. The most frequently used software is OxCal (Ramsey, 2009; Bronk Ramsey and Lee, 

2013). This type of software uses IntCal20 as the reference curve and allows individual 

radiocarbon dates to be modelled statistically. However, the accuracy of these models 

strongly depends on the kind of data the users introduced: sample selection, sample 

pretreatment, ‘prior’ information, and the error range of the 14C dates (Bayliss et al., 2007). 

 

3.2. Why bones?  

Obtaining the age of bones with radiocarbon is crucial for many archaeologists since it can 

directly target the event being dated (i.e., dating a human itself) or closely associated to the 



event of interest (i.e., animal remains from a site, bone artefacts). Bone is characterized by a 

complex structure, ca. 65% of bioapatite (mineral, crystalline carbonate–hydroxylapatite, the 

inorganic phase), between 20-30% of proteins (collagen, the organic fraction), and c. 10% of 

water. 

Collagen is the protein that permits strength and elasticity for the bone and is the most desired 

for radiocarbon dating (Arnold and Libby, 1951) and stable isotopic analysis (Collins et al., 

2002). However, archaeological bones often have problems with contamination and 

degradation (DeNiro, 1985; van Klinken, 1999). Degradation involves structural alteration and 

the gradual breakup of the protein chains. Background contamination can then come from 

the inclusion of exogenous carbonaceous contaminants, either in situ, during the excavation, 

or in the laboratory. As the bone deteriorates, the collagen amount decreases, and with less 

collagen of the bones retrieved, higher is the danger for the collagen to be contaminated. 

Moreover,, as mentioned above, the low-collagen bone samples may result in less precise 

dates or no date at all (Talamo et al. 2021). 

For these reasons, the preservation of collagen is crucial when we are dealing with 14C dating 

on bone. In the following paragraph, key issues are considered in order to obtain a good 

quality and quantity of collagen for radiocarbon dating.  

 

Sample selection and collagen extraction 

The sampling strategy for bones in an archaeological site is a crucial step in obtaining a reliable 

radiocarbon date; hence it must be planned in detail. The first step is, of course, to select bone 

samples that display an obvious connection with human activities, like, for example, the 

presence of cut-marks or any type of fracture imposed by humans. As we all know, a 

radiocarbon date is not just a number, it is an expensive number. For this reason, we must 

choose with parsimony the samples in order to not exceed the budget dedicated to attesting 

the chronology of a single site. However, by increasing the number of samples for radiocarbon 

dating, we increase the precision and the details of the chronological sequence at the site in 

question (Hublin et al., 2012; Fewlass et al., 2020;). Once these fundamental aspects are 

contemplated, the collagen preservation can be considered.  

Recently a non-destructive method to assess the collagen preservation of bone, prior to 

sampling, was developed (Sponheimer et al., 2019). Using Near Infra-Red (NIR) spectroscopy, 

we can screen the collagen preservation in archaeological bones directly at the site. This 

innovative method allows us to not only sample bones where the chances of successful 



collagen extraction are high, but also to not destroy more samples or even precious 

archaeological samples. 

Once we recognize the samples suitable for the radiocarbon dating method, a rigorous 

pretreatment in the laboratory must be undertaken. It is worth remembering that for samples 

older than 30,000 years the remaining 14C activity is below 2%, hence these samples are 

especially vulnerable to contamination. Fortunately, in the last two decades, great 

improvements in the extraction of genuine carbon have been made ( Talamo and Richards, 

2011; Brown et al., 1988; Brock et al., 2013; Fewlass et al., 2019; Talamo et al. 2021). In most 

cases, this involves the use of the ultrafiltration step, and its specific way of cleaning, as well 

as the kind of ultrafilter used and the time that the bones spend in acid to be demineralized. 

Once the collagen is extracted, the carbon and nitrogen content should be considered in order 

to understand the quality of the extracts. The ranges are nowadays agreed upon and follow 

the rules imposed in van Klinken (1999) and DeNiro (1985). 

 

3.3. The ‘statistic’ surrounding Neanderthals and Homo sapiens chrono-interaction 

Around 40 ka, Europe was at the heart of the most fascinating events in Human Evolution. 

This time period saw the unfolding of the dramatic events between our closest cousins, the 

Neanderthals, and us, Homo sapiens. 

When Homo sapiens groups crossed into Europe and walked into forested lands, they 

encountered the Neanderthal species. Neanderthals had been living for several hundred 

thousand years in variable climatic conditions (Sanchez	Goñi	2021	in	this	book), from cold 

episodes with open steppe and tundra, to warm interstadial periods when florid forests were 

present in Mediterranean regions, showing that they possessed the behavioural flexibility to 

cope with different distributions and availabilities of biotic resources. However, after 37,000 

years BP Neanderthals were gone, leaving Homo sapiens the sole species inhabiting Eurasia 

and finally the entire world(Zilhão et al., 2017; Higham et al., 2014). Pinpointing exactly when 

Homo sapiens arrived in Europe will improve our understanding of the interactions between 

Neanderthals and our species, and what, if any, responsibility we took in their demise. 

Accurate 14C dating is of paramount importance to solving this puzzle of human history.  

The most recent discoveries show that Homo sapiens were already in Europe around 46,000 

years ago, in the Balkan Peninsula at Bacho Kiro, a site in Bulgaria (Fewlass et al., 2020; Hublin 

et al., 2020), and that they propagated east-west along the Mediterranean rim within a fairly 

short time, reaching the westernmost part of Europe between 41,000 and 38,000 years ago 

(Haws et al., 2020, Picin et al. 2021 in this book). All in all, these findings suggest Homo sapiens 



and Neanderthals coexisted in Europe for roughly 8,000 years; this overlap would have been 

~1,600 years in France (Talamo et al., 2020) and longer in southern Iberia. 

However, despite progress being made, the resolution of the most used ‘clock’ still needs 

improvement in order to resolve archaeological disputes in a convincing way. In particular, 

more work needs to be done in order to substantially increase the resolution of the 

radiocarbon calibration curve in the Middle-Upper Palaeolithic period, as well as the tight 

error ranges that characterizes the 14C age (Reimer et al., 2020; Fewlass et al., 2020).  

Reducing the amount of bone taken is an ongoing concern in dating exceptional 

archaeological artefacts or human bones and obtaining precise date using the gas ion source 

installed in the new MICADAS (Fewlass et al., 2018,  2019). 

 

 

4. Reconstructing Neanderthal’s way of life (Diet, habitat, weaning, mobility) 

4.1 Neanderthal isotopes  

Diet and habitat reconstruction  

Neanderthals are the first extinct hominins for which an isotopic approach, based on carbon 

and nitrogen isotopic abundances (d13C and d15N) in bone collagen, was used to determine 

their diet. This approach has been applied to individuals from Western France (Marillac, 

Charentes), Belgium (Scladina) and Slovenia (Vindija) (Bocherens et al., 1991, 1999, 2001; 

Richards et al., 2000). In these early works, Neanderthals appeared to have high nitrogen 

isotopic ratios compared to the coeval fauna, including predators, suggesting a very 

carnivorous diet. However, this conclusion was based on an oversimplification of the meaning 

of nitrogen isotopic ratios in the diet of omnivorous mammals. Indeed, even if d15N values 

increase with trophic position (from prey to predators), it is necessary to remember that 

collagen is synthesized from the protein fraction of the diet, i.e., the meat fraction for an 

omnivorous hominin, and that different plants exhibit various nitrogen isotopic ratios in a 

given ecosystem, leading to various d 15N values in different herbivore species depending on 

their foraging preferences (Bocherens, 2003, 2009). With this in mind, it appears that 

Neanderthals consumed, in higher proportion than other predators such as hyena, prey with 

higher d 15N values, which were, in the mammoth steppe biome, the woolly mammoth and to 

some extent the woolly rhinoceros (Bocherens, 2003; Bocherens et al., 2005; Wißing et al., 

2016).  Moreover, this result, concerning the meat fraction of the Neanderthal diet, does not 



preclude the consumption of plants in addition to meat. This plant contribution, however, 

would not be visible in the isotopic composition of bulk collagen, since meat would provide 

almost all the consumed proteins (Bocherens, 2009). When more Neanderthal specimens 

were analyzed, this pattern of higher d 15N values in Neanderthals than in predators prevailed 

(e.g., Beauval et al., 2006; Richards et al., 2008b; Bocherens et al., 2013; Wißing et al., 2016), 

suggesting that the high amount of mammoth meat in their diet was rather general, at least 

in the northern part of the Neanderthal range for the late representatives of the species. For 

Neanderthals from the beginning of the Late Pleistocene, isotopic results indicated either the 

consumption of meat from open landscape herbivores, as in Scladina (Bocherens et al., 1999) 

or from more closed forest environment, as in Hohlenstein-Stadel (Posth et al., 2017).  

To solve the issue of plant consumption by Neanderthals, a more advanced technique was 

used: the single compound amino acid nitrogen isotopic composition, which compares the 

d15N values of source amino acids with those of trophic amino acids within bone collagen 

(Naito et al., 2016; Jaouen et al., 2019). In the Belgian site of Spy, this approach showed that 

Neanderthals were not fully carnivorous, but consumed about 20% plants (Naito et al., 2016). 

This study also showed that fish was virtually absent from the diet of Neanderthals in this 

context. However, further isotopic studies of animal predators and fish in a cave in the 

Caucasus, Kudaro 3, suggest that salmon may have been collected by Neanderthals rather 

than by predators such as bears or lions (Bocherens et al., 2014). 

In addition to carbon and nitrogen isotopic abundances, bone collagen can provide an 

additional isotopic tracer based on sulphur stable isotopes. In terrestrial contexts, these 

isotopic ratios depend on geological bedrock and soil conditions and are therefore useful for 

investigating mobility. One study recently applied this approach to late Neanderthals from 

Goyet in Belgium, where it appeared that Neanderthal bones had been extensively butchered 

and were of non-local origin when compared to the local fauna (Wißing et al., 2019). 

Most isotopic studies on collagen in Neanderthal bones have been performed for late 

specimens, as collagen preservation usually becomes poorer with greater age and is 

exceptional for ages higher than 100,000 years (Kuitems et al., 2015). In cases where collagen 

cannot be retrieved from bones, an alternative support for isotopic tracers is the mineral 

fraction of tooth enamel, where a small fraction of carbonate can record the isotopic 

composition of carbon and oxygen in diet and drinking water, indicative of subsistence and 

habitat, at the time of tooth formation; this was applied to Neanderthal teeth from the site of 

Payre in southeastern France (Bocherens et al., 2016). This study could tell differences in the 



habitats of Neanderthal individuals from two levels with no climatic differences, showing that 

Neanderthal changing land use was not necessarily linked to environmental change. 

 

Neanderthal mobility and isotope studies  

The cost of Neanderthal mobility may be different from what modern humans experience due 

to their shorter limbs, higher body mass, and possibly more elevated basal metabolic rate 

(Verpoorte, 2006). It has been suggested that, within a year, they were probably changing 

sites more frequently than modern humans in order to reduce the daily number of kilometers 

required for foraging. This hypothesis can be tested through different methods, such as 1) the 

study of raw materials found within a site (often local even though exceptions occurred (e.g., 

Delpiano et al., 2018; Fernandes et al., 2008; Spinapolice, 2012; Turq et al., 2017; de Soler et 

al., 2020) and 2) investigating the investment in hearth making at a site (which seem to 

suggest short site occupation periods (Verpoorte, 2006; Leierer et al., 2019), but also, 3) 

sulphur (S, mentioned above) and strontium (Sr) isotope studies.  

Most of the work focusing on Neanderthal mobility through isotopes has focused on Sr 

isotopes. The ratio of interest is 87Sr/86Sr, where the 87Sr derives from the radioactive decay of 
87Rb and 86Sr is a stable isotope. This ratio is dependent of the local geology: the type of rock 

and its age are the main parameters influencing it and the measured values in animal teeth –

or other tissues– directly reflects the bioavailable Sr in soils where their food comes from 

(Bentley, 2006). When studying human mobility, local plants and/or animals are first collected 

and analyzed to identify the isotope values of the bioavailable Sr in the region of interest. One 

can then see if an individual of interest spent its childhood at the found place, and if not, what 

is the closest location where it could have come from. Recent major advancements in 

isoscapes (geographical map of an isotope distribution), using small and large scale 

measurements of Sr isotope variability and machine learning models, have helped develop a 

precise idea of expected Sr isotope ratios in Western Europe and Israel (Willmes et al., 2014, 

2018; Bataille et al., 2018; Snoeck et al., 2020; Kootker et al., 2016; Britton et al., 2020). Teeth 

are the material of choice because dental enamel is resistant to diagenesis. Therefore, Sr 

isotope studies reveal the foraging mobility of children, since enamel is not renewed through 

life, or that of their food providers.  

 The first application of Sr isotopes for reconstructing Neanderthal mobility involved a 

40 000 year old individual from the site of Lakonis, in Greece (Richards et al., 2008a). The 



enamel analyzed was formed when the Neanderthal was between 7 and 9 years old. The tooth 

values were more elevated than that of the local soil, and the closest location with such a 

value was about 20 km away. Following studies have reported similar observations : Benson 

et al. (2013) showed that a Neanderthal from Moula-Guercy, France, dating from the end of 

MIS 5 to the beginning of MIS6 (Willmes et al., 2016),  had a more elevated Sr isotope value 

than the local one, which would suggest that they  had moved from at least 50 km away since 

childhood. In a communication, Pike et al. (2016) also describe the mobility of Neanderthals 

(~35.000 and ~70.000 BP) between 6 areas located in a range of 30 km around the site, but 

without seasonal occupation patterns, in the region of Gruta da Oliveira, Portugal. Finally, a 

recent study documented the absence of mobility for three Neanderthals of the Nadale 1, 

Riparo Broion and Fumane sites (Italy). The teeth analyzed were deciduous, which would 

suggest the absence of mobility during the pregnancy of their mothers (Nava et al. 2020). 

Another study performed on the same site and one of the teeth analyzed by Nava et al 

confirmed this conclusion and reinforced it by adding baseline data of the regions obtained 

on plants and common vole teeth (M. P. Richards et al. accepted). 

These analyses were performed using laser ablation3, a technique which is not always 

considered reliable for Sr isotopes (Nowell and Horstwood, 2009). However, different ways 

have been found to correct those potential analytical biases (Lugli et al., 2017b; Nowell and 

Horstwood, 2009; Horstwood et al., 2008; Willmes et al., 2016). Using one of the correction 

methods, Lugli et al., (2017a) studied the deciduous incisor  of a Middle Pleistocene individual 

from Isernia La Pineta. Given the fact that this tooth is formed in utero, the results suggests 

that the woman who carried this child did not move for at least several months during her 

pregnancy. Using another correction method, Moncel et al. (2019) studied three Neanderthals 

from Payre, France. Two Neanderthals from the same layer (G) show Sr isotope ratios 

compatible with that of sediments from the Rhone Valley, where the site is located. The ratios 

of the third Neanderthal (layer F), however, indicate that it could have originating from the 

higher limestone plateaus. Those conclusions are in agreement with C and O isotope analyses, 

which allowed the identification of different ranges for the herbivores hunted in those two 

regions (Ecker et al., 2013), as well as dental micro wear data which suggested shorter 

																																																								
3	Laser	ablation	is	a	technique	consisting	in	removing	material	from	a	solid	(here	teeth)	through	
irradiation	using	a	laser	beam.	The	removed	material	is	then	transported	and	analyzed	in	a	mass	
spectrometer	in	order	to	obtain	isotope	ratios.	The	technique	is	considered	“quasi	
nondestructive”	as	it	only	destroys	small	areas	of	the	teeth	(<1mm).			



occupation times for Neanderthals from layer F compared to those of layer G (Rivals et al., 

2009). 

 In addition to direct measurements on hominin teeth, Sr isotope studies have 

sometimes been conducted on the fauna that they were hunting (e.g., Kelly et al., 2007). For 

instance, Britton et al. (2011) observed, using sequential measurement in teeth at Jonzac, 

France, that reindeer were seasonally migrating, that they were from the same herd due to 

the resemblance of the observed patterns between individuals, and that they were all killed 

over a short period of time. Those observations suggested a seasonal occupation by 

Neanderthals at the site where they were found. Hartman et al. (2015) also studied the 

evolution of Sr isotope ratios in gazelle teeth in different layers of Amud Cave, Israel. They 

linked the isotopic shift observed in animals to a change in the hunting territories of 

Neanderthals over time as they responded to climate changes. 

 Whatever technique is used, all these results seem to indicate that Neanderthals 

were, in general, mobile over the course of their lives, on a distance of several dozens of 

kilometers at least. Interestingly, the two sites where mobility was not indicated through S 

(Spy) or Sr isotopes (Payre, layer G) correspond to sites without any trace of cannibalism, 

whereas the sites showing clear mobility (Goyet and Moula-Guercy) are sites with evident 

proofs of this practice. No mobility was also detected in Fumane (Nava et al. 2020, Richards 

et al. in press) but the analysed teeth were formed In utero or during breastfeeding period, 

and therefore during or shortly after the pregnancy of the Neanderthals ‘ mothers. More 

results are needed to confirm those trends, but many Sr isotope data are currently 

unpublished due to the increased concern surrounding laser ablation data precision.  

 

4.2. Dental microwear and microwear, dietary traits, and tooth-use in Neanderthals  

 

Molar macrowear is a long term proxy that forms during the lifespan of an individual and thus 

reflects diet over long periods of time. It is analysed using occlusal fingerprint analysis derived 

from optical 3D topometry (Fiorenza et al., 2011). The analysis of dental microwear patterns 

is used as a high-resolution proxy to infer Neanderthal dietary traits. Tooth microwear has a 

high turnover rate, i.e., the wear pattern changes quickly when new food items are consumed, 

and it reflects a snapshot of diet over a short period before death (Grine, 1986). Dental 

microwear reveals diet but specific patterns of anterior tooth wear observed in Neanderthals 



can be the result of paramasticatory activities i.e., the use of teeth as tools (e.g., Spencer and 

Demes, 1993). 

 

Dental microwear and dietary variability in Neanderthals 

 

The analysis of dental microwear in Neanderthal populations from Europe indicates significant 

eco-geographic variation in the dietary traits. Populations from Mediterranean evergreen 

habitats a show a high variability in dietary traits in comparisons to the narrow dietary breadth 

observed in population that lived in steppe/coniferous forest environments in Northern 

Europe (Fiorenza et al., 2011). 

 

Dental microwear and dietary traits in Neanderthals 

 

The first studies of microwear and dietary traits in Neanderthals were focusing on the analysis 

of the buccal (non-occlusal) microwear patterns on microphotographs obtained through a 

Scanning Electron Microscope (Lalueza-Fox et al., 1996; Pérez-Pérez et al., 2003). A new 

approach to dental microwear analysis has been introduced by Ungar et al. (2003). This 

technique uses confocal microscopy and scale-sensitive fractal analyses to quantitatively 

study the microwear features. Dental microwear texture analysis has been successfully 

applied to Neanderthal dental remains (El Zaatari, 2007; Karriger et al., 2016; Estalrrich et al., 

2017; Krueger et al., 2017; Williams et al., 2018, 2019; Droke et al., 2020). 

Since the end of the 2000s, there has been a growing body of data suggesting that 

Neanderthals did not have a diet exclusively based on meat. Recent studies based on 

microwear texture analysis show that Neanderthals had complex and diverse diets, which 

varied across space and through time (El Zaatari, 2007; Droke et al., 2020). The Neanderthals 

from the southern latitudes, i.e., in the Mediterranean area, had a diet that included meat but 

also significant amounts of plants yet relatively few hard items such as seeds and nuts (El 

Zaatari, 2007; El Zaatari et al., 2011; Karriger et al., 2016; Droke et al., 2020). In contrast, the 

diet of Neanderthals in northern Europe was made of softer items, including meat and plant 

foods. Dental microwear texture analysis also permitted the identification of differences 

between sexes (Estalrrich et al., 2017) and among age groups (Pinilla Pérez et al., 2011) in 

Neanderthal populations. 

 

Dental microwear and non-dietary anterior tooth-use behaviour and activities 



 

Evidence of non-dietary scratches on the labial surfaces of the anterior teeth in Neanderthals 

has been reported since the beginning of the 20th century. These scratches were first observed 

on an incisor from La Quina (Henri-Martin, 1923), and later they were identified on other 

Neanderthal individuals (Koby, 1956; Patte, 1960; de Lumley, 1973; Trinkaus, 1983; de Castro 

et al., 1988; Lalueza-Fox, 1992). These studies provided evidence for the use of teeth as tools 

related to two types of activities: 1) some scratches, on the labial and occlusal side of the 

teeth, are related to the action of grasping materials between teeth; 2) other scratches, 

located in the centre of the labial surface, correspond to cutmarks produced when stone tools, 

involved in processing materials held between the anterior teeth, came into contact with the 

labial enamel face. The orientation of these scratches permitted the recognition of 

handedness and indicated that right-handedness is the dominant pattern in 90% of 

Neanderthals (Lalueza-Fox and Frayer, 1997). Activities are also related to the habitats where 

Neanderthals lived (see also Chap. 3). Recent advances in microscopy techniques, such as the 

use of confocal profilers, to analyse tooth microwear patterns are permitting new 

interpretations to be reached. Neanderthals from closed-habitats had highly diverse anterior 

tooth-use behaviours and exploited a wider variety of plant and animal resources than did 

those from open habitats (Krueger et al., 2017). As no differences in microwear were found 

between Neanderthals and early modern humans, it is hypothesized that they performed the 

same activities using their anterior teeth (Krueger et al., 2019). 

 

 

5. Final remarks 

The methodological advances of the past three decades have been decisive in deciphering the 

phylogeny, diet, mobility, age of Neanderthal fossils and to place these hominins more 

precisely in their chronological, environmental and evolutionary context. This trend does not 

seem to come to an end, as witnessed by pioneering works on the application of new isotopic 

tracers, such as those of calcium (Dodat et al., 2021), and zinc, if issues with diagenetic 

alteration can be sorted out for specimens as old as Neanderthals (Jaouen, 2018). Aspects of 

the life history of Neanderthals could be addressed using intra-tooth high resolution analysis 

of trace elements such as barium to track suckling and weaning (e.g. Austin et al., 2013). 

Single-compound isotopic analyses of organic molecules such as collagen have started to help 



answering questions about plant consumption (e.g. Naito et al., 2016) and will certainly 

develop further in the near future.  

Among the most recent breakthroughs in biomolecular approaches applied to Neanderthals, 

the possibility to detect and make genomic analyses of hominin ancient DNA in cave site 

sediments. This approach opens a wide range of possibilities for identify which hominins 

occupied sites where no skeletal fossils have been found and even reconstruct population 

history in the site (e.g. Vernot et al., 2021). Additionally, palaeoproteomics is emerging as an 

additional source of phylogenetic sequence information in cases where ancient DNA does not 

survive (Welker et al., 2020). 

Another promising way of deciphering Neanderthal diet beyond their protein fraction is the 

palaeogenetic analysis of their oral microbiome. A recently published study by Fellows Yates 

et al. (2021) has shown that Neanderthals arbored in their mouths bacteria that help to digest 

starches, similarly to modern humans, suggesting that feeding on energy-rich sugars from 

plants was already performed by Neanderthals.  

Technical developments in the various fields covered in this chapter have already been 

instrumental in shedding light on the life and history of Neanderthals. These methodologies, 

along with others that will certainly be brought forward in the next years, are likely to keep 

contributing valuable information, as we continue our quest to elucidate the mysteries of the 

past.  
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Figure captions 

 

Figure 15.1: Schematic overview of the approaches described in this chapter and their 

implications. 

 



 

Figure 15.2: The differences between IntCal13 in green and IntCal20 in purple. The spread of 

Homo sapiens (blue rows) and Neanderthals (red zone) on a geographical map. 

 

	

	


