Pierre Clairambault 
email: pierre.clairambault@cnrs.fr
  
Federico Olimpieri 
email: f.olimpieri@leeds.ac.uk
  
Hugo Paquet 
email: paquet@lipn.univ-paris13.fr
  
From Thin Concurrent Games to Generalized Species of Structures

come   L'archive ouverte pluridisciplinaire

I. INTRODUCTION

The discovery of linear logic has had a deep influence on programming language semantics. The linear analysis of resources provides a refined perspective that leads, for instance, to important notions of program approximation [START_REF] Barbarossa | Taylor subsumes scott, berry, kahn and plotkin[END_REF] and differentiation [START_REF] Ehrhard | The differential lambda-calculus[END_REF]. Denotational models for higher-order programming languages can be constructed from this resourceaware perspective, exploiting the fact that every model of linear logic is also a model of the simply-typed λ-calculus.

In this paper, we clarify the relationship between two denotational models that arise in this way:

• Thin concurrent games, a framework for game semantics introduced by Castellan, Clairambault, and Winskel [START_REF] Castellan | Thin games with symmetry and concurrent hyland-ong games[END_REF], in which programs are modelled as concurrent strategies. • Generalized species of structures, a combinatorial model developed by Fiore, Gambino, Hyland, and Winskel [START_REF] Fiore | The cartesian closed bicategory of generalised species of structures[END_REF], in which programs are interpreted as categorical distributors (or profunctors) over groupoids. We carry out this comparison in a two-dimensional setting also including morphisms between strategies and morphisms between distributors. In the language of bicategory theory, our first key contribution is an oplax functor of bicategories games, strategies and maps groupoids, distributors and natural transformations [START_REF] Barbarossa | Taylor subsumes scott, berry, kahn and plotkin[END_REF] which shows, in particular, that the symmetries of a strategy can be explained using groupoid actions.

A. Static and dynamic models

This work fits in a long line of research on the relationship between static and dynamic denotational models.

In a static model, programs are represented by their input/output behaviour, or by collecting representations of completed executions. The simplest example is given by the category of sets and relations: this is the relational model of linear logic ( §II-A or [START_REF] Girard | Linear logic[END_REF]). In a dynamic model, programs are represented by their interactive behaviour with respect to every possible execution environment. This includes game semantics ( [START_REF] Hyland | On full abstraction for PCF: i, ii, and III[END_REF], [START_REF] Abramsky | Full abstraction for PCF[END_REF]), which has proved incredibly proficient at modelling various computational features or effects ( [START_REF] Abramsky | A fully abstract game semantics for general references[END_REF], [START_REF] Laird | Full abstraction for functional languages with control[END_REF], [START_REF] Ghica | Angelic semantics of fine-grained concurrency[END_REF]).

To illustrate the difference, the identity at type 1 ⊸ 1 in game semantics is a strategy that represents an exchange of information between the program and its environment:

1 ⊸ 1 ⊢ 1 ⊸ 1
In contrast, in the relational model, 1 ⊸ 1 is a one-element set containing a single input/output pair. The identity relation over it can be seen as a collapsed version of the strategy above:

1 ⊸ 1 ⊢ 1 ⊸ 1 , ,
This suggests a simple equation game semantics = relational model + time , so that going from game semantics to the relational model is a simple matter of forgetting the temporal order of execution. But this naive intuition hides a fundamental difference between the composition mechanisms in static and dynamic models: strategies may deadlock, while relations cannot. More precisely, in game semantics, two strategies can synchronize by performing the same actions in the same order, whereas in the collapsed version, only the actions matter and not the order. Thus, as was quickly established [START_REF] Baillot | Timeless games[END_REF], one cannot simply forget time in a functorial way, and composition is usually only preserved in an oplax manner, as in [START_REF] Barbarossa | Taylor subsumes scott, berry, kahn and plotkin[END_REF].

Static collapses of game semantics require an adequate notion of position for a game. This is difficult to define in traditional game semantics, but very natural with concurrent games, because we can look at configurations of the underlying event structure ( §III-A, see also [START_REF] Melliès | Asynchronous games 2: The true concurrency of innocence[END_REF], [START_REF]Asynchronous games 4: A fully complete model of propositional linear logic[END_REF]).

The subtle relationship between static and dynamic models was refined by many authors over two decades ([13], [START_REF] Boudes | Thick subtrees, games and experiments[END_REF], [START_REF] Calderon | Understanding game semantics through coherence spaces[END_REF], [START_REF] Tsukada | Plays as resource terms via non-idempotent intersection types[END_REF]), to identify settings in which functoriality can be restored. Leveraging this, we show (in §V) how the oplax functor [START_REF] Barbarossa | Taylor subsumes scott, berry, kahn and plotkin[END_REF] can be strictified to a pseudofunctor, that preserves composition up to isomorphism.

B. Proof-relevant models and symmetries

Our aim here is to take the static-dynamic relationship to a new level that takes into account the symmetries of resource usage. Symmetry plays an important role in game semantics ( §IV, or [START_REF] Abramsky | Full abstraction for PCF[END_REF], [START_REF] Melliès | Asynchronous games 2: The true concurrency of innocence[END_REF], [START_REF] Castellan | Symmetry in concurrent games[END_REF], [START_REF] Paquet | Bi-invariance for uniform strategies on event structures[END_REF]), but so far connections only exist with static models whose symmetries are implicit or quotiented, like in the relational model. We argue that generalized species, which represent combinatorial structures in terms of their symmetries, provide a convenient target for a static collapse of thin concurrent games.

The two models we consider are "proof-relevant" [START_REF] Kerinec | Why are proofs relevant in proof-relevant models?[END_REF], in the sense that the interpretation of a program provides, for each possible execution, a set of proofs or witnesses that this execution can be realized. This high degree of intensionality is useful for modelling languages with non-deterministic features [START_REF] Tsukada | Nondeterminism in game semantics via sheaves[END_REF], [START_REF] Castellan | The concurrent game semantics of probabilistic PCF[END_REF]. In a proof-relevant model, symmetries arise naturally in the linear duplication of witnesses. In §II-B we discuss the limitations of a proof-relevant model without symmetries.

Proof-relevant models are naturally organized into bicategories: programs are interpreted as structured objects (e.g. strategies or distributors) which themselves support a notion of morphism. By constructing functors of bicategories we clarify the relationship at the two-dimensional level.

C. Bicategorical models of the λ-calculus

To motivate this further, we note that the two-dimensional and proof-relevant aspects are significant on the syntactic side. The interpretation of λ-terms in generalized species has a presentation in terms of an intersection type system [START_REF] Olimpieri | Intersection type distributors[END_REF], that takes into account the symmetries and can be exploited to characterize computational properties and equational theories of the λ-calculus [START_REF] Kerinec | Why are proofs relevant in proof-relevant models?[END_REF]. More generally, the structural 2-cells in a cartesian closed bicategory have a syntactic interpretation as βη-rewriting steps in the simply-typed λ-calculus ( [START_REF] Fiore | A type theory for cartesian closed bicategories (extended abstract)[END_REF], [START_REF] Seely | Modelling computations: A 2-categorical framework[END_REF]).

In §V we connect to this line of work by constructing a cartesian closed pseudofunctor, which preserves the semantics of λ-terms in both typed and untyped settings.

D. Outline of the paper and key contributions

Review of static models: In §II we recall static semantics, including a bicategory PRRel of proof-relevant relations, and a bicategory Dist of distributors. One can view PRRel as the sub-model of Dist with no symmetries, so there is an embedding PRRel → Dist. The bicategory Esp of generalized species is defined in terms of Dist.

Collapsing concurrent games to static models: In §III we introduce the bicategory CG of "plain" concurrent games without symmetries, and we show that a collapse operation gives an oplax functor CG → PRRel (Theorem 2).

Then in §IV we add symmetry: we define the bicategory TCG of thin concurrent games, with CG → TCG as the sub-model with no symmetries. We show that every strategy has a distributor of positive witnesses (Proposition 4), and that this extends to an oplax functor TCG → Dist (Theorem 3).

Thus we have the following situation: no symmetries symmetries dynamic CG TCG static

PRRel Dist

Cartesian closed structure and the λ-calculus: In §V we introduce a refined version of TCG called Vis, using methods from game semantics: payoff ( [START_REF]Asynchronous games 4: A fully complete model of propositional linear logic[END_REF], [START_REF] Clairambault | Full abstraction for the quantum lambda-calculus[END_REF]) and visible strategies [START_REF] Castellan | Disentangling parallelism and interference in game semantics[END_REF]. Roughly speaking, this is to ensure that the composition of strategies yields no deadlocks and this behaves like that of distributors. Thus we obtain a pseudofunctor

Vis -→ Dist ( Theorem 4) 
and by also refining our categorical structure with a relative pseudo-comonad, we derive a cartesian closed pseudofunctor Vis ! → Esp (Theorem 7). We apply this result to the semantics of untyped λ-calculus: we build a reflexive object in Vis and show that, under our pseudofunctor, this is sent to an extensional, categorifed graph model D * in Esp [START_REF] Kerinec | Why are proofs relevant in proof-relevant models?[END_REF].

II. A TOUR OF STATIC SEMANTICS

In this section we present three static models: the basic relational model Rel ( §II-A), a proof-relevant version of it which we call PRRel ( §II-B), and the model Dist of groupoids and distributors ( §II-C).

A. The relational model of linear logic

We start with the relational model, which gives a denotational interpretation in the category Rel of sets and relations. A type A is interpreted as a set A , and a program ⊢ M : A is interpreted as a subset M ⊆ A . The set A is often called the web of A, and we think of its elements as representations of completed program executions. The subset M contains the executions that the program M can realize.

Example 1. The ground type for booleans is interpreted as B = {tt, ff }, and the constant ⊢ tt : B as tt = {tt}.

The interpretation of a program M is computed compositionally, following the methodology of denotational semantics, using the categorical structure we describe below.

1) Basic categorical structure: The category Rel is defined to have sets as objects, and as morphisms the relations from A to B, i.e. the subsets R ⊆ A × B, with the usual notions of identity and composition for relations. Its monoidal product is the cartesian product of sets.

If R i ∈ Rel[A i , B i ] for i = 1, 2, then the relation R 1 × R 2 ∈ Rel[A 1 × A 2 , B 1 × B 2 ] is defined to contain the pairs ((a 1 , a 2 ), (b 1 , b 2 )) with (a i , b i ) ∈ R i . The unit I is a fixed singleton set, say { * }. This monoidal structure is closed, with linear arrow A ⊸ B = A × B.
Moreover Rel has finite cartesian products: the product of sets A and B is given by the disjoint union A + B = {1} × A ⊎ {2} × B, and the empty set is a terminal object.

2) The exponential modality: The exponential modality of Rel is based on finite multisets. If A is a set, we write M(A) for the set of finite multisets on A. To denote specific multisets we use a list-like notation, as in e.g. [0, 1, 1] ∈ M(N).

Given a set A, its bang !A is the set M(A). This extends to a comonad ! on Rel, satisfying the required conditions for a model of intuitionistic linear logic: the Seely isomorphisms

M(A + B) ∼ = M(A) × M(B) M(∅) ∼ = I
make ! a symmetric monoidal functor from (Rel, +, ∅) to (Rel, ×, I), satisfying a coherence axiom [27, §7.3]. From this, we obtain that the Kleisli category Rel ! is cartesian closed and thus a model of the simply-typed λ-calculus.

3) Conditionals and non-determinism: The category Rel ! also supports further primitives in a call-by-name setting. As a further example, Rel supports the interpretation of non-deterministic computation: consider ⊢ choice : B a nondeterministic primitive that may evaluate to either tt or ff . Then we can set choice = {tt, ff } so that we have if choice then tt else tt = {tt} .

(

) 2 
The relational model is a cornerstone of static semantics, and the foundation of many recent developments in denotational semantics [START_REF] Bucciarelli | Not enough points is enough[END_REF], [START_REF] Carvalho | Execution time of λ-terms via denotational semantics and intersection types[END_REF], [START_REF] Laird | Weighted relational models of typed lambda-calculi[END_REF]. In this paper we are concerned with its proof-relevant extensions -roughly speaking, one motivation is to keep separate different execution paths that lead to the same value, as with value tt in (2).

B. Proof-relevant relations

To showcase this, we consider a notion of proof-relevant relation between sets (e.g. [START_REF] Girard | Normal functors, power series and λ-calculus[END_REF], [START_REF] Gambino | On operads, bimodules and analytic functors[END_REF]). The idea is to record not only the executions that a program may achieve, but also the distinct ways in which each execution is realized. We replace relations M ⊆ A × B with proof-relevant relations

M : A × B → Set ,
so that each point of the web has an associated set of witnesses. In this model, if choice then tt else tt (tt) from (2) should be a set { * 1 , * 2 } containing two witnesses, because there are two possible paths to the value tt.

Formally, the model is organized as a categorical structure with sets as objects, functors α : A × B → Set (with A × B viewed as a discrete category) as morphisms, composed with

(β • α)(a, c) = b∈B α(a, b) × β(b, c) (3) 
and with identity morphisms given by id A (a, a ′ ) = { * } if a = a ′ and empty otherwise 1 . An important observation is that this does not form a category. Categorical laws are only isomorphisms, with for instance

(id B •α)(a, b) = α(a, b)×{ * } ∼ = α(a, b)
. We obtain a bicategory: a two-dimensional structure incorporating 2-cells -morphisms between morphisms -with categorical laws holding only up to coherent invertible 2-cells.

We call this bicategory PRRel. This model shares (in a bicategorical sense) much of the structure of Rel, and may be used to interpret e.g. the linear λ-calculus. We use PRRel as a static collapse of a basic dynamic model in §III-C.

Limitations of a proof-relevant model without symmetry: Unfortunately, the finite multiset functor on Rel does not seem to extend to PRRel. Intuitively, the objective of keeping track of individual execution witnesses is in tension with the quotient involved in constructing finite multisets, which blurs out the identity of individual resource accesses. 2 Proofrelevant models that do support an exponential modality do so by replacing finite multisets with a categorification, such as finite lists related by explicit permutations -symmetries.

C. Distributors and generalized species of structures

Distributors are symmetry-aware proof-relevant relationshere we consider distributors on groupoids, i.e. small categories in which every morphism is invertible.

1) The bicategory of groupoids and distributors: If A and B are groupoids, a distributor from A to B (also known as a profunctor or bimodule) is a functor

α : A op × B → Set .
Thus, for every a ∈ A and b ∈ B we have a set α(a, b) of witnesses, but unlike in PRRel we also have symmetries, in the form of an action by morphisms in A and

B. If x ∈ α(a, b) and g ∈ B(b, b ′ ), we write g • x for the functorial action α(id, g)(x) ∈ α(a, b ′ ). Similarly, if f ∈ A(a ′ , a), we write x • f ∈ α(a ′ , b) for α(f, id). The actions must commute, so we can write g • x • f for (g • x) • f = g • (x • f ) ∈ α(a ′ , b ′ ).
We define a bicategory Dist with groupoids as objects, distributors as morphisms, and natural transformations as 2cells ( [START_REF] Yoneda | On ext and exact sequences[END_REF], [START_REF] Bénabou | Les distributeurs[END_REF]). The identity distributor on A is

id A = A[-, -] : A op × A → Set ,
the hom-set functor. The composition of two distributors α : A op × B → Set and β : B op × C → Set is obtained as a categorified version of (3), defined in terms of a coend:

(β • α)(a, c) = b∈B α(a, b) × β(b, c) .
Concretely, (β • α)(a, c) consists in pairs (x, y), where x ∈ α(a, b) and y ∈ β(b, c) for some b ∈ B, quotiented by

(g • x, y) ∼ (x, y •g) for x ∈ α(a, b), g ∈ B(b, b ′ ) and y ∈ β(b ′ , c).
The bicategory Dist has a symmetric monoidal structure given by the cartesian product A × B of groupoids, extended pointwise to distributors. There is a closed structure given by A ⊸ B = A op × B. Finally, Dist has cartesian products given by the disjoint union A + B of groupoids.

2) The exponential modality: In this model with explicit symmetries, the exponential modality is not given by finite multisets, but instead by finite lists with explicit permutations. Definition 1. For a groupoid A, there is a groupoid Sym(A) with as objects the finite lists (a 1 . . . a n ) of objects of A, and as morphisms (a 1 . . . a n ) -→ (a ′ 1 . . . a ′ m ) the pairs (π, (f i ) 1≤i≤n ), where π : {1, . . . , n} ∼ = {1, . . . , m} is a bijection and f i ∈ A(a i , a ′ π(i) ) for each i = 1, . . . , n. More abstractly, Sym(A) is the free symmetric (strict) monoidal category over A. This extends to a pseudo-comonad on Dist, where pseudo means that the comonad laws only hold up to coherent invertible 2-cells [START_REF] Fiore | The cartesian closed bicategory of generalised species of structures[END_REF], [START_REF] Lack | A coherent approach to pseudomonads[END_REF].

3) Generalized species of structures: The Kleisli bicategory Dist Sym is denoted Esp, and the morphisms in Esp are called generalized species of structures [START_REF] Fiore | The cartesian closed bicategory of generalised species of structures[END_REF]. Concretely, Esp has the same objects as Dist; morphisms are generalized species 3 , defined as distributors from Sym(A) to B; and 2cells are natural transformations. Equipped with

Sym(A + B) ≃ Sym(A) × Sym(B)
Sym(∅) ≃ I the Seely equivalences, Dist is a bicategorical model of linear logic. In particular, the bicategory Esp is cartesian closed. Any functor

F : A → B determines a pair of (adjoint) species F ∈ Esp[A, B] and q F ∈ Esp[B, A], defined as F ((a 1 , . . . , a n ), b) = Sym(B)((F (a 1 ), . . . , F (a n )), (b)) and q F ((b 1 , . . . , b n ), a) = Sym(B)((b 1 , . . . , b n ), (F (a))).
4) Relationship with PRRel: Distributors conservatively extend the proof-relevant relations of §II-B: if we regard sets as discrete groupoids, we get an embedding PRRel → Dist that preserves the symmetric monoidal closed structure and the cartesian structure. Explicit symmetries appear essential in defining an exponential modality in a proof-relevant model: even when A is a discrete groupoid, Sym(A) is not discrete.

III. CONCURRENT GAMES AND STATIC COLLAPSE

We now construct a dynamic model based on concurrent games and strategies, without symmetries. We show that it has a static collapse in the model PRRel introduced in §II-B.

A. Rudiments of concurrent games

Game semantics presents computation in terms of a twoplayer game: Player plays for the program under scrutiny, while Opponent plays for the execution environment. So a program is interpreted as a strategy for Player, and this strategy is constrained by a notion of game, specified by the type. The framework of concurrent games ( [START_REF] Melliès | Asynchronous games: Innocence without alternation[END_REF], [START_REF] Faggian | Partial orders, event structures and linear strategies[END_REF], [START_REF] Rideau | Concurrent strategies[END_REF]) is not merely a game semantics for concurrency, but a deep reworking of the basic mechanisms of game semantics using causal "truly concurrent" structures from concurrency theory [START_REF] Nielsen | Petri nets, event structures and domains[END_REF].

1) Event structures: Concurrent games and strategies are based on event structures. An event structure represents the behaviour of a system as a set of possible computational events equipped with dependency and incompatibility constraints.

Definition 2. An event structure (es) is E = (|E|, ≤ E , # E ),
where |E| is a (countable) set of events, ≤ E is a partial order called causal dependency and # E is an irreflexive symmetric binary relation on |E| called conflict, satisfying:

(1) ∀e ∈ |E|, [e] E = {e ′ ∈ |E| | e ′ ≤ E e} is finite, (2) ∀e 1 # E e 2 , ∀e 2 ≤ E e ′ 2 , e 1 # E e ′ 2 .
Operationally, an event can occur if all its dependencies are met, and no conflicting events have occurred. A finite set x ⊆ f |E| down-closed for ≤ E and comprising no conflicting pair is called a configuration -we write C (E) for the set of configurations on E, naturally ordered by inclusion. If x ∈ C (E) and e ∈ |E| is such that e ̸ ∈ x but x ∪ {e} ∈ C (E), we say that e is enabled by x and write x ⊢ E e. For e 1 , e 2 ∈ |E| we write e 1 E e 2 for the immediate causal dependency, i.e. e 1 < E e 2 with no event strictly in between.

There is an accompanying notion of map: a map of event structures from E to F is a function f : |E| → |F | such that: (1) for all x ∈ C (E), the direct image f x ∈ C (F ); and

(2) for all x ∈ C (E) and e, e ′ ∈ x, if f e = f e ′ then e = e ′ . There is a category ES of event structures and maps.

2) Games and strategies: Throughout this paper, we will gradually refine our notion of game. For now, a plain game is simply an event structure A together with a polarity function pol A : |A| → {-, +} which specifies, for each event a ∈ A, whether it is positive (i.e. due to Player / the program) or negative (i.e. due to Opponent / the environment). Events are often called moves, and annotated with their polarity.

A strategy is an event structure with a projection map to A: Definition 3. Consider A a plain game. A strategy on A, written σ : A, is an event structure σ together with a map ∂ σ : σ → A called the display map, satisfying:

(1) for all x ∈ C (σ) and

∂ σ x ⊢ A a -, there is a unique x ⊢ σ s such that ∂ σ s = a. (2) for all s 1 σ s 2 , if pol A (∂ σ (s 1 )) = + or pol A (∂ σ (s 2 )) = -, then ∂ σ (s 1 ) A ∂ σ (s 2 ).
Informally, the two conditions (called receptivity and courtesy) ensure that the strategy does not constrain the behaviour of Opponent any more than the game does. They are essential for the bicategorical structure we describe below [START_REF] Castellan | Games and strategies as event structures[END_REF], but they do not play a major role in this paper.

As a simple example, the usual game B for booleans is q tt ff drawn from top to bottom (Player moves are blue, and Opponent moves are red): Opponent initiates computation with the first move q, to which Player can react with either tt or ff . The wiggly line indicates that tt and ff are in conflict.

Strategies are proof-relevant, in the sense that moves of the game can have multiple witnesses in the strategy. For example, on the left below, b and c are mapped to the same move tt:

a b c q tt ff =: q tt tt
Note that we denote immediate causality by in strategies, while we use dotted lines for games. This lets us represent the strategy in a single diagram, as on the right above.

3) Morphisms between strategies: For σ and τ two strategies on A, a morphism from σ to τ , written f : σ ⇒ τ , is a map of event structures f : σ → τ preserving the dependency relation ≤ (we say it is rigid) and s.t.

∂ τ • f = ∂ σ .
4) +-covered configurations: We now describe a useful technical tool: a strategy is completely characterized by a subset of its configurations, called +-covered.

For a strategy σ on a game A, a configuration x ∈ C (σ) is +-covered if all its maximal events are positive, so every Opponent move has at least one Player successor. We write C + (σ) for the partial order of +-covered configurations of σ.

Lemma 1. Consider a plain game A, and strategies σ, τ : A.

If f : C + (σ) ∼ = C + (τ ) is an order-isomorphism such that ∂ τ • f = ∂ σ , then there is a unique isomorphism of strategies f : σ ∼ = τ such that for all x ∈ C + (σ), f (x) = f (x).

B. A bicategory of concurrent games and strategies

We now define our bicategory of concurrent games. 1) Strategies between games: If A is a plain game, its dual A ⊥ has the same components as A except for the reversed polarity. In particular C (A) = C (A ⊥ ). The tensor A ⊗ B of A and B is simply A and B side by side, with no interactionits events are the tagged disjoint union |A ⊗ B| = |A| + |B| = {1}×|A|⊎{2}×|B|, and other components inherited. We write x A ⊗ x B for the configuration of A ⊗ B that has x A ∈ C (A) on the left and x B ∈ C (B) on the right, so

-⊗ -: C (A) × C (B) ∼ = C (A ⊗ B).
Finally, the hom A ⊢ B is A ⊥ ⊗ B; as above its configurations are denoted Our first example of a strategy between games is the copycat strategy c c A , which is the identity morphism on A in our bicategory. Concretely, copycat on A has the same events as A ⊢ A, but adds immediate causal links between copies of the same move across components. By Lemma 1, the following characterizes copycat up to isomorphism.

x A ⊢ x B for x A ∈ C (A) and x B ∈ C (B). Definition 4. A strategy from A to B is a strategy on the game A ⊢ B. If σ : A ⊢ B and x σ ∈ C (σ), by convention we write ∂ σ (x σ ) = x σ A ⊢ x σ B ∈ C (A ⊢ B). U ⊸ U q q ✓ ✓ U ⊸ U ⊢ N q q q ✓ ✓ 0
Proposition 1. If A is a game, there is an order-isomorphism c c (-) : C (A) ∼ = C + ( c c A ) such that for all x ∈ C (A), ∂ c c A ( c c x ) = x ⊢ x.
2) Composition: Consider σ : A ⊢ B and τ : B ⊢ C. We define their composition τ ⊙ σ : A ⊢ C. This is a dynamic model, and to successfully synchronize, σ and τ must agree to play the same events in the same order.

We say that configurations x σ ∈ C (σ) and x τ ∈ C (τ ) are

• matching, if they reach the same configuration on B, i.e.

x σ B = x τ B = x B ; and • causally compatible if, additionally, the synchronization is deadlock-free, in the sense that combining the causal dependencies in x σ and x τ gives an acyclic relation [START_REF] Castellan | Games and strategies as event structures[END_REF]. We illustrate a deadlock situation in Figure 1. The composition of σ and τ is a strategy whose +-covered configurations are causally compatible pairs of +-covered configurations. Write CC(σ, τ ) for the set of causally compatible pairs

(x σ , x τ ) ∈ C + (σ) × C + (τ ), ordered componentwise.

Proposition 2 ([26]

). There is a strategy τ ⊙ σ : A ⊢ C, unique up to isomorphism, with an order-isomorphism

-⊙ -: CC(σ, τ ) ∼ = C + (τ ⊙ σ) s.t. for all x σ ∈ C + (σ) and x τ ∈ C + (τ ) causally compatible, ∂ τ ⊙σ (x τ ⊙ x σ ) = x σ A ⊢ x τ C .
This description of composition emphasizes the conceptual difference between a static model, in which composition is based on matching pairs as in [START_REF] Castellan | Thin games with symmetry and concurrent hyland-ong games[END_REF], and a dynamic model, based on causal compatibility and sensitive to deadlocks.

Theorem 1. There is a bicategory CG with: objects, plain games; morphisms from A to B, strategies on A ⊢ B; and 2-cells, morphisms between strategies.

C. A static collapse of concurrent games

We describe an oplax functor ∥-∥ : CG → PRReloplax because composition is not preserved: instead we have a coherent, non-invertible 2-cell ∥τ ⊙ σ∥ → ∥τ ∥ • ∥σ∥ which embeds the causally compatible pairs into the matching pairs.

The image of a plain game A is the set C (A). To a strategy σ : A ⊢ B, we associate the proof-relevant relation

∥σ∥(x A , x B ) = {x σ ∈ C + (σ) | ∂ σ (x σ ) = x A ⊢ x B }
and to f : σ ⇒ σ ′ we associate the function which to any

x σ ∈ ∥σ∥(x A , x B ) associates f (x σ ) ∈ ∥σ ′ ∥(x A , x B ).
Proposition 1 induces an isomorphism of ∥ c c A ∥ with the identity proof-relevant relation. From Proposition 2 we obtain a function ∥τ ⊙ σ∥ → ∥τ ∥ • ∥σ∥, not invertible in general because some matching pairs are not causally compatible.

Theorem 2. The above data determines an oplax functor of bicategories ∥-∥ : CG → PRRel.

In summary, we can regard CG as a dynamic version of PRRel, where the witnesses in PRRel are reached over time and composition is sensitive to deadlocks.

IV. ACCOMMODATING SYMMETRY

In this section, we look at a model of concurrent games enriched with symmetry, known as thin concurrent games [START_REF] Castellan | Thin games with symmetry and concurrent hyland-ong games[END_REF]. We start by explaining the basics of event structures with symmetry and thin concurrent games ( §IV-A). Then we explain how strategies in thin concurrent games can be viewed as distributors ( §IV-B). We then define the bicategory TCG ( §IV-C) and construct an oplax functor TCG → Dist ( §IV-D). Finally we discuss the exponential modality ( §IV-E).

A. Symmetry and thin concurrent games

Recall that we went from PRRel to Dist by replacing sets with groupoids. We now go from CG to TCG by replacing the set of configurations C (A) with a groupoid of configurations S (A) whose morphisms are chosen bijections called symmetries, that behave well w.r.t. the causal order.

1) Event structures with symmetry: Our model is based on the following notion of event structure with symmetry [START_REF] Winskel | Event structures with symmetry[END_REF]: Definition 5. An isomorphism family on es E is a groupoid S (E) having as objects all configurations, and as morphisms certain bijections between configurations, satisfying:

restriction: for all θ : x ≃ y ∈ S (E) and x ⊇ x ′ ∈ C (E), there is θ ⊇ θ ′ ∈ S (E) such that θ ′ : x ′ ≃ y ′ . extension: for all θ : x ≃ y ∈ S (E), x ⊆ x ′ ∈ C (E), there is θ ⊆ θ ′ ∈ S (E) such that θ ′ : x ′ ≃ y ′ .
We call (E, S (E)) an event structure with symmetry (ess).

We refer to morphisms in S (E) as symmetries, and write θ : x ∼ =E y if θ : x ≃ y with θ ∈ S (E). The domain dom(θ) of θ : x ∼ =E y is x, and likewise its codomain cod(θ) is y.

A map of ess E → F is a map of event structures that preserves symmetry: for every θ : x ∼ =E y, the bijection

f θ def = f x f -1 ≃ x θ ≃ y f ≃ f y,
is in S (F ). (Recall that f restricted to any y is bijective.) This makes f : S (E) → S (F ) a functor of groupoids. We can define a 2-category ESS of ess, maps of ess, and natural transformations between the induced functors. For f, g : E → F such a natural transformation is necessarily unique [START_REF] Winskel | Event structures with symmetry[END_REF], and corresponds to the fact that for every x ∈ C (E) the bijection θ x = {(f s, gs) | s ∈ x} : f x ≃ gx is in S (F ). So this is really an equivalence, denoted f ∼ g.

2) Thin games: We define games with symmetry. To match the polarized structure, a game is an ess with two subsymmetries, one for each player (see e.g. [START_REF] Castellan | Thin games with symmetry and concurrent hyland-ong games[END_REF], [START_REF] Paquet | Bi-invariance for uniform strategies on event structures[END_REF], [START_REF] Mellies | Asynchronous games 1: Uniformity by group invariance[END_REF]). Definition 6. A thin concurrent game (tcg) is a game A with isomorphism families S (A), S + (A), S -(A) s.t. S + (A), S -(A) ⊆ S (A), symmetries preserve polarity, and

(1) if θ ∈ S + (A) ∩ S -(A), then θ = id x for x ∈ C (A), (2) if θ ∈ S -(A), θ ⊆ -θ ′ ∈ S (A), then θ ′ ∈ S -(A), (3) if θ ∈ S + (A), θ ⊆ + θ ′ ∈ S (A), then θ ′ ∈ S + (A),
where θ ⊆ p θ ′ is θ ⊆ θ ′ with (pairs of) events of polarity p.

Elements of S + (A) (resp. S -(A)) are called positive (resp. negative); they intuitively correspond to symmetries carried by positive (resp. negative) moves, and thus introduced by Player (resp. Opponent). We write θ :

x ∼ = - A y (resp. θ : x ∼ = + A y) if θ ∈ S -(A) (resp. θ ∈ S + (A))
. Each symmetry has a unique positive-negative factorization: Lemma 2 ([3]). For A a tcg and θ : x ∼ =A z, there are unique y ∈ C (A), θ -: x ∼ = - A y and θ + :

y ∼ = + A z s.t. θ = θ + • θ -. Sketch.
Existence is proved by induction on θ, using conditions (2) and (3); uniqueness follows from (1) with the fact that S -(A) and S + (A) are groupoids.

We extend with symmetry the basic constructions on games:

• The dual A ⊥ has the same symmetries as A, but

S + (A ⊥ ) = S -(A) and S -(A ⊥ ) = S + (A). • The tensor A 1 ⊗ A 2 has symmetries of the form θ 1 ⊗ θ 2 : x 1 ⊗ x 2 ∼ =A 1⊗A2 y 1 ⊗ y 2 ,
where each θ i : x i ∼ =A i y i , and similarly for positive and negative symmetries.

• As before, the hom A ⊢ B is A ⊥ ⊗ B.
3) Thin strategies: We now define strategies on thin concurrent games, as an extension of strategies on plain games. Definition 7. Consider A a tcg. A strategy on A, written σ : A, is an ess σ equipped with a morphism of ess ∂ σ : σ → A forming a strategy in the sense of Definition 3, and such that:

(1) if θ ∈ S (σ) and ∂ σ θ ⊢ A (a -, b -), there are unique θ ⊢ σ (s, t) s.t. ∂ σ s = a and ∂ σ t = b. (2) if θ : x ∼ =σ y, ∂ σ θ ∈ S + (A), then x = y and θ = id x .
As before, a strategy from A to B is a strategy on σ : A ⊢ B.

The first condition forces σ to acknowledge Opponent symmetries in A; the notation θ ⊢ A (a, b) means (a, b) ̸ ∈ θ and θ ∪ {(a, b)} ∈ S (A). The second condition is thinness: it means that any non-identity symmetry in the strategy must originate from an Opponent symmetry.

4) Comparison with the "saturated" approach: The "thin" approach is only one possible way of adding symmetry to games. Other models (e.g. [START_REF] Castellan | Symmetry in concurrent games[END_REF], [START_REF] Baillot | Believe it or not, ajm's games model is a model of classical linear logic[END_REF], [START_REF] Melliès | Template games and differential linear logic[END_REF]) follow a different approach, where strategies satisfy a saturation condition.

We explain the difference in the language of concurrent games. Consider a strategy σ : A on a tcg, in the sense of Definition 7 without conditions (1) and ( 2). The saturation condition [START_REF] Castellan | Symmetry in concurrent games[END_REF] corresponds to a fibration property of the functor ∂ σ : S (σ) → S (A): for x ∈ C (σ) and ψ : ∂ σ x ∼ =A y, there is a unique φ : x ∼ =σ z such that ∂ σ φ = ψ:

S (σ)
x z

S (A) ∂ σ x y φ ψ ∂σ (4) 
In contrast, thin strategies satisfy a different lifting property: a unique lifting exists, up to a positive symmetry. Lemma 3. Let σ : A be a strategy as in Definition 7.

For all x ∈ C (σ) and ψ : ∂ σ x ∼ =A y, there are unique φ : x ∼ =σ z and θ + :

∂ σ z ∼ = + A y such that θ + • ∂ σ φ = ψ: S (σ) x z S (A) ∂ σ x y ∂ σ z φ ψ ∂σ θ + ∂σφ Sketch.
Existence is proved first for ψ positive, by induction on x using condition (1) of Definition 7 and properties of isomorphism families; and then generalized to arbitrary ψ. Uniqueness follows from condition (2) of Definition 7.

Below, we will use this to construct a distributor from a thin strategy. We note that saturated strategies are closer to distributors, because the saturation property (4) directly induces a functorial action of the groupoid S (A). However, saturated strategies are more difficult to understand operationally, and have not achieved the precision of thin strategies for languages with state, concurrency, or non-determinism.

B. Strategies to distributors

For tcgs A and B, we show how to to construct a distributor ∥σ∥ : S (A) op × S (B) → Set from a strategy σ : A ⊢ B. The key idea is to use witnesses "up to positive symmetry" and use the lifting property in Lemma 3.

For x A ∈ C (A) and x B ∈ C (B) we define the set of positive witnesses of (x A , x B ), written ∥σ∥(x A , x B ), as the set of all triples (θ - A , x σ , θ + B ) such that x σ ∈ C + (σ) and

θ - A : x A ∼ = - A x σ A θ + B : x σ B ∼ = + B x B
are positive symmetries on A ⊥ and B. The groupoid actions of A and B on this set are determined by the uniqueness result:

Proposition 3. Consider (θ - A , x σ , θ + B ) ∈ ∥σ∥(x A , x B ). For each Ω A : y A ∼ =A x A and Ω B : x B ∼ =B y B , there are unique φ : x σ ∼ =σ y σ and ϑ - A : y A ∼ = - A x σ A , ϑ - B : y σ B ∼ = +
B y B such that the following two diagrams commute:

x A θ - A / / O O Ω A x σ A φ σ A y A ϑ - A / / y σ A x σ B θ + B / / φ σ B x B Ω B y σ B ϑ + B / / y B
Proof. Existence by Lem. 3, uniqueness by (2) of Def. 7.

Thus we may set ∥σ∥(Ω A , Ω B )(θ - A , x σ , θ + B ) as the positive witness (ϑ - A , y σ , ϑ + B ) above. This is a distributor. Proposition 4. We have ∥σ∥ : S (A) op × S (B) → Set.

C. The bicategory of thin concurrent games

We now define the bicategory TCG of thin concurrent games -note that we have already defined the objects (Definition 6) and the morphisms (Definition 7).

Morphisms of strategies: The 2-cells of TCG are more liberal than those in CG, because there should be an isomorphism between two strategies which play symmetric moves. Recall the 2-dimensional structure in ESS, given by the equivalence relation ∼ on morphisms ( §IV-A1). For two maps f, g : E → A into a tcg, we write f ∼ + g if f ∼ g and for every x ∈ C (E) the symmetry θ x : f x ∼ =A gx is positive.

For strategies σ, τ : A on a tcg, a positive morphism of strategies f : σ ⇒ τ is a rigid map of ess s.t.

∂ τ • f ∼ + ∂ σ .
Composition and identity: The composition of thin strategies σ : A ⊢ B and τ : B ⊢ C is obtained by equipping τ ⊙ σ (Proposition 2) with an adequate isomorphism family. If S + (σ) is the restriction of S (σ) to +-covered configurations, then we can write CC(S + (σ), S + (τ )) for the pairs (φ σ , φ τ ) of symmetries which are matching, i.e. φ σ B = φ τ B and whose domain (and necessarily, codomain) are causally compatible. 

Proposition 6 ([46]

). There is a bicategory TCG, and an embedding CG → TCG that preserves all structure.

Proof note. Most of the effort is spent on the difficulty of composing 2-cells "horizontally", i.e. proving that if σ, σ ′ : A ⊢ B and τ : B ⊢ C, then we can turn positive morphisms f : σ ⇒ σ ′ and g : τ ⇒ τ ′ into a positive map τ ⊙f : τ ⊙σ ⇒ τ ⊙σ ′ , using an inductive construction based on thin-ness.

In summary, we have defined a dynamic model with symmetries. This model embeds the basic model CG from §III-A, and supports an exponential modality ( §IV-E).

D. An oplax functor TCG → Dist

We give the components of a pseudofunctor TCG → Dist. We have already explained the action on objects and morphisms, by turning every strategy into a distributor ( §IV-B).

From positive morphisms to natural transformations: We show that f : σ ⇒ τ : A ⊢ B gives a natural transformation of distributors ∥σ∥ ⇒ ∥τ ∥. Its components are the functions -C). This is natural, as an application of Proposition 3.

∥f ∥ x A ,x B : ∥σ∥(x A , x B ) → ∥τ ∥(x A , x B ) (θ - A , x σ , θ + B ) → (θ x A • θ - A , f (x σ ), θ + B • θ x B -1 ) for x A ∈ C (A) and x B ∈ C (B), where θ x A : x σ A ∼ = - A f (x σ ) A and θ x B : x σ B ∼ = + B f (x σ ) B come from ∂ τ • f ∼ + ∂ σ ( §IV
The unitor and compositor: We now explain in what sense the operation ∥-∥ is functorial, by giving the appropriate structural 2-cells for an oplax functor. We start with the unitor: Proposition 7. Consider A a tcg. Then, there is a natural iso

pid A : ∥ c c A ∥ ∼ = ⇒ S (A)[-, -] : S (A) op × S (A) → Set . Proof. Consider (θ -, c c z , θ + ) ∈ ∥ c c A ∥(x, y), with θ -: x ∼ = - A z and θ + : z ∼ = + A y. We set pid A (θ -, c c z , θ + ) = θ + • θ -;
naturality and invertibility follow from Lemma 2. Now, we focus on the preservation of composition. For two strategies σ : A ⊢ B and τ : B ⊢ C, we have the compositor: Proposition 8. There is a natural transformation:

pcomp σ,τ : ∥τ ⊙ σ∥ ⇒ ∥τ ∥ • ∥σ∥ : S (A) op × S (B) → Set . Proof. Consider (θ - A , x τ ⊙ x σ , θ + C ) ∈ ∥τ ⊙ σ∥(x A , x C ); this is sent by pcomp σ,τ
x A ,x C to (the equivalence class of) the pair

((θ - A , x σ , id x B ), (id x B , x τ , θ + C )) ∈ (∥τ ∥ • ∥σ∥)(x A , x C ) for x σ B = x τ B = x B .
Altogether, the operation ∥-∥ equipped with this satisfies:

Theorem 3. We have an oplax functor ∥-∥ : TCG → Dist.

E. Difficulties with the exponential modality 1) An exponential modality in polarized TCG: We show how to construct an exponential modality on TCG. For an ess E, the ess !E is an infinitary symmetric tensor product, where the elements of the indexing set are called copy indices: Definition 8. Consider E an ess.

Then !E has: events, |!E| = N × |E|; causality and conflict inherited transparently. The isomorphism family comprises all θ : Σ i∈N x i ≃ Σ i∈N y i such that there is a bijection π : N ≃ N and for every i ∈ N, a symmetry θ i : x i ∼ =A y π(i) , such that θ(i, a) = (π(i), θ i (a)).

To extend this to tcgs, we must treat the positive and negative symmetries. Intuitively, symmetries that only change the copy indices of negative moves should be negative, and likewise for positive moves -but this naive definition does not yield a tcg in general [START_REF] Castellan | Thin games with symmetry and concurrent hyland-ong games[END_REF]. We must restrict to a polarized setting in which tcgs are negative, meaning that all minimal events are negative. For a negative tcg A, a symmetry θ ∈ S (!A) is in the sub-familiy S -(!A) if each θ i in Definition 8 is negative in S (A), whereas θ is in S + (!A) if each θ i is in S + (A) and additionally π is the identity bijection. This extends to a pseudo-comonad, see [START_REF] Castellan | Thin games with symmetry and concurrent hyland-ong games[END_REF] for details.

2) Our functor does not preserve the modality: For a negative tcg A, the two groupoids S (!A) and Sym(S (A)) are not equivalent in general. This can be seen even if A is the empty game: then !A is empty and S (!A) is the singleton groupoid, while Sym(S (A)) has countably many non-isomorphic objects ∅, ∅∅, ∅∅∅, and so on. Intuitively, like the relational model, Esp records how many times we "do nothing", whereas TCG only records when we do something.

Thus, although one can construct a cartesian closed Kleisli bicategory from the restriction of TCG to negative games [START_REF] Paquet | Probabilistic concurrent game semantics[END_REF], the functor ∥-∥ will not preserve cartesian closed structure -we shall resolve this in the next section.

V. A CARTESIAN CLOSED PSEUDOFUNCTOR

TCG is fairly agnostic to the programming language or system being represented, but to close up the distance to Esp we must specialise the games and strategies to those involved in the interpretation of pure functional languages. We construct a refined bicategory Vis ( §V-A), and a pseudofunctor Vis → Dist (Theorem 4) that we extend to a cartesian closed pseudofunctor between the Kleisli bicategories ( §V-B-V-D).

A. The Bicategory Vis of Winning Visible Strategies 1) Arenas: The objects of our refined model are called arenas. Arenas are defined to achieve two goals: firstly, narrow down the causal structure to an alternating forest, required for the definition of visible (deadlock-free) strategies later on; secondly, introduce a notion of payoff to distinguish between incomplete and complete executions in a game, since only the latter are represented in Dist. As we will see, complete executions have payoff 0, and if the payoff is 1 (resp. -1) then the execution is incomplete because Opponent (resp. Player) is stalling. We adapt definitions from [START_REF] Clairambault | Full abstraction for the quantum lambda-calculus[END_REF] (see also [START_REF]Asynchronous games 4: A fully complete model of propositional linear logic[END_REF]):

Definition 9. An arena is a tcg A such that (1) if a 1 , a 2 ≤ A a 3 then a 1 ≤ A a 2 or a 2 ≤ A a 1 , (2) if a 1 A a 2 , then pol A (a 1 ) ̸ = pol A (a 2 ),
equipped with a function κ A : C (A) → {-1, 0, +1} called the payoff, preserved by all symmetries.

Moreover, A is called a --arena if A is negative as a tcg and κ A (∅) ≥ 0. It is strict if it is negative, κ A (∅) = 1 and all its minimal events are in pairwise conflict.

⊗ -1 0 1 -1 -1 -1 -1 0 -1 0 1 1 -1 1 1 `-1 0 1 -1 -1 -1 1 0 -1 0 1 1 1 1 1
Fig. 2. Payoff tables for operations on arenas, with

A `B = (A ⊥ ⊗ B ⊥ ) ⊥ .
The dual of an arena A has κ A ⊥ (x A ) = -κ A (x A ). The tensor of tcgs extends to arenas with κ A⊗B (x A ⊗ x B ) = κ A (x A ) ⊗ κ B (x B ) with ⊗ described in Figure 2. Its De Morgan dual, the par A `B of arenas, is also based on the tensor tcg (written A `B for disambiguation, with action on configurations written x A `xB ∈ C (A `B)), and

κ A`B (x A `xB ) = κ A (x A ) `κB (x B ). Finally, the hom of A and B is defined as A ⊢ B = A ⊥ `B.
2) Winning strategies: As mentioned above, configurations with null payoff are those appearing in Dist. The others are intermediate stages, that only appear in the dynamic model. A strategy is winning if Player never stalls:

Definition 10. Consider A an arena. A strategy σ : A is winning if for all x σ ∈ C + (σ), κ A (∂ σ x σ ) ≥ 0.
Winning strategies compose, and copycat is winning [START_REF] Clairambault | Full abstraction for the quantum lambda-calculus[END_REF].

3) Visible strategies: Visibility captures a property of purely-functional parallel programs, in which threads may fork and join but each should be a well-formed stand-alone sequential execution. In an event structure E, a thread is formalized as a grounded causal chain (gcc), i.e. a finite set ρ ⊆ f |E| on which ≤ E is a total order, forming a sequence

ρ 1 E . . . E ρ n
where ρ 1 is minimal in E. We write gcc(E) for the set of gccs. A gcc need not be a configuration (although it will always be if the strategy interprets a sequential program). A strategy is visible if gccs only reach valid states of the arena: Definition 11 ( [START_REF] Castellan | The parallel intensionally fully abstract games model of pcf[END_REF]). Consider A a --arena, and σ : Then σ is visible if it is negative, i.e. all minimal events of σ display to a negative event, and for all ρ ∈ gcc(σ),

∂ σ ρ ∈ C (A).
This definition is analogous to visibility in Hyland-Ong games [START_REF] Hyland | On full abstraction for PCF: i, ii, and III[END_REF]. The key property of visible strategies for this paper is that their composition is always deadlock-free [START_REF] Castellan | Disentangling parallelism and interference in game semantics[END_REF]:

Lemma 4. Consider visible σ : A ⊢ B and τ : B ⊢ C. If x σ ∈ C + (σ), x τ ∈ C + (τ )
are matching, then they are necessarily also causally compatible ( §III-B2).

4) A pseudofunctor: The results of this section take place in the bicategory Vis with objects: --arenas; morphisms from A to B: winning visible strategies on A ⊢ B; and 2-cells: positive morphisms f : σ ⇒ τ .

We define a pseudofunctor Vis → Dist by restricting the collapse functor TCG → Dist ( §IV-D) to complete configurations: if A is an arena, we write G (A) for the full sub-groupoid of S (A) whose objects are restricted to the x ∈ C (A) with null payoff, i.e. such that κ A (x) = 0.

It is straightforward that for σ ∈ Vis[A, B], the distributor ∥σ∥ restricts to a distributor G (A) op ×G (B) → Set, which we still write ∥σ∥. By the deadlock-freeness property, this gives a functor which is not oplax but pseudo: Theorem 4. There is a pseudofunctor ∥-∥ : Vis → Dist, with ∥A∥ = G (A) the configurations of null payoff.

Proof. The natural transformation pcomp σ,τ : ∥τ ⊙ σ∥ ⇒ ∥τ ∥ • ∥σ∥ for preservation of composition is still valid, as witnesses of complete configurations in τ ⊙σ must synchronize on complete configurations.

We show that pcomp σ,τ (x A , x C ) is surjective. Consider

w σ = (θ - A , x σ , θ + B ) ∈ ∥σ∥(x A , x B ) w τ = (θ - B , x τ , θ + C ) ∈ ∥τ ∥(x B , x C ) composable witnesses. By Lemma 4, (x σ , θ - B • θ + B , x τ
) is causally compatible. By well-known properties of synchronization in thin concurrent games, there are unique y τ ⊙ y σ ∈ C + (τ ⊙ σ) along with φ σ , φ τ , ϑ - A , ϑ + C such that:

x σ A x σ B x B x τ B x τ C x A x C y σ A y σ B y B y τ B y τ C φ σ A φ σ B θ + B θ - B φ τ B φ τ C θ + C θ - A ϑ - A ϑ + C which, writing Θ B = φ σ B • θ + B -1 = φ τ B • θ - B , entails v σ = (ϑ - A , y σ , id y B ) = Θ B • (θ - A , x σ , θ + B ) v τ = (id y B , y τ , ϑ + C ) = (θ - B , x τ , θ + C ) • Θ B so (v σ , v τ ) = (Θ B •w σ , v τ ) ∼ (w σ , v τ •Θ B ) = (w σ , w τ ). Now (v σ , v τ ) = pcomp σ,τ (ϑ - A , y τ ⊙ y σ , ϑ + C ),
showing surjectivity. Injectivity follows from the uniqueness clause above.

B. Kleisli bicategories, and relating them

Next, we compare the exponential modalities in Vis (written !) and in Dist (written Sym).

1) The exponential modality for arenas: The construction of !A as a countable symmetric tensor of copies of A ( §IV-E) can be extended to arenas. Note that any configuration of !A has a representation as Σ i∈I x i for I ⊆ f N, and this representation is unique if we insist that every x i is non-empty.

Using that, we set (all x i below are non-empty):

κ !A : C (!A) → {-1, 0, +1} Σ i∈I x i → i∈I κ A (x i ) that is well-defined because ⊗ is associative on {-1, 0, +1}.
2) Strict arenas: To precisely capture the relationship between ! and Sym we use strict arenas (Def. 9), where ∅ has payoff 1 and is not considered complete. The situation with the empty configuration was at the heart of the issue in §IV-E2.

We now state the following key property: for strict arenas, the two constructions Sym and ! are equivalent: Proposition 9. Consider a strict arena A.

There is an adjoint equivalence of categories:

L ! A : G (!A) ≃ Sym(G (A)) : R ! A .
Proof. For a strict arena A, we can identify the objects of G (!A) with families (x i ) i∈I of objects of G (A), where I is a finite subset of natural numbers.

Thus, from left to right, L ! A sends (x i ) i∈I to the sequence x i1 . . . x in for I = {i 1 , . . . , i n } sorted in increasing order. From right to left, R ! A sends x 0 . . . x n to (x i ) i∈{0...n} . Although this equivalence only holds for strict arenas, it is all we need for a cartesian closed pseudofunctor.

3) Relative pseudocomonads: The pseudofunctor Vis → Dist does not preserve the exponential modality as a pseudocomonad on Vis, but as a pseudocomonad relative to the subbicategory of strict arenas. We recall the categorical notions.

Recall that a monad on category C relative to a functor J : D → C is a functor T : D → C with a restricted monadic structure, which we can use to form a Kleisli category C T with objects those of D. (Often, D is a sub-bicategory of C and J is the inclusion functor.) This generalizes to relative pseudomonads [START_REF] Fiore | Relative pseudomonads, kleisli bicategories, and substitution monoidal structures[END_REF] and pseudocomonads: Definition 12. Consider J : C → D a pseudofunctor between bicategories. A relative pseudocomonad T over J consists of:

(1) an object T X ∈ D, for every X ∈ C, (2) a family of functors (-

) * X,Y : D[T X, JY ] → D[T X, T Y ], (3) 
a family of morphisms i X ∈ D[T X, JX], (4) a natural family of invertible 2-cells,

µ f,g : (g • f * ) * ∼ = ⇒ g * • f * for f ∈ D[T X, JY ] and g ∈ D[T Y, JZ], (5) 
a natural family of invertible 2-cells, for f ∈ D[T X, JY ]:

η f : f ∼ = ⇒ i X • f * (6) a family of invertible 2-cells θ X : i * X ∼ =
⇒ id T X , where X, Y, Z range over objects of C. This is subject to coherence conditions that are omitted here.

Those conditions are exactly what is needed to form a Kleisli bicategory written D T , with objects those of C, morphisms and 2-cells from X to Y the category D[T X, JY ]. We can compose f ∈ D[T X, JY ] and g ∈ D[T Y, JZ] as g • T f = g • f * , and the identity on X is i X .

4) The exponential relative pseudocomonad: Here, C is the sub-bicategory Vis s of strict arenas, and J : Vis s → Vis the embedding. Note that even if A is strict, !A is not strict, and so ! : Vis s → Vis.

We now outline the components in Definition 12. For the component (2), we must introduce some additional notions. Fix an injection ⟨-, -⟩ : N 2 → N. If I ⊆ f N and J i ⊆ f N for all i ∈ I, write Σ i∈I J i ⊆ f N for the set of all ⟨i, j⟩ for i ∈ I and j ∈ J i . Then, we may define: 

∂ σ ! ((x σ,i ) i∈I ) = (x σ,i A,j ) ⟨i,j⟩∈Σ i∈I Ji ⊢ (x σ,i B ) i∈I (5) 
where ∂ σ (x σ,i ) = (x σ,i A,j ) j∈Ji ⊢ x σ,i B . For (3), the dereliction der A ∈ Vis[!A, A] on strict A has ess c c A , and display map

∂ der A ( c c x ) = (x) {0} ⊢ x. Then join σ,τ : (τ ⊙ σ ! ) ! ∼ = ⇒ τ ! ⊙ σ ! sends (x τ i ⊙ (x σ i,j ) j∈Ji ) i∈I to (x τ i ) i∈I ⊙ (x σ i,j
) ⟨i,j⟩∈Σ i∈I Ji , a positive iso providing (4). For (5), given B strict and σ ∈ Vis[!A, B] we have a positive iso runit σ :

σ ∼ = der B ⊙ σ ! sending x σ ∈ C + (σ) to c c x σ B ⊙ (x σ ) {0} ∈ C + (der B ⊙ σ ! ).
Finally, for [START_REF] Hyland | On full abstraction for PCF: i, ii, and III[END_REF] we have a positive iso lunit A : der

! A ∼ = c c !A sending ( c c xi ) i∈I to c c (xi) i∈I .
Altogether, this gives us:

Theorem 5. The components described above define a pseudocomonad ! relative to the embedding of Vis s into Vis.

In particular, there is a Kleisli bicategory Vis ! whose objects are strict arenas. (In the next section we show this is a cartesian closed bicategory.)

5) Lifting of ∥-∥ to the Kleisli bicategories: Recall that we write Esp for the Kleisli bicategory Dist Sym . We show how to lift ∥-∥ to a pseudofunctor ∥-∥ ! : Vis ! → Esp. (We give a direct proof, although one could write down a notion of pseudofunctor between relative pseudocomonads that lifts to the Kleisli bicategories [START_REF] Street | The formal theory of monads[END_REF].) Theorem 6. We have a pseudofunctor ∥-∥ ! : Vis ! → Esp.

Proof. For A a strict arena, we have ∥A∥ ! = ∥A∥ = G (A).

If A, B are strict and σ ∈ Vis[!A, B], we ∥σ∥ ! to be

Sym(G (A)) op × G (B) R op A ×G (B) → G (!A) op × G (B) ∥σ∥ → Set using R ! A : Sym(G (A)) op → G (!A) from Proposition 9.
For preservation of identities, from the definition we have

∥der A ∥ ! ((x 0 A . . . x n A ), y A ) = ∥der A ∥((x i A ) {0≤i≤n} , y A ) i.e. the set comprising all triples (θ - A , c c x A , θ + A ) such that θ - A : (x i A ) {0≤i≤n} ∼ = - !A (x A ) {0} , θ + A : x A ∼ = + A y A but

by definition of negative symmetries on !A, θ -

A forces n = 0 and boils down to a symmetry x 0 A ∼ = - A x A so that such triples are in bijection with G (A)[x 0 A , y A ] as in Esp. The analysis for preservation of composition is a more elaborate version of Theorem 4.

C. Cartesian closed structure

We show the bicategory Vis ! is cartesian closed, using typical constructions for cartesian closed structure in concurrent games, in sufficient detail to keep the paper self-contained. For a precise definition of the structure of cartesian closed bicategories we refer to [START_REF] Saville | Cartesian closed bicategories: type theory and coherence[END_REF].

1) Cartesian products in Vis ! : The empty arena ⊤, with κ ⊤ (∅) = 1, is strict, and it is direct that ⊤ is a terminal object in Vis ! , since any negative strategy A ⊢ ⊤ must be empty. Now if A, B are strict, the product arena A & B is defined as A ⊗ B, except that all events of A are in conflict with events of B. This means that configurations of A & B are either empty, or of the form {1} × x for x ∈ C (A) (written i 1 (x)) or {2}×x for x ∈ C (B) (written i 2 (x)). For the payoff, we set κ A&B (∅) = 1 and κ A1&A2 (i i (x)) = κ Ai (x), making A & B a strict arena. By strictness, we have an isomorphism 

L & A,B : G (A & B) ∼ = G (A) + G (B) : R & A,B which 
∂(i 1 (x σ )) = x σ !Γ ⊢ i 1 (x σ A ) ∈ C (!Γ ⊢ A & B) , and likewise for ∂(i 2 (x τ )), yielding ⟨σ, τ ⟩ ∈ Vis[!Γ, A & B]. This extends to a functor ⟨-, -⟩ : Vis ! [Γ, A] × Vis ! [Γ, B] → Vis ! [Γ, A & B] in a straightforward way.
Proposition 10. For any strict arenas Γ, A and B, there is

Vis ! [Γ, A & B] ≃ Vis ! [Γ, A] × Vis ! [Γ, B] (π A ⊙(-) ! ,π B ⊙(-) ! ) ⟨-,-⟩
an adjoint equivalence providing the data to turn A & B into a cartesian product in the bicategorical sense.

2) Closed structure in Vis ! : Recall that the objects of Vis ! are strict arenas, and observe that any strict arena B is isomorphic to & i∈I B i where the B i are pointed, meaning that they have exactly one minimal event. We first define a linear arrow for a --arena A and a pointed strict arena B, by setting A ⊸ B to be A ⊢ B with a stricter dependency order, so that all events in A causally depend on the unique minimal move in B. This is generalized for any strict B as

A ⊸ & i∈I B i = & i∈I (A ⊸ B i )
whose configurations have a convenient description: Lemma 5. For any --arena A, and strict arena B, we have

(-⊸ -) : C (A) × C ̸ =∅ (B) ∼ = C ̸ =∅ (A ⊸ B)
where C ̸ =∅ (E) is the set of non-empty configurations. 

( c c (x i A ) i∈I ⊸x B ) is ∅ if x B = ∅, and γ ⊢ x B otherwise, with γ = (i 1 ((x i A ) i∈I ⊸ x B )) {⟨0,0⟩} ⊎ (i 2 (x i A )) ⟨1,i⟩∈Σ {1} I . Likewise, the currying of σ ∈ Vis[!(Γ&A), B] is a strategy Λ(σ) with ess σ and display map ∂ Λ(σ) (x σ ) = (x i Γ ) i∈I ⊢ (x j A ) j∈J ⊸ x B for x σ ̸ = ∅, where ∂ σ (x σ ) = (i 1 (x i Γ )) i∈I ⊎ (i 2 (x j A )) j∈J ⊢ x B . This gives a functor Λ : Vis ! [Γ & A, B] → Vis ! [Γ, A ⇒ B].
Proposition 11. For any strict Γ, A and B, there is

Vis ! [Γ, A ⇒ B] ⊥ Vis ! [Γ & A, B] ev A,B ⊙⟨-⊙π ! Γ ,π A ⟩ ! Λ(-)
an adjoint equivalence, providing the data to turn A ⇒ B into an exponential object in the bicategorical sense.

D. A cartesian closed pseudofunctor

We show that the pseudofunctor ∥-∥ ! : Vis ! → Esp preserves cartesian closed structure.

The terminal object is preserved in a strict sense, since G (⊤) is empty. For preservation of the binary product, note that for A and B strict arenas, the map

⟨∥π A ∥ ! , ∥π B ∥ ! ⟩ ∈ Esp[G (A & B), G (A) + G (B)] is naturally isomorphic to L & A,B
, and is thus easily completed with q

× A,B = R & A,B ∈ Esp[G (A) + G (B), G (A & B)
] forming an equivalence. This establishes: Proposition 12. Equipped with those equivalences, the pseudofunctor ∥-∥ ! : Vis ! → Esp preserves finite products. 1) Preservation: Observe that we have an equivalence

L ⇒ A,B : G (A ⇒ B) ≃ Sym(G (A)) op × G (B) : R ⇒ A,B
using first Lemma 5 as since B is strict, its complete configurations are non-empty, and observing that this decomposition also holds for symmetries; followed by Proposition 9. Now, for A and B strict we consider Λ(∥ev

A,B ∥ ! • ! q × ) in Esp[G (A ⇒ B), Sym(G (A)) op × G (B)]
and verify it is naturally isomorphic to L ⇒ A,B ; thus completed to an equivalence in Esp with q ⇒ A,B = R ⇒ A,B . Altogether this completes the proof of our main theorem: Theorem 7. We have a cartesian closed pseudofunctor ∥-∥ ! : Vis ! → Esp .

VI. SOME CONSEQUENCES FOR THE λ-CALCULUS

We illustrate this pseudofunctor by relating a dynamic and a static model of the pure (untyped) λ-calculus.

A. Two models of the pure λ-calculus 1) A reflexive object in Vis ! : Our bicategory of games contains a universal arena U with an isomorphism of arenas unf U : U ∼ = U ⇒ U : fld U making U an extensional reflexive object [START_REF] Barendregt | The lambda calculus -its syntax and semantics, ser. Studies in logic and the foundations of mathematics[END_REF]. Concretely, U is constructed corecursively as ⊗ N !U ⊸ o, where o is the arena with one negative move * , κ o (∅) = 1 and κ o ({ * }) = 0.

Following the interpretation of the λ-calculus in a reflexive object, we have, for every closed λ-term M , a strategy M : U. This strategy has a clear interpretation: it is a representation of the Nakajima tree of M (see e.g. [START_REF] Ker | Innocent game models of untyped lambda-calculus[END_REF], [START_REF] Clairambault | Fully abstract models of the probabilistic lambda-calculus[END_REF]). 2) The Pure λ-Calculus in Esp: Likewise, one can construct models of the λ-calculus in Esp [START_REF] Fiore | The cartesian closed bicategory of generalised species of structures[END_REF], [START_REF] Kerinec | Why are proofs relevant in proof-relevant models?[END_REF], [START_REF] Olimpieri | Intersection type distributors[END_REF].

We consider a groupoid D * , defined as a "categorified graph model" in [START_REF] Kerinec | Why are proofs relevant in proof-relevant models?[END_REF], equipped with an equivalence Esp : D * → Set, which can be explained using an intersection type system. More precisely, objects of D * may be presented as intersection types, and for each a ∈ D * , M D * Esp (a) is (up to a canonical isomorphism) the set of derivations of the judgement ⊢ M : a in the type system. The construction of this intersection type system reflects the corresponding operations on distributors: in particular derivations carry explicit symmetries, M D * Esp (a) is really the set of derivations quotiented by an equivalence relation letting symmetries flow though the concrete derivation.

B. Relating the Interpretations

Using a straightforward analysis based on the above descriptions, we can define an equivalence of groupoids L U : G (U) ≃ D * : R U which is compatible with unfoldings in the sense that the diagram of Figure 3 commutes, and compatible with folding in the same way. Using our Theorem 7, it follows that: Theorem 8. For any closed term M , we have a natural iso

M D * Esp ∼ = ∥ M U Vis ! ∥ ! • R U
This shows that, for a ∈ U, the set M D * Esp (a) described by Olimpieri as a set of derivations up to congruence may be equivalently described, up to canonical isomophism, as a set of positive witnesses of the form

(x ∈ C + ( M U Vis ! ), θ + : ∂(x) ∼ = + U R U (a)
). In other words, the interpretation of pure λ-terms as species computes the set of +-covered configurations equipped with a positive symmetry. Interestingly, this set is constructed without quotient, and thus provides canonical representatives for the equivalence classes of derivations in Olimpieri's model.

In what follows, we show how our cartesian closed pseudofunctor allows us to transfer results from game semantics to generalized species. It is known that the game semantics of the λ-calculus captures the maximal sensible λ-theory H * , because strategies coincide with the corresponding normal forms, Nakajima trees [START_REF] Ker | Innocent game models of untyped lambda-calculus[END_REF]. Using Theorem 8, we can deduce a result on the λ-theory induced by D * . Given a model D of λ-calculus in an arbitrary bicategory, the theory induced by D is the λ-theory induced by the following relation on λ-terms: Esp . Reciprocally, isomorphisms in Esp form a sensible λtheory (see [START_REF] Kerinec | Why are proofs relevant in proof-relevant models?[END_REF], Corollary 6.14). As H * is the greatest sensible λ-theory, it must include isomorphisms in Esp. This is a simple application, but recent work suggests that there is much to explore in the bicategorical semantics of the λ-calculus [START_REF] Kerinec | Why are proofs relevant in proof-relevant models?[END_REF].

VII. CONCLUSION

In this paper, we have mapped out the links between thin concurrent games and generalized species of structures, two bicategorical models of linear logic and programming languages. By giving a proof-relevant and bicategorical extension of the relationship between dynamic and static models, we have established the new state of the art in this line of work.

This bridges previously disconnected semantic realms. In the past, such bridges have proved fruitful for transporting results between dynamic and static semantics ( [START_REF] Castellan | The concurrent game semantics of probabilistic PCF[END_REF], [START_REF] Clairambault | Full abstraction for the quantum lambda-calculus[END_REF], [START_REF] Clairambault | Fully abstract models of the probabilistic lambda-calculus[END_REF]). This opens up many perspectives: bicategorical models are a very active field, and several recent developments may be reexamined in light of this connection ( [START_REF] Olimpieri | Intersection type distributors[END_REF], [START_REF] Clairambault | Full abstraction for the quantum lambda-calculus[END_REF], [START_REF] Tsukada | Species, profunctors and taylor expansion weighted by SMCC: A unified framework for modelling nondeterministic, probabilistic and quantum programs[END_REF]).

Moreover, this work exposes fundamental phenomena regarding symmetries. Symmetries lie at the heart of both thin concurrent games and generalized species, but they are treated completely differently: in Esp, witnesses referring to multiple copies of a resource are closed under the action of all symmetries ("saturated"), whereas TCG relies on a mechanism for choreographing a choice of copy indices, providing an address for individual resources ("thin"). Beyond semantics, this approach to managing symmetries hints at an alternative to Joyal's species [START_REF]Une théorie combinatoire des séries formelles[END_REF] for representing combinatorial objects.

Example 2 .

 2 Considering the term ⊢ M : B → B of PCF ⊢ λx B . if x then x else if x then ff else tt : B → B , then M = {([tt, tt], tt), ([tt, ff ], ff ), ([ff , ff ], tt)}, representing the possible executions given a multiset of values for x.

Fig. 1 .

 1 Fig. 1. An example of matching but causally incompatible configurations, in the composition of σ : U ⊸ U and τ : U ⊸ U ⊢ N. The underlying games are left undefined, but can be recovered by removing the arrows . The configurations are matching on U ⊸ U, but the arrows impose incompatible orders (i.e. a cycle) between the two occurrences of ✓.

Proposition 5 .

 5 There is a unique symmetry on τ ⊙ σ with(-⊙ -) : CC(S + (σ), S + (τ )) ≃ S + (τ ⊙ σ)a bijection commuting with dom and cod, and compatible with display maps, i.e. (φ τ ⊙ φ σ ) A = φ σ A and (φ τ ⊙ φ σ ) C = φ τ C . For the identity in TCG, we equip copycat c c A : A ⊢ A (Proposition 1) with the unique symmetry that has an iso c c (-) : S (A) ≃ S + ( c c A ) commuting with dom and cod, such that ∂ c c A ( c c θ ) = θ ⊢ θ.

Definition 13 .

 13 Consider σ ∈ Vis[!A, B]. Its promotion σ ! has ess !σ, and display map the unique map of ess such that

  reflects the definition of binary products in Esp. The first projection π A ∈ Vis[!(A & B), A] has ess c c A , with display map the map of ess characterized by ∂( c c x ) = (i 1 (x)) {0} ⊢ x , with the second projection defined symmetrically. If σ ∈ Vis[!Γ, A] and τ ∈ Vis[!Γ, B], their pairing has ess σ & τ and display map the unique such that

  Now for A, B strict, we define the arrow A ⇒ B as !A ⊸ B. This is equipped with an evaluation strategyev A,B ∈ Vis[!((!A ⊸ B) & A), B]consisting of the ess c c !A⊸B , and where ∂

GFig. 3 .

 3 Fig. 3. Compatibility with unfoldings

  unf D * : D * ≃ Sym(D * ) op × D * : fld D * in Esp [19, Theorem 5.2]. The interpretation of a closed λterm M in D * is a presheaf M D *

{Corollary 1 .

 1 (M, N ) | M, N ∈ Λ s.t. M D ∼ = N D .}. The correspondence established in this paper allows us to derive the following new result: The theory of D * is H * . Proof. Consider two λ-terms M and N . If M ≡ H * N , then M U Vis ! ∼ = N U Vis ! and by Theorem 8, M D * Esp ∼ = N D *

A more standard presentation of this model is via the bicategory of spans of sets, with sets as objects and spans A ← S → B as morphisms.

In technical terms, the functor M(-) on Set is not cartesian -does not preserve pullbacks -and so does not preserve the composition of spans.

If A = B = 1, then this corresponds to a species in the classical combinatorial sense[START_REF]Une théorie combinatoire des séries formelles[END_REF]. Note that this can be further generalized to arbitrary small categories A and B[START_REF] Fiore | The cartesian closed bicategory of generalised species of structures[END_REF], but we do not need this generality.

ACKNOWLEDGMENT This work was supported by the ANR project DyVerSe (ANR-19-CE48-0010-01); by the Labex MiLyon (ANR-10-LABX-0070) of Université de Lyon, within the program "Investissements d'Avenir" (ANR-11-IDEX-0007), operated by the French National Research Agency (ANR); by the US Air Force Office for Scientific Research under award number FA9550-21-1-0007; by a Royal Society University Research Fellowship; and by a Paris Region Fellowship cofunded by the European Union (Marie Skłodowska-Curie grant agreement 945298).