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Abstract: Antibiotic resistance continues to evolve and spread beyond all boundaries, resulting in
an increase in morbidity and mortality for non-curable infectious diseases. Due to the failure of
conventional antimicrobial therapy and the lack of introduction of a novel class of antibiotics, novel
strategies have recently emerged to combat these multidrug-resistant infectious microorganisms. In
this review, we highlight the development of effective antibiotic combinations and of antibiotics with
non-antibiotic activity-enhancing compounds to address the widespread emergence of antibiotic-
resistant strains.
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1. Introduction

The rise of antimicrobial resistance urgently requires the development of new strategies
for improving antibiotic activity in infected patients, to minimize the risk of the emergence
of resistant strains, and to prevent patients’ reinfection and spreading of resistant bacterial
strains in hospitals. Regarding the most concerning bacterial pathogens, the ESKAPE group
(Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii,
Pseudomonas aeruginosa, and Enterobacter species) represent some of the greatest threats to
human health due to their ability to evade antibiotic treatments through various mecha-
nisms of resistance [1]. Thus, it has been recently reported that such infections claimed
5 million lives in the world by 2019, and this trend will only increase in the coming decades
with more than 50 million deaths estimated worldwide by 2050 if nothing is done [2].
Despite the human impact of MDR infections, numerous companies have ceased their
antibiotic research programs due to the low level of financial profit generated by these prod-
ucts [3]. During recent decades, faced with this worrying health concern, an alternate way
has appeared, i.e., rejuvenating usual antibiotics to restore their biological efficacy [4–7]:

• By blocking the inactivating enzyme;
• By tackling the mechanisms that impair the intracellular concentration required for

antibacterial activity;
• By bypassing target mutation.

In this review, we report and discuss the latest strategies presented in the literature
to circumvent Gram-negative bacterial resistance. This review will not deal with im-
munoconjugates or aptamer strategies, since numerous reviews have been devoted to this
strategy [8–15].

We focus on papers reporting the new “addressing strategies” to ensure the efficient
delivery of antibiotics to internal targets. The use of “cargos” that parasitize the specific
transport of nutrients such as siderophores, sugars, or liposomes as vectors is described
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and discussed to illustrate this original way for repurposing or rejuvenating antibiotics
that are inactive against Gram-negative bacterial strains. In this way, the cargo moiety
ensures the diffusion across the bacterial outer membrane without exhibiting additional
antibacterial activity. This represents per se advantage for preventing a rapid emergence of
resistance mechanisms against this new strategy.

Moreover, the development of specific “cargos” based on siderophores and sugars
generates an original way by addressing the active drug in defined bacterial compartments,
periplasm, or cytoplasm and ensuring significant concentration close to the target.

2. Mechanism of Resistance

Antibiotics are natural or synthetic chemicals used to combat bacterial diseases [16].
Antibiotics act in a precise and targeted manner on certain stages of the metabolism
of Gram-positive and Gram-negative bacteria. Thus, antibiotics must cross/attack the
bacterial cell envelope, the characteristics of which are very different depending on the
bacterial species [17]. The general use and misuse of antibiotics favor the emergence
of bacterial subpopulations which do not respond positively to treatment; this is the
phenomenon of resistance [18]. Gram-positive (+) bacteria possess a cell envelope consisting
of a cytoplasmic membrane and a thick wall of peptidoglycan [19], while Gram-negative
bacteria present a complex cell envelope consisting of an inner membrane, a periplasm
containing a thin wall of peptidoglycan and various cellular molecules, and an outer
membrane covered in lipopolysaccharides [20], which provide a more effective barrier
than Gram-positive bacteria to antibacterial agents, since they must pass through the two
protective bilayers to reach their target. Thus, an efficient antibiotic must fulfill three
conditions: (1) it must alter the activity of a target, playing a key biological role in the
bacterial cell; (2) it must penetrate to the site of infection and reach its target in a dose-
dependent manner; and (3) no or limited side effects must be encountered in the patient’s
body when the antibiotics are modified or destroyed, either by the body or by resistant
bacteria. Considering the two first points, two types of resistance are described, a natural
or an acquired resistance. Some bacterial species are innately resistant towards a specific
antibiotic group, and it is an identification marker of the bacterium [21]. For example, the
production of a class A beta-lactamase (type SHV-1) by K. pneumoniae strongly contributes
to penicillin’s resistance (amoxicillin, ticarcillin) [22]. Moreover, natural resistance by
impermeability or efflux restricts the spectrum of antibiotic classes (e.g., Macrolides or
glycopeptides and most Gram-negative bacilli). Nevertheless, another type of resistance
characterized by the sudden emergence of resistance to one or more antibiotics in certain
bacteria previously susceptible can occur. In this case, resistance is mainly supported by
mutations (in a structural gene or in regulator), derepression of specific genes, or transfers
of resistant genes (via mobile element) from a resistant bacterium to a susceptible one; we
are speaking of acquired resistance, an epidemiological marker [23].

The clinical major resistance mechanisms are: reduction in internal antibiotic con-
centration under the required biological threshold (including impermeability and efflux),
antibiotic target modification, and antibiotic inactivation (Figure 1) [24].

2.1. Membrane Impermeability

In Gram-negative bacteria, porins are transmembrane proteins facilitating the trans-
port of hydrophilic molecules across the outer membrane, while hydrophobic molecules
can diffuse through the phospholipid bilayer. Consequently, charged antibiotics, such
as ß-lactams, will cross the outer membrane by way of the porin in order to reach the
periplasmic target [25]. To limit the antibiotic action, the Gram-negative bacteria have de-
veloped mechanisms that decrease their membrane diffusion. Changes in outer membrane
permeability impair the influx of hydrophilic antibiotics using porins like β-lactams and
fluoroquinolones [26]. An alteration in the porin expression or in porin integrity leads
to a decrease in internal concentration and therefore resistance to these antibiotics. For
example, Klebsiella aerogenes (formerly Enterobacter) becomes resistant to cephalosporins
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because of an amino acid mutation located inside the eyelet of porin that strongly reduces
the pore diameter. This structural mutation generates a restricted diffusion of antibiotics
through porins, conferring this peculiar resistance [27]. Moreover, it has been recently
demonstrated that the porin balance (OmpF vs. OmpC) plays a key role in the penetration
of cephalosporins in Enterobacteriacea [28].
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2.1.1. Antibiotic Target Modification

The antibiotic affinity on a target is a particularly important event during the fight
against a bacterial infection. A target modification caused by spontaneous mutation
at the gene level (substitutions of amino acids on binding sites located on the target
surface), alters the affinity of the antibiotic, favoring the emergence of a resistance level [29].
The involvement of mutations in the QRDR region in a quinolone target, gyrase and
topoisomerase enzymes, is extensively documented in Gram-negative pathogens [30]. In
addition, mutations of ribosomal proteins are associated with the resistance mechanism
exemplified by mutations at uL3 and uL4 or transferable modification of 23S rRNA by
methyltransferase enzyme, rendering the Gram-positive bacteria resistant to linezolid [31].

2.1.2. Antibiotic Inactivation

Numerous enzymes produced by bacteria can inactivate the antibiotic either by modi-
fying or hydrolyzing it. Thus, these enzymes can act against β-lactams, aminoglycosides,
chloramphenicol, or antibiotics belonging to the macrolide-lincosamide-streptogramin
(MLS) family [32]. Inactivation of antibiotics occurs either by hydrolysis or by associa-
tion with modifying metabolism or elimination (phosphorylation, acetylation, etc.). The
β-lactam antibiotics exhibit a β-lactam ring which is the effective part of the molecules, as
it inhibits the transpeptidase involved in the synthesis of the Gram-negative bacterial wall;
the hydrolysis of this part is one of the degradation mechanisms involved in antibiotic
resistance. Thus, the bacterium is able to produce enzymes, termed β-lactamases, able
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to hydrolyze the β-lactam ring 1 [16,17]. β-lactamases are secreted into the extracellular
medium in Gram-positive bacteria and are located in the periplasm in Gram-negative bac-
teria and involved in the resistance of numerous bacteria towards beta-lactam antibiotics,
such as penicillins and cephalosporins [33–36]. Thus, the amide bond of the β-lactam ring
is hydrolyzed, leading to an acyl-enzyme which will then be degraded into an inactive acid.
After hydrolysis, the antibiotic is no longer able to bind and inhibit transpeptidase [18,19].

2.1.3. Efflux Pumps

Efflux pumps are transmembrane systems by which the cells expel toxic compounds
outside using active transport (energy-dependent), contributing to the bacterial resistance
mechanism. A decrease in internal antimicrobial amount under the biological required
concentration impairs and limits the antibiotic action [37]. The efflux pumps are classified
into six families: the ABC (Adenosine triphosphate-Binding Cassette) family, the MFS
(Major Facilitator Superfamily) family, the MATE (Multidrug And Toxic Compound Ex-
trusion) family, the SMR (Small Multidrug Resistance) family, the RND family (Resistance
Nodulation cell Division), and finally the PACE family (Proteobacterial Antimicrobial
Compounds Efflux) [38]. It is noteworthy that the proton motive force for energy is used by
all families of efflux pumps, except the ABC family, which uses the hydrolysis of ATP as the
driving force for expelling toxic compounds [24]. The tripartite efflux pumps AcrAB-TolC
are extensively reported in the Gram-negative clinical isolates [39].

2.2. Strategies to Circumvent Gram-Negative Bacterial Resistance

One of the most promising approaches to circumvent Gram-negative bacterial re-
sistance requires the combination of several types of molecules (e.g., enzyme inhibitor +
antibiotic or membrane permeabilizer + antibiotic), for which the biological action can be
either additive or synergistic. The additive effect occurs when the observed effect is the
sum of the activity of the two partners, while the synergy corresponds to a final action
greater than the sum of the activity of the two individual partners [40]. The use of this
combination can also minimize the risk of the emergence/spreading of bacterial resistance
for the treatment of recurrent infections [41].

2.2.1. Drug Combination

To restore the activity of an antibiotic impaired by a resistance mechanism, an effective
strategy consists in associating two antibiotics during patient treatment. The develop-
ment of the hybrid antibiotic approach needs a chemical covalent connection between
two molecules; generating a single hybrid drug that targets bacterial cells can mitigate
bacterial resistance mechanisms. In this context, a combination of two antibiotics, such as
a fluoroquinolone (ciprofloxacin) and an aminoglycoside (neomycin B), demonstrated a
significant delay in resistance emergence compared to each component taken alone, and
this is thanks to the multiple antibiotic resistance operon “Mar” involved in the regulation
of efflux pump expression and OM permeability [42]. Thus, the authors hypothesized
that the ciprofloxacin part of the hybrid molecule inhibits gyrase/topoisomerase enzymes,
while the neomycin B part circumvents the effectiveness of the “Mar” operon by inducing
a lower mutation rate in the marR regulator [43]. It was suggested that chemical structures
similar to neomycin B could be replaced in order to stimulate both the permeability of the
hybrid and the bypass of the “Mar” response [44].

In the multiresistant (MDR) bacterium Pseudomonas aeruginosa, it has been shown
that the hybrid tobramycin-moxifloxacin 3 led to better intracellular concentration of
antibacterial molecule by (i) increasing the outer membrane permeability and (ii) altering
the PMF (proton motive force) which is the energy-driven force of efflux pumps involved
in the expulsion of toxic compounds (metabolites, drugs, antibiotics, etc.). Therefore,
the combination of moxifloxacin 1 with tobramycin 2 allowed a weaker development of
resistance compared to each antibiotic alone (Figure 2) [45]. In addition, the new molecule
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that associates two patterns could alter the recognition of the antibiotic chemical groups by
the affinity sites located inside AcrB pockets, the first step of antibiotic expulsion [39].
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Another type of antibiotic used for the treatment of various resistant external infec-
tions caused by Gram-negative bacteria is colistin, a poly cationic peptide that disrupts the
membrane by interacting with negatively charged components including lipopolysaccha-
rides (LPS). It also has a bactericidal effect through its binding to ribosomes, disruption
of bacterial division, alterations in bacterial respiration, production of reactive oxygen
species, and induction of structural bonds. The combination of colistin with antimicrobial
agents has shown synergism with a wide variety of antimicrobial activities; thus, the com-
bination of colistin–carbapenem is one of the best studied, although synergies have been
also observed for colistin associated to quinolones, fosfomycin, or aminoglycosides [46].
Additionally, the combination of colistin with linezolid renders A. baumannii susceptible to
the latter. A similar effect was observed by using colistin associated with a glycopeptide
in a Galleria Mellonella model of infection. This antimicrobial effect is achieved due to the
disruption of the outer membrane by colistin, which allows linezolid and glycopeptides
to enter Gram-negative bacteria that are impermeable to these agents. Additionally, a
chloramphenicol–colistin combination appeared to act in synergy in altering efflux pumps
against resistant Gram-negative bacteria [47]. It must be noted that the toxicity of colistin
limits its clinical use [48].

2.2.2. Antibiotic and β-Lactamase Inhibitor Combination

β-lactam antibiotics used in combination with a β-lactamase inhibitor (Figure 3)
constitute a pioneering and efficient strategy to combat β-lactam resistance. Thus, the
amoxicillin/clavulanic acid combination, also known as co-amoxiclav or amox-clav and
sold under the brand name Augmentin®, is a medication used for the treatment of several
bacterial infections. Amoxicillin 4 is a semi-synthetic penicillin, and clavulanic acid 7 is
a β-lactamase inhibitor, both possessing a similar half-life [49]. They are mainly used for
the treatment of acute otitis media [50], lower respiratory tract infections, urinary tract
infections, and other infections due to bacteria resistant to amoxicillin alone [51]. The effect
of this combination limits the maximum daily dose of amoxicillin administered orally [49],
but on the other hand, clavulanic acid has a limited effect on antimicrobial resistance,
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expands the spectrum of amoxicillin, and therefore results in problems in gut health by
increasing side effects [52]. In addition, the sulbactam 8–ampicillin 5 (or cefoperazone)
combination restores the activity of this antibiotic through the β-lactamases’ inhibition and
also presents an inherent activity against certain A. baumannii strains, which is the advan-
tage for such a combination. However, this combination did not show strong selective
pressures for enterobacteria that produce β-lactamases and enterococci that are resistant to
vancomycin. It is mainly used for the treatment of urinary, nosocomial, gynecological, and
intra-abdominal infections and cellulitis [53]. Furthermore, the therapeutic treatment of sep-
sis disease combines ampicillin with gentamicin 6 as a first-line antibiotic in children under
five years of age, appearing very effective and reducing the mortality rate [54,55]. However,
this type of association remains an option of choice. Tazobactam is a member of the class of
penicillanic acids known as sulbactam. It is combined with Piperacillin and Ceftolozane for
the treatment of a variety of bacterial infections. Piperacillin–tazobactam was approved
by the FDA in 1994, and ceftolozane–tazobactam was approved in 2019, providing wider
antibacterial coverage for Gram-negative infections and for treating hospital-acquired
bacterial pneumonia and ventilator-associated bacterial pneumonia, which are significant
causes of morbidity and mortality [56].
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Numerous Gram-positive and negative bacteria are resistant to β-lactams due to
three potent factors: (1) alteration of the outer membrane in P. aeruginosa and Enterobacte-
riaceae species, (2) low affinity of PBPs (penicillin-binding proteins) in N. gonorrhoeae and
P. aeruginosa, (3) destruction of the β-lactam ring by periplasmic β-lactamases in aerobic
Gram-negative bacteria, such as E. coli and Klebsiella species [57]. Combination of this class
of antibiotics with β-lactamase inhibitors renders these bacteria more susceptible. Thus,
the β-lactamase enzyme is inhibited by β-lactamase inhibitors which bind irreversibly
to the enzyme, preventing its action on the β-lactam ring and restoring its antimicrobial
activity [58]. E. cloacae, Klebsiella aerogenes, C. freundii, S. marcescens, Providencia stuartii,
P. aeruginosa, Hafnia alvei, and Morganella morganii express chromosomal β-lactamases like
AmpC [59], and E. coli expresses TEM-1 and derivates, which are the best-known plasmid
β-lactamases [60]. β-lactamase inhibitors are active on both types.

Carbapenem resistance is due to multiple resistance mechanisms, such as mutations of
porins, efflux pumps, or carbapenemase (hydrolysing enzymes). Vaborbactam is a non-β-
lactam β-lactamase inhibitor; its association with meropenem (a carbapenem) inhibits class
A serine carbapenemases, thus restoring the activity of meropenem. This association shows
excellent activity against Gram-negative bacteria in vitro and specifically against K. pneumo-
niae (KPC), which is the most resistant Enterobacteriaceae to carbapenemases. A study on an
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E. coli clinical strain reported a lower MIC value with meropenem–vaborbactam compared
to the combination with tazobactam and clavulanic acid (β-lactamase inhibitors) [61,62].

Another non-β-lactam β-lactamase inhibitor is avibactam, which can irreversibly
acylate class A, class C, and class D β-lactamases. This compound presents a low molecular
weight, long half-life, polarity, and an interaction with residues near the active sites of
β-lactamases. Ceftazidime, belonging to the third generation of the cephalosporin group
of β-lactam antibiotics, binds to penicillin-binding protein (PBP) of Gram-negative bacilli
and inhibits cell wall synthesis [63]. Its association with avibactam has shown great
therapeutic efficacy in patients suffering from complicated urinary tract infections (ICIA)
and nosocomial pneumonia [64]. It must be noted that regarding these enzymatic inhibitors,
their activity can be altered if the outer membrane permeability is decreased following lack
of porin or other membrane modifications [39].

2.2.3. Efflux Pumps Inhibitors

Efflux pumps expel the antibiotics towards the extracellular environment and con-
tribute to bacterial resistance. Some are selective and only expel specific substrates, while
others are non-selective and expel various classes of antibiotics and non-specific substrates
(detergents, organic solvents, dyes, etc.) [39]. In this case, a possible strategy consists of
blocking efflux systems by so-called efflux pump inhibitors (EPIs) and therefore restoring
the susceptibility of resistant strains. Several methods are used to target efflux pumps:
(1) inhibit the expression of genes encoding these pumps, (2) deplete the pumps of the
energy necessary for their functioning, (3) compete in the inner membrane transporter,
(4) block the outlet channel in the outer membrane, (5) prevent the assembly of pump
components at the membrane level [24]. For example, the use of a natural steroidal alkaloid
extracted from the antidysentery plant Holarrhena, conessine 11, demonstrated a reduction
in the minimum inhibitory concentrations of various antibiotics including tetracycline,
cefotaxime, levofloxacin, novobiocin, rifampicin, and erythromycin and an inhibitory ac-
tivity of MexAB-OprM efflux pumps (Figure 4) [65]. Epigallocatechin-3-gallate (EGCG 12)
extracted from tea is another compound responsible for inhibiting this type of efflux pump
in P. aeruginosa [66].
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Reserpine 13 is an antipsychotic drug extracted from the alkaloid plants Rauwolfia
serpentina targeting the efflux pumps of the superfamilies MFS and RND by directly inter-
acting with amino acid residues in the efflux transport protein of tetracycline antibiotic.
This plays another role against S. aureus by increasing 4-fold the activity of norfloxacin
released by the NorA pump. Piperine 14, which is another alkaloid, is able to inhibit this
NorA efflux pump and then enhance ciprofloxacin accumulation in S. aureus [67].
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Quinoline derivatives such as pyridoquinolones 15 act as competitive inhibitors of the
AcrAB-TolC efflux pump and restore norfloxacin activity against P. aeruginosa. Additionally,
the amide dipeptide compound PaβN 16 is one of the first EPIs discovered through a
chemical approach. It inhibits the efflux pumps of the RND family and increases the
activity of many antibiotics such as fluoroquinolones, macrolides, and phenicols, but on the
other hand, it presents a toxicity towards mammalian cells, suggesting a limited therapeutic
use [68,69].

2.2.4. Liposomes Addressing Resistance

Liposomes are vesicles formed by a phospholipid bilayer which mimic biological
membranes. The surface properties of liposomes are determined by their polar (hydrophilic)
heads, and the membrane fluidity is determined by their non-polar (hydrophobic) tails,
which can organize the diffusion of hydrophilic and hydrophobic compounds due to
hydrophilic heads and hydrophobic tails [70]. The classification of liposomes depends on
their sizes: unilamellar vesicles (a single phospholipid bilayer), which are classified into
(1) large vesicles (LUV) or (2) small unilamellar vesicles (SUV), and multilamellar vesicles
(several phospholipid bilayers) [71]. Loading of liposomes with antibiotics makes several
Gram-positive and Gram-negative bacteria susceptible to specific antibiotics [72–74].

The liposomes adhere to the bacterial membrane (outer membrane) and contribute
to the release of the antibiotic into the periplasmic space (Figure 5) [41]. The comparison
between the Minimum Inhibitory Concentration (MIC) values of the antibiotic (tetracycline)
present in a solution and in a liposome shows an important decrease (MIC in the solution
is equal to 0.063 and 0.125 µg/mL for S. aureus and S. epidermidis, respectively, whereas
there is a 3.9-fold decrease for S. aureus and 12.8-fold for S. epidermidis when the antibiotic is
present in the liposome). This reduction indicates that the liposomes decrease the antibiotic
doses required due to the fusion of the liposome structures with the bacterial membranes
according to the mimetic characteristics [37,38].
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2.2.5. Potentiation of an Antibiotic Activity in the Presence of Natural Organic Compounds

Natural organic compounds, such as flavonoid polyphenol curcumin 17, can also
be used to potentialize antibiotic antibacterial activity (Figure 6). Thus, this led to the
restoration of the bactericidal activity of oxacillin and norfloxacin against resistant S. aureus
(MRSA) and linezolid activity against Mycobacterium abscessus by permeabilizing the mem-
brane, altering cell viability and thus facilitating the penetration of the antibiotic. It is used
for the treatment of tory bowel syndrome, diabetes, and asthma in Asian medicine [75].
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On the other hand, the combination of mammalian proteins, such as lactoferrin with
iron, an essential component for cell proliferation, allows for the restoration of the activity of
oxacillin against MRSA (synergistic effect) by disrupting the cell membrane and decreasing
the MIC value [76]. Essential oils are natural biological products used in medical therapy,
mainly dermatology, to restore antibiotic activity. They deal with the inhibition of efflux
pumps but also with the inhibition of biochemical pathways, protective enzymes, and
membranes, in the case of thyme oil. The use of isoeugenol induces a reduction in MIC
and a synergy by association with ciprofloxacin in resistant S. aureus. It was able to alter
these three bacterial pumps but presented toxicity in Drosophila melanogaster for an acute
24-h period [77]. Furthermore, carvacrol 18 acts by destabilizing the bacterial membrane,
allowing restoration of the activity of cefixime and pristamycin against P. aeruginosa. On
the other hand, the activity of sarafloxacin and florfenicol is restored in the presence of
oregano against the β-lactamase produced by E. coli [78].

2.2.6. Potentiation of an Antibiotic Activity in the Presence of Inorganic Compounds

Inorganic compounds including metals, ceramics, glass ceramics, and polymers can
act as antimicrobial agents through several mechanisms: alteration of membrane function,
production of reactive oxygen species (ROS), release of toxic ions, and loss of oxygen
enzyme activity. Their size, shape and concentration can have a great impact on their
antimicrobial activity [41].

These size- and structure-dependent properties rely on the ability to synthesize and
modify materials below 100 nm, ranging up to 200 nm for use in medicine and pharmaceu-
tical products, such as metal nanoparticles (NPs) and metal oxide nanoparticles; NPs are
useful due to their chemical and mechanical stability, control of morphology, and particle
size [79]. For example, treatment of E. coli with silver nanoparticles (AgNPs) resulted in
the formation of “pits” in the bacterial cell walls and subsequent death of the bacteria. An
increase in antimicrobial activity of this strain is shown by using small AgNP particles with
a larger surface/volume ratio. Therefore, it is clear that small particles are more effective
than large ones [80].

AgNPs are involved in three mechanisms to inhibit bacterial physiology, as illustrated
in Figure 7.

The first acts on membrane permeabilization: AgNPs penetrate the periplasmic space,
and its adhesion to the internal membrane induces the destabilization of the bacterial cell
and leakage of the cell content, leading to the death of the bacteria.

The second mechanism deals with the affinity between AgNPs and sulfur or phospho-
rus present in the intracellular medium at the level of DNA and proteins; an alteration of the
respiratory chain present in the inner membrane could occur due to the affinity of AgNPs
towards thiol groups of enzymes, inducing the release of reactive oxygen species (ROS),
resulting in damage of the cellular machinery and activation of the apoptotic pathway.
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Figure 7. Mechanisms to alter bacterial physiology by using AgNPs. (1) Membrane permeabilization,
(2) Interaction with DNA, (3) Liberation of ROS, (4) Interaction with cellular components.

The third mechanism consists in the interaction of the silver released by the nanoparti-
cles with cellular components, which can lead to the modification of the metabolic pathways
and alteration of the membrane and of the genetic material [81].

In this context, enhancement of vancomycin and ampicillin activity against K. pneumo-
niae and E. coli has been encountered by grafting them to silver nanoparticles [82].

Several methods are used to synthesize such nanoparticles: physical, chemical, and
biological. The physical method consists of evaporating and condensing using a tube
furnace to obtain nanoparticles. This method is fast and does not use any dangerous
chemicals, but on the other hand, there is a very high energy consumption with a low
production yield and contamination with solvents.

The chemical method consists of reducing the silver salts by nucleation followed by
subsequent growth. This has a high yield, ease of production of AgNPs, and a low cost,
but the disadvantage is the use of chemicals harmful to human health [80]. Finally, the
biological method consists of the use of reducing agents extracted from plants, such as the
leaf of Artemisia argvi, which has a strong antioxidant activity and a biosynthesis potential
for phenol and flavonoid compounds, which allows it to reduce Ag+ to AgNPs [83].
The use of AgNPs in combination with an antibiotic has the advantage of reducing the
necessary doses of the antibiotic, which reduces possible side effects [84]. The nanoparticles
can also be used as carriers by forming complexes which allow their release and their
selectivity [47,50].

In another field, dressing is used to heal severe wounds, but by contamination, it
impedes healing due to the competition between cells and bacteria on the wound surfaces.
For a wound dressing to be ideal, it must preserve cell attachment to regenerate tissue and
have an antibacterial effect. The use of methylcellulose (MC) foams alone against E. coli and
S. aureus has no effect on their growth; however, its association with Manuka honey (MH)
MC-MH produced by freeze-drying shows a clear reduction in growth. Meanwhile their
association with B3 (dense borate ion), based on bioactive glass (BG) doped with copper
(MC-MH-B3-BG-Cu), shows a much more effective antimicrobial effect compared to MC-
MH, the bacterial viability of E. coli decreases from 60% to 0%. Copper is an antibacterial
ion that penetrates the bacterium and leads to the degradation of its DNA. Therefore,
MC-MH-B3-BG-Cu foams can be used as a wound dressing for the treatment of infected
wounds [85].
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The delivery of drugs can also be carried out using polymer NPs prepared from
biodegradable and biocompatible synthetic polymers. The most widely used is poly-lactic-
co-glycolic acid (PLGA). It is based on the electrostatic interaction between the opposite
charges of the drug with the polyelectrolytes. Several parameters are important for the
use of polymers, such as their ease of preparation and functionalization, their numerous
structural integrities, their stability during storage, the ability to control them during drug
release by selecting the polymer type, their composition, and their molecular weight [86].

Among studies, the most interesting polymer to target a drug is chitosan (ChNP),
which has the effect of preventing infections and fighting against microbial agents. Chi-
tosan is a cationic polysaccharide derived from chitin formed from N-acetylglucosamine
and D-glucosamine which has non-toxic, biocompatible, biodegradable, and low-allergy
properties, which could signal its usefulness as a versatile biopolymer [87]. The mode of
action of chitosan is based on its positive charge, which promotes a very close interaction
with the bacterial wall formed of peptidoglycan rich in carboxyl and negatively charged
amine; this increases the adhesive potential of chitosan. In addition, if its molecular weight
is lower, it enters into the bacterial cell and acts by inhibiting RNA synthesis and bacterial
proteins by binding to DNA and improves the properties of permeation and inhibition of
efflux pumps [88].

3. Outer Membrane Permeabilization

The outer membrane (OM) of Gram-negative bacteria constitutes an additional perme-
ability barrier which protects the cell from many more antibacterial agents compared to
Gram-positive bacteria. The negatively charged components of the OM interact with per-
meabilizers, promoting the entry of impermeable molecules. Permeabilizers are considered
as potential antibiotic adjuvants to fight against bacterial resistance [39,89]. Pentamidine,
an anti-protozoan drug, has shown effective activity against a wide range of Gram-negative
bacteria by interacting with the lipopolysaccharide, and as a result, disrupting the outer
membrane. In addition, the cationic peptide and its derivatives destroy the outer mem-
brane by electrostatic interaction. For example, P. aeruginosa is made susceptible by using
a short proline-rich cationic lipopeptide which potentiates minocycline and rifampicin
activities [90].

Benzalkonium chloride (BAC) at different concentrations affects the OM and then
permeabilizes the inner membrane, but it must be used at a lower concentration than
the MIC because a sublethal concentration leads to bacterial tolerance and resistance to
antibiotics [91].

Menadione, a soluble synthetic vitamin converted into vitamin K2 at the intestinal
level, was used to see its effect on membrane permeability against multiresistant bacteria
such as S. aureus, P. aeruginosa, and E. coli. It has been demonstrated to have an antibacterial
activity only against the P. aeruginosa bacterium, but when combined with antibiotics of the
aminoglycoside family, it produces a synergistic effect and decreases the MICs for these
antibiotics [92]. Otherwise, AMPs (antimicrobial peptides) possess an antibacterial activity
by altering membrane barrier function by forming pores. Thus, nisin, an antibiotic that
plays a role in the formation of pores in the membrane of sensitive bacteria, led to a rapid
efflux of small molecules from the cells and then to a dissipation of the membrane potential.
This antibiotic uses lipid-bound cell envelope precursors like lipid II [93]. Polymyxin B is
a polycationic peptide antibiotic that also disrupts the bacterial membrane by binding to
lipopolysaccharides (LPS), rendering this membrane permeable to various antibiotics and
allowing them to enter the bacterial cell when the permeability of the OM is altered [39,94].

Polyamines (Figure 8) also have a role in the fight against bacterial resistance. The
two quinoline polyamine derivatives 19 and 20 are used as an adjuvant for doxycycline by
improving its activity against P. aeruginosa. A disruption of integrity and depolarization
of bacterial membranes have been observed with derivative 20, while the mechanism of
action of derivative 19 is not yet known [95]. The polyamine farnesyl 21 to 24 derivatives
make the bacterium P. aeruginosa sensitive to the antibiotic tetracycline, and this is linked to
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the hydrophobicity of the antibiotic and to the alteration of the integrity of the bacterial
outer membrane [96,97]. In addition, the polyamine derivatives motuporamine 25 and 26,
extracted from the marine sponge Xestospongia exigua, are used as adjuvants for doxycycline;
they have an antibacterial effect by modifying the transmembrane electrical potential, which
results in an alteration of proton hemostasis [98].
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4. Cargo Delivery: Conjugation of Antibiotics with Siderophores or Sugars (The
“Trojan Horse” Strategy)

The “Trojan horse concept” emerged from studies on specific systems involved in the
capture and selective transport through bacterial membranes of iron, carbohydrates, and
essential compounds to bacterial physiology [99]. The aim is to synthesize a vector based
on a cargo (siderophore, sugar) fused to an antibiotic in order to efficiently direct the agent
to the internal bacterial target by hijacking the respective transport systems.

4.1. Siderophores

Siderophores are low-molecular-weight metabolites produced by microorganisms and
plants involved in iron capture. They have a strong affinity for iron, compete with iron
transporters in the host body, and belong to pathogen virulence factors [64,65]. When
the availability of iron is limited in the environment, bacteria synthesize and secrete
siderophores to scavenge iron and transport it inside the bacterial cell. Two types of
siderophores exist: endogenous siderophores synthesized by the bacterium itself and
exogenous siderophores synthesized by other microorganisms “cross-feeding” [100–102].

Pyoverdins are mixed, fluorescent siderophores produced by Pseudomonaceae and have
a very complex structure and high molecular weight. The synthesis of pyoverdins begins in
the cytoplasm, and then they are secreted by the PvdRT-OpmQ pump into the extracellular
medium [103,104].

Pyocholine pertains to a second class of siderophore synthesized by P. aeruginosa which
has a lower affinity for iron than pyoverdine. The synthesis of pyocholine takes place in
the cytoplasm [69,70].

As previously mentioned, bacteria can also use exogenous siderophores synthesized
by another bacterial species to transport iron to the cytoplasm, such as Enterobactin which
is the main siderophore produced by Gram-negative bacteria; in particular E. coli is used
by P. aeruginosa [105,106]. The transport of Enterobactin in P. aeruginosa occurs across the
outer membrane by two transporters Pfi A and PrA; however, its transport across the inner
membrane still remains unclear [107,108].

The use of iron transporters (siderophores) could be an interesting alternative to
circumvent the obstacle presented by the Gram-negative bacteria envelope during the
entry of many antibiotics. Thus, the construction of antibiotics linked to siderophores can
facilitate the penetration of the antibiotic in the cytoplasm. Gram-negative bacteria import
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Fe3+ in the form of ferric siderophore complexes across the outer membrane by TonB-
dependent transporters (TBDTs). This translocation depends on the complex composed of
the ExB/ExbD/TonB proteins present in the bacterial membrane [109]. Generally, a subset
of siderophores from the same chemical family is recognized by a single TBDT. Once the
ferric siderophore complex is present within periplasmic space, it is recognized by periplas-
mic binding proteins, which allows it to cross the inner membrane by transporters involved
in the uptake of ferric siderophores. The ferric siderophore complex must be dissociated by
several mechanisms: (1) hydrolysis of the siderophores by esterase, (2) modification of the
siderophores such as acetylation, (3) release of proton iron [110].

Siderophores can be used as vectors, allowing the vectorized antibiotic to easily pass
through the bacterial membrane, reach the target, and therefore reduce the phenomenon
of resistance. This strategy consists of connecting a linker between the siderophore and
the antibiotic (Figure 9). This linker must be variable in length and chemical properties
depending on the target, stable in the extracellular environment, and hydrolysable in the
bacterial cell [111].
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Albomycins are sideromycins secreted by the bacterium Streptomyces; their siderophore
part is composed of ferrichrome, the serine is the linker, and the antibiotic is composed of a
thioribosyl-pyrimidine which inhibits the enzyme seryl t-RNA synthetase and therefore the
protein synthesis [112]. In E. coli, peptidase N cleaves the linker between the siderophore
and the antibiotic. If the pepN gene coding for this peptidase is mutated, the albomycin
loses it biological activity and transports iron into the bacterial cell. It is used in the
treatment of various bacterial infections, so this strategy will help the use of albomycins as
new antimicrobial agents, even if it is more effective against Gram-negative bacteria than
Gram-positive bacteria [113].

On the other hand, microcins are also sideromycins synthesized from K. pneumoniae
Ryc 492, whose siderophore component is composed of enterobactin with an antibiotic,
which is a peptide linked by a glycosidic group. The transport of microcin into the cyto-
plasm results in the cleavage of the ester group linking the sugar with the antibiotic by
intracellular hydrolases [114].

The released peptide leads to the depolarization of the bacterial membrane by forming
pores. The antibiotic activity increases (10-fold) when the vectorization is made by a
catecholated siderophore [115].

Interestingly, pyoverdine has an amine group in its structure, which allows it to bind
to the antibiotic via a linker; the antibiotic is ampicillin, which is a β-lactam. Conjugates
27 and 28 (Figure 10) tested against ampicillin-resistant P. aeruginosa ATCC27853 and
ATCC13692 have reported high antibacterial activities, with MICs ranging from 0.01 pg/mL
to 0.67 pg/mL, respectively. The pyoverdine–ampicillin conjugate is dissociated from
the iron moiety in the periplasm, and the antibiotic can inhibit peptidoglycan synthesis.
Its fusion with fluoroquinolone does not generate any activity, since pyoverdine has a
periplasmic location, while the target of the fluoroquinolone is cytoplasmic [115].

Pyochelin is also used in the Trojan horse strategy as a cargo approach (Figure 11). C5
of pyochelin is modified, and then two analogs are synthesized, 29 having a triple bond and
30 possessing a single bond (softer aliphatic chain) [115]. The conjugation of the terminal
amine group of pyochelin with the antibiotic norfloxacin against P. aeruginosa ATCC1592
cultured in succinate medium (starved in iron level) shows that the conjugates 31 and 32
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bearing a non-hydrolysable succinic linker do not present any antimicrobial activity at
a concentration of 10 µM. However, this conjugation, made this time by a hydrolysable
linker 33 and 34 at the same concentration, shows a high antimicrobial activity and a high
inhibition of bacterial growth. Thus, the nature of the linker involved in the design of these
conjugates seems to be important for the delivery of the antibiotic to its target and induces
an effective activity [115].
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Nowadays, a highly targeted Trojan horse strategy has emerged with cefiderocol
35 (Figure 12). Its structure contains a catechol-type siderophore fused to antibiotic
“cephalosporin”, this hybrid being active against Gram-negative resistant bacteria like
P. aeruginosa, A. baumannii Enterobacteriaceae, and S. maltophilia [116]. It has received ap-
proval for use from the United States Food and Drug Administration (FDA). In the structure
of cefiderocol, ceftazidine, and cefepime, two cephalosporins can be distinguished by the
presence of a catechol group in position 3 of the side chain, which allows it to form a
chelated complex with iron and therefore become a carrier in the bacterial cell using
the iron transport system (the C-3 side chain prevents recognition and degradation by
β-lactamases, and the C-7 side chain enhances stability against β-lactamases) [117].

Once cefiderocol is in the periplasm, iron is released, and the antibiotic binds to
penicillin-binding proteins (PBPs) and then inhibits peptidoglycan synthesis, resulting in
cell death (Figure 13). It is stable against ESBL β-lactamases (extended-spectrum β-lactam),
AmpC, and carbapenemases and active against class A, B, C, and D β-lactamases. Its activity
against A. baumannii is more potent than ceftazidime–avibactam and meropenem against
enterobacteria-producing carbapenemases (KPC) resistant to meropenem. This activity is
the same or slightly higher than ceftazidime–avibactam against K. pneumoniae [118].
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The penetration of cefiderocol into bacterial cells is independent of OM porins, which
allows it to remain active when the bacterium is resistant to β-lactams by lack of porin.
In addition, since it is mainly excreted by the kidneys, it is necessary to finely adjust the
patient therapy. Cefiderocol is recommended for the treatment of complicated urinary tract
infections (CUTI) such as pyelonephritis, and its use is being considered for the treatment of
nosocomial pneumonia, bloodstream infections, and carbapenem-resistant infections [119].

4.2. MaltoCargo Alternatives

A different strategy consists of using maltodextrin–cargo conjugates to circumvent the
antibiotic resistance of Gram-negative bacteria [120]. Thus, these conjugates were designed
to cross the outer membrane via the porin LamB channel involved in maltodextrin trans-
port, resulting in an accumulation in the periplasm. Then, MalE, the periplasmic binding
protein, captures the maltodextrin moiety and allows its transport to the cytoplasm via
specific transporters inserted in the inner membrane (MalF,G,K). Finally, maltodextrin is
metabolized by the MalP enzyme and allows the release of the antibiotic into the cyto-
plasm [121]. The interest and advantage of maltotriose conjugate are that it can reach the
periplasm and the cytoplasm at important internal concentrations, activating the maltose
regulon which results in the auto-induction of its own entry pathway, representing an
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interesting prototype for releasing molecules into the cytoplasm of Gram-negative bacteria
(Figure 14) [122,123].
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5. Conclusions

A large panel of approaches has been studied to bypass bacterial resistance mecha-
nisms, including modifying the target of the antibiotic, inhibiting degradative enzymes,
blocking efflux pumps, permeabilizing the bacterial membrane, and hijacking selective
transport systems. Antibacterial activity is improved either by combination of the antibiotic
with drugs or with β-lactamase inhibitors, by addressing liposomes loaded with antibiotics,
or by combination with organic and inorganic compounds. In addition, the Trojan horse
strategy has also been developed to combat bacterial resistance; siderophore or maltose
are linked to the antibiotic molecule and used as a cargo to deliver the antibiotics into the
bacterial cell.

Until now, regarding bacterial resistance towards antibiotics, an important challenge
remains the determination of intracellular concentration of active molecules close to the
target [39,124]; this parameter is highly important, since the MIC assay give only an indirect
and rough estimation of the in situ antibiotic activity after several hours of incubation
in vitro. Recently, some smart studies using fluorimetry and mass spectrometry, in vitro
and in cellulo, have quantified the diffusion rate and the internal concentrations of several
antibiotics in bacterial strains expressing various resistance mechanisms [39,89]. The
relationships between the expression level of membrane transporters, their selectivity for
the antibiotic globularity and charges, their affinity for pharmacophoric groups located
on the antibiotic surface, and their susceptibility to certain blockers must be precisely
analyzed for each bacteria species. Thus, the concepts SICAR and RTC2T now allow the
comparison of the biological effect of adjuvants/combinations/cargos in the efficacy of
diffusion/transport across bacterial membranes and intra-bacterial accumulation of several
antibiotics.

In addition, with these recent tools, it will be possible to characterize the efficient ratio
of antibacterial agent–adjuvant/cargo (enhancer); this key point will precisely determine
the true role of the partner in the antibiotic activity and the molecular level of active
restoration that depends on the antibiotic chemical group, location of internal target, the
type of resistance mechanism, the bacterial envelope, etc.

Moreover, the selection of appropriate “cargo” can be done according to the location
of the target in a defined bacterial compartment, an interesting point that allows the im-
provement of the kinetics of antibiotic distribution in the bacterial cell. This key advantage
is illustrated in the case of “SiderophoreCargos” that address the antibiotic to periplasmic
space. Interestingly, “MaltoCargos” are able to deliver antibiotic by hijacking not only
outer the membrane channel (maltoporin) that provides the outer membrane diffusion,
but also the maltose permeases involved in the transport across the inner membrane. This
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consequently achieves a significant concentration of the drug in the cytoplasm. This choice
of smart “cargo” paves the way to specifically deliver the active agent to a selected target
located in a defined bacterial compartment.

Finally, these perspectives allow a rational chemical design of adjuvants to evaluate
the efficiency of different strategies and to prepare the future collection of antibiotic partner
treatments.
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