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Categorical coherence from term rewriting systems
Samuel Mimram #

LIX, École polytechnique

Abstract
The celebrated Squier theorem allows to prove coherence properties of algebraic structures, such
as MacLane’s coherence theorem for monoidal categories, based on rewriting techniques. We are
interested here in extending the theory and associated tools simultaneously in two directions. Firstly,
we want to take in account situations where coherence is partial, in the sense that it only applies for
a subset of structural morphisms (for instance, in the case of the coherence theorem for symmetric
monoidal categories, we do not want to strictify the symmetry). Secondly, we are interested in
structures where variables can be duplicated or erased. We develop theorems and rewriting techniques
in order to achieve this, first in the setting of abstract rewriting systems, and then extend them to
term rewriting systems, suitably generalized in order to take coherence in account. As an illustration
of our results, we explain how to recover the coherence theorems for monoidal and symmetric monoidal
categories.

2012 ACM Subject Classification Theory of computation → Rewrite systems

Keywords and phrases coherence, rewriting system, Lawvere theory

1 Introduction

A monoidal category consists of a category C equipped with a tensor bifunctor ⊗ : C × C → C

and unit element e : 1 → C together with natural isomorphisms αx,y,z : (x⊗y)⊗z → x⊗(y⊗z),
λx : e⊗x → x and ρx : x⊗e → x, satisfying two well-known axioms. Thanks to these, the way
tensor expressions are bracketed does not really matter: we can always rebracket expressions
using the structural morphisms (α, λ and ρ), and any two ways of rebracketing an expression
into the other are equal. In fact, there are various ways to formalize this [1]:
(C1) Every diagram in a free monoidal category made up of α, λ and ρ commutes

[17, Corollary 1.6], [26, Theorem VI.2.1].
(C2) Every diagram in a monoidal category made up of α, λ and ρ commutes

[27, Theorem 3.1], [26, Theorem XI.3.2].
(C3) Every monoidal category is monoidally equivalent to a strict monoidal category

[17, Corollary 1.4], [26, Theorem XI.3.1].
(C4) The forgetful 2-functor from strict monoidal categories to monoidal categories has a left

adjoint and the components of the unit are equivalences.
Condition (C1) implies (C2) as a particular case and the converse implication can also be
shown. Condition (C4) implies (C3) as a particular case, and it can be shown that (C3) in
turn implies (C2). Analogous statements hold for symmetric monoidal categories (monoidal
categories equipped with a suitable symmetry γx,y : x ⊗ y → y ⊗ x) although they are more
subtle [2]: in (C2), we have to suppose that the diagrams are “generic enough”, and in (C4)
the notion of strict symmetric monoidal category does not impose that the symmetry should
be an identity.

We first investigate here (in Section 2) an abstract version of this situation and formally
compare the various coherence theorems: we show that quotienting a theory by a subtheory W
gives rise to an equivalent theory if and only if W is coherent (or rigid), in the sense that all
diagrams commute (Theorem 6). Moreover, this is the case if and only if they give rise to
equivalent categories of algebras (Proposition 9), which can be thought of as a strengthened
version of (C4). We also provide rewriting conditions which allow showing coherence in practice
(Proposition 13). The idea of extending rewriting theory in order to take coherence in account
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dates back to pioneering work from people such as Power [30], Street [34] and Squier [32].
It has been generalized in higher dimensions in the context of polygraphs [33, 8], as well as
homotopy type theory [19], and used to recover various coherence theorem [22, 13].

We then extend (in Section 3) our results to the 2-dimensional cartesian theories, which
are able to axiomatize (symmetric) monoidal categories. Our work is based on the notion
of Lawvere 2-theory [12, 35, 36], and unfortunately lead us to discover an important flaw in
a main result about those [36]. The rewriting counterpart is based on a coherent extension
of term rewriting systems, following [10, 5, 28]. One of the main novelties here consists in
allowing for coherence with respect to a sub-theory (which is required to handle coherence
for symmetric monoidal categories), building on recent works in order to work in structures
modulo substructures [9, 29, 11].

2 Relative coherence and abstract rewriting systems

2.1 Quotient of categories
Suppose fixed a category C together with a set W of isomorphisms of C. Although the situation
is very generic, and the following explanation is only vague for now, it can be helpful to think
of C as a theory describing a structure a category can possess and W as the morphisms we
are interested in strictifying. For instance, if we are interested in the coherence theorem for
symmetric monoidal categories, we can think of the objects of C as formal iterated tensor
products, the morphisms of C as composites of α, λ, ρ and γ, and we would typically take W

as consisting of all instances of α, λ and ρ (but not γ). This will be made formal in Section 3.
A functor F : C → D is W -strict when it sends every morphism of W to an identity. We

write C/W for the quotient of C under W : this is the category equipped with a W -strict
functor C → C/W such that any W -strict functor F : C → D extends uniquely as a functor
F̃ : C/W → D. We write W for the subcategory of C generated by W (which we assimilate to a
subset of the morphisms of C). This is always a groupoid (a category in which every morphism
is invertible) and it is easily shown that C/W ∼= C/W , so that we can always suppose that we
quotient by a subgroupoid. Moreover, we can always suppose that this subgroupoid has the
same objects as C (we can add all identities in it without changing the quotient).

We say that a groupoid W is rigid when any two morphisms f, g : x → y which are parallel
(i.e. have the same source, and have the same target) are necessarily equal. Such a groupoid
can be thought of as a “coherent” sub-theory of C. It does not have non-trivial geometric
structure in the following sense:

▶ Lemma 1. A groupoid W is rigid if and only if either
(i) identities are the only automorphisms of W,
(ii) W is a “set”, i.e. is equivalent to a coproduct of instances of the terminal category.

The fact that W ⊆ C is rigid is thought here as the fact that coherence condition (C1) holds
for C, relatively to W.

General notions of quotients of categories are not trivial to construct (see for instance [4]),
but in the case of rigid categories, we have the following simple description.

▶ Proposition 2. When W ⊆ C is rigid, the quotient category C/W is isomorphic to the
category where

objects are equivalence classes C0/W of objects of C under the equivalence relation ∼ such
that x ∼ y whenever there exists w : x → y in W (we write [x] for the class of an object x),
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a morphism is of the form [f ] : [x] → [y] for some morphism f : x → y of C, under
the equivalence relation such that f ∼ f ′ whenever there exists v and w in W such that
w ◦ f = f ′ ◦ v,
given f : x → y and g : y′ → z with [y] = [y′], the composition is [g] ◦ [f ] = [g ◦ w ◦ f ] for
the “mediating” morphism w : y → y′ in W (uniquely determined by rigidity of W),
given x ∈ C, the identity is id[x] = [idx].

When W ⊆ C is not rigid, we can have a similar description, but we now have the choice
between multiple mediating morphisms in the definition of the composition, and all the
resulting composites in fact have to be identified in the quotient. This observation suggests
that the construction of the quotient category C/W, when W is not rigid, is better described
in two steps: we first formally make W rigid, and then apply Proposition 2. We say that a
functor F : C → D is W-rigid when any two parallel morphisms of W have the same image.
The W-rigidification of C is the category C//W equipped with a W-rigid functor C → C//W
such that any W-rigid functor F : C → D extends uniquely as a functor C//W → D.

▶ Lemma 3. The category C//W is the category obtained from C by quotienting morphisms
under the smallest congruence (wrt composition) identifying any two parallel morphisms of W.

▶ Proposition 4. The quotient C/W is isomorphic to (C//W)/W̃ where W̃ is the set of
equivalence classes of morphisms in W under the equivalence relation of Lemma 3.

Proof. Follows directly from the universal properties of the quotient and the rigidification,
and the fact that any W-strict functor is W-rigid. ◀

A consequence of the preceding explicit description of the quotient is the following:

▶ Lemma 5. The quotient functor C → C/W is surjective on objects and full.

Proof. By Proposition 4, the quotient functor is the composite of the quotient functors
C → C//W → C/W . The first one is surjective on objects and full by Lemma 3 and the second
one is surjective on objects and full by Proposition 2. ◀

This entails the following theorem, which is the main result of the section. Its meaning can be
explained by taking the point of view given above: thinking of C as describing a structure and
of W as a part of the structure we want to strictify, the structure is equivalent to its strict
variant if and only if the quotiented structure does not itself bear non-trivial geometry (in the
sense of Lemma 1).

▶ Theorem 6. Suppose that W is a subgroupoid of C. The quotient functor [−] : C → C/W is
an equivalence of categories if and only if W is rigid.

Proof. Since the quotient functor is always surjective and full by Lemma 5, it remains to show
that it is faithful if and only if W is rigid. Suppose that the quotient functor is faithful. Given
w, w′ : x → y in W, by Lemma 3 and Proposition 4 we have [w] = [w′] and thus w = w′ by
faithfulness. Suppose that W is rigid. The category C/W then admits the description given
in Proposition 2. Given f, g : x → y in C such that [f ] = [g], there is v : x → x and w : y → y

such that w ◦ f = g ◦ v. By rigidity, both v and w are identities and thus f = g. ◀

▶ Example 7. As a simple example, consider the groupoid C freely generated by the graph

x y
f

g
. The subgroupoid generated by W = {g} is rigid, so that C is equivalent to the

quotient category C/W , which is the groupoid generated by x f . However, the groupoid
generated by W = {f, g} is not rigid (since we don’t have f = g). And indeed, C is not
equivalent to the quotient category C/W , which is the terminal category.
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2.2 Coherence for algebras
Given a category C, we consider here a functor C → Cat as an algebra for C. Namely, if
we think of the category C as describing an algebraic structure (e.g. the one of monoidal
categories), an algebra can be thought of as a category actually possessing this structure (an
actual monoidal category).

We write Alg(C) for the category of algebras, with natural transformations as morphisms.
Any functor F : C → C′ induces, by precomposition, a functor Alg(F ) : Alg(C′) → Alg(C). We
can characterize situations where two categories give rise to the same algebras:

▶ Proposition 8. Suppose given a functor F : C → C′ between categories. The functor F is
an equivalence if and only if the induced functor Alg(F ) : Alg(C′) → Alg(C) is an equivalence.

Proof. Given a 2-category K, one can define a Yoneda functor YK : Kop → [K, Cat], where Cat
is the 2-category of categories, functors and natural transformations, and [K, Cat] denotes the
2-category of 2-functors K → Cat, transformations and modifications. In particular, given
0-cells x ∈ Kop and y ∈ K, we have YKxy = K(x, y). The Yoneda lemma states that this
functor is a local isomorphism (this is a particular case of the Yoneda lemma for bicategories
detailed for instance in [16, chapter 8]). In particular, taking K = Cat (and ignoring size
issues), the Yoneda functor sends a category C ∈ Kop to YKC = Alg(C), and the result follows
from the Yoneda lemma. ◀

As a particular application, given a category C and a subgroupoid W, we have by Theorem 6
that W is rigid if and only if the quotient functor C → C/W is an equivalence. By Proposition 8,
we thus have the following property which can be interpreted as the equivalence of coherence
conditions (C1) and a strengthened variant of (C4).

▶ Proposition 9. Given a category C and a subgroupoid W, the morphism Alg(C/W) → Alg(C)
induced by the quotient functor is an equivalence of categories if and only if W is rigid.

2.3 Coherent abstract rewriting systems
We now explain how the theory rewriting can be used to show the rigidity of a groupoid
in practice. In the same way the theory of rewriting can be studied abstractly [15, 3, 6],
i.e. without taking in consideration the structure of the objects getting rewritten, we first
develop the coherence theorems of interest in this article in an abstract setting. Although the
terminology is different, the formalization given here is based on the notion of polygraph [33, 8].

Extended abstract rewriting systems. An abstract rewriting system, or ars, P =
(P0, s0, t0, P1) consists of a set P0, a set P1 and two functions s0, t0 : P1 → P0. The elements
of P0 are generally thought as the objects of interest, the elements of P1 as rewriting rules,
and the function s0 (resp. t0) associating to a rewriting rule its source (resp. target). We
write a : x → y for a rewriting rule a with s0(a) = x and t0(a) = y. We write P∗

1 for the set
of rewriting paths in the ars: its elements are (possibly empty) finite sequences a1, . . . , an

of rewriting steps, which are composable in the sense that t0(ai) = s0(ai+1) for 1 ≤ i < n.
The source (resp. target) of such a rewriting path is s0(a1) (resp. t0(an)); we sometimes write
p : x

∗→ y to indicate that p is a rewriting path with x as source and y as target. Given two
composable paths p : x

∗→ y and q : y
∗→ z, we write p · q for their concatenation.

A morphism f : P → Q of ars is a pair of functions f0 : P0 → Q0 and f1 : P1 → Q1 such
that s0 ◦ f1 = f0 ◦ s0 and t0 ◦ f1 = f0 ◦ t0, and we write Pol1 for the resulting category. There
is a forgetful functor Cat → Pol1, sending a category C to the ars whose objects are those
of C and whose rewriting steps are the morphisms of C. This functor admits a left adjoint
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−∗ : Pol1 → Cat sending an ars to the category with P0 as objects and P∗
1 as morphisms

(composition is given by concatenation of paths and identities are the empty paths).
As a variant of the preceding situation, we can consider the forgetful functor Gpd → Pol1,

from the category of groupoids. It also admits a left adjoint −∼ : Pol1 → Gpd, and we
write P∼

1 for the set of morphisms of the groupoid generated by an ars. The elements of P1
are rewriting zig-zags in the ars: they consist in finite sequences aϵ1

1 , . . . , aϵn
n with ai ∈ P1 and

ϵi ∈ {−, +} for 1 ≤ i ≤ n, which are
composable: t0(aϵi

i ) = s0(aϵi+1
i+1 ) for 1 ≤ i < n,

by convention s0(a+
i ) = s0(ai), t0(a+

i ) = t0(ai), s0(a−
i ) = t0(ai), t0(a−

i ) = s0(ai), and
reduced: if ai = ai+1 then ϵi = ϵi+1 for 1 ≤ i < n.

The intuition is that a zig-zag is a “non-directed” rewriting path, consisting of rewriting
steps, some of which are taken backward (i.e. formally inverted: those for which the exponent
is “−”). The source (resp. target) of a zig-zag as above is s0(aϵ1

1 ) (resp. t0(aϵn
n )) and we write

p : x
∼→ y to indicate that p is a zig-zag from x to y. Composition p · q of composable zig-zags

p : x
∼→ y and q : y

∼→ y is given by taking their concatenation and iteratively removing the
subpaths of the form a− · a+ or a+ · a− at the interface, which ensures that the composite is
reduced. Given a zig-zag p, we write p− for its inverse, obtained by inverting the polarity of
the exponents in p (we exchange “+” and “−”): it satisfies p · p− = id and p− · p = id, where
id denotes an empty zig-zag. Note that there is a canonical inclusion P∗

1 → P∼
1 , which adds

a “+” exponent to every step of a rewriting path, witnessing for the fact that rewriting paths
are particular zig-zags.

An extended abstract rewriting system, or 2-ars, P consists of an ars as above, together
with a set P2 and two functions s1, t1 : P2 → P∼

1 , such that s0 ◦ s1 = s0 ◦ t1 and t0 ◦ s1 = t0 ◦ t1.
The elements of P2 are coherence relations and the functions respectively describe their source
and target (which are rewriting paths). We sometimes write A : p ⇒ q to indicate that A ∈ P2

admits p (resp. q) as source (resp. target), which can be thought of as a 2-cell x y

p

q

A ⇓

where x (resp. y) is the common source (resp. target) of p and q. The notion of 2-ars is a
groupoidal variant of the one of 2-computad [33] aka 2-polygraph [8], which generalizes in
arbitrary dimension. The groupoid presented by a 2-ars P, denoted by P, is the groupoid
obtained from the free groupoid generated by the underlying ars by quotienting morphisms
under the smallest congruence identifying the source and the target of any element of P2.
The groupoid P thus has P0 as set of objects, the set P∼

1 of rewriting zig-zags as morphisms,
quotiented by the smallest equivalence relation ≡ such that p ·q ·r ≡ p ·q′ ·r for every rewriting
zig-zags p and r and coherence relation A : q ⇒ q′, which are suitably composable. Given a
rewriting zig-zag p ∈ P∼

1 , we write p for the corresponding morphism in P (i.e. its equivalence
class under ≡).

Rewriting properties. Now, suppose fixed a 2-ars P together with a set W ⊆ P1. We can
think of W as inducing a rewriting subsystem W of P, with P0 as objects, W as rewriting steps
and W2 = {A ∈ P2 | s1(A) ∈ W ∗ and t1(A) ∈ W ∗} as coherence relations, and formulate the
various traditional rewriting concepts with respect to it. We are considering here the quotient
of a category C = P presented by a 2-ars P by the subgroupoid W generated by W , with the
aim of showing coherence results wrt the strictification of W as previously.

We say that P is W -terminating if there is no infinite sequence a1, a2, . . . of elements of W

such that every finite prefix is a rewriting path (i.e. belongs to W ∗). An element x ∈ P0 is
a W -normal form when there is no rewriting step in W with x as source. We say that P is
weakly W -normalizing when for every x ∈ P0 there exists a normal form x̂ and a rewriting
path nx : x

∗→ x̂. We necessarily have ˆ̂x = x̂ and we always suppose that nx̂ = idx̂.
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▶ Lemma 10. If P is W -terminating then it is weakly W -normalizing.

Proof. Traditional rewriting argument: a maximal path (wrt prefix order) starting from x

exists (because W is terminating) and its target is necessarily a normal form. ◀

A W -branching is a pair of rewriting steps a1 : x → y1 and a2 : x → y2 in W which
are coinitial, i.e. have the same source. Such a branching is confluent when there is a pair
of cofinal (with the same target) rewriting paths p1 : y1 → z and p2 : y2 → z in W ∗ such
that a1 · p1 = a2 · p2 (as morphisms of P, or, equivalently, of W). We say that P is locally
W -confluent when W -branching is confluent. This condition is in particular satisfied when
there exists a coherence relation A : a1 · p1 ⇒ a2 · p2, or A : a2 · p2 ⇒ a1 · p1 in P2. Note that,
here, not only we require that we can close a span of rewriting steps by a cospan of rewriting
paths (as in the traditional definition of confluence), but also that the confluence square can
be filled coherence relations. Similarly, P is W -confluent when for every p1 : x

∗→ y1 and
p2 : x

∗→ y2 in W ∗, there exist q1 : y1
∗→ z and q2 : y2

∗→ z in W ∗ such that p1 · q1 = p2 · q2.
We say that P is W -convergent when it is both W -terminating and W -confluent.

The celebrated Newman’s lemma (also sometimes called the diamond lemma) along with
its traditional proof [6, Theorem 1.2.1 (ii)] easily generalizes to our setting:

▶ Proposition 11. If P is W -terminating and locally W -confluent then it is W -confluent.

Proof. Classical argument, by well-founded induction on x, using local W -confluence. ◀

We say that P is W -coherent if for any parallel paths p, q : x
∼→ y in W ∼, we have p = q.

In other words, P is W -coherent precisely when W is a rigid subgroupoid of P. The traditional
Church-Rosser property [6, Theorem 1.2.2] generalizes as follows in our setting:

▶ Proposition 12. If P is weakly W -normalizing and W -confluent then for any zig-zag
p : x

∼→ y in W ∼, we have p · ny = nx.

Proof. By confluence, given a rewriting path p : x
∗→ y in W ∗, we have x̂ = ŷ and p · ny = nx

(where nx and ny are paths to a normal form given by the weak normalization property),
and thus p+ · ny = nx and nx · p− = ny. Any zig-zag p : x

∼→ y in W ∼ decomposes as
p = p−

1 q+
1 p−

2 p+
2 . . . p−

n p+
n for some n ∈ N and paths pi and qi in W ∗. We thus have p · ny = nx,

since all the squares of the following diagram commute in W ∼ by the preceding remark:

x y1 x2 · · · xn yn y

x̂ x̂ x̂ · · · x̂ x̂ x̂

nx

p−
1

ny1

q+
1

nx2 nxn

p−
n

nyn

q−
n

ny

which allows us to conclude. ◀

This implies the following “abstract” variant of Squier’s homotopical theorem [32, 21, 14]:

▶ Proposition 13. If P is weakly W -normalizing and is W -confluent then it is W -coherent.

Proof. Given two parallel zig-zags p, q : x
∼→ y in W ∼, we have p = q, since the following

diagram commutes in P: y

x ŷ y

y

ny

idy

p

q

nx

n−
y

ny

idy

Namely, we have x̂ = ŷ by confluence, the two triangles above commute by Proposition 12,
and the two triangles below do because n−

y is an inverse for ny. ◀
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▶ Example 14. As a variant of Example 7, consider the 2-ars P with P0 = {x, y}, P1 =
{a, b : x → y} and P2 = ∅, i.e. x y

a

b
. With W = {a}, we have that P is W -terminating

and locally W -confluent, thus W -confluent by Proposition 11, and thus W -coherent by
Lemma 10 and Proposition 13. With W = {a, b}, we have seen in Example 7 that the
groupoid W is not rigid and, indeed, P is not W -confluent because a ̸= b (because P2 = ∅).

In a situation as above, we write N(P) for the full subcategory of P whose objects are
W -normal forms. When P is weakly W -normalizing, we have that every object x of P is
isomorphic to one in the image by nx, and thus the inclusion functor N(P) → P is an
equivalence of categories. This equivalence is precisely the one with the quotient category
when P is W -convergent:

▶ Proposition 15. If P is W -convergent, the quotient category is isomorphic to the category
of normal forms: P/W ∼= N(P).

Proof. Since P is W -convergent, by Proposition 13, the groupoid generated by W is rigid
and we thus have the description of the quotient P/W given by Proposition 2. We have a
canonical functor N(P) → P/W , obtained as the composite of the inclusion functor N(P) → P
with the quotient functor P → P/W . By convergence, an equivalence class [x] of objects
contains a unique normal form (which is x̂), and the functor is bijective on objects. By weak
normalization (Lemma 10), any morphism f : x → y is equivalent to one with both normal
source and target, namely ny ◦ f ◦ n−

x : x̂ → ŷ, hence the functor is full. Suppose given two
morphisms f, g : x̂ → ŷ in P̂ with the same image [f ] = [g]: there exist morphisms v : x̂ → x̂

and w : ŷ → ŷ in W ∼ such that w ◦f = g ◦v. By the Church-Rosser property (Proposition 13),
we have v = nx̂ ◦ n−

x̂ and thus v = idx (since nx̂ = idx̂ by hypothesis), and similarly w = idy.
Hence f = g and the functor is faithful. ◀

We would now like to provide an explicit description of N(P). Since the rules in W are
quotiented out, we can expect that they can simply be removed from P. This is not the case in
general, but we provide here conditions which ensure that it holds, see also [9, 29] for alternative
conditions. We write P \ W for the 2-ars where (P \ W )0 = P0, (P \ W )1 = P1 \ W and
(P \ W )2 is P2 restricted to rewriting rules whose source and target both belong to (P1 \ W )∼.

▶ Proposition 16. Writing P′ = P \ W , suppose that
1. P is W -convergent,
2. every rule a : x → y in P′

1 has a normal target ŷ = y,
3. for every coinitial rules a : x → y in P′

1 and w : x → x′ in W , there is a path p : x′ ∗→ y

in P′∗
1 such that a = w · p,

4. for every A : p ⇒ q : x → y in P2 and rule w : x → x′ in W , there is a relation
A′ : p′ ⇒ q′ : x′ → y in P′

2 (or, more generally, p′ = q′ in P′) where p′, q′ : x′ → y are
paths such that p = w · p′ and q = w · q′.

Then N(P) is isomorphic to N(P′).

Proof. We claim that for every zig-zag p : x
∼→ y in P∼

1 there is zig-zag q ∈ P′∼
1 such that

p = nx · q · n−
y . We have that p is of the form p = w0 · a1 · w1 · a2 · w2 · . . . · an · wn where the

ai are rules in P′
1 (possibly taken backward) and the wi are in W ∼. For instance, consider

the case n = 1 and a path p of the form p = v · a · w with a ∈ P′
1 and v, w ∈ W ∼ (the case
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where a is reversed is similar, and the general case follows by induction):

x x′ y′ y

x̂ ŷ

nx

v

nx′

a

ny′

w

ny

q

By hypothesis 1 and Proposition 12, we have v = nx · n−
x′ and w = ny′ · n−

y . By hypothesis 2,
ny′ is the empty path. By iterated use of hypothesis 3, there is q ∈ P′∗

1 such that a = nx′ · q.
The canonical functor F : N(P′) → N(P) is the identity on objects. The above reasoning

shows that it is full. It can also be shown to be faithful by iterated use of hypothesis 4. ◀

We can finally summarize the results obtained in this section as follows. Given a 2-ars P
and a set W ⊆ P1, we have the following possible reasonable definitions of the fact that P is
coherent wrt W :
(1) Every parallel zig-zags with edges in W are equal

(i.e. the subgroupoid of P generated by W is rigid).
(2) The quotient map P → P/W is an equivalence of categories.
(3) The canonical morphism N(P) → P is an equivalence.
(4) The inclusion Alg(P/W ) → Alg(P) is an equivalence of categories.

▶ Theorem 17. If P is W -convergent then all the above coherence properties hold.

Proof. (1) is given by Proposition 13, (2) is given by (1) and Theorem 6, (3) is given by
Proposition 15, and (4) is given by (1) and Proposition 9. ◀

3 Relative coherence and term rewriting systems

In order to use the previous developments in concrete situations, such as (symmetric) monoidal
categories, we need to consider a more structured notion of theory. For this reason, we consider
here Lawvere 2-theories, as well as the adapted notion of rewriting, which is a coherent
extension of the traditional notion of string rewriting systems.

3.1 Lawvere 2-theories

A Lawvere theory T is a cartesian category, with N as set of objects, and cartesian product
given on objects by addition [25] (for simplicity, we restrict here to unsorted theories). In
such a theory, we usually restrict our attention to morphisms with 1 as codomain, since
T (n, m) ∼= T (n, 1)m by cartesianness. A morphism between Lawvere theories is a product-
preserving functor and we write Law1 for the category of Lawvere theories.

A (2, 1)-category is a 2-category in which every 2-cell is invertible (i.e. a category enriched
in groupoids). A Lawvere 2-theory T , as introduced in [12, 35, 36] (as well as [31] for the
enriched point of view), is a cartesian (2, 1)-category with N as objects, and cartesian product
given on objects by addition. A morphism F : T → U between 2-theories is a functor which
preserves products. We write Law2 for the resulting category (which can be extended to a
3-category by respectively taking natural transformations and modifications as 2- and 3-cells).
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3.2 Coherence for 2-theories
We can reuse the properties developed in Section 2 by working “hom-wise” as follows. Suppose
fixed a 2-theory T together with a subset W of the 2-cells. We write W for the sub-2-theory
of T , with the same 0- and 1-cells, and whose 2-cells contain W (we often assimilate this 2-
theory to its set of 2-cells). The quotient 2-theory T /W is the one representing the morphisms
from T sending 2-cells in W to identities; it comes equipped with a quotient 2-functor
T → T /W . We have T /W ∼= T /W, so that we can always assume that we are quotienting
by a sub-2-theory. On hom-categories, the quotient corresponds to the one introduced in
Section 2.1: for every m, n ∈ N, we have (T /W)(m, n) = T (m, n)/W(m, n).

We say that a morphism F : T → U is a local equivalence when for every objects m, n ∈ T ,
the induced functor Fm,n : T (m, n) → U(m, n) between hom-categories is an equivalence. We
say that W is 2-rigid when any two parallel 2-cells are equal, i.e. the category W(m, n) is
rigid for every 0-cells m and n. By direct application of Theorem 6, we have

▶ Theorem 18. The quotient 2-functor T → T /W is a local equivalence iff W is 2-rigid.

3.3 Extended rewriting systems
We briefly recall here the categorical setting for term rewriting systems. A more detailed
presentation can be found in [10, 5, 28].

A signature consists of a set S1 of symbols together with a function s0 : S1 → N associating
to each symbol an arity and we write a : n → 1 for a symbol a of arity n. A morphism of
signatures is a function between the corresponding sets of symbols which preserves arity, and
we write Pol×

1 for the corresponding category. There is a forgetful functor Law1 → Pol×
1 ,

sending a theory T on the set
⊔

n∈N T (n, 1) with first projection as arity. This functor admits
a left adjoint −∗ : Pol×

1 → Law1. Given a signature S1, and n ∈ N, S∗
1(n, 1) is the set of terms

formed using operations, with variables in {xn
1 , xn

2 , . . . , xn
n} (the superscript is necessary to

unambiguously recover the type of a variable, i.e. xn
i : n → 1, but for simplicity we will often

omit it in the following). More generally, a morphism in S∗
1(n, m) is an m-uple ⟨t1, . . . , tm⟩ of

terms with variables in {xn
1 , . . . , xn

n}, which can be thought of as a formal substitution, and
composition is given by parallel substitution:

⟨u1, . . . , uk⟩ ◦ ⟨t1, . . . , tm⟩ = ⟨u1[t1/x1, . . . , tn/xn], . . . , uk[t1/x1, . . . , tm/xm]⟩

(the term on the right is obtained by substituting each occurrence of a variable xi in a term uj

by ti). By abuse of notation, we write S∗
1 for the set of substitutions and s0, t0 : S∗

1 → N for
the source and target maps.

A term rewriting system, or trs, consists of a signature S1 together with a set S2 of
rewriting rules and functions s1, t1 : S2 → S∗

1 which indicate the source and target of each
rewriting rule, and are supposed to satisfy s0 ◦ s1 = s0 ◦ t1 and t0 ◦ s1 = t0 ◦ t1 = 1 (i.e. the
source and target of a rewriting rule are parallel terms). We sometimes write ρ : t ⇒ u for
a rule ρ with t as source and u as target. A context C of arity n is a term with variables in
{x1, . . . , xn,□} where the variable □ is a particular variable, the hole, occurring exactly once.
Given a term t of arity n, we write C[t] for the term obtained from C by replacing □ by t.
The composition of contexts C and D is given by substitution D ◦ C = D[C]. A bicontext
is a pair (C, f) consisting of a context C and a substitution f . A rewriting step C[ρ ◦ f ] of
arity n is a triple consisting of a rewriting rule ρ : t ⇒ u, with t and u of arity k, together
with a hole C of arity n, as well as a substitution f : n → k in S∗

1: a rewriting step can
thus be thought of as a rewriting rule in a bicontext. Its source is the term C[t ◦ f ] and its
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target is the term C[u ◦ f ]. We write S[]
2 for the set of rewriting steps. As in Section 2.3, we

write S∗
2 for the set of rewriting paths, which consist of composable sequence of rewriting steps,

and S∼
2 for the set of rewriting zig-zags in a trs, and use associated notations. Every term

rewriting system S freely generates a 2-Lawvere theory, with S∗
1 as 1-cells and S∼

2 as 2-cells.
Given a rewriting step C[ρ ◦ f ], a context D and a substitution g of suitable types, we have
D[C[ρ ◦ f ] ◦ g] = (D ◦ C)[ρ ◦ (f ◦ g)] so that bicontexts act on rewriting steps, and this action
extends to rewriting paths and zig-zags by functoriality, i.e. C[(p · q) ◦ f ] = C[p ◦ f ] · C[q ◦ f ].

An extended term rewriting system, or 2-trs, consists of a term rewriting system as above,
together with a set S3 of coherence relations and functions s2, t2 : S3 → S∼

2 , indicating their
source and target, such that s1 ◦ s2 = s1 ◦ t2 and t1 ◦ s2 = t1 ◦ t2. The Lawvere 2-theory
presented by a 2-trs S is the (2, 1)-category noted S, with N as 0-cells, S∗

1 as 1-cells and, as
2-cells the quotient of S∼

2 under the smallest congruence identifying the source and target of
any elements of S3.

▶ Example 19. The extended rewriting system Mon for monoids has symbols and rules

Mon1 = {m : 2 → 1, e : 0 → 1}
Mon2 = {α : m(m(x1, x2), x3) ⇒ m(x1, m(x2, x3)), λ : m(e, x1) ⇒ x1, ρ : m(x1, e) ⇒ x1}

There are coherence relations A, B, C, D and E, respectively corresponding to a confluence
for the five critical branchings of the rewriting system, whose 0-sources are

m(m(m(x1, x2), x3), x4) m(m(e, x1), x2) m(m(x1, e), x2) m(m(x1, x2), e) m(e, e)

Those coherence relations can be pictured as follows:

m(m(m(x1, x2), x3), x4) m(m(x1,m(x2, x3)), x4)

m(x1,m(m(x2, x3), x4))

m(m(x1, x2),m(x3, x4)) m(x1,m(x2,m(x3, x4)))

α

α

A⇒

α

α

α

m(m(e, x1), x2) m(e,m(x1, x2))

m(x1, x2)

λ

α

B⇒ λ

m(m(x1, e), x2) m(x1,m(e, x2))

m(x1, x2)

ρ

α

C⇒ λ

m(m(x1, x2), e) m(x1,m(x2, e))

m(x1, x2)

ρ

α

D⇒ ρ

m(e, e)

te

λ ρE⇒

For concision, for each arrow, we did not indicate the proper rewriting step, but only the
rewriting rule of the rewriting step (hopefully, the reader will easily be able to reconstruct it).
For instance, the coherence relation C has target α(x1, e, x2) · m(x1, λ(x2)).

3.4 Rewriting properties
Suppose fixed a 2-trs S together with W ⊆ S2. The 2-trs S induces an 2-ars in each hom-set:
this point of view will allow reusing the work done on 2-ars on Section 2.

▶ Definition 20. Given a 2-trs S and m, n ∈ N, we write S(m, n) for the 2-ars with
S(m, n)0 = S∗

1(n, m), S(m, n)1 = S[]
2 and S(m, n)2 = S3.

Similarly, a set W induces a set W (m, n) ⊆ S(m, n)1 = S[]
2 , where W (m, n) is the set of

rewriting steps whose rewriting rule belongs to W (they are of the form C[α ◦ f ] with
α ∈ W ). We say that a 2-trs S is W -terminating / locally W -confluent / W -confluent /
W -coherent when each S(m, n) is with respect to W (m, n). We say that S is confluent when
it is W -confluent for W = S2 (and similarly for other properties).
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A W -branching (α1, α2) is a pair of rewriting steps α1 : t ⇒ u1 and α2 : t ⇒ u2 in W []

with the same source:
u1 t u2

α1 α2

It is W -confluent when there are cofinal rewriting paths π1 : u1 ⇒ v and π2 : u2 ⇒ v in W ∗

such that α1 · π1 = α2 · π2, which is depicted on the left

t

u1 u2

v

α1 α2

π1 π2

C[t ◦ f ]

C[u1 ◦ f ] C[u2 ◦ f ]

C[v ◦ f ]

C[α1◦f ] C[α2◦f ]

C[π1◦f ] C[π2◦f ]

By extension of Proposition 11, we have

▶ Proposition 21. If S is W -terminating and locally W -confluent then it is W -confluent.

In practice, termination can be shown as follows [3, Section 5.2]. A reduction order > is a
well-founded partial order on terms in S∗

1 which is compatible with context extension: given
terms t, u ∈ S∗

1, t > u implies C[t ◦ f ] > C[u ◦ f ] for every context C and substitution f ∈ S∗
1

(whose types are such that the expressions make sense).

▶ Proposition 22. A 2-trs S equipped with a reduction order such that t > u for any rule
α : t ⇒ u in W is W -terminating.

In order to construct a reduction order one can use the following “interpretation method” [3,
Section 5.3]. Suppose given a well-founded poset (X, <) and an interpretation JaK : Xn → X of
each symbol a ∈ S1 of arity n as a function which is strictly decreasing in each argument. This
induces, by composition and product, an interpretation JtK of every term. We define an order
on functions f, g : Xn → X by f ≻ g whenever f(x1, . . . , xn) ≻ g(x1, . . . , xn) for every xi ∈ X;
this order is well-founded because the order on X is. By extension, we define an order on
terms t, u ∈ S∗

1(n, 1) by t ≻ u whenever JtK ≻ JuK: this order is always a reduction order. By
Proposition 22, if we have t ≻ u for every rule α : t ⇒ u the 2-trs is thus W -terminating.

▶ Example 23. Consider the 2-trs Mon of Example 19. We interpret the symbols as
Jm(x1, x2)K = 2x1 + x2 and JeK = 1 on X = N \ 0. All the rules are decreasing since we have

Jm(m(x1, x2), x3)K = 4x1 + 2x2 + x3 > 2x1 + 2x2 + x3 = Jm(x1, m(x2, x3))K
Jm(e, x1)K = 2 + x1 > x1 = Jx1K Jm(x1, e)K = 2x1 + 1 > x1 = Jx1K

and the rewriting system is terminating.

We now briefly recall the notion of critical branching, see [28] for a more detailed pre-
sentation. We say that a branching (α1, α2) is smaller than a branching (β1, β2) when the
second can be obtained from the first by “extending the context”, i.e. when there exists a
context C and a morphism f of suitable types such that βi = C[αi ◦ f ] for i = 1, 2. In this
case, the confluence of the first branching implies the confluence of the second one (see the
diagram on the right above). The notion of context can be generalized to define the notion of
a binary context C, with two holes, each of which occurs exactly once: we write C[t, u] for the
context where the holes have respectively been substituted with terms t and u. A branching
is non-overlapping when it consists of two rewriting steps at disjoint positions, i.e. when it is
of the form

C[u1 ◦ f1, t2 ◦ f2] C[t1 ◦ f1, t2 ◦ f2] C[t1 ◦ f1, u2 ◦ f2]C[α1◦f1,t2◦f2] C[t1◦f1,α2◦f2]
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for some binary context C, rewriting rules αi : ti ⇒ ui in S2 and morphisms fi in S∗
1 of suitable

types. A branching is critical when it is not non-overlapping and minimal (wrt the above
order). A trs with a finite number of rewriting rules always have a finite number of critical
branchings and those can be computed efficiently [3].

▶ Lemma 24. A 2-trs S is locally W -confluent when all its critical W -branchings are
W -confluent.

Proof. Suppose that all critical W -branchings are confluent. A non-overlapping W -branching
is easily shown to be W -confluent. A non-minimal W -branching is greater than a minimal
one, which is W -confluent by hypothesis, and is thus itself also W -confluent. ◀

We write W3 ⊆ S3 for the set of coherence relations A : π ⇒ ρ such that both π and ρ belong
to W ∼. As a useful particular case, we have the following variant of the Squier theorem:

▶ Lemma 25. If 2-trs S has a coherence relation in W3 corresponding to a choice of confluence
for every critical W -branching then it is locally W -confluent.

▶ Example 26. The 2-trs Mon of Example 19. By definition, every critical branching is
confluent and Mon is thus locally confluent. From Example 23 and Proposition 21, we deduce
that it is confluent.

As a direct adaptation of Proposition 13, we have

▶ Lemma 27. If S is W -terminating and locally W -confluent then it is W -coherent.

From Examples 23 and 26, we deduce that the 2-trs Mon is coherent, thus showing the
coherence property (C1) for monoidal categories.

Suppose given a W -convergent 2-trs S. By Lemma 27, S is W -coherent, by Theorem 18,
the quotient functor S → S/W is a local equivalence, and by Proposition 15, S/W is obtained
from P by restricting to 1-cells in normal form. Moreover, in good situations, we can provide
a description of the quotient category S/W by applying Proposition 16 hom-wise.

3.5 Algebras for Lawvere 2-theories
The notion of algebra for 2-theories was extensively studied by Yanofsky [35, 36], we refer to
his work for details.

An algebra for a Lawvere 2-theory T is a 2-functor C : T → Cat which preserves products.
By abuse of notation, we often write C instead of C1 and suppose that products are strictly
preserved, so that Cn = Cn. A pseudo-natural transformation F : C ⇒ D between algebras C

and D consists in a functor F : C → D together with a family ϕf : Df ◦ F n ⇒ F ◦ Cf of
natural transformations indexed by 1-cells f : n → 1 in T , which is compatible with products,
composition and 2-cells of T . A modification µ : F ⇛ G : C ⇒ D between two pseudo-natural
transformations is a natural transformation µ : F ⇛ G which is compatible with 2-cells of T .
We write Alg(T ) for the 2-category of algebras of a 2-theory T , pseudo-natural transformations
and modifications.

▶ Example 28. Consider the 2-trs Mon of Example 19. The 2-category Alg(Mon) of algebras
of the presented 2-theory is isomorphic to the category MonCat of monoidal categories, strong
monoidal functors and monoidal natural transformations. It might be surprising that Mon
has five coherence relations whereas the traditional definition of monoidal categories only
features two axioms (which correspond to the coherence relations A and C). There is no
contradiction here: the commutation of the two axioms can be shown to imply the one of the
three other [18, 13].
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A morphism F : T → U of 2-theories is a biequivalence when there is a morphism G : U → T
and natural transformations η : IdT ⇒ G ◦ f and ε : F ◦ G ⇒ IdU whose components are
equivalences. A generalization of Proposition 8 is shown in [36, Proposition 7]:

▶ Proposition 29. A morphism F : T → T ′ between theories is a biequivalence if and only
if the functor Alg(F ) : Alg(T ′) → Alg(T ) induced by precomposition is a biequivalence (in a
suitable sense).

In particular, in the case where W is 2-rigid, it seems that we can deduce from Theorem 18 that
the projection functor T → T /W is a local equivalence, and thus a biequivalence, and thus
that the categories Alg(T ) and Alg(T /W) are biequivalent (for instance, it is claimed that the
categories of monoidal and strict monoidal categories are equivalent). However, the claim that
any local equivalence is a biequivalence [36, Proposition 6] is wrong: given a local equivalence
F : C → D between 2-categories, one can in general construct a pseudo-functor G : D → C
satisfying suitable properties, but not a strict one, see [20, Example 3.1] for a counter-example.
Intuitively, in the case where C = T and D = T /W with rewriting properties as in Section 3.4,
G will send a 1-cell to a normal form in its equivalence class, but the composite of two normal
forms is not itself a normal form in general, we can only expect that it is isomorphic to a
normal form.

We however conjecture that one can generalize the classical proof that any monoidal
category is monoidally equivalent to a strict one [26, Theorem XI.3.1] to show the following
general (C3) coherence theorem, as well as its (C4) generalization:

▶ Conjecture 30. When W is 2-rigid, every T -algebra is equivalent to a T /W algebra.

▶ Conjecture 31. When W is 2-rigid, the 2-functor Alg(T /W) → Alg(T ) induced by pre-
composition with the quotient functor T → T /W has a left adjoint such that the components
of the unit are equivalences.

This is left for future works. Note that, apart from informal explanations, we could not find a
proof of Conjectures 30 and 31 for symmetric or braided monoidal categories in the literature,
e.g. in [27, 17, 26] (in [17, Theorem 2.5] the result is only shown for free braided monoidal
categories).

3.6 Symmetric monoidal categories
A symmetric monoidal category is a monoidal category equipped with a natural isomorphism
γx,y : x ⊗ y → y ⊗ x, called symmetry, satisfying three classical axioms. A symmetric monoidal
category is strict when the structural isomorphisms α, λ and ρ are identities (but we do not
require γ to be an identity). We write SMonCat (resp. SMonCatstr) for the category of
symmetric monoidal categories (resp. strict ones). Using the same method as above, we can
show the coherence theorems for symmetric monoidal categories [17]. This example illustrates
more the interest of the previous developments since we are quotienting by a (2, 1)-category W
which is not the whole category.

We write SMon for the 2-trs obtained from Mon (see Example 19) by adding a rewriting
rule γ : m(x1, x2) ⇒ m(x2, x1) (corresponding to symmetry), together with a coherence
relation

m(x1, x2) m(x2, x1)

m(x1, x2) m(x1, x2)

γ

F⇒ γ
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as well as four relations corresponding to the critical branchings between the rule γ and the
rules α, λ or ρ:

m(m(x1, x2), x3) m(x3,m(x1, x2)) m(m(x3, x1), x2)

m(x1,m(x2, x3)) m(m(x2, x3), x1) m(x2,m(x3, x1))

α

γ

G⇒

α

γ

γ α

m(e, x1) m(x1, e)

x1

λ

γ

I⇒ ρ

m(m(x1, x2), x3) m(m(x2, x2), x3)

m(x1,m(x2, x3)) m(m(x2, x3), x1) m(m(x3, x2), x1)

α

γ

H⇒ γ

γ γ

m(x1, e) m(e, x1)

x1

ρ

γ

J⇒ λ

The category Alg(SMon) is isomorphic to the category SMonCat. The traditional definition
of symmetric monoidal categories only features axioms corresponding to F , G and I, but it
can be shown that they implies the commutation of the axiom corresponding to H (by using G

twice) and J (by using F and I). We write W = {α, λ, ρ}. The category Alg(SMon/W )
is isomorphic to SMonCatstr. We have that the 2-trs is W -terminating by Example 23
and W -locally confluent by definition (Example 19), it is thus W -coherent by Lemma 27.
From Conjecture 30, we would deduce that any symmetric monoidal category is monoidally
equivalent to a strict one.

Note that the above reasoning only depends on the convergence of the subsystem induced
by W , i.e. on the fact that every diagram made of α, λ and ρ commutes, but it does not
require anything on diagrams containing γ’s. In particular, if we removed the compatibility
relations G, H, I and J , the strictification theorem would still hold. The resulting notion of
strict symmetric monoidal category would however be worrying since, for instance, in absence
of I, the morphism γe,x1 : m(e, x1) → m(x1, e) would induce, in the quotient, a non-trivial
automorphism γe,x1 : x1 → x1 of each object x1. The following variant of the coherence
theorem is “stronger” in the sense that it requires these axioms to hold.

We have seen that for the theory of monoidal categories “every diagram commutes”, in
the sense that Mon is a 2-rigid (2, 1)-category. For symmetric monoidal categories, we do
not expect this to hold since γx1,x1 and idm(x1,x1) both are rewriting paths from m(x1, x1) to
itself, and are not equal in general (one can easily find an example of a symmetric monoidal
category in which the symmetry is not the identity, this is in fact the case for most usual
examples). It can however be shown that it holds for a subclass of 2-cells whose source and
target are affine terms: a term is affine if no variable occurs twice. We now explain this, thus
recovering a well-known property [27, Theorem 4.1] using rewriting techniques. Note that the
property of being affine, as well as the variables occurring in terms, are preserved by rewriting
steps. By inspection of critical branchings (Lemma 24), we have

▶ Lemma 32. The 2-trs SMon is locally confluent.

It is not terminating, even when restricted to affine terms, since we for instance have the loop

m(x1, x2) m(x2, x1) m(x1, x2)γ(x1,x2) γ(x2,x1)

In order to circumvent this problem, we are going to formally “remove” the second morphism
above and only keep instances of γ which tend to make variables in decreasing order. Note
that the coherence relation F ensures that γ(x2, x1) = γ(x1, x2)− so that this removal does
not change the presented (2, 1)-category.

Given a term t, we write ∥t∥ the list of variables occurring in it, from left to right,
e.g. ∥m(m(x2, e), x1)∥ = x2x1. We order variables by xi ⪰ xj whenever i ≤ j and extend it
to lists of variables by lexicographic ordering (which is well-founded since we compare only
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words of the same length). Given a rewriting step C[γ(t1, t2)] involving the rule γ is decreasing
when ∥t1∥∥t2∥ ≻ ∥t2∥∥t1∥. Fix n ∈ N, consider the 2-ars P′ = SMon(n, 1), and write P for
the 2-ars obtained from P′ by

removing from P′
1 all non-decreasing rewriting steps involving γ,

replacing in the source or target of a relation in P′
2 all non-decreasing steps C[γ(t1, t2)] by

C[γ(t2, t1)−].

▶ Lemma 33. The 2-ars P is locally confluent.

Proof. The above reasoning shows that we have P′ = P. Since SMon is locally confluent
(Lemma 32), P′ is locally confluent and thus also P. ◀

Since we restricted ourselves to decreasing symmetries, P is “almost” terminating since
rewriting rules tend to put variables in decreasing order. However, it sill does not prevent
loops when there is no variable: for instance, γ(e, e) is a rewriting step from m(e, e) to itself.
Fortunately, we can always remove units by restricting to terms which are in normal form
wrt λ and ρ. Namely, P satisfies the hypothesis of Proposition 16 with W consisting of all
rewriting steps generated by λ and ρ (condition 3. uses the compatibility relations G, H,
I and J). We can thus restrict to terms in which the unit e does not occur and for those
the system is terminating. Any two rewriting paths between affine terms are equals and the
algebras thus satisfy:

▶ Proposition 34. In a symmetric monoidal category, every diagram whose 0-source is a
tensor product of distinct objects commutes.

4 Future works

We believe that the developed framework applies to a wide variety of algebraic structures,
which will be explored in subsequent work. In fact, the full generality of the framework was
not needed for (symmetric) monoidal categories, since the rules of the corresponding theory
never need to duplicate or erase variables (and, in fact, those can be handled by traditional
polygraphs [22, 13]). This is however, needed for the case of rig categories [24], which feature
two monoidal structures ⊕ and ⊗, and natural isomorphisms such as δx,y,z : x ⊗ (y ⊕ z) →
(x ⊗ y) ⊕ (x ⊗ z) (note that x occurs twice in the target), generalizing the laws for rings. Those
were a motivating example for this work, and we will develop elsewhere a proof of coherence
of those structures based on our rewriting framework, as well as related approaches on the
subject [7, Appendix G].

A notion of Tietze transformation for term rewriting system, which are transformations
allowing one to navigate between the various presentations of a given Lawvere theory, were
given in [28]. It would be interesting to develop an analogous notion for 2-trs, presenting
a given Lawvere 2-theory: this would allow us to formalize reasoning about superfluous
generators or relations (such as in Example 28).

Finally, the importance of the notion of polygraph can be explained by the fact that they
are the cofibrant objects in a model structure on ω-categories [23]. It would be interesting to
develop a similar point of view for higher term rewriting systems: a first step in this direction
is the model structure developed in [36].
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