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Loss of Dicer in newborn melanocytes leads to premature hair greying and changes in

integrin expression. 
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Abstract  

Premature hair greying occurs due to the depletion of melanocyte stem cells (McSCs) in the 

hair follicle, which can be accelerated by stress caused by genetic or environmental factors. 

However, the connection between stress and McSC loss is not fully understood. MiRNAs are 

molecules that control gene expression by regulating mRNA stability and translation, and are 

produced by the enzyme Dicer, which is repressed under stress. Here, using two mouse genetic 

models and human and mouse cell lines, we found that the inactivation of Dicer in melanocytes 

leads to a misplacement of these cells within the hair follicle, resulting in a lack of melanin 

transfer to keratinocytes in the growing hair and the exhaustion of the McSC pool. We also 

show that miR-92b, which regulates ItgaV mRNA and protein levels, plays a role in altering 

melanocyte migration. Overall, our findings suggest that the Dicer-miR92b-ItgaV pathway 

serves as a major signalling pathway linking stress to premature hair greying. 
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INTRODUCTION

The cycle of hair follicles consists of three phases: growth (=anagen), destruction (=catagen), 

and rest (=telogen) (Fuchs 2009). For hair to be properly pigmented, there must be coordination 

between the proliferation and differentiation of keratinocytes and melanocytes during the 

anagen phase (Yardman-Frank and Fisher 2021). During each anagen phase, melanocyte stem 

cells (McSCs) located in the bulge region become active and multiply into transient amplifying 

cells (=TACs) (Sun et al. 2023). These TACs move along the growing hair follicle and develop 

into pigmented dendritic melanocytes in the bulb. The pigmentation process depends on the 

synthesis, transport, and transfer of melanin from melanocytes to keratinocytes that are 

committed to differentiating into hair-producing cells (Luciani et al. 2011). This intricate 

process is carefully regulated by both cell autonomous and non-cell autonomous signals such 

as Wnt, Edn, Tgf-β, and Notch, which control the timing of differentiation and quiescence 

(Chang et al. 2013; Moriyama et al. 2006; Nishimura et al. 2010; Rabbani et al. 2011). There 

is currently limited knowledge about how TACs migrate towards the new hair bulb. It is 

possible that TACs may simply follow the growth of the hair follicle passively, or they may 

actively migrate towards the hair bulb in a directed manner, or perhaps a combination of both 

mechanisms occurs. 

 The cycle of pigmented hair is carefully controlled by a combination of genetic factors 

and external signals, such as stress from the environment (Fialkowski et al. 2019; Harris et al. 

2015). Dicer is an enzyme of the RNase III family that plays a critical role in the precise 

regulation of gene expression through its involvement in the maturation of microRNAs (= 

miRNAs) (Torrez et al. 2023). Both the activity and expression of Dicer are regulated by 

different types of stress, both in vitro and in vivo, across a variety of cell types, including

trophoblasts, pre-adipocytes, and breast cells. For instance, in vitro, exposure to chemical and 

physical stressors like hydrogen peroxide, hypoxia, interferon α, phorbol ester, trichostatin A,
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and UV radiation has been shown to reduce Dicer levels (van den Beucken et al. 2014; Mori et

al. 2012; Wiesen and Tomasi 2009). In vivo, Dicer plays a role in mediating resilience to 

psychological stress by facilitating the pro-resilient effect of β-catenin in a mouse model of 

depression (Dias et al. 2014). Different types of stress can modulate Dicer levels and 

subsequently impact miRNA expression. For example, UV radiation controls the cellular stress 

response by regulating Dicer and various miRNAs (Dynoodt et al. 2013; Emde and Hornstein 

2014). 

 miRNAs are generated in the nucleus by RNA polymerase II/III as stem-loop RNAs 

known as primary microRNAs (pri-miRs). The pri-miRs are then converted into precursor miRs 

and exported to the cytoplasm by Exportin-5. In the cytoplasm, Dicer, which belongs to the 

RNA-induced silencing loading complex (RISC RLC) complex, processes the precursor miRs 

into duplex miRs (Torrez et al. 2023). These duplex miRs are then processed by RISC, and 

mature miRNAs are loaded onto Argonaut proteins that recognize and bind to target mRNAs, 

leading to the inhibition of their expression by either blocking translation or causing mRNA 

degradation (Ha and Kim 2014). As a result, Dicer and miRNAs can regulate a vast number of 

genes. Dicer is crucial for mammalian embryonic development, and mice with germline Dicer 

inactivation die before E7.5 (Bernstein et al. 2003). 

The loss of Dicer in the developing melanocyte lineage during embryonic development 

resulted in a white adult mouse lacking melanocytes in hair follicles (Levy et al. 2010). 

Similarly, the knockout of Dicer1 in zebrafish also results in abnormal pigmentation with a 

reduced number of melanocytes in the head and ventral trunk (Weiner et al. 2019). The miRNA-

17 cluster and BIM were identified as partially responsible for the lack of viability of primary 

human melanocytes in the absence of Dicer (Levy et al. 2010). Several miRNAs have been

found to play a role in the regulation of pigmentation and melanin transport, while others have 

been associated with melanoma cell migration, EMT, progression, and invasion in vitro
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(Ozsolak et al. 2008; Rambow et al. 2016; Rambow et al. 2015; Rambow et al. 2014). In this

study, after evaluating the consequence of the lack of Dicer in mouse melanoblasts during 

embryonic development, we investigated the impact of Dicer inactivation on mouse 

melanocytes by specifically targeting Dicer at birth in the melanocyte lineage. Our results 

revealed that the absence of Dicer resulted in abnormal melanocyte localization in hair follicles 

and, premature greying of hair, due to the reduction of miR-92b and the increase of one of its 

targets, ItgaV. 
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RESULTS

 

Dicer conditional knockout during embryonic development reduces the number of 

melanoblasts.  

To assess the effects of Dicer inactivation during the establishment of the melanocyte lineage, 

we conducted crosses between DicerFlox22-23 mice, which carry loxP sequences in introns 21 and 

23, and Tyr::Cre mice, and monitored the phenotype of the mutant mice as they aged 

(Supplementary Figure S1a). At birth, homozygous Dicer knockout mice (Dicer-cKO, "c" for 

constitutive) were pigmented, but notably less than control littermates (WT), indicating that 

Dicer may affect the growth of melanoblasts or affect its differentiation (Supplementary Figure 

S1b-d). Heterozygous mutant mice had no coat color phenotype (not shown). At 2 months of 

age, Dicer-cKO mice showed salt-and-pepper coloring on their back but were white on the belly 

(Supplementary Figure S1e1). By 6 months of age, Dicer-cKO mice were completely white 

(Supplementary Figure S1f). Hair greying appears to be a gradual process that depends on the 

number of original melanocytes at birth, as there are more melanocytes on the back than on the 

belly (Luciani et al. 2011). 

Previously, the inactivation of Dicer was performed using the same Tyr::Cre mice and 

another Dicer allele: DicerFlox23 (Levy et al. 2010). For both Dicer alleles (DicerFlox23 and 

DicerFlox22-23), the RNase III domain of this enzyme is inactive (Harfe et al. 2005; Murchison 

et al. 2005). These studies demonstrated that mice gradually became fully white as they aged. 

However, it is important to note that there are some differences in the coat color phenotype 

between Tyr::Cre; DicerFlox23/Flox23 (Levy et al. 2010) and the Tyr::Cre; DicerFlox22-23/Flox22-23 

mice used in this study. The DicerFlox23mice “were virtually white from birth, except for the tip

of the initial hairs on the dorsal trunk”. However, the DicerFlox22-23 mice were slightly pigmented 

at birth and then had salt-and-pepper hairs before becoming fully white. We investigated the
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impact of Dicer inactivation on melanogenesis and melanin production by studying a mouse

melanocyte cell line (Melan-a) and a human melanoma cell line (MNT-1). The knock-down of 

Dicer in both cell lines, resulted in a minor, yet significant increase in melanin production per 

cell, a slight reduction in the growth of the cells, but did not affect the mRNA levels of Tyrp1, 

Dct, and Tyr (Figure 1a-h). Further analysis revealed a significant decrease in the number of 

melanoblasts at E14.5 in the entire body of mutant embryos compared to wild-type (Figure 1g-

j). Therefore, the overall reduction in pigmentation in the Dicer-cKO mutant pups could be 

attributed to a decrease in the number of melanocytes rather than a decrease in melanogenesis. 

 

Dicer plays a crucial role in pigmentation renewal 

To further investigate the role of Dicer in regulating pigmentation, we created spatio-temporal 

inducible Tyr::CreERT2; DicerFlox22-23/Flox22-23 mutant (Dicer-iKO) mice. Dicer was defloxed in 

the melanocyte lineage, including McSCs, TACs, and differentiated melanocytes (Mc), by 

Tamoxifen (=Tam) treatment at p1, p2, and p3. Defloxing was confirmed by PCR analysis of 

hair bulb DNA (Supplementary Figure S2a-c). There was no significant difference in coat color 

until p30 after Tam treatment of both wild-type (WT) and Dicer-iKO mice (Supplementary 

Figure S2d-f, Figure 2a). At p30, after the first hair cycle, the belly of Dicer-iKO mice was 

lighter than that of WT mice, but the color of the back was similar. At p60, after the second hair 

cycle, the belly of Dicer-iKO mice was even lighter, displaying salt-and-pepper hairs (Figure 

2b-e). By p180, after the fifth hair cycle, the whitening of Dicer-iKO mice had significantly 

increased, with a higher number of white hairs than at p60. These results suggest that Dicer 

plays a direct role in pigmentation renewal and that its inactivation leads to gradual whitening 

of the hair coat.

 

The absence of Dicer in melanocytes leads to their improper localization in the hair follicle
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We determined the location of WT and Dicer-iKO melanocytes in hair follicles at p60 by

Immuno-histochemistry (IHC) using as a Dct marker. In WT mice, Dct-positive cells were 

found at the level of the bulge and bulb (Figure 3a). In Dicer-iKO mice, most hairs were black 

and Dct-positive cells were found at the bulge and bulb but can be mislocated as shown in 

Figure 3b. The majority of Dicer-iKO ventral hairs were white at this age; either the Dct-

positive cells were poorly mislocated (Figure 3c-e) or they were absent (Figure 3f). These 

observations suggest that in the absence of Dicer, melanocytes may undergo cell death as 

previously shown by Levy and colleagues (Levy et al. 2010) and/or melanocytes have a 

migratory defect. 

 

Dicer knock down affects the level of integrins 

To gain a better understanding of the effects caused by a reduction of Dicer in melanocytes, we 

knocked-down Dicer using specific siRNAs in normal C57BL/6 mouse melanocyte Melan-a 

cells. This resulted in a decrease of Dicer protein levels to approximately 40% compared to the 

control siScramble (siScr) after 24 hours of transfection (Figure 4a,b). Microarray analysis was 

used to examine gene expression, revealing that 280 genes were deregulated in siDicer cells 

compared to siScr (Figure 4c,d and Supplementary Table S1). Of these genes, 200 were 

upregulated and 80 were downregulated (p-value ≤ 0.05 and FC ≥ 1.5), which is consistent with

decreased miR maturation and increased levels of their target RNAs. The top 20 most 

significantly enriched GO terms showed that seven were associated with genes related to 

"membrane", "cell surface", "cell-matrix adhesion", "cell migration", "focal adhesion", 

"integrin mediated signaling pathway", and "integrin complex", suggesting that Dicer regulates 

Melan-a cell adhesion and migration through integrins (Figure 4e). KEGG and REACTOME

pathways of the deregulated genes revealed enrichment in functions associated with integrins, 

"ECM receptor interaction", "Focal adhesion", "Regulation of actin cytoskeleton", "Cell
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adhesion molecules", "Integrin", and "ECM proteoglycans" (Figure 4f,g). The volcano plot

displayed upregulation of several mRNA integrins, including Itgav, Itga8, Itga9, Itgb5 along 

with the expected downregulation of Dicer (Figure 4d). We confirmed the increased the  levels 

of Itgav, Itga8, Itga9, and Itgb5 after transfection of Melan-a cells with siDicer (Figure 4h,i, 

and Supplementary Figure S3a,b). In vivo, the amount of integrin αV and β5 in Dct-positive 

cells appeared to be higher in Dicer-iKO melanocytes compared to WT melanocytes (Figure 

4j-m). 

 

Dicer regulates the level of ItgaV through miR-92b 

To dissect the molecular mechanisms by which Dicer regulates integrin expression and 

melanocyte migration in vitro, we performed a miRNome analysis by microarray on Melan-a 

cells transiently transfected with siDicer or siScr (Figure 5a, Supplementary Table S2). Twenty-

four and 48 hours after transfection, 151 and 189 miRs were differentially expressed with p ≤

0.05, respectively. After pooling the 24- and 48-hour data, a total of 327 miRs were 

differentially expressed. Amongst these, five are putative regulators of ItgaV, according to 

MirTarBase and miRnome: miR-92b-3p, miR-16-5p, miR-195a-5p, miR-322-5p and miR-761 

(Figure 5b). 

 Transient transfection of Melan-a cells with miR-92b-3p mimics allowed the validation 

of the decreased of ItgaV mRNA and protein levels by RT qPCR and western blot analyses 48 

hours after transfection (Figure 5c,d). A miRglo experiment confirmed that miR-92b-3p 

reduced the stability of luciferase mRNA when fused to the ItgaV 3’-UTR sequence, but not 

when the putative targeted sequence was mutated (Figure 5e). Thus, miR-92b-3p specifically 

targets ItgaV in mouse melanocytes.

 

Dicer regulates melanocyte migration through miR-92b/ItgaV
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We investigated the role of ItgaV, Dicer and miR-92b in regulating melanocyte migration by

analysing single-cell migration on non-coated plastic dishes. In Melan-a cells, the reduction of 

ItgaV with siRNA reduced cell velocity (Figure 5f,g) and the reduction of Dicer, with siRNA, 

or the antagomir for miR-92b-3p increased cell velocity and induced ItgαV level (Figure 5h-j). 

Altogether, these results identify the Dicer-miR92b-ItgaV axis as a signalling pathway affecting 

melanocyte migration.  
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DISCUSSION

This study used conditional and inducible mouse mutants to demonstrate that Dicer is essential 

for hair pigmentation in adult mice by regulating melanocyte positioning and renewal, leading 

to the maintenance of melanocyte stem cells (McSC) in hair bulges. In particular, reduced Dicer 

levels altered miR-92b and αV integrin levels, which regulate melanocyte migration. Integrin 

αVβ5 contributes to proper melanocyte migration along hair follicles and that melanocytes may 

actively migrate along the growing hair follicle using their integrins repertoire. Dicer 

inactivation also induced McSC loss, possibly due to premature differentiation, death, and/or 

exhaustion. 

During the hair cycle, keratinocyte and melanocyte stem cells exit quiescence together, 

in response to Wnt, Bmp/Tgf-β, and Edn (Chang et al. 2013). As keratinocytes form hair 

follicles, TACs migrate to the hair bulb and differentiate into melanocytes. While proteins 

involved in cell adhesion, cytoskeleton remodeling, and cellular traction have been studied for 

melanocyte migration (Hamidi and Ivaska 2018; Petit and Larue 2016; Pinon and Wehrle-

Haller 2011), little is known about TAC migration during the hair cycle. We propose that the 

expression of integrin αVβ5, which mediates cell adhesion to the extracellular matrix, affects 

TAC migration in vivo due to the diverse ECM components in various parts of the hair follicle 

(Couchman and Gibson 1985; Fujiwara et al. 2011; Jahoda et al. 1992; Tanimura et al. 2011). 

The role of integrins is of a particular importance because we know that the mobility 

and plasticity of McSCs is a key element of melanocytes renewal (Sun et al. 2023). TAC 

migration differs between mice and humans, with mice showing migration primarily to the bulb 

and humans to both the apex and bulb. This suggests that TACs undergo two directed 

migrations, which may be cell-autonomous or non-autonomous. In mice lacking Dicer, integrin

levels are altered, resulting in increased melanocytes at the hair's apex. It is possible that 
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differences in integrin expression between humans and mice contribute to the bidirectional

movement of TACs observed in humans. 

The salt-and-pepper phenotype observed in all mutant mice progressed over time, with 

an increase in the proportion of white hairs, which is unlikely due to inefficient Dicer 

inactivation, as we demonstrated the high efficiency of TAM induction at birth using 

Tyr::CreERT2 mice (Le Coz et al. 2021; Yajima et al. 2006). Premature hair greying in mice 

can be attributed to three potential causes: premature differentiation, cell death, or exhaustion 

of melanocyte stem cells (McSCs). The premature differentiation of McSC in the bulge was 

reported in mouse mutants lacking Notch1/2, Rbp-j, TgfbRII, β-catenin, or Col17a1 (Aubin-

Houzelstein et al. 2008; Moriyama et al. 2006; Nishimura et al. 2010; Rabbani et al. 2011; 

Tanimura et al. 2011). McSCs cell death was observed in the absence of Bcl2 and Dicer (Levy 

et al. 2010; Nishimura et al. 2005), while McSC exhaustion was observed in the absence of 

TgfbRII (Koludrovic et al. 2015; Nishimura et al. 2010). The absence of Dicer resulted in mis-

located pigmented Dct-positive cells and  premature differentiation (Figure 3). It is possible 

that, in the absence of Dicer, McSC die in a cell autonomous way and the combination of mis-

location and premature differentiation/death exhausts McSCs. Abnormal localization of 

melanocytes and loss of McSCs may or may not be linked. On one hand, if the two events occur 

independently, Dicer/miR/Itg-dependent melanocyte migration explains their abnormal 

localization, and death is only associated with apoptosis as it was shown by Levy et al. 2010. 

On the other hand, both events may occur in a coordinated fashion. As the number of Mc 

localized in the hair bulb is lower than normal, we can imagine the existence of a feedback 

mechanism by which TAC/Mc signal McSCs to regulate their proliferation. In the Dicer mutant, 

where the number of TAC/Mc is lower, this feedback signaling is diminished, and the McSCs

undergo excessive proliferation to compensate, and are therefore prematurely depleted. This 

second possibility does not mean that apoptosis does not occur. In all cKO-Dicer and iKO-



Bertrand et al  13  

Dicer mice, the whitening of the fur is occurring faster on the ventral side than on the dorsal

side (Supplementary Figure S1 and Figure 2). This occurrence can be attributed to a lower 

presence of melanoblasts in the ventral region of the embryo, resulting in fewer melanocytes 

and McSC in that aera. This suggests that the exhaustion of McSC happens more swiflty on the 

ventral side due to its initially lower abundance. 

The transcriptome analysis of Dicer knockdown Melan-a cells demonstrated 

deregulation of multiple genes involved in cell adhesion and migration, consistent with in vivo 

observations. Integrins αV, α8, α9, and β5 (Itgav, Itga8, Itga9, and Itgb5) were among the 

upregulated genes at the RNA level, and their induction was confirmed in Dicer-iKO 

melanocytes in vivo and Dicer knockdown Melan-a cells in vitro. MiR-92b-3p was identified 

as a strong repressor of ItgaV. In humans MiR-92b-3p is known to decrease ITGAV and repress 

migration and invasion of esophageal squamous cell carcinoma cells in vitro in another context 

(Ma et al. 2011). However, the role of MiR-92b in proliferation is not clear, it promotes 

proliferation during pre-eclampsia (Li et al. 2020) but paradoxically inhibits proliferation and 

promotes apoptosis in glioma cells (Song et al. 2016). Moreover, performing similar analysis, 

we could show that (i) miR-155-5p decreased Itgb5 mRNA level, but not those of Itga8, Itga9, 

or ItgaV, (ii) miR-466i-5p decreased Itga9 mRNA levels 48 and 72 hours after transfection, but 

not those of ItgaV, Itga8, or Itgb5, and (iii) let7b-5p decreased Itga8 mRNA level. 

Knocking down Dicer in Melan-a cells led to changes in the expression of several genes 

involved in melanocyte migration, including integrins and ECM components such as Npnt and 

Col6a1 (Supplementary Table S1). Kit is also one of the most up-regulated genes. Kit is well 

known to be involved in melanoblast migration during embryogenesis (Jordan and Jackson 

2000; Nocka et al. 1990), is a prerequisite for melanoblast migration in hair at birth (Peters et

al. 2002), and is involved in melanoma cell migration (Bernex et al. 1996). Furthermore, while 
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Kit is described as participating in the regulation of McSC differentiation (Chang et al. 2013),

its involvement in the migration of normal adult melanocytes has never been demonstrated." 

Previous studies have demonstrated the expression of several integrins in the 

melanocyte lineage but not Itga8, Itga9 and Itgb5. In the future, the role of Itga8 and Itga9 in 

the melanocyte lineage should be looked at more carefully, and especially after stress in various 

diseases that includes vitiligo. However, the level of these two integrins remain low compared 

to ItgaV and Itgb5 in melan-A cells (see supplementary Figure S3c). Melanoblasts and 

melanoma cells rely on integrins for their migration. Melanoblasts migrate along the dorso-

lateral axis and tightly regulate the usage of various integrins, including ItgaV, to establish the 

melanocyte lineage (Beauvais-Jouneau et al. 1999; Haage and Tanentzapf 2023). We were 

expecting that the migration of melanoblasts during embryogenesis would be enhanced since 

integrins and Kit, to the least, were induced in the absence of Dicer in Melan-a cells. The 

analysis of the location of melanoblasts in WT and cKO embryos at E14.5 revealed that 

proportionally there was slightly more melanoblasts in the ventral part in cKO embryos, but it 

was not significant. 

In vivo, it has been shown that melanocytes and melanoblasts express a3b1, a6b1, and 

avb3 (Beauvais-Jouneau et al. 1999; Haass et al. 2005). In culture, melanocytes produce a3b1, 

a5b1, a6b1, and avb3 (Hara et al. 1994; Scott et al. 1994). Additionally, melanoma cell lines 

and melanoma exhibit the expression of a5b1, a6b1, a5b1, a7b1, and avb3 (Haass et al. 2005; 

Pinon and Wehrle-Haller 2011). Melanoma is the most aggressive form of skin cancer and is 

known for its rapid metastasis. Integrins play a direct role in various cellular processes involved 

in melanoma progression (Buommino et al. 2009; Voura et al. 2001). The regulation of integrin 

activity depends on factors such as mRNA and protein levels, as well as the abundance of

specific α-β dimers. In cancer, miRs have been shown to regulate integrin levels, but it remains 

unknown whether miR-92 can regulate ITGAV (Verhoeff et al. 2023). Our analysis of TCGA
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data revealed significantly higher ITGAV mRNA levels in melanoma metastasis compared to

primary melanoma (Supplementary Figure S4a). Additionally, we observed an inverse 

relationship between ITGAV mRNA and miR-92 in various human melanoma cells 

(Supplementary Figure S4b). These findings suggest that miR-92 may play a crucial role in the 

regulation of ITGAV during homeostasis and the proper movement of TAC/melanocytes in the 

hair follicle. 

In summary, our study reveals to our knowledge previously unreported pathway and 

mechanism for hair greying that involves stress-induced reduction in Dicer levels and 

dysregulation of integrins, which are involved in the directed migration of TACs through their 

interaction with the extracellular matrix. This suggests a retro-control mechanism for the bulge 

cycle, and highlights the link between stress, Dicer, integrins and hair greying. 
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Materials and Methods

Detailed materials and methods can be found in the supplemental information. 

 

Animal Models.  

Transgenic mice used in this study were previously described (Murchison et al. 

2005)(MacKenzie et al. 1997)(Delmas et al. 2003; Yajima et al. 2006).  

All animals were housed in a specific pathogen-free mouse colony at the Institut Curie. Animal 

care, use, and experimental procedures were conducted in accordance with recommendations 

of the European Community (86/609/EEC) and Union (2010/63/UE) and the French National 

Committee (87/848). Animal care and use were approved by the ethics committee of the Curie 

Institute in compliance with the institutional guidelines.  

 

Embryo X-gal staining. E14.5 embryo were X-gal stained and imaged as previously described 

(Berlin et al. 2012).  

 

Tamoxifen administration. Tamoxifen treatment was performed following a previously 

published protocol (Pitulescu et al. 2010). 

 

Verification of defloxing by PCR. Primers and programs are described in Supplementary 

Tables S3,S4. 

 

Quantification of melanin levels. Melanin was quantified in mouse hairs following a 

previously published protocol (Berlin et al. 2012)(Gallagher et al. 2011). 

 

Tissue processing, immunostaining, and microscopic imaging. Tissues were fixed, stained 

and visualized as previously described (Berlin et al. 2012). 

 

Cell culture, transfection, and treatments. Plasmids and sRNA (siRNA, mimics, and hairpin 

inhibitors) used for transfection in Melan-a cells line (Bennett et al. 1987) are described in 

Supplementary Table S5). 

 

Western blotting. Cells were lysed into RIPA buffer. Twenty !g total protein was separated 

by SDS-PAGE, transferred to nitrocellulose membranes, and probed with various antibodies. 
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Single-cell migration assay. Forty-eight hours after transfection, cells were transfected 48 

hours prior, trypsinization and seeded for 5h at low concentration prior imaging cells every 4 

min for 12 h. Tracking of the cells and path analysis was performed using iTrack4U software 

(Cordelieres et al. 2013). 

 

Quantitative real-time PCR. After preparing and quantification of RNA, real-time PCR was 

performed using primers listed in Supplementary Table S3. Mouse Gapdh housekeeping gene 

and the internal control using ""Ct methods. 

 

mRNA microarray. Sample preparation and hybridization were performed by the Genomic 

platform of the Institut Curie. Affymetrix Mouse ClariomD arrays were hybridized according 

to the recommendations of Affymetrix (Santa Clara, CA, United States) using the WT PLUS 

protocol and labelling and hybridization kits from Affymetrix.  

 

microRNA microarray. Sample preparation and hybridization were performed by the 

Genomic platform of the Institut Curie. The flashTag Biotin HSR RNA labelling kit 

(Affymetrix) was used to label 100 ng total RNA according to the manufacturer’s protocol.  

 

Volcano plot methods. RNA-seq counts and phenotypic traits of the cohort: GDC TCGA 

Melanoma (SKCM), were downloaded from the UCSC’a Xena Browser at

https://xenabrowser.net. Analysis was performed as previously described (Petit et al. 2019) 

 

pmirGLO luciferase assay. Melan-a cells were transfected with 50 nM miR-92b-3p mimic 

(Dharmacon), 250 ng various pmirGLO Dual-Luciferase miRNA target expression vector 

constructs (Promega), and 250 ng TK::Renilla (Promega). The negative control, without insert, 

did not contain any matching miR-92b-3p sequence. Details can be found in supplementary 

information. 

 

Statistics and reproducibility. Quantitative data were performed at least in triplicate for 

analysis and expressed as mean +/- SEM or mean +/- SD as indicated in the figure legends. The 

exact number of replicates, statistical test and significance are reported in the figure legends. 

Differences between two groups were assayed using unpaired Student’s t-test in Prism 

(Graphpad software). 
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Data availability. Datasets related to this article can be found at

https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE128757. The accession number for 

the mRNA and miRNA data reported in this paper is GEO: GSE128757.  
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Figure Legends

 

Figure 1. Absence of Dicer reduces melanoblast numbers without altering melanogenesis 

gene levels.  

Western blot analysis (a,e) showed siRNA-mediated Dicer knockdown in Melan-a (a-d) and 

MNT-1 (e-h) cells . The melanin content (b,f) melanogenesis gene RNA level (c,g) and cell 

number evaluation (d,h) analyses were performed as previously described (Gallagher et al. 

2011). Scr = scramble. The number of melanoblasts was decreased in E14.5 Dicer-cKO 

(=Tyr::Cre/° ; DicerFlox22-23/Flox22-23) mice compared to WT controls (i-l). The number of 

Dct::LacZ/° WT and mutant head and truncal melanoblasts was determined after beta-

galactosidase staining (Berlin et al. 2012). Each experiment was repeated at least three times, 

and statistical analysis was performed using t-test with ns indicating not significant, *p < 0.05, 

and **p < 0.01. 

 

Figure 2. The knockout of Dicer at birth induces a salt-and-pepper phenotype. 

(a) Ventral and dorsal views of Dicer-iKO (=Tyr::CreERT2 ; DicerFlox22-23/Flox22-23) and 

littermate WT controls. Melanin amount in Dicer-iKO and WT hairs from the dorsal (b) and 

ventral (d) parts at p60. No difference was observed between females (pink) and males (blue). 

n = 5 to 7. t-test analysis: ***p < 10-3, **p < 10-2. Black and white hairs on the back (c) and 

belly (e) of Dicer-iKO and WT mice from the same litter. Relative abundance of black and 

white hairs on a representative pair of mice is given. Scale bar: 20 μm.  

 

Figure 3. Abnormal location of melanocytes in Dicer-iKO hairs.

Following hair growth synchronization, 10-μm skin sections of p60 Dicer-iKO and WT were 

stained for Dct (red, highlighted by white arrows) and DAPI (blue). Twenty-six hairs from three
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mutants and 25 hairs from three wild-type mice were followed. Among the wild-type hairs, all

25 were pigmented, and 24 exhibited a normal distribution pattern with the profile a; Dct+ cells 

are located in the dermal papilla of the bulb (Bb) and in the bulge (Bg). From the mutant hairs, 

six were pigmented and twenty were not pigmented. The pigmented hairs had two profiles: two 

had the profile a, and four had the profile b. The profile b corresponds to hairs with Dct+ cells 

in the bulb and some with abnormal localization. The not pigmented had four profiles: four 

hairs had the profile c (without Dct+ cells in the bulb but with Dct+ in the apex of the hair), six 

the profile d (below and on the side of the bulb), four the profile e (below the bulb only), and 

six the profile f (without any Dct+ cells were observed). Hair follicles were schematically 

represented by black and white rectangles for pigmented and non-pigmented hairs, respectively, 

and a black diamond for melanocytes (Mc). Scale bar: 25 μm. 

Figure 4. ItgaV is induced in cells knocked down or knockout for Dicer 

Melan-a cells were subjected to Dicer knockdown (n=3), and subsequent analyses were 

performed, including Western blot (a), RT-qPCR (b), and transcriptomic (c-g). A heatmap (c) 

and a volcano plot (d) show genes differentially expressed between siDicer and siScr conditions 

with p ≤ 0.05 and fold-change ≥ 1.5. In (d) upregulated and downregulated genes are shown as 

red and green dots.  Gene ontology (e), KEGG (f), and REACTOME-pathway (g) analyses 

reveal an enrichment of pathways involved in cell adhesion and cell-matrix interactions (red). 

Validation of of the upregulation of integrin mRNA and protein levels by RT-qPCR (h) and 

western blot (i) analyses, respectively, 24 and 48 h after transfection with siDicer or siScr. n = 

4. t-test analysis: ****p ≤ 10-4, **p ≤ 10-2, *p ≤ 5.10-2. au: arbitrary unit. (j-m) Ten-week-old 

Dicer-iKO and WT mice from the same litter were depilated on the left side of the back, and a 

0.25cm2 biopsy sampled 10 days later from the depilated area. Dct (red) and ItgαV (green) co-

staining (j,k) and Dct (red) and Itgβ5 (green) co-staining (l,m) were performed on 10-μm skin
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sections. In Dicer-iKO, all Dct-positive cells displayed an increase of ItgαV or Itgb5. Scale

bars: 10 µm. 

 

Figure 5. ItgaV is targeted by miR-92b-3p.  

Melan-a cells were transfected with siRNA Dicer (si-Dicer) or control siRNA (si-Scr) prior 

miRnome analysis (a,b), with mouse mimic of miR-92b-3p (92b-3p) (+) or a mimic (-) control 

in the absence prior RT-qPCR (c) and western blot analysis (d) or presence of a miRglo-

luciferase construct (e), with si-ItgaV or siScr prior migration analysis (f) and western blot 

analysis (g), and with si-Dicer, si-Scr (-), mimic of miR-92b or a mimic control (-) prior 

migration analysis (h) and western blot (i) and mRNA (j) analyses. (a) Heatmap presenting the 

differentially expressed miR between both conditions at 24 and 48h with p ≤ 0.05 for a total of

327 miR.b) Venn diagram comparing the miRNA from miRnome to the mirTarBase list of 

putative miRNA that target ItgaV. Vinc =Vinculin. Three biological replicates were used for 

each condition. t-test analysis: ****p≤ 10-4, ***p ≤ 10-3, **p ≤ 10-2, *p ≤ 5.10-2, ns: non-

significant. r.u. = relative unit. 
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Figure 1. Absence of Dicer reduces melanoblast numbers without altering melanogenesis gene levels.

Western blot analysis (a,e) showed siRNA-mediated Dicer knockdown in Melan-a (a-d) and MNT-1 (e-h) cells.
The melanin content (b,f) melanogenesis gene RNA level (c,g) and cell number evaluation (d,h) analyses
were performed as previously described (Gallagher et al. 2011). Scr = scramble. The number of melanoblasts
was decreased in E14.5 Dicer-cKO (=Tyr::Cre/° ; DicerFlox22-23/Flox22-23) mice compared to WT controls (i-l).
The number of Dct::LacZ/° WT and mutant head and truncal melanoblasts was determined after
beta-galactosidase staining (Berlin et al. 2012). Each experiment was repeated at least three times,
and statistical analysis was performed using t-test with ns indicating not significant, *p < 0.05, and **p < 0.01.
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and white hairs on a representative pair of mice is given. Scale bar: 20 μm.
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Figure 3. Abnormal location of melanocytes in Dicer-iKO hairs.

Following hair growth synchronization, 10-μm skin sections of p60 Dicer-iKO and WT were stained for Dct
(red, highlighted by white arrows) and DAPI (blue). Twenty-six hairs from three mutants and 25 hairs from three
wild-type mice were followed. Among the wild-type hairs, all 25 were pigmented, and 24 exhibited a normal
distribution pattern with the profile a; Dct+ cells are located in the dermal papilla of the bulb (Bb) and in the
bulge (Bg). From the mutant hairs, six were pigmented and twenty were not pigmented. The pigmented hairs
had two profiles: two had the profile a, and four had the profile b. The profile b corresponds to hairs with Dct+ cells
in the bulb and some with abnormal localization. The not pigmented had four profiles: four hairs had the profile c
(without Dct+ cells in the bulb but with Dct+ in the apex of the hair), six the profile d (below and on the side of the
bulb), four the profile e (below the bulb only), and six the profile f (without any Dct+ cells were observed). Hair
follicles were schematically represented by black and white rectangles for pigmented and non-pigmented hairs,
respectively, and a black diamond for melanocytes (Mc). Scale bar: 25 μm.



1.
5

1.
0

0.
5 0 si

S
cr

D
ic
er

a D
ic
er

Vi
nc
ul
insi

S
cr

D
ic
er

25
0

kD
a

10
0

b Dicerlevel(au)

**

si
S
cr

si
D
ic
er

28
0
tra
ns
cr
ip
ts

c

-2
.0

+2
.0

0.
0

E
C
M
-r
ec
ep
to
ri
nt
er
ac
tio
n

f
K
E
G
G
pa
th
w
ay

C
el
la
dh
es
io
n
m
ol
ec
ul
es
(C
A
M
s)

A
lc
oh
ol
is
m

R
ap
1
si
gn
al
in
g
pa
th
w
ay

C
om
pl
em
en
ta
nd
co
ag
ul
at
io
n

H
C
M

A
R
V
C

R
eg
ul
at
io
n
of
ac
tin
cy
to
sk
el
et
on

D
ila
te
d
ca
rd
io
m
yo
pa
th
y

M
uc
in
ty
pe
O
-G
ly
ca
n
bi
os
yn
th
es
is

0
lo
g 1
0
p-
va
lu
e

-2
-4

-6

Fo
ca
la
dh
es
io
n

P
I3
K
-A
kt
si
gn
al
in
g
pa
th
w
ay

P
ro
te
og
ly
ca
ns
in
ca
nc
er

O
oc
yt
e
m
ei
os
is

TG
F-
be
ta
si
gn
al
in
g
pa
th
w
ay

M
em
br
an
e

C
el
ls
ur
fa
ce

Tr
an
sf
er
as
e
ac
tiv
ity
*

G
ol
gi
ap
pa
ra
tu
s

E
xt
ra
ce
llu
la
re
xo
so
m
e

Tr
an
sf
er
as
e
ac
tiv
ity

P
er
in
uc
le
ar
re
gi
on
of
cy
to
pl
as
m

P
ro
te
in
ph
os
ph
or
yl
at
io
n

E
nd
op
la
sm
ic
re
tic
ul
um

G
ol
gi
m
em
br
an
e

P
os
iti
ve
re
gu
la
tio
n
of
ce
ll
m
ig
ra
tio
n

C
av
eo
la

In
te
gr
in
co
m
pl
ex

R
el
ax
at
io
n
of
ca
rd
ia
c
m
us
cl
e

Fo
ca
la
dh
es
io
n

In
te
gr
in
-m
ed
ia
te
d
si
gn
al
in
g
pa
th
w
ay

K
in
as
e
ac
tiv
ity

P
os
iti
ve
re
gu
la
tio
n
of
ge
ne
ex
pr
es
si
on

G
O
an
al
ys
is

0
-2

-4
-6

P
ro
te
in
ki
na
se
ac
tiv
ity

C
el
l-m
at
rix
ad
he
si
on

e

lo
g 1
0
p-
va
lu
e

g
R
E
A
C
TO
M
E
pa
th
w
ay

S
m
al
li
nt
er
fe
rin
g
R
N
A
(s
iR
N
A
)b
io
ge
ne
si
s

M
ol
ec
ul
es
as
so
ci
at
ed
w
ith
el
as
tic
fib
re
s

In
te
gr
in
ce
ll
su
rfa
ce
in
te
ra
ct
io
ns

M
ic
ro
R
N
A
(m
iR
N
A
bi
og
en
es
is
)

0
lo
g 1
0
p-
va
lu
e

-2
-4

-5

E
C
M
pr
ot
eo
gy
ca
ns

-3
-1

0
-1

1
lo
g 2
fo
ld
ch
an
ge

log10p-value

P
fn
2 D
ic
er
1

M
ap
2k
1

K
it

Itg
aV

N
pn
t

C
av
2

G
lg
1

Itg
b5

Itg
a9

S
sh
1 F2
r

C
ol
6a
1

Th
bs
1

Ti
am
1

N
ot
si
gn
ifi
ca
nt

U
pr
eg
ul
at
ed

D
ow
nr
eg
ul
at
ed

4 3 1 02

Itg
a8

d

h
2 1 0

**
*
Itg
aV

**
**

**
2 1 0

Itg
b5

24
h

48
h

S
cr
D
ic
er
S
cr
D
ic
er

mRNAlevel(au) mRNAlevel(au)

si
S
cr

D
ic
er

24
h

48
h

Itg
aV

Itg
b5

Vi
nc
.

D
ic
eri

S
cr

D
ic
er

25
0

10
0

10
0

10
0

kD
a

1
2.
7

1.
7

3.
9

1
5.
4

6.
2

10
.5

1
0.
4

1.
4

0.
1

j
l

D
ct + k

m

D
ic
er
-iK
O

W
T

D
ic
er
-iK
O

W
T

D
ct

Itg
α
V

D
ct

Itg
β5

Itg
α
V

Itg
α
V

D
ct +

Itg
α
V

Itg
α
V

D
ct +

Itg
β5

Itg
β5 D
ct +

Itg
β5

Itg
β5

Fi
gu
re
4.
Itg
aV

is
in
du
ce
d
in
ce
lls
kn
oc
ke
d
do
w
n
or
kn
oc
ko
ut
fo
rD
ic
er

M
el
an
-a
ce
lls
w
er
e
su
bj
ec
te
d
to
D
ic
er
kn
oc
kd
ow
n
(n
=3
),
an
d
su
bs
eq
ue
nt
an
al
ys
es
w
er
e
pe
rfo
rm
ed
,i
nc
lu
di
ng
W
es
te
rn
bl
ot
(a
),
R
T-
qP
C
R
(b
),
an
d
tra
ns
cr
ip
to
m
ic
(c
-g
).

A
he
at
m
ap
(c
)a
nd
a
vo
lc
an
o
pl
ot
(d
)s
ho
w
ge
ne
s
di
ffe
re
nt
ia
lly
ex
pr
es
se
d
be
tw
ee
n
si
D
ic
er
an
d
si
S
cr
co
nd
iti
on
s
w
ith
p
≤
0.
05
an
d
fo
ld
-c
ha
ng
e
≥
1.
5.
In
(d
)u
pr
eg
ul
at
ed

an
d
do
w
nr
eg
ul
at
ed
ge
ne
s
ar
e
sh
ow
n
as
re
d
an
d
gr
ee
n
do
ts
.
G
en
e
on
to
lo
gy
(e
),
K
E
G
G
(f)
,a
nd
R
E
A
C
TO
M
E
-p
at
hw
ay
(g
)a
na
ly
se
s
re
ve
al
an
en
ric
hm
en
to
fp
at
hw
ay
s

in
vo
lv
ed
in
ce
ll
ad
he
si
on
an
d
ce
ll-
m
at
rix
in
te
ra
ct
io
ns
(r
ed
).
Va
lid
at
io
n
of
of
th
e
up
re
gu
la
tio
n
of
in
te
gr
in
m
R
N
A
an
d
pr
ot
ei
n
le
ve
ls
by
R
T-
qP
C
R
(h
)a
nd
w
es
te
rn
bl
ot
(i)

an
al
ys
es
,r
es
pe
ct
iv
el
y,
24
an
d
48
h
af
te
rt
ra
ns
fe
ct
io
n
w
ith
si
D
ic
er
or
si
S
cr
.n
=
4.
t-t
es
ta
na
ly
si
s:
**
**
p
≤
10
-4
,*
*p
≤
10
-2
,*
p
≤
5.
10
-2
.a
u:
ar
bi
tra
ry
un
it.
(j-
m
)T
en
-w
ee
k-
ol
d

D
ic
er
-iK
O
an
d
W
T
m
ic
e
fro
m
th
e
sa
m
e
lit
te
rw
er
e
de
pi
la
te
d
on
th
e
le
ft
si
de
of
th
e
ba
ck
,a
nd
a
0.
25
cm
2
bi
op
sy
sa
m
pl
ed
10
da
ys
la
te
rf
ro
m
th
e
de
pi
la
te
d
ar
ea
.D
ct
(r
ed
)

an
d
Itg
αV

(g
re
en
)c
o-
st
ai
ni
ng
(j,
k)
an
d
D
ct
(r
ed
)a
nd
Itg
β5
(g
re
en
)c
o-
st
ai
ni
ng
(l,
m
)w
er
e
pe
rfo
rm
ed
on
10
-μ
m
sk
in
se
ct
io
ns
.I
n
D
ic
er
-iK
O
,a
ll
D
ct
-p
os
iti
ve
ce
lls
di
sp
la
ye
d

an
in
cr
ea
se
of
Itg
αV

or
Itg
b5
.S
ca
le
ba
rs
:1
0
µm
.



a

92b-3p - +

ItgαV

Vinc

d

48h

si-Scr si-Dicersi-Scr si-Dicer

151 miR 189 miR

24h

327 miR

5 32214

miRTarbase miRnome

ItgaVb

miR-92b-3p

miR-16-5p

miR-195a-5p

miR-761

miR-322-5p

*
*

*

*
*

0.0 0.5-0.5-1.0
-log2 (fold change)

24h
48h

1.5

1.0

0.5

0

**

Itg
aV

m
R
N
A

c

92b-3p - +

ItgaV 3’UTR

0

1.5

1.0

0.5

***

**** ***

ns

ns **
**
ns

lu
ci
fe
ra
se

(r
.u
.)

MutWT

92b-3p - + - +

e

WT: GTGCAATA
Mut: TTACGAGA

luciferase

-2.0 +2.00.0

****

Av
er
ag
e
sp
ee
d
(μ
m
/h
)

- + -

h
*

*

- - +

i j
Dicer

ItgαV

Vinc

si-Dicer
Anti-miR92b

1.0

1.0

0.2

1.3

0.8

1.4

- + -
- - +

****

Av
er
ag
e
sp
ee
d
(μ
m
/h
)f

- +

g
ItgαV

Vinc

si-ItgaV

si-ItgaV

1.2 0.3

- +

35

25

15

45

35

25 0.0

0.5

1.0

1.5
Itg
aV
m
R
N
A
(a
u)

0.0

0.5

1.0

1.5

D
ic
er
m
R
N
A
(a
u)

-
-

+
-

-
+

-
-

+
-

-
+

Figure 5. ItgaV is targeted by miR-92b-3p.
Melan-a cells were transfected with siRNA Dicer (si-Dicer) or control siRNA (si-Scr) prior miRnome analysis (a,b),
with mouse mimic of miR-92b-3p (92b-3p) (+) or a mimic (-) control in the absence prior RT-qPCR (c) and western
blot analysis (d) or presence of a miRglo-luciferase construct (e), with si-ItgaV or siScr prior migration analysis (f)
and western blot analysis (g), and with si-Dicer, si-Scr (-), mimic of miR-92b or a mimic control (-) prior migration
analysis (h) and western blot (i) and mRNA (j) analyses. (a) Heatmap presenting the differentially expressed miR
between both conditions at 24 and 48h with p ≤ 0.05 for a total of 327 miR.b) Venn diagram comparing the miRNA
from miRnome to the mirTarBase list of putative miRNA that target ItgaV. Vinc =Vinculin. Three biological replicates
were used for each condition. t-test analysis: ****p≤ 10-4, ***p ≤ 10-3, **p ≤ 10-2, *p ≤ 5.10-2, ns: non-significant.
r.u. = relative unit.


