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<BEGIN ABSTRACT> 

Abstract 

Depression is common in older individuals and is associated with high disability and 

mortality. A major problem is treatment resistance: >50% of older patients do not respond to 

current antidepressants. Therefore, new effective interventions for prevention and treatment 

of depression in older individuals need to be developed, which requires a better 

understanding of the mechanisms underlying depression. The pathophysiology of depression 

is multifactorial and complex. Microvascular dysfunction may be an early and targetable 

mechanism in the development of depression, notably depression that initiates in late life 

(late-onset depression). Late-onset depression commonly co-occurs with other diseases or 

syndromes that may share a microvascular origin, including apathy, cognitive impairment, 

dementia, and stroke. Together, these disabilities may all be part of one large phenotype 

resulting from global cerebral microvascular dysfunction. In this review, we discuss the 

pathophysiology of microvascular dysfunction–related late-onset depression, summarize 

recent epidemiological evidence on the association between cerebral microvascular 

dysfunction and depression, and indicate potential drivers of cerebral microvascular 

dysfunction. We also propose the hypothesis that depression may be a manifestation of a 

larger phenotype of cerebral microvascular dysfunction, highlight potential therapeutic 

targets and interventions, and give directions for future research. 

<END ABSTRACT> 

<KW>Keywords: Diabetes, Human studies, Hypertension, Late-onset depression, 

Microvasculature, Vascular depression 
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<BEGIN ARTICLE> 

Depression is a large contributor to global disability in older individuals. Major depression 

occurs in 2% of adults aged 65 years or older, and its prevalence rises with increasing age. In 

addition, 10% to 15% of older adults have clinically significant depressive symptoms, even in 

the absence of major depression (1). Major depression and depressive symptoms in older 

adults are associated with frailty (2), lower quality of life (3), and 1.5-fold to twofold higher 

mortality risk (4,5). However, current antidepressant medications targeting neurotransmitters 

are less effective (6,7) and have more side effects (8) in older patients than in younger 

patients. More than 50% of older patients do not respond to such treatment (9). Given the 

aging society, better understanding of the underlying mechanisms of depression in older 

individuals is required so that more effective prevention and treatment strategies can be 

developed. 

 

The pathophysiology of late-life depression is multifactorial and complex. Patients with late-

life depression are a heterogeneous group, including individuals with late-onset depression, in 

whom the initial depressive episode occurs after age 60 years, and individuals with early-

onset depression who already had a first depressive episode earlier in life (10). Several years 

ago, it was postulated that cerebrovascular damage may contribute to depression via 

disruption of brain regions involved in mood regulation (11), notably, damage to subcortical 

regions (12,13). This mechanism may be particularly relevant in older individuals without a 

history of depression (i.e., late-onset depression). Subsequent studies have identified evidence 

for this vascular depression hypothesis (10,14,15) and suggest that vascular depression may 

be a specific subtype of depression (Table 1). However, these studies mostly focused on late 

stages of cerebrovascular disease when irreversible brain damage was already evident. For 



effective interventions, it is crucial to identify mechanisms that can be targeted in an early 

stage of the disease before irreversible damage occurs. 

 

We propose that microvascular dysfunction is an early and targetable mechanism in the 

development of late-onset depression. Late-life depression commonly co-occurs with other 

syndromes or diseases that may share a microvascular origin, including apathy, cognitive 

impairment, dementia, and stroke. Together, these disabilities may all be part of one large 

phenotype resulting from global cerebral microvascular dysfunction.  

 

In this review, we discuss the functions of the cerebral microvasculature and how 

microvascular dysfunction may contribute to the development of late-onset depression. 

Cerebral microvascular dysfunction is the overlying construct that includes (or can be defined 

by) blood-brain barrier leakage, impaired cerebral autoregulation, impaired neurovascular 

coupling, and disturbed capillary flow patterns (16,17) (Table 1). We review emerging 

evidence that cerebral microvascular dysfunction and damage are present in older individuals 

with depression and are associated with apathy, cognitive dysfunction, and stroke in these 

individuals. We will also indicate which factors may contribute to cerebral microvascular 

dysfunction in depression, highlight potential interventions, and give directions for future 

research.  

 

In discussing these issues, we rely to an important extent on data obtained in humans, 

because currently, no experimental model exists that approximates the complex underlying 

mechanisms and heterogeneous manifestations of late-onset depression in patients. However, 

experimental studies are crucial to understand the individual causative pathways by which 

impairment of the different functions of the microvasculature can contribute to depressive 



symptoms. For example, recent basic studies have provided important insights into the role of 

stress susceptibility and blood-brain barrier leakage in the development of depressive 

symptoms. These studies suggest that maintenance of blood-brain barrier integrity could 

represent an approach to develop therapeutic strategies to treat depression. This has been 

discussed in recent reviews (18–20). 

 

<H1>Functions of the Cerebral Microvasculature 

Optimal function of the brain depends on a healthy microvasculature (21,22). The cerebral 

microcirculation represents the site of resistance to flow and the surface of exchanges. It is 

the major component of the blood-brain barrier and has a crucial role in the regulation of 

cerebral perfusion via control of neurovascular coupling and cerebral autoregulation (Table 

1) (16,17,23). 

 

<H2>Contribution of Microvascular Dysfunction to Depression 

The mechanistic pathways by which microvascular dysfunction may contribute to depression 

are shown in Figures 1 and 2. Microvascular dysfunction includes increased blood-brain 

permeability and impaired blood perfusion regulation, with disturbed neurovascular coupling 

and cerebral autoregulation (17). These impairments can each lead to focal brain injury, 

which may damage neuronal circuits involved in mood regulation and contribute to clinical 

depressive symptoms and negatively influence the effect of antidepressants (10,15).  

 

 

 

<H1>Evidence of Cerebral Microvascular Dysfunction in Depression 



A summary of studies in adults on the association between cerebral microvascular function 

and structure and depression is shown in Table 2, and these studies are discussed in the 

sections below. Most studies found an association between microvascular dysfunction and 

depression, although not all results are consistent. Most studies had a case-control design and 

included relatively small (n < 100) clinical samples of individuals with a current depressive 

episode. 

 

<H2>Blood-Brain Barrier Permeability 

Evidence for the presence of increased blood-brain barrier permeability in depression in 

humans comes mostly from biochemical studies that assessed the ratio of cerebrospinal fluid 

albumin to serum albumin level, which is known as the albumin quotient (Table 1). One case-

control study (24) found a higher albumin quotient among older patients with depression than 

among older individuals without depression. Other studies among patients with depression 

found a higher albumin quotient in a subset of these patients than previously reported 

reference values in the general population (25,26), and a higher albumin quotient was 

associated with suicidality (27). Additionally, postmortem studies have found evidence of 

structural alterations of the blood-brain barrier in depression. This includes an increased 

endothelial expression of intracellular adhesion molecule-1 (28–30), a marker of 

microvascular endothelial dysfunction, and reduced coverage of the endothelium by astrocyte 

end feet in the prefrontal cortex (31). Other studies found an increased expression of 

endothelial protein claudin-5, a key tight-junction protein in the nucleus accumbens (32,33). 

The prefrontal cortex and nucleus accumbens are crucial regions within the brain’s reward 

circuitry, and their function is impaired in individuals with major depression (34). Reduced 

expression of claudin-5 has also been found in an animal model of depression, and this was 

related to greater blood-brain permeability in this model (32). 



 

<H2>Cerebrovascular Reactivity, Cerebral Autoregulation, and Resting Cerebral Blood Flow 

Microvascular dysfunction may manifest as disrupted cerebrovascular reactivity (Table 1). 

One prospective, population-based study showed that lower cerebrovascular reactivity was 

associated with higher risk of depression in older individuals (35). Additionally, most cross-

sectional studies (36–41), but not all (42), found lower cerebrovascular reactivity in 

individuals with depression than in individuals without depression. However, most of these 

studies measured cerebrovascular reactivity at the level of a large artery with use of Doppler 

ultrasound, and only some studies (38,42) measured cerebrovascular reactivity at the tissue 

level with use of magnetic resonance imaging or single-photon emission computed 

tomography. The interpretation of vasoreactivity measured in a large artery is difficult 

because it may reflect the function not only of arterioles and capillaries but also of larger 

cerebral arteries (43). 

 

Microvascular dysfunction might also contribute to altered cerebral autoregulation (Table 1). 

However, data on cerebral autoregulation in depression are scarce. Altered cerebral 

autoregulation was identified in a recent small cross-sectional study (44), but replication of 

this finding is needed. 

 

Altered resting cerebral blood flow or blood flow velocity may be another manifestation of 

cerebral microvascular dysfunction. However, the interpretation of resting cerebral blood 

flow is complex, because reduced resting cerebral blood flow might be a cause of tissue 

damage or a consequence (i.e., reflect loss of viable tissue), or both. Lower cerebral blood 

flow velocity assessed at the level of large cerebral arteries with Doppler ultrasound, which 

may be related to lower global cerebral perfusion (45), was associated with higher risk of 



incident depressive symptoms in individuals with heart failure (46) and with incident 

depression in a large population-based study (35). In addition, cross-sectional studies in older 

individuals with depression have found altered global (measured at the level of large arteries) 

or regional (at the tissue level) cerebral perfusion, independent of cerebral atrophy (47–49). 

In one study, regional cerebral perfusion was altered to a greater extent in individuals with 

late-onset depression (defined in that study as the first onset of the episode after the age of 60 

years), compared with individuals with early-onset depression and individuals without any 

depression, and altered cerebral perfusion was associated with worse cognitive performance 

in these individuals (48). 

 

<H2>Retinal Microvascular Changes 

The retina offers a unique opportunity to study microvascular changes in the brain because it 

allows direct and reproducible visualization of a microvascular bed that shares anatomical 

and physiological similarities with the cerebral microvasculature (50,51). To date, only two 

studies (52,53), both population based, evaluated the association between measures of the 

retinal microvasculature and incident depressive symptoms, but they had inconsistent 

findings. One study found that a reduced flicker light–induced retinal arteriolar dilatation 

response, indicating worse microvascular function, was associated with a higher incidence of 

depressive symptoms (52). Another study evaluated the association between retinal arteriolar 

and venular diameters and incident depression but did not find a statistically significant 

association (53). 

 

<H2>Features of Cerebral Small Vessel Disease 

Cerebral microvascular dysfunction can also manifest itself as features of cerebral small 

vessel disease, which include white matter hyperintensities and lacunes of presumed vascular 



origin, cerebral microbleeds, perivascular spaces, total cerebral atrophy, and microinfarcts 

(54). These features are indirect or late-stage markers of small vessel abnormalities because 

they reflect brain parenchymal damage potentially related to various small vessel changes. 

Recent meta-analyses (55–57) have consistently shown that cerebral small vessel disease 

features are associated with a higher risk of depression. Strongest associations were found for 

features located in regions involved in mood regulation, i.e., frontal and subcortical brain 

regions, compared with features in other brain regions (56,58). In contrast, results of 

neuropathology studies (59–65) on the presence of cerebral small vessel disease in depression 

have been inconsistent. The results of these studies are, however, difficult to compare 

because of differences in patient populations, brain regions of interest, and the definitions 

used of cerebral small vessel disease features. 

 

<H1>Contribution of Microvascular Dysfunction to Apathy, Cognitive Dysfunction, and 

Stroke in Depression 

Depression, apathy, cognitive dysfunction, and stroke commonly occur together. Apathy, or 

diminished motivation, is a common symptom in late-life depression but may also exist 

independently of depression (66). In addition, late-life depression and apathy increase the risk 

of decline in any and multiple cognitive domains but most commonly in executive function 

and processing speed (15). Furthermore, late-life depression and apathy are associated with a 

1.5-fold to twofold higher risk of dementia (15,67) and stroke (68,69).  

Increasing data suggest that the link between late-life depression, apathy, cognitive 

dysfunction, and stroke can be explained, at least in part, by microvascular dysfunction as a 

shared underlying mechanism. These disabilities may therefore be manifestations of a larger 

phenotype of global cerebral microvascular dysfunction. For example, the clustering of 

depression and executive dysfunction, also described as the depression-executive dysfunction 



syndrome (15), has been related to higher white matter hyperintensity volume in the frontal 

and subcortical brain regions (70) and is associated with a lower response to current 

antidepressant medications (15). Recent longitudinal data showed that only individuals with 

depressive symptoms that increased in late life and no other trajectories of depressive 

symptoms across the life course had higher white matter hyperintensity volumes (71). In 

addition, only this trajectory has been associated with greater decline in executive function 

(71) and higher risk of dementia (72,73). Also, various measures of microvascular 

dysfunction (e.g., retinal microvascular changes and blood biomarkers) have been associated 

with apathy (74) and cognitive dysfunction (55,75,76) in individuals without depression. In 

addition, presence and progression of cerebral small vessel disease over time, notably, 

increase in white matter hyperintensity volume and incident lacunar infarcts, have been 

associated with a higher risk of dementia (55,77). Microvascular dysfunction has also been 

reported to be associated with an increased risk of stroke, notably lacunar ischemic stroke and 

deep hemorrhagic stroke (16), and with worse outcomes after stroke (78,79).  

 

  



<H1>Drivers of Microvascular Dysfunction in Depression: Aging, Psychological Stress, 

Arterial Stiffness and Hypertension, and Type 2 Diabetes and the Metabolic Syndrome 

 

<H2>Aging 

Aging of the vasculature is an important contributor to cerebral microvascular dysfunction. 

Aging has been associated with increased blood-brain barrier permeability, lower 

cerebrovascular reactivity, altered cerebral autoregulation, and reduced cerebral 

microvascular perfusion (80). The factors involved in vascular aging are complex and include 

various cellular and molecular mechanisms, as reviewed previously (81).  

 

<H2>Psychological Stress and Inflammation 

Chronic stress is major risk factor for depression. For example, the association between 

objective stress-related environmental risk factors (e.g., neighborhood quality) and increased 

risk of depressive symptoms in adulthood is well established (82,83). Stress has multiple and 

complex effects on brain function and structure [as reviewed previously, e.g., (84,85)]. 

Emerging experimental data suggest that chronic stress also has detrimental effects on the 

microvasculature, mediated via inflammatory mechanisms, which may contribute to the 

development of depression (32,33,86). Chronic stress mobilizes the innate immune system 

and stimulates enhanced proliferation and release of inflammatory monocytes and neutrophils 

into the bloodstream (87). Animal studies have shown that this stress-induced inflammation 

can alter blood vessel morphology in the brain with discontinuous tight junctions, leading to 

greater blood-brain permeability (32,33,86). Greater blood-brain permeability was associated 

with depression-like behaviors in these models. For example, in a study of mice undergoing 

social defeat, a mouse model of chronic stress, it was shown that expression of the tight-

junction protein claudin-5 in the blood-brain barrier was reduced in stress-susceptible animals 



(32). This promoted the passage of interleukin 6 across the blood-brain barrier and induced 

depressive-like behaviors in these animals. Furthermore, other studies showed that anti-

inflammatory therapy was able to reduce stress-induced increases in blood-brain barrier 

permeability and lower depressive symptoms (88). Whether these findings can be translated 

to humans remains to be investigated.  

 

<H2>Arterial Stiffness, Hypertension, and Blood Pressure Fluctuations 

Large artery stiffness and hypertension may lead to cerebral microvascular dysfunction (89). 

Stiffening of large arteries impairs their cushioning function and increases blood pressure and 

flow pulsatility (Figure 3). This increased pulsatile load may transmit distally into the 

cerebral circulation and thereby contribute to cerebral microvascular damage (89). The 

microvasculature of the brain is particularly vulnerable because it is characterized by high 

flow and low impedance, allowing the pulsatile load to penetrate deeply into its 

microvascular bed (90). Consistently, recent population-based data (91) showed that greater 

stiffness of the carotid artery is associated with a higher risk of depressive symptoms. In 

addition, cross-sectional data from another large study (92) showed that the association 

between greater arterial stiffness and presence of depressive symptoms was in part explained, 

or mediated, by features of cerebral small vessel disease. In addition, some studies (93,94), 

but not all (95,96), have shown that hypertension is associated with a higher risk of 

depression in older individuals. 

Arterial stiffening may also contribute to substantial fluctuations in blood pressure, including 

orthostatic hypotension and exercise-induced hypertension (89). Greater blood pressure 

fluctuations may further sensitize the brain to the harmful effects of impaired microvascular-

related cerebral autoregulation and vasoreactivity, with cerebral hypoperfusion during 

hypotension and overexposure to high pulsatility at high pressure (Figure 3). In accordance, 



studies have shown that orthostatic hypotension (97) and exercise-induced hypertension (98) 

are associated with higher risk of depressive symptoms. 

  

<H2>Type 2 Diabetes and Metabolic Syndrome 

Type 2 diabetes and late-life depression commonly co-occur; individuals with type 2 diabetes 

have a doubled risk for depression as compared with individuals without type 2 diabetes. 

Furthermore, individuals with depression have a 1.5 times higher risk of type 2 diabetes (99). 

The mechanisms underlying the relationship between type 2 diabetes and late-life depression 

are likely multifactorial and may include psychosocial factors, e.g., diabetes burden and 

distress, and biological factors, including central insulin resistance (100) and microvascular 

dysfunction (17).  

 

Microvascular dysfunction is present in many organs in individuals with diabetes or the 

metabolic syndrome, including the brain (17). Some evidence also suggests that depression in 

diabetes may be associated with microvascular dysfunction. One cross-sectional study found 

that individuals with type 2 diabetes and depression had wider retinal arterioles than 

individuals with type 2 diabetes but without depression (101), consistent with an association 

between depression and early microvascular changes in diabetes. Moreover, a recent, 

population-based large study found that individuals with type 2 diabetes had greater increase 

in depressive symptoms over time, and cerebral small vessel disease partly explained this 

association (102). Type 2 diabetes and the metabolic syndrome are also associated with 

accelerated stiffening of large arteries (89), and this may contribute to depression in these 

individuals (103). Importantly, cerebral microvascular blood flow may be increased in early 

type 2 diabetes, possibly to compensate for reduced oxygen extraction efficacy related to 

subtle, or early, microvascular dysfunction, whereas in more advanced stages of the disease, 



blood flow may be reduced (17). Because of this high flow state in early diabetes, the 

increased pulsatile load associated with arterial stiffening may penetrate more deeply into the 

cerebral microvascular bed and contribute to cerebral damage (89). This suggests that 

individuals with type 2 diabetes may be more vulnerable for the detrimental effects of arterial 

stiffening on the brain, but this requires further study. 

 

<H1>Potential Therapeutic Targets and Interventions 

Vascular-related depression is associated with poor response to current antidepressant 

treatments (104). In addition, there are no current evidence-based primary prevention 

pharmacotherapies for late-onset depression. The identification of cerebral microvascular 

dysfunction as a potential contributor to depression could allow for the development of more 

effective prevention and treatment strategies. In this context, targeting cerebral microvascular 

function as a complementary treatment strategy of late-onset depression would represent a 

paradigm shift in the management of late-onset depression.  

 

Currently, no therapeutic agents are available that specifically enhance microvascular 

function in the brain. Yet, some established therapies that are approved for diseases other 

than depression have been linked to improved cerebral microvascular function and might also 

be beneficial in depression as discussed below. It has been hypothesized that some currently 

used antidepressant medications targeting neurotransmitters may also have vasoprotective 

effects. However, data in humans are scarce, and results have been inconsistent (105).  

 

<H2>Lifestyle Factors 

Microvascular dysfunction might be at least partly reversible through weight loss and 

exercise (23). Recent meta-analyses suggest that exercise and weight loss interventions have 



a beneficial effect on depressive symptoms across a wide age range, including older 

individuals (106,107). To what extent any effects of these interventions are mediated by 

improvement of microvascular function remains to be elucidated.  

 

<H2>Pharmacological Interventions 

Various drugs may improve microvascular function, including renin-angiotensin system 

(RAS) inhibitors, calcium antagonists, glucose-lowering drugs, statins, anti-inflammatory 

therapies, and drugs that enhance signaling of nitric oxide or prostacyclin.  

 

RAS inhibitors, i.e., angiotensin converting enzyme inhibitors and angiotensin receptor 2 

blockers, are commonly prescribed antihypertensive drugs. Experimental studies suggest that 

these drugs may improve the function of small vessels beyond their blood-lowering effects 

via upregulation of endothelial nitric oxide synthetase (108–110) and via their anti-

inflammatory effects (111). There are no randomized clinical trials of RAS inhibitors and 

depression. However, experimental data suggest that RAS inhibitors may have mood-

elevating effects (111). Moreover, some (112–114), but not all (115,116), explorative 

observational studies have suggested that RAS inhibitors may protect against depression.  

 

Calcium channel blockers are other commonly prescribed antihypertensive drugs. Animal 

studies suggest that these drugs might have beneficial effects on the microcirculation (117). 

In addition, one clinical trial (n = 101) showed that older individuals treated with fluoxetine 

combined with nimodipine reduced depressive symptoms more than treatment with 

fluoxetine alone (118). Further study is needed to elucidate the effects of calcium channel 

blockers on the microvasculature in humans and to confirm the findings of the clinical trial.  

 



Statins and glucose-lowering drugs, including metformin, peroxisome proliferator-activated 

receptor-gamma agonists, and incretin-based therapies (i.e., glucagon-like peptide 1 receptor 

agonists and dipeptidyl peptidase 4 inhibitors), might also improve cerebral microvascular 

function and have neuroprotective effects through nonlipid and nonglucose pathways. Small 

trials and observational studies (119–122) suggest that these drugs may lower depressive 

symptoms. In addition, several trials are being done to evaluate the effect of statins (e.g., 

NCT03435744 and NCT04301271) and incretin-based therapies (e.g., NCT04466345 and 

NCT04410341) as add-on treatment to standard antidepressant therapy in patients with major 

depression. Additionally, anti-inflammatory interventions may be beneficial in depression in 

part via improvement of microvascular dysfunction (123). Therapeutic approaches aimed at 

reducing inflammation are currently investigated [as reviewed elsewhere (124)].  

 

RAS inhibitors, statins, and glucose-lowering and anti-inflammatory interventions may also 

improve microvascular function in part via their beneficial effects on large arteries. 

Experimental studies have shown that these drugs may improve large artery elasticity, 

possibly beyond their blood pressure-, glucose-, or lipid-lowering effects (92,125). 

 

Other potentially interesting interventions are drugs that enhance signaling of nitric oxide or 

prostacyclin (also known as prostaglandin I2 or related prostaglandins), such as nitric oxide 

donors (e.g., isosorbide mononitrate), phosphodiesterase 3 inhibitors (e.g., cilostazol), and 

phosphodiesterase 5 inhibitors (e.g., dipyridamole). Experimental studies have shown that 

these drugs can improve blood-brain barrier integrity and vasoreactivity (126), but their effect 

on depression remains to be investigated. Trials testing some of these drugs in depression are 

ongoing (e.g., NCT03736538, NCT04199143, NCT04344678, and NCT04069819).  

 



<H1>Directions for Future Research 

Emerging evidence suggests that microvascular dysfunction may contribute to depression, 

but many questions are unanswered. Further research is needed to fully characterize the 

association between microvascular dysfunction and specific depressive symptoms, specific 

depressive symptoms trajectories, and its comorbidities. This will help to further define 

microvascular depression as a specific subtype of depression, to better understand the larger 

phenotype of microvascular dysfunction–related brain diseases, and to establish the clinical 

value of this phenotype. Based on this information, the recent consensus criteria for vascular 

depression (Table 1) may be adapted to include a definition of a microvascular dysfunction–

related depression phenotype. 

 

Although experimental studies are crucial to understand the individual causative pathways by 

which impairment of the different functions of the microvasculature can contribute to 

depressive symptoms, these studies cannot evaluate the effect of microvascular dysfunction 

in the context of the heterogeneous manifestations of depression and the other morbidities 

with which they co-occur in patients. Studies in humans are therefore needed. To distinguish 

different clusters and trajectories of depressive symptoms and to identify the clinical 

phenotype that is related to microvascular dysfunction, longitudinal population-based studies 

are needed with multiple measures of a large set of individual depressive symptoms across 

the life course, ideally from adulthood or earlier onward. Rigorous methods to control for 

depressive symptoms at baseline and other potential confounders will limit the risk of reverse 

causality and bias due to residual confounding. In addition, high-quality measurements of 

microvascular function should be used to minimize measurement-error bias. Retinal 

microvascular parameters, which can be readily assessed noninvasively at large scale, may be 

a good proxy for microvascular changes in the brain. These include static (e.g., calibers, 



fractals, and tortuosity) and dynamic (e.g., vasodilatation response to flicker light) 

parameters. The static parameters are measures of the efficiency of retinal blood distribution 

(127), and flicker light–induced vasodilatation is a key functional measure of neurovascular 

coupling (128). In addition, advanced neuroimaging methods now enable direct measurement 

of blood-brain barrier permeability, cerebrovascular reactivity at the tissue level, and 

microvascular blood flow perfusion and pulsatility in humans (129–131). These techniques 

may not be easily applied at a large scale but may provide crucial information about cerebral 

microvascular pathophysiology even in small samples. In addition, clinical studies are needed 

to evaluate whether stratification of patients according to the presence of microvascular 

dysfunction could identify subgroups more likely to respond to specific clinical therapies, 

including agents that improve microvascular function. 

 

<H1>Conclusions 

A growing body of evidence from human studies suggests that microvascular dysfunction 

may contribute to the development of late-onset depression and may also underly apathy, 

cognitive dysfunction, and stroke, which are common in depression. Further research is 

needed to fully characterize the association between microvascular dysfunction and specific 

depressive symptoms, specific depressive symptoms trajectories, its comorbidities, and 

response to specific therapies. This will help to understand the clinical value of microvascular 

dysfunction–related depression. 
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Figure 1. Detrimental effects of cerebral microvascular dysfunction on the brain. 

Microvascular dysfunction may include increased blood-brain permeability (A) and impaired 

blood perfusion regulation, with disturbed neurovascular coupling (B) and impaired cerebral 

autoregulation (C) (17). Increased blood-brain permeability (A) leads to leakage of 

inflammatory proteins and cells and other plasma constituents into the perivascular space 

(16). Neurovascular coupling (B) involves a complex interaction between various cells (i.e., 

neuronal cells, astrocytes, endothelial cells, pericytes, and smooth muscle cells) and various 

mediators (16). Dysfunction of each of these components may contribute to disturbed 

neurovascular coupling. For instance, both endothelial and neuronal dysfunction may lead to 

lower release of endothelial- or neuronal-derived nitric oxide, leading to impaired 

vasodilatation (132). Cerebral autoregulation (C) is the ability of the cerebrovasculature to 

maintain a constant level of global brain perfusion despite varying arterial blood pressure 

(22). With impaired autoregulation, the normal autoregulation curve that expresses the 

relationship between cerebral blood flow and mean blood pressure (black curve) in panel (C) 

may become more linear and steeper, and perfusion may become pressure-dependent (red 

curve) in panel (C) (133).  

 

 

Figure 2. Mechanistic pathway by which cerebral microvascular dysfunction may contribute 

to late-onset depression. Microvascular dysfunction–related increased blood-brain 



permeability leads to leakage of proteins and other plasma constituents into the perivascular 

space. This may directly damage neurons and is related to inflammatory and immune 

responses (16,17). Cerebral microvascular dysfunction also includes impaired blood flow 

regulation with impaired cerebral autoregulation and neurovascular coupling and disturbed 

capillary flow patterns (134). This can result in perfusion deficits, reduced oxygen extraction, 

and hypoxia. Hypoxia leads to activation of hypoxia-inducible transcription factors, which, in 

turn, triggers inflammation and expression of matrix metalloproteinases and proangiogenic 

factors (135). Matrix metalloproteinases damage endothelial tight junctions, contributing to 

increased blood-brain barrier permeability. Proangiogenetic factors, including vascular 

endothelial growth factor, also increase the permeability of the blood-brain barrier and 

stimulate angiogenesis. Angiogenesis is associated with formation of capillaries that are leaky 

and poorly perfused and that lack pericyte support (21). Via these mechanisms, microvascular 

dysfunction can lead to local ischemia and hemorrhage and focal brain injury, ultimately 

leading to disturbed affective and cognitive processing and depression. BBB, blood-brain 

barrier. 

 

 

Figure 3. Presumed pathway by which arterial stiffness contributes to cerebral microvascular 

dysfunction and late-onset depression. Stiffening of large arteries impairs their cushioning 

function and increases pressure and flow pulsatility. This increased load may cause direct 

microvascular damage and may induce a microvascular remodeling response (89). This 

response initially serves to limit the penetration of the pulsatile load into the microvascular 

system by raising cerebrovascular resistance (136). However, this protective response may 

ultimately become unfavorable, leading to impaired vasoreactivity and hypoperfusion. In 



addition, arterial stiffening may cause excessive blood pressure fluctuations that may further 

sensitize organs to the harmful effects of impaired microvascular vasoreactivity (89). 

  



Table 1. Selected Key Terms and Definitions 

Terms Definition and Comments 

Depression 

Heterogeneity 

Depression is a highly heterogeneous syndrome driven by varying 

genetic and neurophysiological mechanisms, which give rise to 

varying symptom profiles, clinical trajectories, and treatment 

outcomes. This heterogeneity may be more apparent in late-life 

depression, because aging-related changes across multiple organ 

systems may contribute to depression (10).  

Vascular Depression A subtype of depression characterized by a distinct clinical 

presentation and an association with cerebrovascular damage. A 

recent consensus rapport (14) suggested the following criteria for 

vascular depression: 1) evidence of vascular pathology in elderly 

subjects with or without cognitive impairment, 2) absence of 

previous depressive episodes preceding obvious cerebrovascular 

disease, 3) presence of cerebrovascular risk factors, 4) coincidence 

of depression with cerebrovascular risk factors, 5) clinical 

symptoms characteristic of vascular depression (executive 

dysfunction, decrease in processing speed, and lethargy), and 6) 

neuroimaging data confirming cerebrovascular disease. However, 

these diagnostic criteria for vascular depression are, until now, not 

widely accepted, and vascular depression has not been included in 

formal psychiatric manuals.  

Cerebral 

Microvascular 

Function and 

Core functions of the cerebral microcirculation, defined as 

cerebral vessels <150 μm (arterioles, capillaries, and venules), are 

1) to optimize the delivery of nutrients and removal of waste 



Dysfunction products in response to variations in neuronal activity, 2) to 

maintain the cerebral interstitial milieu for proper cell function, 

and 3) to decrease and stabilize pulsatile hydrostatic pressure at 

the level of capillaries (16,17). Cerebral microvascular dysfunction 

is defined as an impairment in any of these functions.  

Blood-Brain Barrier A tightly linked monolayer of endothelial cells, together with a 

basement membrane, astrocyte end feet, and mural cells (pericytes 

in capillaries and vascular smooth muscle cells in arterioles). The 

blood-brain barrier separates the circulating blood and brain 

compartments and strictly regulates blood-to-brain and 

brain-to-blood transport of solutes to maintain the highly 

controlled internal milieu of the central nervous system (16,135). 

Neurovascular 

Coupling 

Mechanism by which the brain can rapidly increase local blood 

flow to activated neurons (132). Upon an increase in neuronal 

activity, astrocytes signal to endothelial cells the paracrine release 

of vasoactive agents. These signals engage smooth muscle cells 

and, possibly, pericytes to induce vasodilatation, reduce 

cerebrovascular resistance, and increase local cerebral blood flow 

(22).  

Cerebral 

Autoregulation 

Ability of the cerebrovasculature to maintain a constant level of 

global brain perfusion despite varying arterial blood pressure (22). 

This ensures a relatively constant level of blood flow to meet the 

high metabolic demand of the brain (137). Arterioles together with 

larger cerebral arteries regulate this response by varying 

cerebrovascular resistance mediated by myogenic responses (22). 



Albumin Quotient Ratio of cerebrospinal fluid albumin to serum albumin level. 

Albumin originate solely from the systemic circulation and cannot 

cross an intact blood-brain barrier. An increase in the albumin 

quotient can, thus, be used as an indirect measure of blood-brain 

permeability. 

Cerebrovascular 

Reactivity 

Change in flow in response to increased neuronal activity (i.e., 

neurovascular coupling) or a metabolic or vasodilatory stimulus, 

e.g., increase in partial pressure of carbon dioxide (138). This 

response reflects the ability of the cerebrovasculature, notably, 

arterioles and capillaries, to dilate in response to increased 

neuronal metabolic demand and is endothelium-dependent 

(22,139). 

  



Table 2. Altered Cerebral Microvascular Function and Structure in Individuals With Incident 

or Prevalent Depression as Compared With Individuals Without Depression: Summary of 

Findings in Humansa 

Manifestation of 

Altered Cerebral 

Microvascular 

Function and 

Structure 

Technique(s) Findings in Individuals With Depression as 

Compared to Those Without 

Increased Blood-

Brain Barrier 

Permeability 

Qalb; 

neuropathology 

Increased blood-brain barrier permeability in cross-

sectional studies (24–27). No prospective data 

available. 

Reduced Cerebral 

Vasoreactivity 

TCD; ASL; 

SPECT 

One prospective study (35) found that cerebral 

vasoreactivity increased the risk of depression. 

Most cross-sectional studies (36–41), but not all 

(42), also found reduced cerebral vasoreactivity. 

Most of these studies determined vasoreactivity at 

the level of a large cerebral artery.  

Impaired Cerebral 

Autoregulation 

TCD One cross-sectional study (44) found impaired 

cerebral autoregulation. No prospective data 

available. 

Altered Resting 

Cerebral Blood 

Flow 

TCD; SPECT; 

ASL; PC-MRA  

In two prospective studies (35,46), lower cerebral 

blood flow velocity, an indirect measure of blood 

flow, was associated with incident depression. No 

prospective data available on direct measures of 

cerebral blood flow. Cross-sectional studies (47–49) 



found altered regional or global cerebral perfusion 

independently of cerebral atrophy.  

Retinal 

Microvascular 

Changes 

DVA; 

fundoscopy 

One prospective study (52) showed that lower 

flicker light–induced vasodilatation is associated 

with increased risk of depression, but another 

prospective study (53) did not find associations 

between microvascular diameters and depression.  

Cerebral Small 

Vessel Disease 

MRI: T1W, 

T2W, T2*W, 

FLAIR; 

neuropathology 

 

Meta-analyses (55–57) found that cerebral small 

vessel disease features increase the risk of 

depression. Results are stronger for features in 

frontal and subcortical regions. Neuropathology 

studies (59–65) have found inconsistent results. 

Studies evaluated major depressive disorder according to the DSM criteria (24–27,35–42,47–

49,53,60–62,64,65), or presence of depressive symptoms based on questionnaires 

(35,40,44,46,52,53,59). The sample sizes of studies (n) were <50 

(26,38,41,42,49,60,61,64,65), 50–100 (24,25,36,37,39,44,62), 100–500 (27,46–48,59), or 

>500 (35,40,52,53). 

ASL, arterial spin labeling; DVA, dynamic vessel analysis; FLAIR, fluid-attenuated 

inversion recovery; MRI, magnetic resonance imaging; PC-MRA, phase-contrast magnetic 

resonance angiography; Qalb, cerebrospinal fluid/plasma albumin ratio; SPECT, single-

photon emission computed tomography; TCD, transcranial doppler; T1W, T1-weighted MRI 

images; T2W, T2-weighed MRI images; T2*W, T2-star weighted MRI images. 

aStudy designs included case-control (25–27,36–39,41,42,44,48,49,59–62,64,65) and cross-

sectional (24,40) or longitudinal (35,46,52,53) cohorts. Population sources were clinical 

sample-based (25–27,36–39,41,42,44,46–49,60–62,64,65) and population-based 



(24,35,40,52,53,59). Studies included older adults (>60 years or older) only 

(24,35,38,40,42,47–49,53,59–62,64) or also included younger individuals (25–

27,36,37,39,41,44,46,52). Of the studies investigating older individuals only, some excluded 

individuals with a depressive disorder before late life (38,47,48,62,65), whereas others did 

not (24,35,40,42,49,52,53,59–61,64). 
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