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Abstract 29 

Climate warming is substantially shifting the leaf phenological events of plants, and thereby 30 

impacting on their individual fitness and also on the structure and functioning of ecosystems. 31 

Previous studies have largely focused on the climate impact on spring phenology, and to date the 32 

processes underlying leaf senescence and their associated environmental drivers remain poorly 33 

understood. In this study, experiments with temperature gradients imposed during the summer 34 

and autumn were conducted on saplings of European beech to explore the temperature responses 35 

of leaf senescence. An additional warming experiment during winter enabled us to assess the 36 

differences in temperature responses of spring leaf-out and leaf senescence. We found that 37 

warming significantly delayed the dates of leaf senescence both during summer and autumn 38 

warming, with similar temperature sensitivities (6 - 8 days delay per °C warming), suggesting 39 

that, in the absence of water and nutrient limitation, temperature may be a dominant factor 40 

controlling the leaf senescence in European beech. Interestingly, we found a significantly larger 41 

temperature response of autumn leaf senescence than of spring leaf-out. This suggests a possible 42 

larger contribution of delays in autumn senescence, than of the advancement in spring leaf-out, 43 

to extending the growing season under future warmer conditions.   44 
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Introduction 45 

Plant phenology is the study of periodic plant life cycle events, and how these are influenced by 46 

seasonal and interannual variations in climate (Lieth, 2013). Plant phenology is one of the most 47 

reliable biological indicators of anthropogenic climate change (Parmesan &  Yohe, 2003, Root et 48 

al., 2003, Walther et al., 2002), and changes in plant phenology impact on individual fitness, 49 

species distribution, interspecific interactions, ecosystem structure and function, as well as on 50 

feedbacks to the climate system (Chuine et al., 2010, Peñuelas &  Filella, 2009, Piao et al., 2007, 51 

Thackeray et al., 2016, Zeng et al., 2017). Therefore, understanding the processes underlying 52 

plant phenology is essential to improve our understanding of plant and ecosystem responses to 53 

the ongoing climate change. 54 

 55 

Plant phenology research has grown tremendously over the past four decades (Hänninen, 2016, 56 

IPCC, 2014, Wolkovich &  Ettinger, 2014). Most studies, however, have addressed spring 57 

phenological events, such as budburst, leaf-out and flowering (Fu et al., 2015, Richardson et al., 58 

2013), while autumn phenological events, such as leaf senescence, have been paid comparatively 59 

less attention (Gallinat et al., 2015, Panchen et al., 2015). One probable reason for this is the 60 

difficulty to accurately acquire leaf senescence observations in natural conditions. However, as 61 

the final stage of the leaf’s life cycle and as adaptive strategy to unfavorable environmental 62 

conditions of temperate and boreal plant species (Chabot &  Hicks, 1982), leaf senescence is 63 

critical to plants’ fitness as well as to ecosystem functions (Estiarte &  Peñuelas, 2015, Piao et al., 64 

2008, Rohde &  Bhalerao, 2007).  65 

 66 

The main function of autumn leaf senescence is to recycle nutrients from senescing leaves and 67 

transport them to other plant tissues to support growth during the following spring (Chapin III, 68 
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1980, Killingbeck, 1996, Maillard et al., 2015). This nutrient-conservation mechanism increases 69 

the fitness of individual plants, especially in nutrient poor environments (Chapin III, 1980, May 70 

&  Killingbeck, 1992). Generally, more than half of the leaf macro-nutrients, such as N and P, 71 

are being resorbed during the leaf senescence process, although the nutrient resorption efficiency 72 

varies widely among species and elements (Aerts, 1996, Freschet et al., 2010, Wright &  73 

Westoby, 2003). Apart from its influence on nutrient cycles, the timing of leaf senescence 74 

influences the ecosystem carbon balance by modulating the length of the photosynthetically 75 

active period (Myneni et al., 1997, Richardson et al., 2010). Leaf senescence may even play a 76 

more critical role than spring phenology in determining the length of the photosynthetically 77 

active period (Garonna et al., 2014, Wu et al., 2013). Understanding the response of leaf 78 

senescence to climate change is therefore important. However, to date, the processes underlying 79 

autumn leaf senescence, their associated environmental controls and the response of leaf 80 

senescence to climate change are still poorly understood.  81 

 82 

Photoperiod has generally been proposed as the primary driver of leaf senescence, with a critical 83 

photoperiodic threshold, i.e., a critical day length below which leaf senescence is triggered 84 

(Lagercrantz, 2009, Wareing, 1956, Way &  Montgomery, 2015, Welling &  Palva, 2006). For 85 

example, the autumnal senescence in mature European aspen occurs every year on almost the 86 

same date (Fracheboud et al., 2009). However, photoperiod is not consistently important across 87 

species and even sites. For example, a recent study reported that leaf senescence is not triggered 88 

by photoperiod across 116 European aspen natural genotypes (Michelson et al., 2017), 89 

suggesting that other environmental factors must be involved in driving the leaf senescence 90 

process. In line with this finding, many studies have suggested that temperature interacts with 91 
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photoperiod to control the leaf senescence process (Chung et al., 2013, Hänninen &  Tanino, 92 

2011, Heide &  Prestrud, 2005, Liu et al., 2016a, Tanino et al., 2010), and that temperature can 93 

be even the main controlling factor of leaf senescence (Chmielewski &  Rötzer, 2001, Estiarte &  94 

Peñuelas, 2015, Heide &  Prestrud, 2005, Xie et al., 2015), in particular autumn temperature 95 

(Delpierre et al., 2009). However, these results are not conclusive because other studies have 96 

shown that autumnal senescence is only weakly affected by air temperature (Čufar et al., 2012, 97 

Olsson &  Jönsson, 2015, Sparks &  Menzel, 2002). In addition to photoperiod and temperature, 98 

also other environmental factors have been reported to influence the leaf senescence process. 99 

These include light intensity (Liu et al., 2016b), precipitation and soil water conditions (see 100 

review in Estiarte and  Peñuelas (2015)) and soil nutrient status (Sigurdsson, 2001, Weih, 2009). 101 

Furthermore, a positive correlation was recently reported between spring leaf-out dates and 102 

autumn leaf senescence dates, suggesting that the factors regulating the leaf-out days are carried 103 

over to affect leaf senescence in the following autumn (Fu et al., 2014, Signarbieux et al., 2017). 104 

Thus, the literature remains inconsistent about the determinants of autumn leaf senescence 105 

(Estiarte &  Peñuelas, 2015), so that well-designed experiments are needed to investigate and 106 

better understand the leaf senescence process. 107 

 108 

Current studies of leaf senescence are generally based on either species-specific long-term in situ 109 

observations (Menzel et al., 2006, Panchen et al., 2015), or on remote-sensing based 110 

observations (Garonna et al., 2014, Julien &  Sobrino, 2009, Liu et al., 2016b, Shen et al., 2015, 111 

Xie et al., 2015, Jeong et al.,2011). While manipulation experiments have been conducted, only 112 

few have studied the autumn phase in relation to climate change, as opposed to spring 113 

(Wolkovich et al., 2012). Furthermore, these few-experimental autumn phenology studies were 114 
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designed with only one or two warming treatments     (Gunderson et al., 2012, Marchin et al., 115 

2015, Morin et al., 2010, Norby et al., 2003). How leaf senescence responds to a temperature 116 

gradient, whether summer and autumn warming influence leaf senescence differently, and 117 

whether autumn phenology has the same temperature sensitivity as spring phenology, to our 118 

knowledge, has not yet been experimentally investigated.  119 

 120 

In the present study, we therefore carried out gradient-warming/cooling manipulation 121 

experiments using two-year old and one-meter-high saplings of Fagus sylvatica L. (European 122 

beech), a widespread deciduous forest tree species in temperate Europe. Specifically, we exposed 123 

the saplings to either summer or autumn warming. The primary objectives of this study were (1) 124 

to quantify the temperature sensitivity of leaf senescence date (St, changes in days per °C 125 

warming); (2) to investigate the effect of summer versus autumn warming on leaf senescence 126 

dates, and (3) to compare St of autumn senescence with that of spring leaf-out. 127 

 128 

Materials and methods 129 

Study site and climate chambers 130 

The experiment was conducted in 12 climate-controlled transparent chambers at the Drie Eiken 131 

campus of the University of Antwerp (Belgium, 51º19′N, 4º21′E). The long-term mean annual 132 

air temperature is 9.6 ºC, and mean monthly air temperatures vary from 2.2 ºC in January to 17.0 133 

ºC in July. Annual precipitation averages 780 mm, being uniformly distributed throughout the 134 

year (Campioli et al., 2012). The chambers could be artificially warmed/cooled by a centralized 135 

heating/cooling system ensuring different levels of continuous (day and night) warming or 136 

cooling above/below the fluctuating ambient air temperature (Fu et al., 2016). Each chamber 137 
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could accommodate 12 saplings. Temperature sensors (Siemens, type QFA66, Berlin, Germany) 138 

were used to continuously monitor the air temperature inside each chamber, logging every 30 139 

minutes and storing hourly data. Here, we combine the results from three different experiments 140 

performed in the climate chambers using beech saplings of the same provenance and size.  141 

 142 

Experimental design and leaf senescence measurements 143 

Tree material. The experiments used 2-year-old and one-meter-high saplings of Fagus sylvatica 144 

L. grown from seeds of the same origin and cultivated in the same field for one year at a 145 

commercial nursery. We transplanted the saplings into plastic pots (diameter 25 cm, depth 40 146 

cm). The pots were moved into the climate-controlled chambers during early summer, late 147 

summer or winter (see below). The pots were filled with a substrate that was created by 148 

combining potting soil and Lommel sand (grain size <1 mm diameter), bought from commercial 149 

suppliers (Van den Broeck and Jos Meeussen & Zoon bvba) in Belgium. In experiment 1 and 2, 150 

slow release fertilizer (100 g·m
−2

, 13–10–20 for N, P, and K, respectively, all in percentage) was 151 

added in end of May to each sapling. Over the growing period, the saplings were watered at least 152 

three times per week to ensure no water limitation. 153 

 154 

Experiment 1 (temperature treatment during summer, targeting leaf senescence) (Fig. 1). In this 155 

experiment, one control treatment (+0°C) and three temperature treatments were applied: +1°C, 156 

+3°C and +4°C. Two to four replicate chambers were used, except for the +4°C treatment, for 157 

which data from only one chamber were available because one chamber failed. At summer 158 

solstice (21 June 2016), four saplings were placed in each chamber. The saplings were moved 159 
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out at the “end of summer”, i.e., on 15 August 2016. In total, 9 chambers and 36 saplings were 160 

used in this experiment. 161 

 162 

Experiment 2 (temperature treatment during autumn, targeting leaf senescence) (Fig. 1). In this 163 

experiment, we applied one control treatment (+0°C), one cooling treatment (-1°C) and one 164 

warming treatment (+1°C), using three replicated chambers for each treatment. Four saplings 165 

were exposed to the treatment in each chamber during the autumn period, i.e. from 15 Aug 2016 166 

to leaf senescence. In total, 9 chambers and 36 saplings were used in this experiment. 167 

 168 

Experiment 3 (temperature treatment during winter-spring, targeting leaf-out). In winter-spring 169 

2016, we conducted a separate warming experiment on the spring leaf-out phenology. Four 170 

saplings were moved into each of the twelve climate-controlled chambers on 1 January 2016. 171 

During the experiment, five warming temperature treatments, i.e. +1°C, +2°C, +3°C, +4°C  and 172 

+5°C (two chambers per treatment) and a control treatment (+0°C) were applied. In total, 12 173 

chambers and 48 saplings were used in this experiment. 174 

 175 

The warming/cooling provided was generally stable for the experiments 1 and 3 (actual warming 176 

was on average ± 10% of the prescribed value; see below for description of the experiments). 177 

However, for experiment 2 (see below) the warming during autumn was less stable (within ± 178 

20%). This inaccuracy was not considered crucial, because our main analyses were based on the 179 

actually realized warming/cooling (e.g. regression analysis, see below), not the envisaged 180 

warming. 181 

 182 
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Observation of leaf senescence and leaf-out 183 

Leaf senescence was monitored following Vitasse et al. (2009). In detail, the number of leaves 184 

with autumn colour was determined visually and the percentage of them, out of the total number 185 

of leaves, was calculated. The senescence date was defined as the date when 50% of the leaves 186 

had autumn colour. Leaf-out date was defined as the day when the entire leaf blade and the leaf 187 

stalk were visible on the terminal buds (Fu et al., 2016). 188 

 189 

Cooling degree hours 190 

To evaluate the relationships between leaf senescence and air temperature, we calculated cooling 191 

degree hours (CDH) as the sum of hourly temperature below a temperature threshold (Tbase) 192 

during the study period, i.e., from summer solstice (21 June) to the day of leaf senescence (LS) 193 

(Dufrêne et al., 2005). The Tbase was set at 25°C, according to a previous study on Fagus 194 

sylvatica (Delpierre et al., 2009):  195 

𝐶𝐷𝐻 = ∑  (T𝑏𝑎𝑠𝑒 − Tℎ𝑜𝑢𝑟𝑙𝑦)  if Tℎ𝑜𝑢𝑟𝑙𝑦 < T𝑏𝑎𝑠𝑒

𝐿𝑆

𝑠𝑡𝑎𝑟𝑡

 

We also tested the use of a higher Tbase, i.e. 30°C, but found very similar results, and therefore 196 

only reported the results based on 25°C in the main text. 197 

Data analysis 198 

The temperature responses of leaf senescence and leaf-out were evaluated using linear regression 199 

based on the average dates obtained from the four saplings per chamber. The temperature 200 

sensitivity of leaf senescence and leaf-out were defined as the slopes of the linear regression 201 

between dates and the actual temperature change in the chambers. Independent samples t-tests 202 

were used to evaluate the difference between leaf senescence, or leaf-out dates, as well as the 203 
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accumulated CDH, among different temperature treatments. Differences in the temperature 204 

sensitivity of leaf senescence between autumn cooling and autumn warming, and between 205 

summer and autumn, as well as in the temperature sensitivity between leaf senescence and leaf-206 

out, were tested using ANCOVA, i.e. testing the slopes and intercepts. All statistical analyses 207 

were conducted using SPSS 16.0 (SPSS Inc., Chicago, IL, USA). 208 

 209 

Results 210 

Leaf senescence response to experimental warming and cooling 211 

Leaf senescence dates were significantly delayed by the warming treatments, but were 212 

significantly advanced by cooling (both P<0.05), as compared to the control treatment (Fig. 1a). 213 

Although both summer and autumn warming significantly delayed the leaf senescence dates, 214 

compared to the control, a larger delay (14 days on average) was found under summer warming 215 

treatments than under autumn warming treatments (11 days on average) (Fig. 1a). As opposed to 216 

the warming treatments, cooling significantly advanced the dates of leaf senescence, by 3 days 217 

on average (F=9.8; P=0.005; Fig. 1a).    218 

 219 

Temperature sensitivity of leaf senescence and leaf-out 220 

In the previous paragraphs the phenology responses were given, independent of the intensity of 221 

the warming or cooling. This paragraph aims to render these treatments more comparable by 222 

expressing all phenology changes on a per °C basis. By using a relative variable, we aim to 223 

removing the influence of different periods (summer vs. autumn) and exposure times to warming. 224 

On average, a rise of air temperature by one degree delayed the leaf senescence date by 6.4 ± 1.1 225 

days, and the difference in the temperature sensitivity of leaf senescence (St, delay in days per °C 226 
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warming) between autumn warming treatment (St_autumn, 8.3 ± 1.1 days °C-1) and summer 227 

warming treatment (St_summer, 6.1 ± 0.8 days °C
-1

) was not statistically significant (P=0.75, 228 

Fig. 1b). The absolute St values of leaf senescence during autumn warming and autumn cooling 229 

(-6.7 ± 1.0 days °C
-1

 for cooling treatments) also did not differ statistically significantly (Fig. 2).  230 

 231 

Warming significantly advanced the date of leaf-out in spring, with 4.5 ± 0.5 days advancement 232 

per degree Celsius warming (Fig. 3a). Compared to the autumn leaf senescence (delay of 8.3 ± 233 

1.1 days °C
-1

), the temperature sensitivity of leaf-out was thus significantly lower (Fig. 3b), 234 

suggesting a larger effect of climate warming on autumn leaf senescence than on spring leaf-out 235 

phenology. 236 

 237 

Correlation between leaf senescence and cooling degree hours 238 

No significant correlation was found between leaf senescence dates and CDH that were 239 

accumulated from 21 June to the day of leaf senescence across the temperature treatments 240 

(R
2
=0.09, P=0.12, Fig. 4). In addition, the CDH requirement was not significantly different 241 

between the two autumn treatments, i.e., 14677K and 13067K for autumn warming treatment 242 

and autumn cooling treatment, respectively. However, the CDH requirement of saplings in the 243 

summer warming treatment was statistically significantly lower than in the autumn warming and 244 

autumn cooling treatments (P<0.05). 245 

 246 

Discussion 247 

Previous studies have highlighted the ambiguous nature of the warming response of leaf 248 

senescence (Gunderson et al., 2012, Heide &  Prestrud, 2005, Menzel et al., 2006), and 249 
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attributed this to the limited availability of long-term datasets, the difficulty of quantifying the 250 

exact date of leaf senescence under natural conditions, and the lack of focused experimental 251 

studies designed to understand the leaf senescence response to temperature. For temperate trees 252 

under favorable conditions, i.e., without water or nutrient stress, it is generally assumed that the 253 

leaf senescence process is mainly triggered by photoperiod and temperature (Lieth, 2013, Way &  254 

Montgomery, 2015). Some studies reported a delayed trend of leaf senescence with climate 255 

warming, based on in situ observations (Delpierre et al., 2009, Vitasse et al., 2011), remote 256 

sensing observations (Liu et al., 2016b, Reed et al., 2009, Stöckli &  Vidale, 2004), as well as 257 

open top chamber-based field warming experiments (Gunderson et al., 2012). In contrast, other 258 

studies reported insignificant responses or even advanced senescence with climate warming 259 

(Norby et al., 2003, Xie et al., 2015), which may be related to warming-induced drought stress 260 

(Xie et al., 2015). Based on gradient warming experiments, in which drought was excluded, our 261 

study clearly revealed that warming significantly delays the timing of leaf senescence in 262 

European beech saplings in both summer and autumn warming, with even more than 30 days 263 

delay under the +4°C treatment (4°C higher than ambient). This suggested that, under sufficient 264 

water and nutrient conditions, temperature may be more important than photoperiod in 265 

controlling the leaf senescence process under temperate latitudes. In fact, if there was a 266 

photoperiod threshold, this would have been overpassed by up to 30 days. Note that we found a 267 

larger delay (14 days on average) under summer warming treatments than under autumn 268 

warming treatments, this was, however, maybe largely attributed to the more intensive warming 269 

treatment that was applied during summer (warmed up to ca. 4°C) than during autumn (warmed 270 

up to ca. 1°C) (see Fig. 1b). We also did not find a statistical difference of the temperature 271 

sensitivity of leaf senescence between autumn warming and autumn cooling treatments. This 272 
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may be due to the limited sample size in this study, i.e. only one cooling treatment and one 273 

warming treatment during autumn, and therefore this conclusion needs to be further studied. In 274 

addition, we found a larger temperature sensitivity of leaf senescence, with 6-8 days delay per 275 

degree Celsius warming, as opposed to 2-7 days delay per °C warming found in earlier 276 

experimental studies (Gunderson et al., 2012, Han et al., 2014, Nakamura et al., 2010). This 277 

difference might be related to species differences, to differences in the local environment, as well 278 

as to the different experimental designs, i.e., only one or two warming treatments in the previous 279 

studies versus gradient warming/cooling in the present study.  280 

 281 

Surprisingly, there were no statistically significant differences in the sensitivity of the leaf 282 

senescence process to summer and autumn warming. This implies that the positive impacts of 283 

warming on leaf physiology, such as delayed chlorophyll degradation (Fracheboud et al., 2009), 284 

leading to delayed leaf senescence at the end of the growing period, does not depend on the 285 

seasonal timing of the temperature elevation. Nonetheless, warming may affect different 286 

processes during summer (e.g. predominantly cell division and expansion) than during autumn 287 

(cell maturation and lignification). Furthermore, warming might affect different phases of the 288 

leaf senescence process when applied in summer versus autumn. During summer, warming 289 

might delay the leaf senescence onset, whereas autumn warming might slow down the 290 

progression rate of the leaf senescence (Fracheboud et al., 2009). These different aspects (delay 291 

in leaf senescence onset vs. slowdown of leaf senescence rate) cannot be independently assessed 292 

with the coloration method we used. 293 

 294 
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The lower CDH requirement associated with the summer treatment should be related to more 295 

intense warming in summer than in autumn. We do not believe that the low CDH requirement in 296 

summer is related to differences in the leaf senescence date as summer warming elicited, on 297 

average, later leaf senescence than autumn warming, which should have caused a larger CDH. 298 

The timing of leaf senescence simulated by cooling degree days-based models has been 299 

compared in earlier studies with in situ observations (Archetti et al., 2013, Delpierre et al., 2009, 300 

Jolly et al., 2005, Vitasse et al., 2011). Consistent with the assumption of degree days-based 301 

models, we found that the differences in the cooling degree hours (CDH) required for leaf 302 

senescence between the two autumn treatments were statistically insignificant. Furthermore, 303 

good model performances were found in boreal tree species (Koski &  Selkäinaho, 1985, 304 

Partanen, 2004, Viherä-Aarnio et al., 2005). However, contrary to the results of the present study, 305 

these studies found that warming during summer and autumn would advance, not delay, the 306 

timing of leaf senescence. Possibly, this opposite temperature response is attributable to 307 

differences among boreal and temperate-zone species. Jeong and Medvigy (2014) reported a 308 

nonlinear temperature sensitivity of leaf senescence using many ground observations and 309 

suggested that warmer regions may have a larger temperature sensitivity than cooler regions. In 310 

addition, recent studies have reported a positive correlation between spring leaf-out and leaf 311 

senescence dates in trees (Fu et al., 2014, Signarbieux et al., 2017), delayed senescence 312 

following exceptionally late spring greening in sub-arctic grasslands (Leblans et al., 2017), and 313 

the performance of senescence models was substantially improved by incorporating this legacy 314 

effect.  315 

 316 
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Interestingly, we found a larger temperature sensitivity (St) of autumn leaf senescence than 317 

spring leaf-out using European beech saplings of the same age. Contrasting conclusions were 318 

obtained from a meta-analysis of observations on mature trees from the European phenology 319 

network, which reported a larger St of spring leaf-out (4.6±0.07 days °C
-1

) than of autumn leaf 320 

colouring (1.0±0.4 days °C
-1

) across plant species (Menzel et al., 2006). This difference may be 321 

attributable to the species-specific differences in the phenology response to temperature 322 

(Panchen et al., 2015, Richardson et al., 2006, Vitasse et al., 2009). However, similar finding 323 

was reported on Quercus variabilis seedlings in an open-field warming experiment (Han et al., 324 

2014), and on mature beech trees in an altitude gradient (Vitasse et al., 2009). The difference in 325 

temperature sensitivity of leaf-out and leaf senescence are likely related to the differential 326 

processes between spring and autumn phenology. Concerning spring leaf-out (particularly for 327 

diffuse porous species like beech), temperature impacts the end of bud dormancy and the speed 328 

of leaf unfolding but no other trees organ (which are inactive before budburst) (Delpierre et al., 329 

2016). On the other hand, in autumn, temperature impacts both the leaf physiological status 330 

(chlorophyll content, photosynthesis, pigment degradation etc) and tree growth (e.g. wood 331 

lignification, fine root growth). The latter reduction of carbon sink activity at the tree scale may 332 

be an additional, overlooked trigger of leaf senescence. These interactions might affect leaf 333 

senescence onset, in other words not only leaf status but also (and maybe primarily) a lack of 334 

sink activity might trigger leaf senescence (see hypothesis in Fu et al., 2014). Therefore, it is 335 

logical that temperature has a strong effect on autumn phenology, which, as showed by our data, 336 

and even can be stronger than that on spring phenology. 337 

 338 
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Given the larger warming response of leaf senescence than of spring leaf-out found in the present 339 

study, under future climate warming conditions we can expect a larger contribution of the delay 340 

in autumn senescence dates to the extension of photosynthetic season than of the earlier spring 341 

leaf-out. Thus, warming induced changes in leaf senescence could play an important role in the 342 

ecosystem carbon balance (Keenan et al., 2014, Piao et al., 2008). However, delayed leaf 343 

senescence in response to warmer summers-autumns may increase the risk of extreme events 344 

such early-frost damage to leaves (Augspurger, 2013, Hänninen, 2016, Inouye, 2008), which 345 

would hamper the nutrient resorption. This can lead to reduced nutrient reserves to support next 346 

season’s growth, and subsequentially impact the ecosystem carbon and nutrient cycles (Estiarte 347 

&  Peñuelas, 2015, Fracheboud et al., 2009). Finally, note that considering the legacy effect of 348 

leaf-out on the leaf senescence dates (Fu et al., 2014), the delays in leaf senescence as observed 349 

in our experiments might be partially offset by the earlier spring leaf-out in response to warmer 350 

winters. 351 

 352 

The underlying physiological processes of leaf senescence and their environmental cues, 353 

especially the interactive effect of temperature and photoperiod, are still unclear. Moreover, 354 

warming responses of leaf senescence largely differ between natural observations and warming 355 

experiments (Wolkovich et al., 2012), ontogenetic differences have been reported between 356 

saplings and mature trees (Mediavilla et al., 2014, Vitasse, 2013), and species variability exists 357 

in response to warming (Parmesan &  Hanley, 2015, Primack et al., 2015). Nonetheless, our 358 

study provides important insights. Taking advantage of temperature manipulative experiments, 359 

we found that, in the absence of water and nutrient limitation, temperature is a dominant factor 360 

controlling the leaf senescence process in European beech, and warming during summer and 361 
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autumn both significantly delay the date of leaf senescence. Furthermore, we found a larger 362 

temperature response of leaf senescence than spring leaf-out. These findings enhance our 363 

understanding of leaf phenology response to the climate change, and potentially improve our 364 

understanding of phenological impacts on ecosystem carbon and nutrient cycles.  365 
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Figure captions 591 

 592 

Fig 1. (a) The distribution, mean, and standard deviation (plot box) of the leaf senescence dates 593 

of European beech saplings under different temperature manipulations and the control. Each grey 594 

dot indicates the result for one sapling. (b) Relationship between leaf senescence dates of 595 

European beech saplings and the mean temperature change in the treatments, as compared with 596 

the ambient temperature. Open circles: Experiment 1, i.e. temperature treatment over the summer 597 

period (from summer solstice to 15 August 2016); Grey squares: Experiment 2, temperature 598 

treatment over the autumn period (from 15 August 2016 to the date of leaf senescence). The grey 599 

line and shaded areas represent linear regression fits (with 95% confidence intervals) across 600 

summer and autumn treatments. 601 

 602 

Fig 2. Temperature sensitivities of leaf senescence to autumn (from 15 August 2016 to the date 603 

of leaf senescence) cooling and warming. The temperature sensitivity was calculated using 604 

simple linear regression. The difference in the sensitivity between autumn cooling and warming 605 

is not statistically significant 606 

. 607 

Fig 3.  (a) Experiment 3: temperature treatment during winter-spring 2016. The temperature 608 

sensitivity of leaf-out, in relation to the mean temperature change in the treatments, as compared 609 

with the ambient temperature. (b) A comparison of the temperature sensitivity of leaf-out and 610 

leaf senescence. The asterisk indicates a statistically significant difference (P < 0.05). 611 

 612 

Fig 4. Correlation between leaf senescence dates and cooling degree hours accumulated in the 613 

different treatments. Each dot denotes one climate-controlled chamber. The color bar shows the 614 
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temperature anomalies in the temperature treatments (blue is control). Treatment of summer 615 

warming (squares) refers to the period from summer solstice to 15 August 2016; autumn 616 

warming (circles) and autumn cooling (diamonds) refer to the period from 15 August 2016 to the 617 

date of leaf senescence. 618 
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