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A B S T R A C T

Rationale and Objectives: To develop a model using artificial intelligence (A.I.) able to detect post-traumatic
injuries on pediatric elbow X-rays then to evaluate its performances in silico and its impact on radiologists’
interpretation in clinical practice.
Material and Methods: A total of 1956 pediatric elbow radiographs performed following a trauma were retro-
spectively collected from 935 patients aged between 0 and 18 years. Deep convolutional neural networks
were trained on these X-rays. The two best models were selected then evaluated on an external test set
involving 120 patients, whose X-rays were performed on a different radiological equipment in another time
period. Eight radiologists interpreted this external test set without then with the help of the A.I. models .
Results: Two models stood out: model 1 had an accuracy of 95.8% and an AUROC of 0.983 and model 2 had an
accuracy of 90.5% and an AUROC of 0.975. On the external test set, model 1 kept a good accuracy of 82.5% and
AUROC of 0.916 while model 2 had a loss of accuracy down to 69.2% and of AUROC to 0.793. Model 1 signifi-
cantly improved radiologist’s sensitivity (0.82 to 0.88, P = 0.016) and accuracy (0.86 to 0.88, P = 0,047) while
model 2 significantly decreased specificity of readers (0.86 to 0.83, P = 0.031).
Conclusion: End-to-end development of a deep learning model to assess post-traumatic injuries on elbow X-
ray in children was feasible and showed that models with close metrics in silico can unpredictably lead radi-
ologists to either improve or lower their performances in clinical settings.
© 2023 The Authors. Published by Elsevier Masson SAS on behalf of Société française de radiologie. This is an

open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/)
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1. Introduction

Detection of fractures is an issue in musculoskeletal imaging.
Indeed, missed fractures represent more than 80% of diagnostic
errors in the emergency department (ED) [1,2].

Trauma of the upper limb is a frequent reason for consultation in
the ED and generally the clinical examination guides the indication
for radiographic workup [3,4]. Misdiagnosis is more common in
radiographic children due to the lack of ossification centers, particu-
larly considering the elbows [5,6]. Thus, the highest rate of diagnostic
error in upper limb fractures in children lays at the elbow (77% of
diagnostic errors) [7,8]. Despite the expertise required to interpret an
X-ray of the child’s elbow, it is pediatricians (and not radiologists)
that read radiographs in the first line in many pediatric emergency
departments. The issue of access to pediatric imaging radiologists is a
problem in many centers and artificial intelligence could be used as a
diagnostic aid.

Several studies have shown the usability of deep convolutional
neural networks (CNNs) in fracture detection on radiographs [9−13].
However, most of the artificial intelligence (A.I.) models that can
detect fractures on X-ray are not validated in children, except
recently [14−17]. Moreover, despite numerous publications, focus is
mostly made on the in silico performance of algorithms, but sparsely
on the performance resulting from the interaction between humans
and A.I. [11,18,19]. In addition, recent work on this topic tends to
show the potentially deleterious impact of a model, though effective
in silico, on the diagnoses made by doctors [20,21].

The purpose of this study was therefore to develop a model using
artificial intelligence to detect post-traumatic injuries on pediatric
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Table 1
Repartition of examinations in the different datasets depending on the label. N: num-
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elbow X-rays, and then to assess the impact of its use on radiologists’
performances.
ber of radiographs.

Pathological findings,
N (%)

Normal examinations,
N (%)

Training set (N = 1411) 537 (38%) 874 (62%)
Validation set (N = 209) 92 (44%) 117 (56%)
Test set (N = 336) 156 (47%) 180 (53%)
2. Material and methods

2.1. Data collection

All elbow X-rays performed in patients aged between 0 and
18 years in the event of an acute trauma of the upper limb, between
January 1, 2015 and August 31, 2019 in the emergency department
were retrospectively gathered from the PACS (Intellispace PACS,
Philips). All series were kept, including those with only one view,
more than two views and sub-optimal views, because of their fre-
quency in children, especially after an upper limb trauma. A total
of 1956 X-rays from 935 patients (485 male and 450 female) were
collected and de-identified. The de-identification of data and their
retrospective analysis was approved by the institutional board under
the reference DEC19-279. All these examinations were performed on
the same X-ray device (Fujifilm, Tokyo, JP).

Radiographs were randomly divided into a training set (668
patients, average age 10), a validation set (99 patients, average age
10) and an internal test set (168 patients, average age 9). (Fig. 1)

External test set was composed of 262 elbow radiographs per-
formed in 120 patients (average age 10), on another X-ray device
(General Electrics, USA) and in another time period (July to Decem-
ber, 2014).
2.2. Reference standard and labelling

Two radiologists (with 2 and 7 years of experience in pediatric
trauma radiology) classified in consensus all the elbow X-rays (inter-
nal and external test set) in two groups: normal or abnormal. Exami-
nations were labelled as abnormal in the following situations: visible
fracture, articular dislocation, soft tissues change of potential post-
traumatic origin (e.g. fat pad sign, even if no fracture was directly vis-
ible). A total of 1171 radiographs were considered normal and 785
abnormal (Table 1).
2.3. Training of the model

The training and validation sets were used to optimize deep con-
volutional neural network (CNN) by modulating architecture, depth
and hyperparameters. Thousands of models have been trained fol-
lowing a gradient descent algorithm and by varying four main hyper-
parameters: model architecture, patience, learning rate and image
dimensions.
Fig. 1. Repartition of the datasets. n: number of radiographs.
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2.4. Image dimension

Originally, DICOM files had a dimension of 4096£4096 pixels. To
reduce the computational cost of training the CNN, this resolution
was downscaled to 1024£1024 for each radiograph after a cheking
for labelling transfer. Then, radiologists identified an area containing
the whole elbow joint on each image, using a generic labelling tool
(RectLabel, Mac Os) in order to obtain cropped images (Crop 224 £
224). To obtain Crop 512 £ 512 X-rays, the original X-ray was down-
scaled to 2048 £ 2048 and the bounding box from Crop 224 £ 224
was converted on this image in order to obtain the same area but
with higher precision.

2.5. Data augmentation

In order to increase the number of data, vertical and horizontal
transformations together with image rotation between -45° and + 45
° were randomly applied. The image normalization was performed
using conventional ImageNet normalizations since the CNN was pre-
trained using ImageNet.

2.6. Visualisation tool

Grad-CAM algorithm was implemented to visualize the class acti-
vation heatmap of the algorithm. The scale of the Grad-CAM varied
from blue (low) to red (high) depending on the weight of each area in
the final output of the algorithm.

2.7. Internal and external validation

Performances of models were measured on the internal test set
which was composed of 336 X-rays, used neither in training nor in
validation sets. The two best models regarding accuracy and area
under the receiver-operator curve (AUROC) were kept and called
model 1 (M1) and model 2 (M2). Sensitivity, specificity, Youden index
and accuracy were calculated. Then, performances of these two best
models were also measured on external test set.

2.8. Evaluation of radiologists

Eight radiologists were included in this analysis, with an experience
in trauma radiology ranging from 6 months to 10 years: 4 radiology
residents and 4 seniors radiologists specialized in musculoskeletal
imaging.

All radiologists analysed the 120 studies (262 X-rays) of the exter-
nal test set during two sessions, blinded from the other readers, and
without time limitation during the session.

During these two sessions, radiologists interpreted all radiographs
without then with the help of A.I.. All readers used one model during
each session, M1 or M2. Model allocation was distributed randomly
during the first session. After a wash-out time of two months, during
the second session, radiologists performed a new reading session,
using the other model.

The deidentified examinations were interpreted on their usual
workstations, without access to previous or follow-up examinations
to avoid follow-up bias. Radiologists were asked to first classify the



Fig. 2. Receiver-operator characteristic (ROC) curves of the two best models on inter-
nal test set. AUC: area under the ROC curve.

Table 3
Evaluation of M1 and M2 on the external test set. AUROC: area under the
ROC curve.

Model 1 (M1) Model 2 (M2)

AUROC 0.916 0.793
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study in being either normal or abnormal, prior to getting A.I. results,
then to provide their final opinion after getting A.I. results.

Intra-reader agreement was measured between the two sessions
for each radiologist. The sensitivity, specificity, accuracy and Youden
index were calculated for each radiologist, before and after the use
of A.I..

2.9. Statistical analysis

Analyses were performed using Prism 9 software (GraphPad,
La Jolla, CA). Quantitative data were reported as mean§standard
deviation. Qualitative data were reported as raw number and per-
centage (%). The significance threshold was set at P < 0.05. To com-
pare radiologists’ performances before and after the use of A.I.,
Wilcoxon matched-pairs signed ranked test was used for sensitivity,
specificity, accuracy and Youden index analysis.

3. Results

3.1. Internal validation

On the 168 patients (336 X-rays) from the internal test set, 78 had
at least one abnormal finding, while 90 studies were free of post-
traumatic findings.

Two models using deep convolutional neural networks stood out.
these two models had similar values for patience and learning rate.
The best model, model 1 (M1), used cropped 512 £ 512 images
whereas the second best model called model 2 (M2) used 512 £ 512
uncropped images. M1 showed the higher AUROC (0.983) and the
best compromise between sensitivity (0.935) and specificity (0.978),
with an accuracy of 95.83%. M2 used 512 £ 512 uncropped images
and presented an accuracy of 90.48%, an AUROC of 0.975, a sensitivity
higher than M1 (0.974) but a lower specificity (0.844). Performances
of the models on the internal test set are reported in Table 2 and their
receiver-operator curves (ROC) are showed in Fig. 2.

3.2. External validation

The external test set was composed of 61 patients with normal
examinations, and 59 patients with at least one abnormal finding on
X-ray. The performances of M1 and M2 on this dataset are reported
in Table 3.

While M1 showed a moderate change in AUROC values (0.983 to
0.916), M2 showed a significant drop in AUROC between internal and
external test sets (0.975 to 0.793), mostly due to a significant drop in
specificity (0.844 to 0.475). Fig. 3 shows heatmaps after using M1.

3.3. Interaction with radiologists

Intra-reader agreement of examinations without A.I. between
both sessions was excellent: 0.92 § 0.021 for all radiologists (N = 8),
0.92 § 0.02 for radiology residents (N = 4) and 0.91 § 0.02 for senior
radiologists (N = 4).

Radiologists’ performances without and with A.I.-models are
reported in Table 4, and represented in Fig. 4.
Table 2
Evaluation of the two best models on the internal test set. AUROC: area under the
ROC curve.

Model 1 (M1) Model 2 (M2)

AUROC 0.983 0.975
Accuracy 0.958 0.905
Sensitivity 0.935 0.974
Specificity 0.978 0.844
Youden index 0.913 0.818
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As showed in Table 4 and Fig. 4, model 1 significantly improved
radiologists’ sensitivity (P = 0.016), accuracy (P = 0.047) and Youden
index (P = 0.039), while model 2 significantly decreased specificity of
readers (P = 0.031).

As shown in Fig. 4, although the initial performance of radiologists
was superior to the models on the external test set, reader perform-
ances still improved significantly with the help of model 1, while
model 2 did not improve the performances of readers and even sig-
nificantly reduced their specificity.

As shown in Fig. 5, concerning model 1, the majority of readers (N
= 7) increased their sensitivity but to the detriment of a slight drop in
specificity for half of them (N = 4). One radiologist lowered his speci-
ficity (from 0.89 to 0.85) without changing his sensitivity (0.88),
therefore displaying lower performances with the help of the model.

Concerning model 2, more than half of radiologists (N = 6) reduced
their specificity, while the other (N = 2) displayed no change in speci-
ficity. No reader had an improved specificity with the use of M2.

Regarding practical changes in radiologists’ interpretation, Fig. 6
summarizes the mean number of erratic changes (i.e. radiologists
being correct before A.I. but incorrect after A.I.) and correct changes
Accuracy 0.825 0.692
Sensitivity 0.847 0.915
Specificity 0.803 0.475
Youden index 0.648 0.389
Contingency table for model 1:

Fract Normal X-Ray
Positive test TP = 50 FP = 12
Negative test FN = 9 VN = 49
Contingency table for model 2:

Fract Normal X-Ray
Positive test TP = 54 FP = 32
Negative test FN = 5 VN = 29



Fig. 3. a,b: Example of true-positive Grad-CAMwith pallet humeral frontal X-ray in a 4
year old boy and corresponding Grad-CAM using M1; c,d: Example of false-positive
case: supracondylar process which was inadequately considered as a fracture by the
model in a 6-year old girl using M1.

Table 4
Radiologists’ sensitivity, specificity, accuracy and Youden index before and after the
use of model 1 (M1) or model 2 (M2). SD: standard deviation.

Before
M1

After
M1

P Before
M2

After
M2

P

Sensitivity {SD} 0.82 0.88 {0.01} 0.02 (*) 0.83 0.85 {0.04} 0.06
Specificity {SD} 0.89 0.89 {0.30} 0.38 0.86 0.83 {0.01} 0.03 (*)
Accuracy {SD} 0.86 0.88 {0.06} 0.047 (*) 0.85 0.84 {0.53} 0.75
Youden {SD} 0.71 0.76 {0.05} 0.04 (*) 0.69 0.69 {0.62} 0.94

Fig. 4. Variation of radiologists’ sensitivity and specificity with the use of A.I. models (M1 (a
black and on the external test set in red). AI: artificial intelligence; M1: model 1; M2: model 2
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(i.e. radiologists being incorrect before A.I. but correct after A.I.), for
each model. M1 led to a significantly higher number of correct
changes among radiologists compared to the use of M2: 4.4 § 3.7
with M1 as compared to 2.4 § 2.8 for M2 (P = 0.02).

Finally, when considering the balance of positive changes for each
radiologist (number of correct changes − number of erratic changes /
total number of cases), M1 displayed a positive balance of +2.2% §
2.7% and M2 a significantly negative balance of -0.42% § 1.4 (P =
0.047).
4. Discussion

This study showed that an A.I. model using a CNN architecture can
detect post-traumatic injury on pediatric elbow X-rays. AUROC val-
ues on the internal test set were high for both M1 and M2 (0.983 and
0.975 respectively), which is better than a lot of artificial intelligence
publications on conventional X-rays so far [22].

There are real strengths of this study. First of all, we have included
all the X-rays, even if the quality criteria are not met. Moreover, train-
ing and external test were realized on two different X-ray devices.
Indeed, the external test were performed on X-rays realized with
another device and another period. In most of the cases of nondis-
placed fracture, the diagnoses relied only on the presence of the fat
pad displacement. With model 1 and 2, using respectively cropped
and uncropped X-rays, only 9 and 5 respectively non displaced frac-
ture were missed (False negative).

Both models showed a drop in AUROC on the external test set
(0.916 and 0.793 respectively), which is consistent with a tendency
of CNN-based models to overfit on internal test sets [23]. However,
the higher drop of M2 on the external test set raised concerns about
its potential generalizability and showed that two models that dis-
play close AUROC values on internal data can undergo significantly
different changes when exposed to another dataset as demonstrated
by Wang et al. on mammogram classification [24]. The magnitude of
these changes is unpredictable as Voter et al. showed in their study
[25]

Radiologists’ performances were overall lower than the internal
performances of both M1 and M2 in silico. However, even without
the help of A.I., radiologists’ performances were superior to those of
both M1 and M2 on external test sets, which stresses out that com-
parison between human and algorithms on the sole internal test sets
) or M2 (b)), plotted adjacent to ROC curves of both models (on the internal test set in
; AUC: area under the curve.



Fig. 5. Plot of all readers without then with the use of model 1 (a) or model 2 (b). AI: artficial intelligence; M1: model 1; M2: model 2.

C. ROZWAG, F. VALENTINI, A. COTTEN et al. Research in Diagnostic and Interventional Imaging 6 (2023) 100029
should be avoided, since they tend to overclaim the inner performan-
ces of the algorithms.

Although the initial performances of radiologists were superior to
those of both models on the external test set, human performances
still improved significantly with the help of model 1. On the contrary,
model 2 did not improve the performance of readers and even signifi-
cantly reduced their specificity. Model 2, which was supposedly the
most sensitive model based on internal test set values, tended to mis-
lead radiologists in their interpretation. These findings are crucial
since they show that the actual impact a model can have on humans
is difficult to precisely appreciate beforehand. The performances of
M1 being slightly inferior to humans on the external test set could
have implied that M1 cannot actually improve their performances,
while it actually did. On the other hand, the high sensitivity of M2 in
silico could have implied that the model would increase readers’ per-
formances, while it in fact misled themmore often.
5

Moreover, consequences of both algorithms on the radiologists’
decision were measured (i.e. changes in individual interpretation
after the use of A.I.). When considering practical impact on a popula-
tion of patients of the use of A.I. by a radiologist, the key question
would be the actual balance between the number of cases where
changes in interpretation would benefit the patient (correct changes)
and changes that could impair the patient (erratic changes). Our
results showed that there was a significant difference in the final ben-
efit, since the use of M1 resulted in an average gain of +2.2% in correct
changes, while the use of M2 would result in a negative balance
(-0.42% of correct changes). However, the magnitude of these
changes remains low.

There are some limitations in our study. First of all, though pre-
trained on ImageNet, our model was developed on a dataset of rela-
tively limited size. Indeed, many algorithms focusing on conventional
X-rays rely on larger datasets [10]. Nevertheless, few have focused on



Fig. 6. Correct or erratic changes in radiologist’s interpretation after the use of A.I., for
each model.
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the specific condition of elbow trauma in children, due to the lower
availability of such data as compared to those in adults [26]. To com-
pensate for the size of the dataset, conventional techniques of data
augmentation were performed, but are weaker to prevent overfitting
as compared to new data, which can partly explain the changes
observed between internal and external test sets [27]. Secondly, this
study was monocentric and showed that results can be variable
when exposing algorithms on an external test set (on another
device). This stresses out the urge for multicentric trials in the field of
A.I. in radiology. Finally, the number of readers in this study was lim-
ited (N = 8), though higher than in several publications [28,29], which
did not enable to display differences between junior and senior read-
ers. Further studies with more readers of different profiles are needed
to confirm these results and better understand the relations between
algorithms outputs and human performances. Indeed, in many pedi-
atric emergency departments, it is pediatricians (and not radiologists)
that read radiographs in the first line. It would be interesting to eval-
uate the positive or negative impact of A.I. models on them.
5. Conclusion

End-to-end development of a CNN model to assess post-traumatic
injuries on elbow X-ray in children was feasible. Models with close
metrics in silico can unpredictably lead radiologists to either improve
(M1) or lower (M2) their performances in clinical settings, underlin-
ing the need for further precise clinical evaluation of A.I.-based tools.
Declaration of Competing Interest

The authors declare that they have no known competing financial
interests or personal relationships that could have appeared to influ-
ence the work reported in this paper.
Author contributions

CR: resources, visualization, writing − original draft; FV: software,
validation; AC: conceptualization, funding acquisition; XD: data cura-
tion; PP: formal analysis, investigation; TJ: methodology, project
administration, supervision, writing − review and editing.
6

References

[1] Guly H. Diagnostic errors in an accident and emergency department. Emerg Med J
2001;18(4):263–9. doi: 10.1136/emj.18.4.263.

[2] Canoni-Meynet L, Verdot P, Danner A, Calame P, Aubry S. Added value of an artifi-
cial intelligence solution for fracture detection in the radiologist’s daily trauma
emergencies workflow. Diagn Interv Imaging 2022;103:594−600. doi: 10.1016/j.
diii.2022.06.004.

[3] Hambidge SJ, Davidson AJ, Gonzales R, Steiner JF. Epidemiology of pediatric
injury-related primary care office visits in the United States. Pediatrics 2002;109
(4):559–65. doi: 10.1542/peds.109.4.559.

[4] Appelboam A, Reuben AD, Benger JR, Beech F, Dutson J, Haig S, et al. Elbow exten-
sion test to rule out elbow fracture: multicentre, prospective validation and
observational study of diagnostic accuracy in adults and children. BMJ 2008;337:
a2428. doi: 10.1136/bmj.a2428.

[5] Abzug JM, Herman MJ. Management of supracondylar humerus fractures in chil-
dren: current concepts. J Am Acad Orthop Surg 2012;20(2):69–77. doi: 10.5435/
JAAOS-20-02-069.

[6] Bisset GS, Crowe J. Diagnostic errors in interpretation of pediatric musculoskeletal
radiographs at common injury sites. Pediatr Radiol 2014;44(5):552–7. doi:
10.1007/s00247-013-2869-9.

[7] Kraus R, Wessel L. The treatment of upper limb fractures in children and adoles-
cents. Dtsch €Arztebl Int 2010;107:903–10. doi: 10.3238/arztebl.2010.0903.

[8] McGinley JC, Roach N, Hopgood BC, Kozin SH. Nondisplaced elbow fractures: A
commonly occurring and difficult diagnosis. Am J Emerg Med 2006;24(5):560–6.
doi: 10.1016/j.ajem.2006.01.010.

[9] Olczak J, Fahlberg N, Maki A, Razavian AS, Jilert A, Stark A, et al. Artificial intelli-
gence for analyzing orthopedic trauma radiographs. Acta Orthop 2017;88
(6):581–6. doi: 10.1080/17453674.2017.1344459.

[10] Thian YL, Li Y, Jagmohan P, Sia D, Chan VEY, Tan RT. Convolutional neural net-
works for automated fracture detection and localization on wrist radiographs.
Radiol Artif Intell 2019;1(1):e180001. doi: 10.1148/ryai.2019180001.

[11] Duron L, Ducarouge A, Gillibert A, Lain�e J, Allouche C, Ch�erel N, et al. Assessment
of an AI aid in detection of adult appendicular skeletal fractures by emergency
physicians and radiologists: a multicenter cross-sectional diagnostic study. Radi-
ology 2021;300:120–9. doi: 10.1148/radiol.2021203886.

[12] Guermazi A, Tannoury C, Kompel AJ, Murakami AM, Ducarouge A, Gillibert A,
et al. Improving radiographic fracture recognition performance and efficiency
using artificial intelligence. Radiology 2022;302(3):627–36. doi: 10.1148/radiol.
210937.

[13] Katzman BD, van der Pol CB, Soyer P, Patlas MN. Artificial intelligence in emer-
gency radiology: A review of applications and possibilities. Diagn Interv Imaging
2022;104:6−10. doi: 10.1016/j.diii.2022.07.005.

[14] gleamer.ai [homepage on the Internet]. Medical-grade AI solutions for radiology.
URL: https://www.gleamer.ai/, (accessed May 22, 2021).

[15] Dupuis M, Delbos L, Veil R, Adamsbaum C. External validation of a commercially
available deep learning algorithm for fracture detection in children. Diagn Interv
Imaging 2022;103(3):151–9. doi: 10.1016/j.diii.2021.10.007.

[16] Shelmerdine SC, White RD, Liu H, Arthurs OJ, Sebire NJ. Artificial intelligence for
radiological paediatric fracture assessment: a systematic review. Insights Imaging
2022;13(1):94. doi: 10.1186/s13244-022-01234-3.

[17] Soyer P, Fishman E, Rowe S, Patlas M, Chassagnon G. Does artificial intelligence
surpass the radiologist? Diagn Interv Imaging 2022;103:445−447. doi: 10.1016/j.
diii.2022.08.001.

[18] Chassagnon G, Dohan A. Artificial intelligence: from challenges to clinical imple-
mentation. Diagn Interv Imaging 2020;101(12):763–4. doi: 10.1016/j.diii.2020.
10.007.

[19] Nguyen T, Maarek R, Hermann AL, Kammoun A, Marchi A, Khelifi-Touhami MR,
et al. Assessment of an artificial intelligence aid for the detection of appendicular
skeletal fractures in children and young adults by senior and junior radiologists.
Pediatr Radiol 2022;52(11):2215–26. doi: 10.1007/s00247-022-05496-3.

[20] Gaube S, Suresh H, Raue M, Merritt A, Berkowitz SJ, Lermer E, et al. Do as AI say:
susceptibility in deployment of clinical decision-aids. NPJ Digit Med 2021;4
(1):31. doi: 10.1038/s41746-021-00385-9.

[21] Waymel Q, Badr S, Demondion X, Cotten A, Jacques T. Impact of the rise of artifi-
cial intelligence in radiology: What do radiologists think? Diagn Interv Imaging
2019;100(6):327–36. doi: 10.1016/j.diii.2019.03.015.

[22] Kim DH, MacKinnon T. Artificial intelligence in fracture detection: transfer learn-
ing from deep convolutional neural networks. Clin Radiol 2018;73(5):439–45.
doi: 10.1016/j.crad.2017.11.015.

[23] Bleeker SE, Moll HA, Steyerberg EW, Donders AR, Derksen-Lubsen G, Grobbee DE,
et al. External validation is necessary in prediction research:: A clinical example.
J Clin Epidemiol 2003;56(9):826–32. doi: 10.1016/S0895-4356(03)00207-5.

[24] Wang X, Liang G, Zhang Y, Blanton H, Bessinger Z, Jacobs N. Inconsistent perfor-
mance of deep learning models on mammogram classification. J Am Coll Radiol
2020;17(6):796–803. doi: 10.1016/j.jacr.2020.01.006.

[25] Voter AF, Meram E, Garrett JW, Yu JPJ. Diagnostic accuracy and failure mode anal-
ysis of a deep learning algorithm for the detection of intracranial hemorrhage.
J Am Coll Radiol 2021;18(8):1143–52. doi: 10.1016/j.jacr.2021.03.005.

[26] Rayan JC, Reddy N, Kan JH, Zhang W, Annapragada A. Binomial classification of
pediatric elbow fractures using a deep learning multiview approach emulating
radiologist decision making. Radiol Artif Intell 2019;1(1):e180015. doi: 10.1148/
ryai.2019180015.

[27] Shorten C, Khoshgoftaar TM. A survey on image data augmentation for deep
learning. J Big Data 2019;6(1):60. doi: 10.1186/s40537-019-0197-0.

https://doi.org/10.1136/emj.18.4.263
https://doi.org/10.1016/j.diii.2022.06.004
https://doi.org/10.1016/j.diii.2022.06.004
https://doi.org/10.1542/peds.109.4.559
https://doi.org/10.1136/bmj.a2428
https://doi.org/10.5435/JAAOS-20-02-069
https://doi.org/10.5435/JAAOS-20-02-069
https://doi.org/10.1007/s00247-013-2869-9
https://doi.org/10.3238/arztebl.2010.0903
https://doi.org/10.1016/j.ajem.2006.01.010
https://doi.org/10.1080/17453674.2017.1344459
https://doi.org/10.1148/ryai.2019180001
https://doi.org/10.1148/radiol.2021203886
https://doi.org/10.1148/radiol.<?A3B2 re3j?>210937
https://doi.org/10.1148/radiol.<?A3B2 re3j?>210937
https://doi.org/10.1016/j.diii.2022.07.005
https://www.gleamer.ai/
https://doi.org/10.1016/j.diii.2021.10.007
https://doi.org/10.1186/s13244-022-01234-3
https://doi.org/10.1016/j.diii.2022.08.001
https://doi.org/10.1016/j.diii.2022.08.001
https://doi.org/10.1016/j.diii.2020.<?A3B2 re3j?>10.007
https://doi.org/10.1016/j.diii.2020.<?A3B2 re3j?>10.007
https://doi.org/10.1007/s00247-022-05496-3
https://doi.org/10.1038/s41746-021-00385-9
https://doi.org/10.1016/j.diii.2019.03.015
https://doi.org/10.1016/j.crad.2017.11.015
https://doi.org/10.1016/S0895-4356(03)00207-5
https://doi.org/10.1016/j.jacr.2020.01.006
https://doi.org/10.1016/j.jacr.2021.03.005
https://doi.org/10.1148/ryai.2019180015
https://doi.org/10.1148/ryai.2019180015
https://doi.org/10.1186/s40537-019-0197-0


C. ROZWAG, F. VALENTINI, A. COTTEN et al. Research in Diagnostic and Interventional Imaging 6 (2023) 100029
[28] Ardila D, Kiraly AP, Bharadwaj S, Choi B, Reicher JJ, Peng L, et al. End-to-end lung
cancer screening with three-dimensional deep learning on low-dose chest com-
puted tomography. Nat Med 2019;25(6):954–61. doi: 10.1038/s41591-019-
0447-x.
7

[29] McKinney SM, Sieniek M, Godbole V, Godwin J, Antropova N, Ashrafian H, et al.
International evaluation of an AI system for breast cancer screening. Nature
2020;577(7788):89–94. doi: 10.1038/s41586-019-1799-6.

https://doi.org/10.1038/s41591-019-0447-x
https://doi.org/10.1038/s41591-019-0447-x
https://doi.org/10.1038/s41586-019-1799-6

	Elbow trauma in children: development and evaluation of radiological artificial intelligence models
	1. Introduction
	2. Material and methods
	2.1. Data collection
	2.2. Reference standard and labelling
	2.3. Training of the model
	2.4. Image dimension
	2.5. Data augmentation
	2.6. Visualisation tool
	2.7. Internal and external validation
	2.8. Evaluation of radiologists
	2.9. Statistical analysis

	3. Results
	3.1. Internal validation
	3.2. External validation
	3.3. Interaction with radiologists

	4. Discussion
	5. Conclusion
	Declaration of Competing Interest
	Author contributions
	References


