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Tietze Equivalences as Weak Equivalences
Simon Henry Samuel Mimram

October 17, 2021

Abstract
A given monoid usually admits many presentations by generators and relations and the

notion of Tietze equivalence characterizes when two presentations describe the same monoid:
it is the case when one can transform one presentation into the other using the two families
of so-called Tietze transformations. The goal of this article is to provide an abstract and
geometrical understanding of this well-known fact, by constructing a model structure on
the category of presentations, in which two presentations are weakly equivalent when they
present the same monoid. We show that Tietze transformations form a pseudo-generating
family of trivial cofibrations and give a proof of the completeness of these transformations
by an abstract argument in this setting.

In order to navigate between the various presentations of a monoid, a very convenient tool
is provided by Tietze transformations, originally investigated for groups [12] (see also [9, chap-
ter II]): these are two families of elementary transformations one can perform on a monoid while
preserving the presented monoid. Typically, the Knuth-Bendix completion procedure for string
rewriting systems uses such transformations in order to turn a presentation of a monoid into
another presentation of the same monoid which has the property of being convergent [8, 6], and
thus for which the word problem is easily decidable. The Tietze transformations moreover en-
joy a completeness property: given any two presentations of a given monoid, there is a way of
transforming the first into the second by performing a series of such transformations.

In this article, we provide a conceptual and geometrical point of view on Tietze transfor-
mations, by showing that they can be abstractly thought of as “continuously deforming” the
presentations. In order to make this formal, we consider the category of presentations of monoids
with suitably chosen morphisms (it turns out that we need to allow some sort of degeneracies)
and construct a model structure on it, where weakly equivalent presentations are presentations
of a same monoid. We then show that the Tietze transformations can then be interpreted in this
setting as a pseudo-generating family of trivial cofibrations: they generate trivial cofibrations
with fibrant codomain. Finally, the classical proof of completeness for Tietze transformations
proceeds by constructing some kind of cospan of Tietze transformations between two presen-
tations of the same monoid: we explain here how to reconstruct this proof by purely abstract
arguments based on our model structure.

The main goal of this article is thus to shed new light on theses well-known concepts and
proofs, and advocate the relevance of homotopical methods to people working with presentations
of monoids, which is why we have done our best to have a self-contained exposition. We see
this work as a first step in order to tackle generalizations of Tietze transformations to higher
dimension (e.g. coherent presentations of categories [5, Section 2.1]) or more involved structures
(Lawvere theories, operads, etc.).

We recall the notion of Tietze transformation between presentations of monoids in section 1,
and of model category in section 2. We construct our model structure on the category of presen-
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tations in section 3, show that Tietze transformations form a pseudo-generating family of trivial
cofibrations in section 4 and use this to abstractly study Tietze equivalences in section 5.

We would like to thank Pierre-Louis Curien and Naomi Jacquet for useful discussions.

1 Tietze equivalences of presentations of monoids

1.1 Monoid. A monoid (M, ·, 1) consists of a set M equipped with a binary multiplication
operation · and a unit element 1 such that multiplication is associative and the unit acts as a
neutral element. A morphism f : M → N between two monoids is a function which preserves
multiplication and unit. We write Mon for the resulting category.

1.2 Free and quotient monoids. Given a set X, a word over X is a finite sequence
u = a1 . . . an of elements of X, and its length is |u| = n. we write X∗ for the free monoid
generated by X: its elements are words over X, multiplication uv of two words is their concate-
nation, and the unit is the empty word, noted 1.

Given a binary relation ∼ on a monoid M , we write M/∼ for the quotient monoid whose
elements and equivalence classes of elements of M by the congruence generated by ∼, and
multiplication and unit are induced by those of M .

1.3 Presentation. A presentation P = 〈P1 |P2〉 consists of

– a set P1 of generators,

– a set P2 ⊆ P∗1 × P∗1 of relations.

Such a presentation is finite when both the sets P1 and P2 are. A relation (u, v) ∈ P∗1 is generally
denoted by “u⇒ v” and we write P= for the smallest congruence generated by P2. A morphism
f : P → Q between presentations is a function f : P1 → Q1 such that, for every u ⇒ v ∈ P2,
we have f∗(u) ⇒ f∗(v) ∈ Q2. A subpresentation P′ of P is a presentation equipped with a
morphism P′ → P whose underlying function is an inclusion. We write Pres for the category
of presentations and their morphisms. Note that, by definition, there is a forgetful functor
Pres→ Set sending a presentation P to its set P1 of generators.

1.4 Presented monoid. The monoid P presented by a presentation P is the quotient monoid
P = P∗1/P2 i.e., the quotient of the free monoid P∗1 by the congruence P= generated by P2. We
often write qP : P∗1 → P for the quotient morphism and, given u ∈ P∗1, we write u for its
equivalence class qP(u). More generally, we say that a monoid M is presented by P when M is
isomorphic to P, what we sometimes writeM ' 〈P1 |P2〉. This construction extends as a functor
Pres→Mon.
Example 1. We have the following presentations:

N ' 〈a | 〉 N× N ' 〈a, b | ab⇒ ba〉
N/2N ' 〈a | aa⇒ 1〉 Z ' 〈a, b | ab⇒ 1, ba⇒ 1〉.

1.5 Standard presentation. To any monoidM , one can associate a presentation 〈M〉, called
the standard presentation of M , defined by

P1 = {a | a ∈M}
P2 = {a1 . . . an ⇒ b1 . . . bm | a1 . . . an = b1 . . . bm} ,
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i.e., it contains the elements of the monoids as generators and there is a relation between two
words of generators when the product of their elements are equal. This construction extends as a
functor Mon→ Pres. It can be used to show that any monoid admits at least one presentation:
Lemma 2. Given a monoid M , its standard presentation is a presentation of M : 〈M〉 'M .
Lemma 3. The presentation functor is left adjoint to the standard presentation functor

Pres Mon

−

⊥
〈−〉

the counit of the adjunction being an isomorphism.

1.6 Reflexive presentations. A presentation P is reflexive when for every word u ∈ P∗1
there is a relation u ⇒ u ∈ P2. We write rPres for the full subcategory of Pres on reflexive
presentations.
Lemma 4. The expected forgetful functor admits a left adjoint

Pres rPres⊥

sending a presentation P to the presentation Q with

Q1 = P1 Q2 = P2 ∪ {u⇒ u |u ∈ P∗1}

and rPres is equivalent to the Kleisli category of the monad on Pres induced by the adjunction.
Lemma 5. The category rPres is equivalent to the category whose objects are presentations (not
necessarily reflexive) and a morphism f : P → Q is a function f : P1 → Q1 such that for every
relation u⇒ v ∈ P2 we have either f(u)⇒ f(v) ∈ Q2 or f(u) = f(v).
In the following, when describing concrete examples of reflexive presentations, we generally omit
mentioning reflexivity relations (or, alternatively, the description of morphisms given by previous
lemma could be considered).
Remark 6. The standard presentation is clearly reflexive and thus the adjunction of lemma 3
restricts to an adjunction between reflexive presentations and monoids.

1.7 Equivalence between presentations. There is a very natural notion of equivalence of
presentations: two presentations can be considered as equivalent when they present isomorphic
monoids. In order to provide a concrete and amenable description of this relation, Tietze has in-
troduced a family of transformations on presentations which characterize the equivalence. Those
were originally formulated in the context of presentations of groups [12].

We begin with a simpler but useful characterization of the equivalence:
Lemma 7. Two presentations P and Q are such that P ' Q if and only if there is a cospan of
presentations

P R Qf g

such that the induced monoid morphisms f : P→ R and g : Q→ R are isomorphisms.

Proof. If there is a cospan as above then we have P ' R ' Q and P and Q are thus equivalent.
Conversely, suppose that P presents the monoid M , i.e., there is an isomorphism P→M . Under
the adjunction of lemma 3, this induces a map f : P → 〈M〉 such that f : P → 〈M〉 = M .
Similarly, we can construct a map g : P→ 〈M〉.
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1.8 Tietze transformation. The elementary Tietze transformations are the following trans-
formations producing a new presentation Q from a presentation P:

(T1) adding a derivable generator : given a new generator a 6∈ P1 and word u ∈ P∗1, we define
the presentation Q by

Q1 = P1 t {a} Q2 = P2 ∪ {u⇒ a} ,

(T2) adding a derivable relation: given two words u, v ∈ P∗1 such that u P= v, we define the
presentation Q by

Q1 = P1 Q2 = P2 ∪ {u⇒ v} .

It is easy to see that those transformations preserve the presented monoids:
Lemma 8. Given an elementary Tietze transformation from P to Q, we have an isomorphism
P ' Q.
A Tietze transformation from P to Q consists in a finite sequence of presentations

P = P0,P1,P2, . . . ,Pn = Q

such that for every i with 0 ≤ i < n there is an elementary Tietze transformation from Pi to Pi+1.
In this situation, we sometimes write

P Q
Note that contrarily to the usual convention, we do not allow here removing generators or
relations.

The transformation (T2) can be replaced by the following four transformations:

(T2r) reflexivity: given u ∈ P∗1, we define Q by

Q1 = P1 Q2 = P2 ∪ {u⇒ u} ,

(T2s) symmetry: given u, v ∈ P∗1 such that u⇒ v ∈ P2, we define Q by

Q1 = P1 Q2 = P2 ∪ {v ⇒ u} ,

(T2t) transitivity: given u, v, w ∈ P∗1 such that u⇒ v, v ⇒ w ∈ P2, we define Q by

Q1 = P1 Q2 = P2 ∪ {u⇒ w} .

(T2c) context: given u, v, v′, w ∈ P∗1 such that v ⇒ v′ ∈ P2, we define Q by

Q1 = P1 Q2 = P2 ∪ {uvw ⇒ uv′w} ,

The resulting systems are the same in the following sense:
Lemma 9. The following assertions are equivalent: there is a Tietze transformation from P to Q

(i) using (T1) and (T2),

(ii) using (T1), (T2r), (T2s), (T2t) and (T2c).

In the following, unless otherwise mentioned, we use the second set of Tietze transformations
which are easier to work with because they are more “atomic”.
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1.9 Tietze equivalence. A Tietze equivalence from P to Q is a finite sequence of presen-
tations P = P0,P1,P2, . . . ,Pn = Q such that for every i with 0 ≤ i < n there is a Tietze
transformation from Pi to Pi+1 or from Pi+1 to P i. Two presentations are Tietze equivalent
when there is a Tietze equivalence between them. Otherwise said, the Tietze equivalence is
the smallest equivalence relation relating any two presentations between which there is an (ele-
mentary) Tietze transformation. By lemma 8 above, Tietze equivalences preserve the presented
monoids. It well known that, for finite presentations, the converse holds [9, chapter II]:
Theorem 10. Given two finite presentations P and Q, we have P ' Q if and only if P and Q are
Tietze equivalent.

Proof. The right-to-left implication follows from lemma 8. For the left-to-right implication,
suppose given an isomorphism P ' Q. For the sake of simplicity we suppose that we actually have
P = Q and more generally that Tietze equivalent presentations give rise to identical presented
monoids (the proof without this assumption can be constructed from the one below by inserting
isomorphisms at required places). Given a generator a ∈ P1, there exists an element u ∈ Q∗1
such that qP(a) = qQ(u). We write aQ for a choice of such an element. Dually, given b ∈ Q1,
we write bP ∈ P∗1 for a word such that qP(bP) = qQ(b). We generalize this notation to words
u = a1 . . . an ∈ P∗1, by setting uQ = aQ

1 . . . b
Q
n (and we define vQ for v ∈ Q∗1 similarly). Note that,

for u ∈ P∗1, we have
(uQ)P P= u (1)

(and dually). We construct a presentation R by

R1 = P1 t Q1 R2 = P2 t Q2 t RP
2 t RQ

2

where

RP
2 =

{
aQ ⇒ a

∣∣ a ∈ P1
}

RQ
2 =

{
bP ⇒ b

∣∣ b ∈ Q1
}

We now construct a Tietze transformation from P to R. Dually, we will be able to construct a
Transformation from Q to R and we will be able to conclude that P and Q are Tietze equivalent:

P R  Q.

By using Tietze transformations (T1), starting from P, we can add each generator b ∈ Q1 along
with the relation bP ⇒ b, thus obtaining a transformation

P = 〈P1 |P2〉 P′ = 〈P1,Q1 |P2,RQ
2 〉.

Note that, given a word u ∈ Q∗1, we have uP P′= u. Therefore, given a ∈ P1, we have aQ P′= (aQ)P P′= a
by (1). By using Tietze transformations (T2) we can add each derivable relation aQ ⇒ a to P′
thus reaching the presentation R:

P P′  R.

Remark 11. The proof above uses Tietze transformations (T1) and (T2). The proof can be
performed by using the other set of transformations given by lemma 9, at the cost of having to
take a slightly bigger R.
The proof of theorem 10 constructs a “cospan” of Tietze transformations. We will see that it
can be constructed by using tools coming from model categories.
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1.10 An example. Consider the presentations

〈a | 〉 and 〈a, b | b⇒ bb, 1⇒ bb〉.

Both present the additive monoid N, and indeed there is a Tietze equivalence between them:

〈a | 〉 → 〈a, b | 1⇒ b〉 (T1)
→ 〈a, b | 1⇒ b, b⇒ bb〉 (T2c)
→ 〈a, b | 1⇒ b, b⇒ bb, 1⇒ bb〉 (T2t)
→ 〈a, b | 1⇒ b, b⇒ bb, 1⇒ bb, bb⇒ b〉 (T2s)
← 〈a, b | b⇒ bb, 1⇒ bb, bb⇒ b〉 (T2t)
← 〈a, b | b⇒ bb, 1⇒ bb〉 (T2s)

Also note that both presentations are “minimal”: there is no way to remove a derivable generator
or a relation without changing the presented monoid. In particular, starting from the second
presentation, we have to add relations first in order to be able remove the generator b and all
the relations.

1.11 Generalization to infinite presentations. The above theorem 10 holds only for finite
presentations, which is the way it is usually stated. It can easily be generalized to presentations
of arbitrary cardinality by allowing the Tietze transformations to add sets of derivable gen-
erators and sets of derivable relations (instead of only one), what we call generalized Tietze
transformations. The right way to think of those is as being obtained as cellular extensions of
elementary Tietze transformations and we will prove in theorem 65 the following generalization
of theorem 10, which was already known, see for instance [10, section 1.5]:
Theorem 12. Given two presentation P and Q, we have P ' Q if and only if they are related by a
zig-zag of generalized Tietze transformations, i.e., there exists a finite sequence of presentations

P = P0,P1, . . . ,P2n = Q

such that for every index i, there is a generalized Tietze transformation from P2i to P2i+1 and
from P 2i+2 to P2i+1.
Remark 13. The naive generalization of theorem 10, which states that two presentations have
the same presented monoid if and only if they are related by a “possibly infinite zig-zag” of
elementary Tietze transformations, is plain wrong (and this is not what the above theorem
states). For instance, consider the following presentation of the monoid N:

P = 〈a, bi | a⇒ bi, bi ⇒ bi+1〉i∈N

and write Pi for P with the relations a⇒ bi removed for i < k. We have P0 = P and the relation
a⇒ bk is derivable in Pk, so that there is an elementary Tietze transformation from Pk+1 to Pk.
However, writing

P∞ = 〈a, bi | bi ⇒ bi+1〉i∈N
we have that P0 does not present the same monoid as P∞ even though there is an “infinite
sequence of elementary Tietze transformations” between them. Namely, P presents N whereas
P∞ presents N ∗ N, the free product of two copies of N, and two are not isomorphic (the former
is commutative whereas the later is not).
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2 Model categories
In this section, we recall elementary definitions and facts about model categories which we will
use in the following and refer the reader to classical textbooks for details [7].

2.1 Lifting properties. Suppose fixed a category. A morphism p : X → Y has the right
lifting property, or rlp, with respect to a morphism i : A→ B when for every pair of morphisms
f : A → X and g : B → Y such that p ◦ f = g ◦ i there exists a morphism h : B → X making
the following diagram commute:

A X

B Y

i

f

p

g

h

In this situation, we also say that i has the left lifting property, or l lp, with respect to f , and
write i�p. Given two classes L and R, we write L�R whenever i�p for every i ∈ L and p ∈ R.
We also write L� (resp. �R) for the class of morphism with the rlp (resp. llp) with respect to L
(resp. R).
Lemma 14. Given classes of morphisms L, L′, R and R′,

L ⊆ �(L�) (�(L�))� = L� L ⊆ L′ implies L� ⊇ L′�,
R ⊆ (�R)� �((�R)�) = �R R ⊆ R′ implies �R ⊇ �R′.

Lemma 15. We suppose the ambient category cocomplete. A class of the form L = �R contains
isomorphisms and is closed under

– coproducts: for any family (ik : Ak → Bk)k∈K of morphisms in L, the morphism∐
k∈K

ik :
∐
k∈K

Ak →
∐
k∈K

Bk

is also in the class,

– pushouts: for any morphism i : A → B in L and morphism f : A → A′, for any pushout
diagram

A A′

B B′

i

f

p
j

the morphism j also belongs to L,

– countable compositions: for any diagram

A0 A1 · · ·f0 f1 (2)

consisting of morphisms fk : Ak → Ak+1 in L for k ∈ N, the canonical morphism

A0 → colimk Ak

also belongs to L,
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– retracts: given a morphism i : A→ B and two retracts r ◦ s = idA′ and r′ ◦ s′ = idB′ , any
morphism j : A′ → B′ for which there is a commutative diagram

A′ A A′

B′ B B′

idA′

j

s

i

r

j

idB′

s′ r′

(3)

also belongs to L.

Dually, any class for the form L� contains isomorphisms and is closed under products, pullbacks,
countable compositions and retracts.
Given a class I of morphisms, the class I-cell of I-cellular extensions is defined as the smallest
class of morphisms closed under sums, pushouts and countable compositions (note that we do
not require closure under retracts).
Lemma 16. A morphism is an I-cellular extension if and only if it is a composite of pushouts of
sums of elements of I.
Lemma 17. Given a class I of morphisms, the class of I-cellular extensions is included in �(I�).

Proof. By lemma 14, we have I included in �(I�) and, by lemma 15, this class is closed under
sums, pushouts and countable compositions.

Lemma 18 (Retract lemma). Given a factorization f = p ◦ i such that f � p, f is a retract of i.
Dually, given a factorization f = p ◦ i such that i� f , f is a retract of p.

Proof. Since f � p, we have a map h such that

X Y

Z Z

f

i

ph

and the map f is thus a retract of i:

X X X

Z Y Z

f i f

h p

as claimed.

2.2 Weak factorization system. A weak factorization system on a category is a pair (L,R)
of classes of morphisms such that

– every morphism f factors as f = p ◦ i with i ∈ L and p ∈ R,

– L = �R and R = L�.

Remark 19. From lemma 15 and lemma 18, the second condition can be equivalently be replaced
by the two following conditions
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– L�R,

– the classes L and R are closed under retracts.

One of the main techniques in order to construct weak factorization systems is due to the following
proposition [7, Section 2.1.2]. The notion of locally finitely presentable category is recalled in
section 3.5.
Proposition 20 (Small object argument). Suppose that the category is cocomplete and locally
finitely presentable. For any class I of morphisms, (�(I�), I�) is a weak factorization system.
Moreover, every morphism f factors as f = p ◦ i where i ∈ �(I�) is an I-cellular extension and
p ∈ I�. Moreover, every element of �(I�) is a retract of an I-cellular extension.

2.3 Model category. A model category is a category equipped with three classes of mor-
phisms

– C: cofibrations,

– W: weak equivalences,

– F : fibrations

such that

– the category is complete and cocomplete,

– weak equivalences satisfy the 2-out-of-3 property: given a diagram

gf

g◦f

if two morphisms belong to W then so does the third,

– (C,W ∩F) forms a weak factorization system,

– (C ∩W,F) forms a weak factorization system.

An object X is cofibrant when the initial morphism ∅ → X is a cofibration, and fibrant when
the terminal morphism X → 1 is a fibration.

From the previous section, we can expect that the weak factorization system can be generated
as lifting completions of some classes. Indeed, many model categories are cofibrantly generated
(also sometimes called combinatorial since we work here with locally presentable categories) [7,
Theorem 2.1.19]:
Proposition 21. In a locally presentable, complete and cocomplete category, suppose given a
subcategory W closed under retracts and satisfying the 2-out-of-3 property, and two sets I and
J of morphisms such that the inclusions

I� ⊆ J� ∩W �(J�) ⊆ �(I�) ∩W

hold, one of them being an equality. Then we have a model category withW as weak equivalences,
�(I�) as cofibrations and J� as fibrations. In this case, the elements of I as J are respectively
called generating cofibrations and generating trivial cofibrations.
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3 A model structure on reflexive presentations
Our aim is to construct a model structure on the category of reflexive presentations where weak
equivalences correspond to presenting isomorphic categories and trivial cofibrations are Tietze
transformations. The general strategy here is to use proposition 21 and thus to satisfy all the
required hypotheses: in particular, we want to show the equality I� = J�∩W. Unless otherwise
mentioned, all the presentations considered in this section are supposed to be reflexive; the reason
for this shall be discussed in section 6.1. We first study some of the properties of the category
of reflexive presentations.

3.1 Colimits. The category rPres has coproducts. Namely, given two presentations P and Q,
their coproduct P t Q is given by

(P t Q)1 = P1 t Q1 (P t Q)2 = P2 t Q2

and the argument generalizes to show that the category has small coproducts. In particular,
the initial object ∅ is the empty presentation, with ∅1 = ∅ and ∅2 = ∅. Suppose given two
morphisms of presentations

P Q
f

g

Their coequalizer is the presentation R whose set of generators is the coequalizer

P1 Q1 R1
f

g

h

i.e., the quotient set R1 = Q1/∼ under the smallest equivalence relation such that f(a) ∼ f(b)
for a ∈ P1, the function h being the quotient map, and the set of relations is

R2 = {h∗(u)⇒ h∗(v) |u⇒ v ∈ Q1} .

The category is thus cocomplete. In particular, the pushout of a diagram

Q1 P Q2f1 f2

is the presentation R whose set R1 of generators is the pushout of the underlying sets of generators,
with cocoone maps h1 : Q1 → R and h2 : Q2 → R, and relations

R2 =
{
h1(u)⇒ h1(v)

∣∣u⇒ v ∈ Q1
2
}
∪
{
h2(u)⇒ h2(v)

∣∣u⇒ v ∈ Q2
2
}
.

Note that the forgetful functor rPres → Set, sending a presentation to its underlying set of
generators, preserves colimits.

3.2 Limits. The product P×Q of two reflexive presentations P and Q has generators (P×Q)1 = P1×Q1
and the set (P× Q)2 of relations is{

(a1, a
′
1) . . . (am, a′m)⇒ (b1, b

′
1) . . . (bn, b′n)

∣∣∣∣ a1 . . . am ⇒ b1 . . . bn ∈ P2
a′1 . . . a

′
m ⇒ b′1 . . . b

′
n ∈ Q2

}
.

This generalizes to small products. In particular, the terminal presentation 1 has one generator a
and all relations of the form am ⇒ an for m,n ∈ N. Given two morphisms of presentations

P Q
f

g
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their equalizer R is given by
R1 = {a ∈ P1 | f(a) = g(a)}

i.e., this is the equalizer of the underlying sets, and relations are

R2 = {u⇒ v ∈ P2 | f∗(u) = g∗(u) and f∗(v) = g∗(v)} .

The category is thus complete and the forgetful functor rPres→ Set preserves limits.

3.3 Monomorphisms. A monomorphism f : P → Q is a morphism whose underlying func-
tion f : P1 → Q1 is injective, i.e., the forgetful functor rPres→ Set reflects monomorphisms. In
this sense, the monomorphisms of presentations inherit the properties of those of the categories
of sets. For instance,
Lemma 22. In rPres, monomorphisms are stable under coproducts, pushouts and countable
compositions.

Proof. The forgetful functor to sets preserves coproducts, pushouts and countable compositions,
and reflects monomorphisms.

Remark 23. These stability conditions are not generally true in a category. As a counter-example,
in the category of commutative rings, the inclusion i : Z→ Q is a mono, but the sum (which is
here the tensor product, and corresponds to the usual tensor product of Z-modules)

idZ/2 ⊗ i : Z/2 = Z/2⊗ Z→ Z/2⊗Q = 1

is not a mono. It is however the case that monomorphisms are stable under pushout in a topos
(and, more generally, an adhesive category).

3.4 Epimorphisms. Similarly, an epimorphism f : P → Q is a morphism whose underlying
function P1 → Q1 is a surjection.

3.5 Local finite presentability. We refer to [1] for a detailed presentations of the notions
introduced here. An object X of a category C is finitely presentable when the representable
functor

Hom(X,−) : C → Set

preserves filtered limits: this means that for a diagram (Yi)i∈I indexed by a filtered category I,
the canonical morphism

colimi Hom(X,Yi)→ Hom(X, colimi Yi)

is an isomorphism. In particular, finitely presentable presentations objects are precisely the finite
presentations.

A locally small category C is locally finitely presentable when it is cocomplete and there is a
set of finitely presentable objects such that every object of C is a filtered colimit of objects in
this set. In the case of the category of presentations, every presentation is the filtered colimit
of its finite subpresentations, and the category rPres is thus locally finitely presentable. The
category Mon is also locally finitely presentable, as the category of models of a Lawvere theory.
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3.6 Weak equivalences. We write W for the class of morphisms f : P → Q such that the
induced morphism f : P → Q between presented monoids is an isomorphism. Many of the
properties of isomorphisms are thus reflected on weak equivalences:
Lemma 24. The class W satisfies the 2-out-of-3 property and is closed under coproducts, push-
outs, countable compositions and retracts.

Proof. The class of isomorphisms in any category satisfies the 2-out-of-3 property. Isomorphisms
are closed under sums. Namely, given two isomorphisms i : A → B and i′ : A → B, the two
following diagrams commute:

A B A

A+A′ B +B′ A+A′

A′ B′ A′

i

idA

i−1

i+i′ i−1+i′−1

i′

idB

i′−1

A A

A+A′ A+A′

A′ A′

idA

idA+A′

id′A

By universal property of coproducts, we deduced that (i−1+i′−1)◦(i+i′) = idA+A′ . Similarly, we
can show (i+ i′)◦ (i−1 + i′−1) = idB+B′ and i+ i′ is thus an isomorphism. Isomorphisms are also
closed under pushouts. Namely, consider j : A′ → B′ the pushout of an isomorphism i : A→ B
along a morphism f : A → A′. The two following diagrams commute, where j′ : B′ → A′ is
defined by universal property of the pushout:

A A′

B B′

A′

B′

i

f

p
j

idA′

j

g

f◦i−1

g

j′

j

A A′

B B′

B′

i

f

p
j j

g

g

idB′

This shows that j ◦ j′ = idB′ . Similarly, we have j′ ◦ j = idA′ and j is thus an isomorphism.
Consider a countable composition of isomorphisms fi : Ai → Ai+1 as in (2). There is a cocone
on A0 consisting of the morphisms

f−1
0 ◦ f−1

1 ◦ . . . ◦ f−1
i−1 : Ai → A0

which is easily seen to be universal and the composite is thus (isomorphic to) idA0 . Consider
a retract j of an isomorphism i as in (3). We claim that the morphism j′ = s ◦ i−1 ◦ r′ is the
inverse of j. Namely, one has

j′ ◦ j = s ◦ i−1 ◦ r′ ◦ j j ◦ j′ = j ◦ s ◦ i−1 ◦ r′

= s ◦ i−1 ◦ i ◦ r = s′ ◦ i ◦ i−1 ◦ r′

= s ◦ r = s′ ◦ r′

= idA′ = idB′

12



3.7 Generating cofibrations. Consider the presentation with one generator and no relation:

G = 〈a | 〉.

Given m,n ∈ N, we introduce notations for the following presentations, respectively with n gen-
erators and no relation, and with one relation between words of respective lengths m and n:

Gn = 〈a1, . . . , an | 〉 Rm,n = 〈a1, . . . , am+n | a1 . . . am ⇒ am+1 . . . am+n〉.

We write I for the class of morphisms, called generating cofibrations, consisting of the obvious
inclusions of presentations

g : ∅ ↪→ G rm,n : Gm+n ↪→ Rm,n

for some m,n ∈ N.

3.8 Cofibrations. We write C = �(I�) for the class of morphisms whose elements are called
cofibrations. Note that, given a presentation P, the pushouts

∅ G

P Q

g

p

Gm+n Rm,n

P Q

f

rm,n

p

are respectively the presentation obtained from P by adding a generator and the presentation
obtained from P by adding a relation (between the two words of P∗1 specified by f).
Lemma 25. Every presentation P is cofibrant, in the sense that the initial morphism ∅ ↪→ P is
a cofibration.

Proof. By proposition 20, it is enough to show that the initial morphism ∅ ↪→ P can be obtained
as a composite of pushouts of generating cofibrations, which amounts to show that every pre-
sentation can be obtained from the empty one by adding generators and relations, which we will
do in this order (generators first, and then relations). Given a relation u ⇒ v ∈ P2, we have a
canonical inclusion

G|u|+|v| R|u|,|v|r|u|+|v|

and a canonical inclusion
G|u|+|v|

∐
a∈P1

G.

By summing those morphisms over relations (u, v) ∈ P2, and post-composing with the codiagonal∐
(u,v)∈P2

∐
a∈P1

G
∐
a∈P1

G,

we obtain a diagram ∐
(u,v)∈P2

G|u|+|v|
∐

(u,v)∈P2
R|u|,|v|

∐
a∈P1

G

13



whose pushout is precisely P. Finally, we consider the composite of morphisms

∅
∐
a∈P1

G P

where the second morphism is constructed in the cocone of the pushout. Again, this composite
expresses the fact that any presentation can be constructed from the empty one by first adding
all the generators, and then adding all the relations.

The construction given in the above proof easily generalizes to show:
Lemma 26. Any monomorphism f : P→ Q is a cofibration (and, in fact, an I-cellular extension).
Conversely, one has:
Lemma 27. Cofibrations are monomorphisms.

Proof. The generating cofibrations are monomorphisms. Moreover, monomorphisms are closed
under coproducts, under pushouts and countable compositions by lemma 22. By proposition 20,
cofibrations are thus retracts of monomorphisms. We conclude using the fact that monomor-
phisms are closed under retracts. Namely, suppose given a retract j of a monomorphism i, as
in (3), and two morphisms h1, h2 such that j ◦ h1 = j ◦ h2, we have

j ◦ h1 = j ◦ h2

s′ ◦ j ◦ h1 = s′ ◦ j ◦ h2

i ◦ s ◦ h1 = i ◦ s ◦ h2

s ◦ h1 = s ◦ h2

r ◦ s ◦ h1 = r ◦ s ◦ h2

h1 = h2

and we conclude.

Corollary 28. The class C of cofibrations is the class of monomorphisms in rPres.

3.9 Trivial fibrations. The morphisms in the class I� are called trivial fibrations. From the
lifting property with respect to the generators we immediately deduce,
Lemma 29. The morphisms f : P→ Q in I� are those

– whose underlying function f : P1 → Q1 is surjective, and

– such that for every u, v ∈ P∗1, f∗(u)⇒ f∗(v) ∈ Q2 implies u⇒ v ∈ P2.

Lemma 30. Trivial fibrations are weak equivalences: I� ⊆ W.

Proof. Since f : P1 → Q1 is surjective, we have that f : P→ Q is also surjective. We have to show
that it is also injective in order to conclude. Suppose given u, v ∈ P∗1 such that f∗(u) Q= f∗(v):
we have a sequence

f∗(u) = w0 ⇔ w1 ⇔ . . .⇔ wn = f∗(v)

where the arrows “⇔” mean that, for 0 ≤ i < n, there is a decomposition of wi and wi+1 as

wi = tiuivi and wi+1 = t′iu
′
iv
′
i with ui ⇒ u′i ∈ Q2 or ui ⇐ u′i ∈ Q2.

Moreover, since Q is reflexive, we can always suppose that this sequence is non-empty, i.e., n > 0:
we can replace the empty sequence by the reflexivity relation f∗(u) ⇒ f∗(u). By surjectivity,

14



for 0 ≤ i ≤ n, there are words tPi , uP
i , vP

i , t′Pi , u′Pi , v′Pi in P∗1 whose image under f is respectively
ti, ui, vi, t′i, u′i, v′i, and we may moreover assume tP0uP

0v
P
0 = u and t′Pn−1u

′P
n−1v

′P
n−1 = v. Finally,

since f is a trivial fibration, we have ui ⇒ u′i or ui ⇐ u′i and we conclude that u P= v.

From the results of section 3.4, one has:
Lemma 31. Every trivial fibration is an epimorphism.

3.10 Trivial cofibrations. The class of trivial cofibrations is C∩W and consists of monomor-
phisms f : P→ Q such that the induced morphism of monoids f : P→ Q is an isomorphism.
Lemma 32. A morphism f : P→ Q is a trivial cofibration when

– f is a monomorphism,

– for every a ∈ Q1, there exists u ∈ P∗1 such that f(u) Q= a,

– for u, v ∈ P∗1 such that f(u) Q= f(v), we have u P= v.

Proof. Suppose that f is a trivial cofibration. Since f is a cofibration, it is a monomorphism by
lemma 27. Given a ∈ Q1, since f is surjective there is u ∈ P∗1 such that f(u) = a, and we have
f(u) Q= a. Given u, v ∈ P∗1 such that f(u) Q= f(v), we have f(u) = f(v), thus u = v in P since f
injective, and finally u P= v.

Conversely, suppose given a monomorphism f : P → Q. Given a ∈ Q1, by hypothesis, there
exists ua ∈ P∗1 such that f(ua) = a. Therefore, given v ∈ Q, for some v = a1 . . . an ∈ Q∗1, we
have

f(ua1 . . . uan
) = f(ua1) . . . f(uan

) = a1 . . . an = v

and f is thus surjective. Suppose given u, v ∈ P∗1 such that f(u) = f(v): we have f(u) Q= f(v),
thus u P= v and finally u = v.

Lemma 33. The class of trivial cofibrations satisfies �((C ∩W)�) = C ∩W.

Proof. By lemma 14, we have C ∩ W ⊆ �((C ∩ W)�). Conversely, by proposition 20, every
element of �((C ∩W)�) is a retract of a (C ∩W)-cellular extension, and thus belongs to C ∩W,
because this last class is closed under sums, pushouts, countable compositions and retracts by
lemmas 15 and 24.

3.11 Fibrations. The class F of fibrations is determined by the two other classes: should
there be a model structure, it is necessarily F = (C ∩ W)�. An explicit description of fibrant
objects is given by lemmas 51 and 58.

3.12 Toward a model structure. We now have almost all the ingredients required to con-
struct a model structure on the category rPres of reflexive presentations withW as weak equiv-
alences, C = �(I�) as cofibrations and F = (C ∩ W)� as fibrations. Namely, assuming that
J = C ∩ W is a set, we can apply proposition 21, whose hypothesis can be shows as follows.
Closure under retracts and the 2-out-of-3 property forW were shown in lemma 24. We first show
I� ⊆ J� ∩W. We have J = C ∩W ⊆ C thus, by lemma 14, I� = (�(I�))� = C� ⊆ J�; and
we have I� ⊆ W by lemma 30. Finally, the remaining inclusion is shown by lemma 33, since we
have

�(J�) = �((C ∩W)�) = C ∩W = �(I�) ∩W

15



which concludes the proof.
However, it is not clear at all that the class J should be a set. This is why our actual

construction of a model category uses Smith’s theorem, which provides sufficient conditions in
order to ensure that there exists a set J which can be used as a replacement for J , in the sense
that we have �(J�) = J .

3.13 Recognizing weak equivalences. In preparation for the use of Smith’s theorem, we
show that morphisms of presentations which are weak equivalences can be characterized by
factorization properties as follows. First note that the words in a given presentation can be
represented in the following way.
Lemma 34. Given a natural number n and a presentation P, there is a bijection between mor-
phisms Gn → P and words in P∗1 of length n.

Proof. To a word u = b1 . . . bn of length n, we associate the morphism f : Gn → P such
that f(ai) = bi for 1 ≤ i ≤ n. Conversely, a morphism f : Gn → P, we associate the word
u = f(a1) . . . f(an). The two operations are easily seen to be inverse of each other.

Lemma 35. Suppose given a morphism w : P → Q and u ∈ P∗1. Writing f : G|u| → P for the
morphism associated to u by lemma 34, the morphism associated to w ◦ f by lemma 34 is w∗(u).

Proof. Direct by inspection of the bijection constructed in the proof of lemma 34.

Similarly, we can represent pairs of words as follows, where we write Gm,n instead of Gm+n:
Lemma 36. Given natural numbers m,n and a presentation P, there is a bijection between
morphisms Gm,n → P and pairs of words u, v ∈ P∗1 with |u| = m and |v| = n.

Proof. A word u = b1 . . . bmbm+1 . . . bm+n of length m+n in P∗1 can be seen as the pair of words
b1 . . . bm and bm+1 . . . bm+n in P∗1 of respective lengthsm and n. Thus the result by lemma 34.

We now construct a family of presentations to represent pairs of equivalent words. Suppose fixed
natural numbers m and n. Given a natural number o, consider the set

G = {a1, . . . , am, b1, . . . , bn, c1, . . . , co}

Suppose moreover given a non-zero natural number k and words ui, vi, v′i, wi ∈ G∗ with 1 ≤ i ≤ k,
such that

u1v1w1 = a1 . . . an uiv
′
iwi = ui+1vi+1wi+1 ukvkwk = b1 . . . bn

for every index i with 1 ≤ i < n. We write Em,n for a presentation of the form

Em,n = 〈G | v1 ⇔ v′1, . . . , vk ⇔ v′k〉

where vi ⇔ v′i is either vi ⇒ v′i or v′i ⇒ vi, called an equivalence presentation. Note that there
is a canonical inclusion e : Gm,n → Em,n such that e(ai) = ai for 1 ≤ i ≤ m and e(am+i) = bi
for 1 ≤ i ≤ n. Also note that Rm,n is a particular case of Em,n (where k = 1). We could further
reduce the number of equivalence presentations that we consider by imposing conditions such
as the fact that there is no repeated generator within each vi or v′i, that vi and v′i do not share
any common generator for every index i, that each generator cj occurs within vi or v′i for some
index i, and so on, but this will play no significant role in the following.
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Lemma 37. Suppose given a presentation P and a pair of words u, v ∈ P∗1 with |u| = m and
|v| = n, corresponding to a morphism f : Gm,n → P via lemma 36. We have u P= v if and
only if there exists a morphism g : Em,n → P making the following diagram commute, for some
equivalence presentation Em,n,

Gm,n

Em,n P

f

g

where the vertical arrow is the canonical inclusion.
Proposition 38. Suppose given a morphism of presentations w : P→ Q. The induced morphism
w : P→ Q is surjective if and only if every square as on the left factors as on the right

∅ P

G Q

w

g

∅ Gn P

G E1,n Q

h

f ′′

w

g

g′ g′′

where g′ : G→ E1,n sends a to a1 and h : Gn → E1,n sends ai to bi.

Proof. The presentation ∅ being initial, the square on the left is uniquely determined by g which,
by lemma 34, corresponds to a generator a in Q1. The diagram on the right corresponds to the
existence of a word v of length n in P∗1 (given by f ′′ via lemma 34) such that a Q= w∗(v) (this is
given by g′′ via lemmas 35 and 37). The above factorization property thus amounts to requiring
that every generator a in Q1 is equivalent to some word of the form w∗(v) for some v ∈ P∗1, and
thus that every word u ∈ Q∗1 is equivalent to some word of the form w∗(v) for some v ∈ P∗1, i.e.,
that w is surjective.

Proposition 39. Suppose given a morphism of presentations w : P→ Q. The induced morphism
w : P → Q is injective if and only if every square as on the left (where the vertical morphism
i : Gm,n → Em,n is the canonical inclusion into some equivalence presentation) factors as on the
right, where Em,n1 is an equivalence presentation (the index stresses the fact that it might be
different from Em,n) and the square on the left is a pushout:

Gm,n P

Em,n Q
i

f

w

g

Gm,n Em,n1 P

Em,n E Q

i

f

f ′

p

f ′′

w

g

g′ g′′

Proof. The square on the left amounts to giving two words u and v in P∗1 of respective lengths m
and n (by f via lemma 36) such that w∗(u) Q= w∗(v) (by g via lemmas 35 and 37). The diagram
on the right corresponds to supposing that we have u P= v (by f ′′ via lemma 37) (note that g′′ does
not bring any information by the universal property of the pushout). The above factorization
property thus amounts to requiring that for every words u, v ∈ P∗1 such that w∗(u) Q= w∗(v), we
have u P= v, i.e., that w : P→ Q is injective.
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A presentation P is countable when the set P1 is countable. We write W≤ω for the class of
weak equivalences w : P→ Q such that both P and Q are countable. Up to isomorphism, we can
always suppose that we have P1 ⊆ N and Q1 ⊆ N, so that W≤ω is essentially a set (as opposed
to a class).
Proposition 40. Every commutative square as on the left, where R and S are finite and w is a
weak equivalence, factors as a square as on the right with wω ∈ W≤ω:

R P

S Q
i

f

w

g

R Pω P

S Qω Q
i

f

f ′

wω

f ′′

w

g

g′ g′′

Proof. We are going to construct a sequence wk : Pk → Qk of morphisms, indexed by k ∈ N,
such that both Pk and Qk are finite, the left square above factors through each wk, i.e.,

R Pk P

S Qk Q

i

f

f ′k
wk

f ′′k
w

g

g′k g′′k

we have Pk ⊆ Pk+1 and Qk ⊆ Qk+1, and the morphisms wk as well as the factorizations respect
those inclusions. Since Pk and Qk are finite, it will be the case that we can moreover suppose that
Pk1 and Qk

1 are initial segments of N, so that it makes sense to consider the smallest generator or
relation satisfying a property. We first define w0 to be a morphism isomorphic to i, such that
both P0

1 and Q0
1 are initial segments of N. Suppose wk defined, we alternate between the two

operations below in order to construct wk+1.

(A) Consider a generator a ∈ Qk which has no antecedent under wk : Pk → Qk. By lemma 34,
it corresponds to a morphism G→ Qk. By proposition 38, since w is surjective, the outer
square of the diagram on the left factors as on the right, for some equivalence presenta-
tion E1,n:

∅ Pk P

G Qk Q

wk

f ′′k

(a) w

g′′k

∅ Gn P

G E1,n Q
(b) w

We define the pushouts Pk+1 = Pk t Gn and Qk+1 = Qk tG E1,n, and the morphism
wk+1 : Pk+1 → Qk+1 is defined by the expected universal property of Pk+1, see the diagram
on the left below:

∅ Gn

Pk Pk+1

G E1,n

Qk Qk+1

p

wk

wk+1

p

Pk Pk+1 P

Qk Qk+1 Q

wk wk+1

f ′′k+1

(c) w

g′′k+1
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We can construct the pushouts so that Pk ⊆ Pk+1, Qk ⊆ Qk+1 and both Pk+1
1 and Qk+1

1
are initial segments of N. Finally, the horizontal morphisms of the diagram (c) are defined
from (a) and (b) by universal property of the pushouts, and the outer square on the right
above is a factorization of (a).

(B) Consider a pair of words u, v ∈ (Pk)∗1 such that there is an equivalence (wk)∗(u) Q= (wk)∗(v)
and u 6= v in Pk. By lemma 36, the pair of words (u, v) in Pk corresponds to a mor-
phism Gm,n → Pk and, by lemma 37, the equivalence (wk)∗(u) Q= (wk)∗(v) to a morphism
Em,n → Q, where m and n are the respective lengths of u and v. By proposition 39, the
outer square on the left (where the morphism Gm,n → Em,n is the canonical inclusion)
factors as on the right,

Gm,n Pk P

Em,n Qk Q

wk

f ′′k

(d) w

g′′k

Gm,n Em,n1 P

Em,n E Qp
(e) w

We define the pushouts Pk+1 = Pk tGm,n Em,n1 and Qk+1 = Qk tEm,n E, and the morphism
wk+1 : Pk+1 → Qk+1 is defined by the expected universal property of Pk+1, see the diagram
on the left below:

Gm,n Em,n1

Pk Pk+1

Em,n E

Qk Qk+1

p

wk

wk+1

p

Pk Pk+1 P

Qk Qk+1 Q

wk wk+1

f ′′k+1

(f) w

g′′k+1

We can construct the pushouts so that Pk ⊆ Pk+1, Qk ⊆ Qk+1 and both Pk+1
1 and Qk+1

1
are initial segments of N. Finally, the horizontal morphisms of the diagram (f) are defined
from (d) and (e) by universal property of the pushouts, and the outer square on the right
above is a factorization of (d).

By alternatively using (A) and (B), we construct a sequence of wk : Pk → Qk of morphisms of
presentations, such that every generator of Qk

1 is eventually handled by (A) and every relation
in Qk between words in the image is eventually handled by (B). More explicitly, this can be
performed as follows. We say that a generator a ∈ Pk1 has appeared at step i when (u, v) ∈ Pi1
and a 6∈ Pi−1

1 ; more generally, we say that a word u ∈ (Pk)∗ has appeared at step i if it contains
a generators which has appeared at step i and all the generators it contains have appeared at
step j ≥ i; we say that a pair (u, v) of words have appeared at step i if u has appeared at step
i and v has appeared at step j ≥ i, or the converse. We then iteratively perform the following
steps in order to define the terms of the sequence (wk)k∈N: supposing that wk is defined, we
defined wk+1 to w2k+2 as follows.

– We construct wk+1 by using (A) on the smallest generator a which is not in the image
of wk (we take wk+1 = wk if no such generator exists).

– We construct wk+1+i+1, for 0 ≤ i ≤ k, where wk+1+i+1 is defined from wk+1+i by using (B)
on the smallest pair of words u, v ∈ (P k)∗1 which has appeared at step i, such that there is
an equivalence (wk)∗ Q= (wk)∗ and u 6= v ∈ Pk (we take wk+1+i+1 = wk+1+i if no such pair
exists).
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Finally, we define the colimits Pω =
⋃
k∈N Pk and Qω =

⋃
k∈N Qk, which are countable presen-

tations as unions of finite ones, and wω : Pω → Qω as the morphism induced by the cocone
consisting of the morphisms wk : Pk → Qk ⊆ Qω. Given a square

∅ Pω

G Qω

wω

g

the generator corresponding to the morphism g : G→ Q was handled by (A) at some step k (or
had a lifting from the beginning, this case being simple). There is therefore a factorization of
the square on the left as on the middle

∅ Pk+1

G Qk+1

wk+1

g

∅ Gn Pk+1

G E1,n Qk+1

h

f ′′

wk+1

g

g′ g′′

for some equivalence presentation E1,n, from which we deduce the factorization

∅ Gn Pk+1 Pω

G E1,n Qk+1 Qω

h

f ′′

wk+1 wω

g

g′ g′′

of the original square by post-composing with the canonical inclusions into the colimit. By
proposition 38, the morphism wω is thus surjective. Similarly, by considering steps (B) and
proposition 39, one can show that wω is surjective. The morphism wω is thus a weak equivalence
as desired.

3.14 A model structure. Given a class W of morphisms and a morphism i, we say that W
satisfies the solution set condition at i if there is a set Wi ⊆ W of morphisms such that any
commutative square as on the left, with w ∈ W, factors as a square as on the right, for some
w′ ∈ Wi:

A X

B Y

i

f

w

g

A X ′ X

B Y ′ Y

i

f

f ′

w′
f ′′

w

g

g′ g′′

(4)

By extension, given a set I of morphisms, we say thatW satisfies the solution set condition at I,
if it satisfies the solution set condition at any i ∈ I. The following theorem is due to Smith,
see [3, Theorem 1.7]:
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Theorem 41. In a locally finitely presentable category, suppose given a subcategory W and a
set I of morphisms such that

1. W is closed under retracts and has the 2-out-of-3 property,

2. I� ⊆ W,

3. �(I�) ∩W is closed under pushouts and countable compositions,

4. W satisfies the solution set condition at I.

Then there is a cofibrantly generated model structure with �(I�) as cofibrations, W as weak
equivalences and (�(I�) ∩W)� as fibrations.
Theorem 42. There is a model structure on the category rPres of reflexive presentations withW
(as defined in section 3.6) as weak equivalences, C = �(I�) as cofibrations (with I as defined in
section 3.7) and F = (C ∩W)� as fibrations.

Proof. We apply theorem 41. First point was shown in lemma 24, second point in lemma 30.
For third point, the closure of �(I�) under pushouts and countable compositions was shown in
lemma 14 and the one of W in lemma 24, from which we deduce the one of their intersection.
The last point is the object of proposition 40.

3.15 A Quillen functor. The category Mon can canonically be equipped with the trivial
model structure where weak equivalences are isomorphisms and every morphism is both fibrant
and cofibrant. The presentation functor rPres→Mon described in section 1.4 is a left adjoint
(lemma 3 and remark 6) which trivially preserves cofibrations and trivial cofibrations, and is
thus a Quillen functor. Moreover, this functor reflects weak equivalences and, given a presenta-
tion P, the counit P→ 〈P〉 of the adjunction is a weak equivalence: by [7, Corollary 1.3.16], the
presentation functor is thus a Quillen equivalence. By [7, Proposition 1.3.13], this means that
the derived functor induces, as expected, an equivalence of categories between the localization
of rPres under weak equivalences and the one of Mon (which is Mon itself):

Ho(rPres) ∼= Ho(Mon) 'Mon.

4 Tietze transformations as trivial cofibrations
In section 4.1 below, we introduce a class J of morphisms of reflexive presentations such that
pushouts of morphisms in this class correspond to elementary Tietze transformations. Contrarily
to what one could expect, this family does not generate all trivial cofibrations: we have a strict
inclusion �(J�) ( C ∩W. However, we show that the two classes coincide for morphisms with
fibrant codomain: we thus say that the class J is pseudo-generating, following the terminology
of Simpson [11, Section 8.7].
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4.1 Pseudo-generating trivial cofibrations. We write J for the class of morphisms of
rPres, called pseudo-generating trivial cofibrations

〈a1, . . . , am | 〉 ↪→ 〈a1, . . . , am, am+1 |u⇒ am+1〉
〈a1, . . . , am | 〉 ↪→ 〈a1, . . . , am |u⇒ u〉

〈a1, . . . , am+n |u⇒ v〉 ↪→ 〈a1, . . . , an+m |u⇒ v, v ⇒ u〉
〈a1, . . . , am+n+p |u⇒ v, v ⇒ w〉 ↪→ 〈a1, . . . , an+m+p |u⇒ v, v ⇒ w, u⇒ w〉

〈a1, . . . , am+n+p+q |u⇒ v〉 ↪→ 〈a1, . . . , am+n+p+q |wuw′ ⇒ wvw′〉

for some m,n, p ∈ N with

u = a1 . . . am w = am+n+1 . . . am+n+p

v = am+1 . . . am+n w′ = am+n+p+1 . . . am+n+p+q

Lemma 43. Given a pseudo-generating cofibrations j : P→ Q and a morphism of presentations
f : P→ P′, consider the pushout j′ : P′ → Q′ of j along f :

P P′

Q Q′
j

f

j′

then there is an elementary Tietze transformation from P′ to Q′, and conversely every elementary
Tietze transformation arises in this way.

Proof. Pushout of the five kinds of morphisms in J precisely give rise to the five kinds of Tietze
transformations (T1), (T2r), (T2s), (T2t) and (T2c).

We are thus tempted to call generalized Tietze transformation a morphism in J -cell. In partic-
ular, every element of J is itself a Tietze transformation and thus, by theorem 10,
Lemma 44. Generating trivial cofibrations are weak equivalences: J ⊆ W.
Moreover, those morphisms are monomorphisms and thus, by lemma 26,
Lemma 45. The pseudo-generating trivial cofibrations are cofibrations: J ⊆ �(I�).
Remark 46. By general properties [7, Proposition 2.1.18], we have that morphisms in �(J�)
are retracts of Tietze transformations. We do not know whether the morphisms in �(J�) are
precisely Tietze transformations or not.

4.2 Morphisms in �(J�). The following lemmas show that the morphisms in the class
�(J�) are trivial cofibrations. We will however see in section 4.4 that not every trivial cofibration
is in this class, i.e., the inclusion is strict.
Lemma 47. We have �(J�) ⊆ �(I�).

Proof. By lemma 45, we have that J ⊆ �(I�). Thus, by lemma 14, we have

�(J�) ⊆ �((�(I�))�) = �(I�).

Lemma 48. We have �(J�) ⊆ W.
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Proof. By lemma 43, a pushout of an element in J is an elementary Tietze transformation and
thus a weak equivalence by lemma 8. By proposition 20, any element of �(J�) is a countable
composition of elementary Tietze transformations, and thus a weak equivalence by lemma 24.

Lemma 49. We have �(J�) ⊆ C ∩W.

Proof. By Lemmas 47 and 48.

4.3 Pseudo-fibrations. The morphisms in J� are called pseudo-fibrations. A pseudo-fibrant
object P is one such that the terminal morphism P→ 1 is a pseudo-fibration.
Lemma 50. A presentation P is pseudo-fibrant when

– for every word u ∈ P∗1, there is a generator a ∈ P1 such that u⇒ a ∈ P2,

– the relation P2 on P∗1 is a congruence.

In particular, we have u P= v if and only if u⇒ v ∈ P2.
More generally, pseudo-fibrations can be described as follows:
Lemma 51. A morphism f : P→ Q is a pseudo-fibration when

– for every u ∈ P∗1 and b ∈ Q1 such that f(u) ⇒ b ∈ Q2, there exists a ∈ P1 with f∗(a) = b
and u⇒ a ∈ P2,

– for every u ∈ P∗1,

f∗(u)⇒ f∗(u) ∈ Q2 implies u⇒ u ∈ P2,

– for every u, v ∈ P∗1 with u⇒ v ∈ P2,

f∗(v)⇒ f∗(u) ∈ Q2 implies v ⇒ u ∈ P2,

– for every u, v, w ∈ P∗1 with u⇒ v ∈ P2 and v ⇒ w ∈ P2,

f∗(u)⇒ f∗(w) ∈ Q2 implies u⇒ w ∈ P2,

– for every u, v, w,w′ ∈ P∗1 with u⇒ v ∈ P2,

f∗(wuw′)⇒ f∗(wvw′) ∈ Q2 implies wuw′ ⇒ wvw′ ∈ P2.

Lemma 52. Any fibration is a pseudo-fibration: F = (C ∩W)� ⊆ J�.

Proof. By lemma 49, we have �(J�) ⊆ C ∩W . Therefore, by lemma 14,

F = (C ∩W)� ⊆ (�(J�))� = J�.

Lemma 53. For any object P, there exists a pseudo-fibrant object P̃, called a pseudo-fibrant
replacement of P, together with a map P→ P̃ in �(J�).

Proof. Use the small object argument (proposition 20) to factor the terminal morphism P → 1
as a morphism in �(J�) followed by a morphism in J�.
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4.4 J is not generating. Contrarily to what one might expect, the class J is not a generating
class for the trivial cofibrations. This can be seen by observing that the following inclusion does
not hold:

J� ∩W ⊆ I�

For instance, consider the inclusion

〈a | 〉 → 〈a, b | b⇒ bb, 1⇒ bb〉

which corresponds to the example developed section 1.10. This morphism is both a pseudo-
fibration since the only relations to lift are the reflexivity relations (which are not noted here,
see section 1.6) and a weak equivalence since both presented monoids are N. However, it is not a
trivial fibration since it is not surjective on generators. The same example can be used to show
that the inclusion

�(I�) ∩W ⊆ �(J�)

does not hold either: the map above is a trivial cofibration since it is both a monomorphism and
a weak equivalence, but it cannot be obtained as a retract of a composite of pushouts of sums
of elements of J . Namely, the generator b has to be added using a Tietze transformation (T1),
but the relations are not of the right form. Intuitively, the relation 1⇒ b has to be added first,
see section 1.10.
Remark 54. As a simpler (but less illuminating) example, consider the inclusion

〈a | 〉 → 〈a, b | b⇒ aa〉

which is not an elementary Tietze transformation, because of the chosen orientation for the
relation (T1). Similarly, the inclusion

〈a, b, c, d | aa⇒ bb, bb⇒ cc, cc⇒ dd〉 → 〈a, b, c, d | aa⇒ bb, bb⇒ cc, cc⇒ dd, aa⇒ dd〉

is a pseudo-fibration and a weak equivalence, but not a trivial fibration one since the relation
aa⇒ dd cannot be lifted.

4.5 J is pseudo-generating. It is interesting to note that the inclusions of previous section
are satisfied if we restrict to fibrations whose codomain is fibrant. We begin by a reciprocal to
lemma 49:
Lemma 55. Any trivial cofibration i : P→ Q with pseudo-fibrant codomain Q belongs to J -cell,
and thus to �(J�).

Proof. Since i is a trivial cofibration, it is an injection and we have P = Q. For simplicity, we
suppose that i is an inclusion. For every generator in a ∈ Q1 \ P1, there is a word ua ∈ P∗1 such
that ua

Q= a and therefore ua ⇒ a ∈ Q2 since Q is pseudo-fibrant (Q2 is a congruence). Writing
P0 for P with the generator a and a relation ua ⇒ a added, for every a ∈ Q1 \ P1, we have a
morphism P→ P0 in J -cell factoring i (the inclusion P→ P0 can be expressed as a pushout of
a coproduct of pseudo-generating trivial cofibrations of the first form). We write Pk+1 for the
presentation obtained from Pk by adding

– a relation u⇒ u for every word u over Pk1 ,

– a relation v ⇒ u for every relation u⇒ v ∈ P k2 ,

– a relation u⇒ w for every relations u⇒ v, v ⇒ w ∈ P k2 ,
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– a relation wuw′ ⇒ wvw′ for every relation u⇒ v ∈ P k2 and words w,w′ over Pk1 .

There is a morphism Pk → Pk+1 in J -cell. Every generator of Q gets added at the first step
and every relation of Q gets added at some step. Therefore Q = colimk Pk and i belongs to
J -cell.

Remark 56. The above proof essentially consists in using the small object argument to construct
a factorization i = g ◦ f with f ∈ J -cell and g ∈ J�, and observing that g can be chosen to be
an identity when Q is pseudo-fibrant.
Lemma 57. Any pseudo-fibration p : P → Q ∈ J� with pseudo-fibrant target Q is a fibration,
i.e., p ∈ (C ∩W)�.

Proof. Suppose given a trivial cofibration i : P′ → Q′ ∈ C∩W and two morphisms f : P′ → P and
g : Q′ → Q′ such that p ◦ f = g ◦ i. By lemma 53, we can consider a pseudo-fibrant replacement
Q̃′ of Q′ together with the associated morphism j : Q′ → Q̃′ in �(J�), and thus in C ∩ W by
lemma 49. By orthogonality, there is a map k : Q̃′ → Q such that k ◦j = g. Finally, by lemma 55
(j ◦ i)�p, from which we deduce the existence of h : Q̃′ → P such that h◦ j ◦ i = f and p◦h = k.

P′ P

Q′ Q

Q̃′ 1

C∩W3i

f

p∈J�

C∩W⊇�(J�)3j

g

∈J�

∈J�

k

h

Therefore the morphism h ◦ j : Q′ → P is a filler and thus i� p.

Lemma 58. Pseudo-fibrant and fibrant objects coincide.

Proof. By lemma 52, any fibrant object is pseudo-fibrant. Conversely, by lemma 57, it suffices
to check that the terminal object is pseudo-fibrant, which can be verified directly.

Lemma 59. Given a monoid M , its standard presentation 〈M〉 is fibrant.

Proof. The presentation 〈M〉 satisfies the conditions of lemma 50 and is thus pseudo-fibrant and
thus fibrant by lemma 58.

5 Tietze equivalences as cospans
In this section we reconstruct the proof of the Tietze theorem by showing that any two presen-
tations of the same monoid can be related by a cospan of generalized Tietze transformations.

5.1 Coproduct. We begin by showing that, under suitable hypothesis, the canonical injec-
tions into coproducts are cofibrations.
Lemma 60. In a model category, when X is cofibrant, the canonical injections ι0 : Y → Y tX
and ι1 : Y → X t Y are cofibrations.
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Proof. We have a pushout diagram

∅ Y

X X t Y
p

ι1

ι0

When X is cofibrant, the initial map into X is a cofibration, and the map ι1 is thus also a
cofibration, as a pushout of a cofibration. The other case is similar.

5.2 Weak equivalences as cospans. We now recall the contents of the proof of the cele-
brated Ken Brown lemma, which shows that every weak equivalence between cofibrant objects
factors as a cospan of trivial cofibrations.
Lemma 61 (Ken Brown’s lemma). In a model category, every weak equivalence w : X → Y
between cofibrant objects X and Y factors as w = p ◦ i where i is a trivial cofibration and p a
trivial fibration which admits a section by a trivial cofibration j:

Z

X Y.

p

i

w

j

Proof. We can factor the map (w, idY ) : X t Y → Y as a cofibration k : X t Y → Z followed
by a trivial fibration p : Z → Y . Since X and Y are cofibrant, by lemma 60, the injections into
X t Y are cofibrations. We define i = k ◦ ι0 and j = k ◦ ι1:

X

X t Y Z Y

Y

ι0

i

w

k p

ι1

j

idY

The maps i and j are cofibrations as composites of cofibrations and are weak equivalences by
the 2-out-of-3 property.

Remark 62. In the previous lemma, the cospan (i, j) can be considered as a factorization of w,
in the sense that we have j ◦ w = j ◦ p ◦ i = i.
Remark 63. In a model category where monomorphisms are cofibrations (such as the case of
interest here, see lemma 27), a simpler argument can be given: since Y is cofibrant and p is a
trivial fibration, the diagram

∅ Z

Y Y

p

idY

j

admits a filler j : Y → Z, which is a section of p; moreover, since j is a monomorphism, it is a
cofibration, and it is a weak equivalence by the 2-out-of-3 property.
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Theorem 64. In a model category M in which every object is cofibrant, every isomorphism
in Ho(M) is the localization of a cospan of trivial cofibrations.

Proof. Consider an isomorphism f : X → Y in Ho(M). We write M′ for the full subcategory
of M whose objects are fibrant. The fibrant replacement functor F : M → M′ induces an
equivalence between the homotopy categories [7, Proposition 1.2.3]. Moreover, Ho(M′) is a
quotient ofM′ by homotopy equivalences [7, Theorem 1.2.10], the map Ff is thus a homotopy
equivalence and thus a weak equivalence [7, Proposition 1.2.8]. The map f is thus the localization
of a span of weak equivalences

X Y

FX FY

iX iY

Ff

where iX : X → FX is the trivial cofibration associated to the fibrant replacement. By lemma 61,
we thus have two cospans of trivial cofibrations

X ′ Y ′

X FY Y

and we conclude to the existence of one cospan of trivial cofibrations using the fact that trivial
cofibrations are closed under pushouts.

5.3 Tietze equivalences. We can now conclude with the abstract proof of the Tietze theo-
rem.
Theorem 65. In the category rPres, two presentations P and Q are such that P ' Q if and only
if there is a cospan of generalized Tietze transformations (of morphisms in J -cell) from P to Q.

Proof. Suppose given two presentations P,Q ∈ rPres such that P ' Q. With the model structure
introduced in section 3, this can be rewritten as Ho(P) ' Ho(Q), and therefore we deduce that
there is a cospan of trivial cofibrations

R

P Q.

Up to taking a fibrant replacement of R and suppose that R is fibrant and thus pseudo-fibrant
by lemma 58. We deduce that this is a span of Tietze transformations by lemma 55. Conversely,
Tietze transformations are weak equivalences by lemma 48 and thus P and Q become isomorphic
after localizing under weak equivalences.

6 Variants and extensions
Many variants of the situation considered here could be thought of and are left for future work.
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6.1 Non-reflexive presentations. If we consider the category Pres of (non-necessarily re-
flexive) presentations, many of the constructions performed in previous section can still be carried
over. However, lemma 30 does not hold anymore, preventing the construction of a model cate-
gory: the elements of I� are not necessarily weak equivalences. As a counter-example consider
the morphism

〈a, b | 〉 → 〈c | 〉.
It belongs to I� since it satisfies the conditions of lemma 29 (which still holds): it is surjective
on generators and lifts every required relation since there are none. It is however not a weak
equivalence since the monoids presented by the source and the target are respectively N ∗N and
N which are not isomorphic (the first one is not commutative for instance). We expect that there
is however a right semi-model structure in the sense of [2], whose cofibrations are generated by I.

6.2 Multisets of relations. The notion of presentation can be modified in order to allow
multiple relations with the same source and the same target: such a presentation P consists of
a set P1 of generators together with a set P2 of relations equipped with source and target maps
s, t : P2 → P1. Here, an element α ∈ P2 with s(α) = u and t(α) = v encodes a relation u ⇒ v.
We expect that this modification does not significantly changes the situation studied here.

6.3 Presentations of categories. As a further generalization, one can consider presentations
of categories. Such a presentation P of a category consists of a set P0 of objects, a set P1 of
generators for morphisms equipped with source and target maps s0, t0 : P1 → P0, and a set P2
of relations equipped with source and target maps s1, t1 : P2 → P∗1 such that s∗0 ◦ s1 = s∗0 ◦ t1 and
t∗0 ◦ s1 = t∗0 ◦ t1. Here, P∗1 denotes the morphisms of the free category over the graph (P0,P1)
and the category presented by P is obtained by quotienting the morphisms of this free category
under the congruence generated by P2. The notion of presentation of monoid of section 6.2, is
the particular case where P0 = {?} is reduced to one element. We expect the proofs of this paper
to generalize to this setting.

6.4 Presentations of n-categories. This notion of presentation sketched in the previous
section, is a particular case of the notion of polygraph, see [4], which generalizes to give presenta-
tions of n-categories. It would be interesting to see whether the model structure extends to this
case.

6.5 Presentations of groupoids. The notion of Tietze transformation was originally devel-
oped for presentations of groups. It would be interesting to generalize the model structure to
this case, as well as generalizations of presentations of groupoids.

6.6 Coherent presentations. A notion of Tietze transformation for coherent presentations
of categories is introduced in [5]. We would like to investigate this case, as well as, more generally,
developing a notion of Tietze transformation for resolutions of categories by (∞, 1)-polygraphs.
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