Pietro Barbiero 
email: barbiero<pb737@cam.ac.uk>.
  
Gabriele Ciravegna 
  
Francesco Giannini 
  
Mateo Espinosa Zarlenga 
  
Lucie Charlotte Magister 
  
Alberto Tonda 
  
Pietro Lio 
  
Frédéric Precioso 
  
Mateja Jamnik 
  
Giuseppe Marra 
  
Lucie Charlotte 
  
Mateo Espinosa Zarlenga 
  
Pietro Lió 
  
Frederic Precioso 
  
Ce+relunet Ce+xgboost 
  
Interpretable Neural-Symbolic Concept Reasoning

de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Introduction

The opaque decision process of deep learning (DL) models has failed to inspire human trust despite their state-of-the-art performance across multiple tasks [START_REF] Rudin | Stop explaining black box machine learning models for high stakes decisions and use interpretable models instead[END_REF][START_REF] Bussone | The role of explanations on trust and reliance in clinical decision support systems[END_REF], raising ethical [START_REF] Durán | Who is afraid of black box algorithms? On the epistemological and ethical basis of trust in medical AI[END_REF][START_REF] Lo Piano | Ethical principles in machine learning and artificial intelligence: cases from the field and possible ways forward[END_REF] and legal [START_REF] Wachter | Counterfactual explanations without opening the black box: Automated decisions and the gdpr[END_REF][START_REF] Eugdpr | General data protection regulation[END_REF] concerns. For this reason, interpretability is now a core research topic in the field of responsible AI [START_REF] Rudin | Stop explaining black box machine learning models for high stakes decisions and use interpretable models instead[END_REF].

Concept-based models [START_REF] Kim | Interpretability beyond feature attribution: Quantitative testing with concept activation vectors (tcav)[END_REF][START_REF] Chen | Concept whitening for interpretable image recognition[END_REF] aim to increase human trust in deep learning models by using human-understandable concepts to train interpretable models-such as logistic regression or decision trees [START_REF] Rudin | Stop explaining black box machine learning models for high stakes decisions and use interpretable models instead[END_REF][START_REF] Koh | Concept bottleneck models[END_REF][START_REF] Kazhdan | Now you see me (cme): concept-based model extraction[END_REF] (Figure 1). This approach significantly increases human trust in the AI predictor [START_REF] Rudin | Stop explaining black box machine learning models for high stakes decisions and use interpretable models instead[END_REF][START_REF] Shen | Trust in AI: Interpretability is not necessary or sufficient, while black-box interaction is necessary and sufficient[END_REF] as it allows users to clearly understand a model's decision process. However, state-of-the-art concept-based models, which rely on concept embeddings [START_REF] Yeh | On completeness-aware concept-based explanations in deep neural networks[END_REF][START_REF] Kazhdan | Now you see me (cme): concept-based model extraction[END_REF][START_REF] Mahinpei | Promises and pitfalls of black-box concept learning models[END_REF][START_REF] Espinosa Zarlenga | Concept embedding models[END_REF] to attain high performance, are not completely interpretable. Indeed, concept embeddings lack clear semantics on individual dimensions, e.g., ĉyellow = [2.3, 0.3, -3.5, . . . ] T does not have semantics assigned to each of its dimensions. This sacrifice of interpretability in favour of model capacity leads to a possible reduction in human trust when using these models, as argued by [START_REF] Rudin | Stop explaining black box machine learning models for high stakes decisions and use interpretable models instead[END_REF]; [START_REF] Mahinpei | Promises and pitfalls of black-box concept learning models[END_REF].

In this paper, we propose the Deep Concept Reasoner1 (DCR, Section 3), the first interpretable concept-based model building on concept embeddings. DCR applies differentiable and learnable modules on concept embeddings to build a set of fuzzy rules which can then be executed on semantically meaningful concept truth degrees to provide a final interpretable prediction. Our experiments (Section 4) show that DCR: (i) attains better task accuracy than state-ofthe-art interpretable concept-based models (Figure 1), (ii) discovers meaningful logic rules, matching known ground truths even in absence of training concept supervision, and (iii) facilitates the generation of counterfactual examples thanks to the highly-interpretable learnt rules. 

Preliminaries

Concept-based models Concept-based models f : C → Y learn a map from a concept space C to a task space Y [START_REF] Yeh | On completeness-aware concept-based explanations in deep neural networks[END_REF]. If concepts are semantically meaningful, then humans can interpret this mapping by tracing back predictions to the most relevant concepts (Ghorbani et al., 2019a). When the features of the input space are hard for humans to reason about (such as pixel intensities), concept-based models work on the output of a conceptencoder mapping g : X → C from the input space X to the concept space C (Ghorbani et al., 2019b;[START_REF] Koh | Concept bottleneck models[END_REF]. In general, training a concept-based model may require a dataset where each sample consists of input features x ∈ X ⊆ R n (e.g., an image's pixels), k ground truth concepts c ∈ C ⊆ {0, 1} k (i.e., a binary vector with concept annotations, when available) and o task labels y ∈ Y ⊆ {0, 1} o (e.g., an image's classes). During training, a concept-based model is encouraged to align its predictions to task labels i.e., y ≈ ŷ = f (g(x)). Similarly, a concept encoder can be supervised when concept labels are available i.e., c ≈ ĉ = g(x). When concept labels are not available, they can still be extracted from pre-trained models associating concept labels to clusters found in their embeddings as proposed by Ghorbani et al. (2019b); [START_REF] Magister | Human-in-the-loop concept-based explanations for graph neural networks[END_REF]. We indicate concept and task predictions as ĉi = (g(x)) i and ŷj = (f (ĉ)) j respectively.

Concept truth values vs. concept embeddings Usually, concept-based models represent concepts using their truth degree, that is, ĉ1 , . . . , ĉk ∈ [0, 1]. However, this representation might significantly degrade task accuracy as observed by [START_REF] Mahinpei | Promises and pitfalls of black-box concept learning models[END_REF][START_REF] Espinosa Zarlenga | Concept embedding models[END_REF]. To overcome this issue, concept-based models may represent concepts using concept embeddings ĉi ∈ R m alongside their truth degrees ĉi ∈ [0, 1]. 2 While 2 With an abuse of notation, we use the same symbol for a concept embedding and its corresponding truth degree, with the this increases task accuracy of concept-based models [START_REF] Espinosa Zarlenga | Concept embedding models[END_REF], it also weakens their interpretability as concept embeddings lack clear semantics.

Fuzzy logic rules Continuous fuzzy logics [START_REF] Hájek | Metamathematics of fuzzy logic[END_REF] extend Boolean logic by relaxing discrete truth-values in {0, 1} to truth degrees in [0, 1], and Boolean connectives to (differentiable) real-valued operators. In particular, a t-norm ∧ : [0, 1] × [0, 1] → [0, 1] generalises the Boolean conjunction while a t-conorm ∨ : [0, 1] × [0, 1] → [0, 1] generalises the disjunction. These two operators are connected by the strong negation ¬, defined as ¬x = 1 -x. For example, the product (fuzzy) logic can be defined by the operators x ∧ y := x • y and x ∨ y := x + yxy. As in Boolean logic, the syntax of a t-norm fuzzy rule includes: (i) Atomic formulas consisting of propositional variables z, and logical constants ⊥ (false, "0") and ⊤ (true, "1"), (ii) Literals representing atomic formulas or their negation, and (iii) Logical connectives ¬, ∧, ∨, ⇒, ⇔ joining formulas in arbitrarily complex compound formulas.

Deep Concept Reasoning

Here we describe the "Deep Concept Reasoner" (DCR, Figure 2), the first interpretable concept-based model based on concept embeddings. Similarly to existing models based on concept embeddings, DCR exploits high-dimensional representations of the concepts. However, in DCR, such representations are only used to compute a logic rule. The final prediction is then obtained by evaluating such rules on the concepts' truth values and not on their embeddings, thus maintaining clear semantics and providing a totally interpretable decision. Being differentiable, DCR is trainable as an independent module on concept databases, but it can also be trained end-to-end with differentiable concept encoders. In the following section, we describe (1) the former in bold to distinguish it.

syntax of the rules we aim to learn (Section 3.1), (2) how to (neurally) generate and execute learnt rules to predict task labels (Section 3.2), (3) how DCR learns simple rules in specific t-norm semantics (Section 3.2), and (4) how we can generate global and counterfactual explanations with DCR (Section 3.4). We provide Figure 2 as a reference to graphically follow the discussion.

Rule syntax

To understand the rationale behind DCR's design, we begin with an illustrative toy example:

Example 3.1. Consider the problem of defining the fruit "banana" given the vocabulary of concepts "soft", "round", and "yellow". A simple definition can be y banana ⇔ ¬c round ∧ c yellow . From this rule we can deduce that (i) being "soft" is irrelevant for being a "banana" (indeed bananas can be both soft or hard), and (ii) being both "not round" and "yellow" is relevant to being a "banana".

As in this example, DCR rules can express whether a concept is relevant or not (e.g., "soft"), and whether a concept plays a positive (e.g., "yellow") or negative (e.g., "not round") role. To formalize this description of rule syntax, we let l ji denote the literal of concept c i (i.e., ĉi or ¬ĉ i ) representing the role of the concept i for the j-th class. Similarly, we let r ji ∈ {0, 1} representing whether ĉi is relevant for predicting the class y j . For each sample x and predicted class ŷj , DCR learns a rule with the following syntax3 :

ŷj ⇔ i: rji=1 l ji (1)
Such a rule defines a logical statement for why a given sample is predicted to have label ŷj using a conjunction of relevant concept literals (i.e., ĉi or ¬ĉ i ).

Rule generation and execution

Having defined the syntax of DCR rules, we describe how to generate and execute these rules in a differentiable way.

To generate a rule we use two neural modules ϕ j and ψ j which determine the role and relevance of each concept, respectively. Then, we execute each rule using the concepts' truth degrees of a given sample. We split this process into three steps: (i) learning each concept's roles, (ii) learning each concept's relevance, and (iii) predicting the task using the relevant concepts.

Concept role Generation: To determine the role (positive/negative) of a concept, we use a feed-forward neural network ϕ j : R m → [0, 1], with m being the dimension of each concept embedding. The neural model ϕ j takes as input a concept embedding ĉi ∈ R m and returns a soft indicator representing the role of the concept in the formula, that is, whether in literal l ji the concept should appear negated (e.g., ϕ banana (ĉ round ) = 0) or not (e.g., ϕ banana (ĉ yellow ) = 1).

Execution: When we execute the rule, we need to compute the actual truth degree of a literal l ji given its role ϕ(ĉ i ).

We define this truth degree ℓ ji ∈ [0, 1]. In particular, we want to (i) forward the same truth degree of the concept, i.e. ℓ ji = ĉi , when ϕ(ĉ i ) = 1, and (ii) negate it, i.e. ℓ ji = ¬ĉ i , when ϕ(ĉ i ) = 0. This behaviour can be generalized by a fuzzy equality ⇔ when both ϕ j and ĉ are fuzzy values, i.e.:

ℓ ji = (ϕ j (ĉ i ) ⇔ ĉi ) (2) 
Example 3.2. For a given object consider ĉround = 0 and ϕ banana (ĉ round ) = 0. Then we get

ℓ banana,round = (ϕ banana (ĉ round ) ⇔ ĉround ) = ¬ĉ round = 1. If instead we had ϕ banana (ĉ round ) = 1, then ℓ banana,round = (ϕ banana (ĉ round ) ⇔ ĉround ) = 0.
Concept relevance. Generation: To determine the relevance of a concept ĉi , we use another feed-forward neural network ψ j : R m → [0, 1]. The model ψ j takes as input a concept embedding ĉi ∈ R m and returns a soft indicator representing the likelihood of a concept being relevant for the formula (e.g., ψ banana (ĉ soft ) = 1) or not (e.g., ψ banana (ĉ yellow ) = 0). Execution: When we execute the rule, we need to compute the truth degree of a literal given its relevance r ji . We define the truth degree of a relevant literal as ℓ r ji ∈ [0, 1], where r stands for "relevant". In particular, we want to (i) filter irrelevant concepts when ψ j (ĉ i ) = 0 by setting ℓ r ji = 1, and (ii) retain relevant literals when ψ j (ĉ i ) = 1 by setting ℓ r ji = ℓ ji . This behaviour can be generalized to fuzzy values of ψ j as follows:

ℓ r ji = (ψ j (ĉ i ) ⇒ ℓ ji ) = (¬ψ j (ĉ i ) ∨ ℓ ji ) (3) 
Note that setting ℓ r ji = 1 makes the literal l ji irrelevant since "1" is neutral w.r.t. the conjunction in Equation 4.

Example 3.3. For a given object of type "banana", let the concept "soft" be irrelevant, that is ψ banana (ĉ soft ) = 0. Then we get ℓ r banana,soft = (ψ banana (ĉ soft ) ⇒ ℓ banana,soft ) = 1, independently from the content of ĉsoft or ℓ banana,soft . Conversely, let the concept "yellow" by relevant, that is ψ banana (ĉ yellow ) = 1, and let its concept literal be ℓ banana,yellow = ĉyellow = 1. As a result, we get ℓ r banana,yellow = (ψ banana (ĉ yellow ) ⇒ ℓ banana,yellow ) = 1.

Task prediction Finally, we conjoin the relevant literals ℓ r ji to obtain the task prediction ŷj : Example 3.4. For a given object of type "banana", consider the following truth degrees for the concepts: ĉsoft = 1, ĉround = 0, ĉyellow = 1. Consider also the following values for the role and relevance of the class "banana": ϕ banana (ĉ i ) = [0, 0, 1] and ψ banana (ĉ i ) = [0, 1, 1] for i ∈ {soft, round, yellow}. Then, we obtain the final prediction for class banana as:

ŷj = k i=1 ℓ r ji (4)
ŷbanana = 3 i=1 (¬ψ banana (ĉ i ) ∨ (ϕ banana (ĉ i ) ⇔ ĉi )) = = (1 ∨ (0 ⇔ 1)) ∧ (0 ∨ (0 ⇔ 0)) ∧ (0 ∨ (1 ⇔ 1)) = = (1 ∨ 0) ∧ (0 ∨ 1) ∧ (0 ∨ 1) = 1 ∧ 1 ∧ 1 = 1
We remark that the models ϕ j and ψ j : (a) generate fuzzy logic rules using concept embeddings which might hold more information than just concept truth degrees, and (b) do not depend on the number of input concepts which makes them applicable-without retraining-in testing environments where the set of concepts available differs from the set of concepts used during training. We also remark that the whole process is differentiable as the neural models ϕ j and ψ j are differentiable as well as the fuzzy logic operations as we will see in the next section.

Rule parsimony and fuzzy semantics

Rule parsimony Simple explanations and logic rules are easier to interpret for humans [START_REF] Miller | The magical number seven, plus or minus two: Some limits on our capacity for processing information[END_REF][START_REF] Rudin | Stop explaining black box machine learning models for high stakes decisions and use interpretable models instead[END_REF]. We can encode this behaviour within the DCR architecture by enforcing a certain degree of competition among concepts to make only relevant concepts survive. To this end, we design a special activation function for the neural network ψ j rescaling the output of a log-softmax activation:

γ ji = log exp(MLP j (ĉ i )) k i ′ =1 exp(MLP j (ĉ i ′ ))
(5)

r ji = ψ j (ĉ i ) = σ γ ji - 1 k k i ′ =1 γ ji ′ (6)
This way, if the scores γ ji are uniformly distributed, then we expect the network ψ j to select half of the concepts. We can also parametrise this function by introducing a parameter τ ∈ [-∞, ∞] that allows a user to bias the default behaviour of the activation function:

r ji = σ(γ ji -τ k k i ′ =1 γ ji ′ ).
A user can increase τ to get more relevance scores closer to 1 (more complex rules) or decrease it to get more relevance scores closer to 0 (simpler rules).

Fuzzy semantics To create a semantically valid model, we enforce the same semantic structure in all logic and neural operations. Moreover, to train our model end-to-end, we need these semantics to be differentiable in all its operations, including logic functions. Marra et al. (2020c) describe a set of possible t-norm fuzzy logics which can serve the purpose.

In our experiments, we use the Gödel t-norm. With this semantics, we can rewrite Equation 2 as:

ℓ ji = ϕ j (ĉ i ) ⇔ ĉi = (ϕ j (ĉ i ) ⇒ ĉi ) ∧ (ĉ i ⇒ ϕ j (ĉ i )) = = (¬ϕ j (ĉ i ) ∨ ĉi ) ∧ (¬ĉ i ∨ ϕ j (ĉ i )) = = min{max{1 -ϕ j (ĉ i ), ĉi }, max{1 -ĉi , ϕ(ĉ i )}}
and Equation 4 as: ŷj = min k i=1 {max{1 -ψ j (ĉ i ), ℓ ji }}

Global and counterfactual explanations

Interpreting global behaviour In general, DCR rules may have different weights and concepts for different samples. However, we can still globally interpret the predictions of our model without the need for an external post-hoc explainer. To this end, we collect a batch of (or all) fuzzy rules generated DCR on the training data X train . Following [START_REF] Barbiero | Entropy-based logic explanations of neural networks[END_REF], we then Booleanize the collected rules and aggregate them with a global disjunction to get a single logic formula valid for all samples of class j:

ŷC j = x∈Xtrain ŷj (x) (7) 
This way we obtain a global overview of the decision process of our model for each class.

Counterfactual explanations Logic rules clearly reveal which concepts play a key role in a prediction. This transparency, typical of interpretable models, facilitates the extraction of simple counterfactual explanations without the need for an external algorithm as in [START_REF] Abid | Meaningfully explaining model mistakes using conceptual counterfactuals[END_REF]. In DCR we extract simple counter-examples x ⋆ using the logic rule as guidance. Following [START_REF] Wachter | Counterfactual explanations without opening the black box: Automated decisions and the gdpr[END_REF], we generate counter-examples as close as possible to the original sample |x -x ⋆ | < ϵ. In particular, [START_REF] Wachter | Counterfactual explanations without opening the black box: Automated decisions and the gdpr[END_REF] proposes to perturb the input features of a model starting from the most relevant features. As the decision process depends mostly on the most relevant features, perturbing a small set of features is usually enough to find counter-examples.

To this end, we first rank the concepts present in the rule according to their relevance scores. Then, starting from the most relevant concept, we invert their truth value until the prediction of the model changes. The new rule represents a counterfactual explanation for the original prediction.

Experiments

Research questions

In this section, we analyze the following research questions:

• Generalization -How does DCR generalize on unseen samples compared to interpretable and neuralsymbolic models? How does DCR generalize when concepts are unsupervised?

• Interpretability -Can DCR discover meaningful rules? Can DCR re-discover ground-truth rules? How stable are DCR rules under small perturbations of the input compared to interpretable models and local posthoc explainers? How long does it take to extract a counterfactual explanation from DCR compared to a non-interpretable model?

Experimental setup

Data & task setup We investigate our research questions using six datasets spanning three of the most common data types used in deep learning: tabular, image, and graphstructured data. We use the three benchmark datasets (XOR, Trigonometry, and Dot) proposed by Espinosa Zarlenga et al. (2022) as they capture increasingly complex conceptto-label relationships, therefore challenging concept-based models. To test the DCR's ability to re-discover groundtruth rules we use the MNIST-Addition dataset [START_REF] Manhaeve | Deepproblog: Neural probabilistic logic programming[END_REF], a standard benchmark for neural-symbolic systems where one aims to predict the sum of two digits from the MNIST's dataset. Furthermore, we evaluate our methods on two real-world benchmark datasets: the Large-scale CelebFaces Attributes (CelebA, [START_REF] Liu | Deep learning face attributes in the wild[END_REF]) and the Mutagenicity [START_REF] Morris | Tudataset: A collection of benchmark datasets for learning with graphs[END_REF] Baselines We compare DCR against interpretable models, such as logistic regression [START_REF] Verhulst | Resherches mathematiques sur la loi d'accroissement de la population[END_REF], decision trees [START_REF] Breiman | Classification and regression trees[END_REF], as well as state-of-the-art black-box classifiers, such as extreme gradient boosting (XGBoost) [START_REF] Chen | XGBoost: A scalable tree boosting system[END_REF], and locallyinterpretable neural models, such as the Relu Net [START_REF] Ciravegna | Logic explained networks[END_REF]. We train all baseline models in two different conditions mapping concepts to tasks either using concept truth degrees or using concept embeddings (baselines marked with CT and CE in figures, respectively). We consider interpretable only baselines trained on concept truth degrees only, as concept embeddings lack of clear semantics assigned to each dimension. However, baselines trained on concept embeddings still provide a strong reference for task accuracy w.r.t. interpretable models. On the MNIST-Addition dataset we compare DCR with state-of-the-art neural-symbolic baselines including: DeepProbLog (Manhaeve et al., 2018), DeepStochLog [START_REF] Winters | Deepstochlog: Neural stochastic logic programming[END_REF], Logic Tensor Networks [START_REF] Badreddine | Logic tensor networks[END_REF], and Em-bed2Sym [START_REF] Aspis | Embed2symscalable neuro-symbolic reasoning via clustered embeddings[END_REF]. This is possible as the MNIST-Addition dataset provides access to the full set of groundtruth rules, allowing us to train these neural-symbolic systems. Finally, we compare DCR interpretability with interpretable models, such as logistic regression and decision trees, and with local post-hoc explainers, such as the Local Interpretable Model-agnostic Explanations (LIME, [START_REF] Ribeiro | why should i trust you?" explaining the predictions of any classifier[END_REF]) applied on XGBoost.

Evaluation We assess each model's performance and interpretability based on four criteria. First, we measure task generalization using the Area Under the Receiver Operating Characteristic Curve (ROC AUC) from prediction scores [START_REF] Hand | A simple generalisation of the area under the roc curve for multiple class classification problems[END_REF]) (the higher the better). Second, Figure 3. Mean ROC AUC for task predictions for all baselines across all tasks (the higher the better). DCR often outperforms interpretable concept-based models. CE stands for concept embeddings, while CT for concept truth degrees. Models trained on concept embeddings are not interpretable as concept embeddings lack a clear semantic for individual embedding dimensions.

we evaluate DCR interpretability by comparing the learnt logic formulae with ground-truth rules in XOR, Trigonometry, and MNIST-Addition datasets, and indirectly on Mutagenicity by checking whether the learnt rules involve concepts corresponding to functional groups known for their harmful effects, as done by [START_REF] Ying | Generating explanations for graph neural networks[END_REF]. Third, to further assess interpretability, we measure the sensitivity of the predictions under small perturbations following Yeh et al. ( 2019) (the lower the better). Finally, we measure how receptive our model is to extract meaningful counterfactual examples from its rules by computing the number of concept perturbations required to obtain a counterfactual example following [START_REF] Wachter | Counterfactual explanations without opening the black box: Automated decisions and the gdpr[END_REF] (the lower the better). For each metric, we report their mean and 95% Confidence Intervals (CI) on our test sets using 5 different initialization seeds. We report further details and results in the appendix.

Task generalization

DCR outperforms interpretable models (Figure 3) Our experiments show that DCR generalizes significantly better than interpretable benchmarks in our most challenging datasets. This improvement peaks when concept embeddings hold more information than concept truth degrees, as in the CelebA and Dot tasks where this deficit of information is imposed byconstruction [START_REF] Espinosa Zarlenga | Concept embedding models[END_REF]. This grants DCR a significant advantage (up to ∼ 25% improvement in ROC-AUC) over the other interpretable baselines. This phenomenon confirms the findings by [START_REF] Mahinpei | Promises and pitfalls of black-box concept learning models[END_REF][START_REF] Espinosa Zarlenga | Towards robust metrics for concept representation evaluation[END_REF]. In particular, the concept shift in CelebA causes interpretable models to behave almost randomly as the set of test concepts is different from the set of train concepts (despite being correlated). DCR however still generalizes well as the mechanism generating rules only depends on concept embeddings and the embeddings hold more information on the correlation between train and test concepts w.r.t. concept truth degrees. To further test this hypothesis, we compare DCR against XGBoost, decision trees (DTs), and logistic regression trained on concept embeddings. In most cases, concept embeddings allow DTs and logistic regression to improve task generalization, but the predictions of such models are no longer interpretable. In fact, even a logic rule whose terms correspond to dimensions of a concept embedding is not semantically meaningful as discussed in Section 2. In contrast, DCR uses concept embeddings to assemble rules whose terms are concept truth degrees, which makes it possible to keep the rules semantically meaningful.

DCR matches the accuracy of neural-symbolic systems trained using human rules (Table 1) Our experiments show that DCR generates rules that, when applied, obtain accuracy levels close to neural-symbolic systems trained using human rules, currently representing the gold standard to benchmark rule learners. We show this result on the MNIST-Addition dataset [START_REF] Manhaeve | Deepproblog: Neural probabilistic logic programming[END_REF], a standard benchmark in neural-symbolic AI, where the labels on the concepts are not available. We learn concepts without supervision by adding another task classifier, which only uses very crisp ĉi to make the task predictions (see Appendix H). DCR achieves similar performance to state-of-the-art neuralsymbolic baselines (within 1% accuracy from the best baseline). However, DCR is the only system discovering logic rules directly from data, while all the other baselines are trained using ground-truth rules. Therefore, this experiment indicates how DCR can learn meaningful rules also without concept supervision while still maintaining state-of-the-art performance.

Interpretability

DCR discovers semantically meaningful logic rules (Table 2) Our experiments show that DCR induces logic rules that are both accurate in predicting the task and formally correct when compared to ground-truth logic rules. We evaluate the formal correctness of DCR rules on the XOR, Trigonometry, and MNIST-Addition datasets where we have access to ground-truth logic rules. We report a selection ) and the second is an (i.e., c ′′ 8 ) or viceversa which we can interpret globally using Equation 7as:

y 17 ⇔ (c ′ 9 ∧ c ′′ 8 ) ∨ (c ′ 8 ∧ c ′′ 9 )
. We list all logic rules discovered by DCR on the MNIST-Addition dataset in Appendix H. It is interesting to investigate the potential of DCR also in settings where we do not have access to the ground-truth logic rules, such as the Mutagenicity dataset. Here, unlike the MNIST addition dataset, not only there is no supervision on the concepts, but we don't even know which are the concepts. We use GCExplainer [START_REF] Magister | Human-in-the-loop concept-based explanations for graph neural networks[END_REF] to generate a set of concept embeddings from the embeddings of a trained GNN. We then use these embeddings to train DCR. In this setting, we can only evaluate the correctness of a DCR rules indirectly by checking whether the concepts appearing in the rules correspond to functional groups known for their harmful effects within the Mutagenicity dataset following [START_REF] Ying | Generating explanations for graph neural networks[END_REF]. Interestingly, many of DCR's rules predicting mutagenic effects include functional groups such as phenols [START_REF] Hättenschwiler | The role of polyphenols in terrestrial ecosystem nutrient cycling[END_REF] and dimethylamines (ACGIH®, 2016), which can be highly toxic when combined in molecules such as 3-Dimethylaminophenols [START_REF] Sabry | Synthesis of 4h-chromene, coumarin, 12h-chromeno [2, 3-d] pyrimidine derivatives and some of their antimicrobial and cytotoxicity activities[END_REF]. This suggests that DCR has the potential to unveil semantically meaningful relations among concepts and to make them explicit to humans by means of the learnt rules. We provide experimental details with the full list of concepts and rules discovered in Mutagenicity in Appendix C.

DCR rules are stable under small perturbations (Figure 4) An important characteristic of local explanations is to be stable under small perturbations [START_REF] Yeh | On the (in) fidelity and sensitivity of explanations[END_REF]. Indeed, users do not trust explanations if they change significantly on very similar inputs for which the model makes the same prediction. This metric, also known as explanation sensitivity, is generally computed as the maximum change 

GROUND-TRUTH RULE PREDICTED RULE

ERROR (%) XOR y 0 ← ¬c 0 ∧ ¬c 1 y 0 ← ¬c 0 ∧ ¬c 1 0.00 ± 0.00

y 0 ← c 0 ∧ c 1 y 0 ← c 0 ∧ c 1 0.00 ± 0.00 y 1 ← ¬c 0 ∧ c 1 y 1 ← ¬c 0 ∧ c 1 0.02 ± 0.02 y 1 ← c 0 ∧ ¬c 1 y 1 ← c 0 ∧ ¬c 1 0.01 ± 0.01 Trigonometry y 0 ← ¬c 0 ∧ ¬c 1 ∧ ¬c 2 y 0 ← ¬c 0 ∧ ¬c 1 ∧ ¬c 2 0.00 ± 0.00 y 1 ← c 0 ∧ c 1 ∧ c 2 y 1 ← c 0 ∧ c 1 ∧ c 2 0.00 ± 0.00 MNIST-Addition y 18 ← c ′ 9 ∧ c ′′ 9 y 18 ← c ′ 9 ∧ c ′′ 9 0.00 ± 0.00 y 17 ← c ′ 9 ∧ c ′′ 8 y 17 ← c ′ 9 ∧ c ′′ 8 0.00 ± 0.00 y 17 ← c ′ 8 ∧ c ′′ 9 y 17 ← c ′ 8 ∧ c ′′ 9 
0.00 ± 0.00 in the explanation of a model Φ(f ) on a slightly perturbed input (x ⋆ ), that is,

|Φ(f (x ⋆ )) -Φ(f (x))|, |x -x ⋆ | ∞ < ϵ.
We compare the DCR explanations w.r.t. our interpretable baselines as well as w.r.t. LIME [START_REF] Ribeiro | why should i trust you?" explaining the predictions of any classifier[END_REF] explaining the output of XGBoost. Since we are using different types of models, we use a normalised version of the sensitivity |Φ(f

(x ⋆ )) -Φ(f (x))|/|Φ(f (x))|.
We compute the distance between two explanations considering the feature importance of the original explanation w.r.t. to the feature importance of the explanation for the perturbed example.

For decision tree's rules, we consider the distance between the original path and the path of the perturbed example.

As highlighted in Figure 4, in all datasets the explanations provided by DCR are very stable, particularly w.r.t. LIME and ReluNet. Notice that the figure does not report the explanation sensitivity of logistic regression and decision tree because it is trivially zero as they learn fixed rules for the entire dataset. The area under the sensitivity curves of all methods together with further details concerning this experiment has been reported in Appendix F.

DCR explains prediction mistakes

In DCR, task predictions are obtained by executing the logic rules. In this sense, the rules transparently represent the model behavior, and they can explain misclassifications at the level of tasks. For example, reading DCR rules we can observe that a task was mispredicted because some concepts have been predicted wrongly, or the relevance scores are selecting a suboptimal set of concepts. To test this, we analyze the mispredicted test samples in datasets where we have access to ground truth rules as reference (XOR and Trigonometry). Interestingly, DCR is able to identify a mislabeled sample in the XOR dataset (first row of Table 3), highlighting an error in the data generation process. In fact, the rule learnt by DCR is correct y = 0 ← ¬c 0 ∧ ¬c 1 but the ground truth label was incorrect y = 1. In the Trigonometric dataset instead, concepts were mispredicted, thus leading to incorrect rules. 

y = 0 ← ¬c 0 ∧ ¬c 1 y = 1 Trigonometry [0.0, 1.0, 1.0] y = 1 ← ¬c 0 ∧ c 1 ∧ c 2 y = 0 Trigonometry [0.0, 1.0, 0.0] y = 0 ← ¬c 0 ∧ c 1 ∧ ¬c 2 y = 1 Trigonometry [0.0, 1.0, 1.0] y = 1 ← ¬c 0 ∧ c 1 ∧ c 2 y = 0 Trigonometry [0.0, 1.0, 1.0] y = 1 ← ¬c 0 ∧ c 1 ∧ c 2 y = 0
DCR enables discovering counterfactual examples (Figure 5) Besides being stable, DCR rules can be used to find simple counterfactual examples, as introduced in Section 3.4. In Figure 5 we show a model's confidence in its predictions as we increase the number of concept perturbations. In making perturbations, we sort concepts from the most relevant to the least using DCR rules, as suggested by [START_REF] Wachter | Counterfactual explanations without opening the black box: Automated decisions and the gdpr[END_REF]. Our results show that DCR confidence in its predictions drops quickly when we perturb the most relevant concepts according to a given rule. This enables us to discover counterfactual examples where the concept literals are very similar to the original one rule. This behaviour is emblematic of interpretable models such as decision trees and logistic regression, for which similar conclusions can be drawn. We also observe how in Mutagenicity DCR confidence is a bit higher than interpretable baselines. We can explain this behavior as for this challenging dataset DCR rules give equal relevance to a larger set of concepts. Similarly to interpretable methods, DCR prediction confidence quickly drops after inverting the truth degree of a small set of relevant concepts, facilitating the discovery of counterfactual examples.

confidence curve are generally higher than the other methods. We report the actual values for all methods in Table 5 together with further details and counterfactual examples.

Key findings & significance

Limitations One of the main limitations of DCR is that its global behavior may not be directly interpretable, which means that global rules may not perfectly align with the exact reasoning of the model. This could be an issue in cases where a user requires a precise understanding of the global model behavior. Also, the complexity of DCR rules may increase significantly when the difference between two tasks can only be determined by using a very high number of concepts. However, in most real-world cases, and in current benchmark datasets for concept-based models, this issue rarely arises. Finally, DCR requires concept embeddings as inputs, which assumes the existence of concept-based datasets or high-quality concept-discovery methods.

Relations with concept-based methods Interpretable concept-based models [START_REF] Koh | Concept bottleneck models[END_REF] address the lack of human trust in AI systems as they allow their users to understand their decision process [START_REF] Rudin | Stop explaining black box machine learning models for high stakes decisions and use interpretable models instead[END_REF]Ghorbani et al., 2019a;[START_REF] Barbiero | Categorical foundations of explainable ai: A unifying formalism of structures and semantics[END_REF]. These approaches come with several advantages over other explainability methods as they circumvent the brittleness of post-hoc methods [START_REF] Adebayo | Sanity checks for saliency maps[END_REF][START_REF] Kindermans | The (un) reliability of saliency methods[END_REF] and provide a semantic advantage in settings where input features are naturally hard to reason about (e.g., raw image pixels) by providing explanations in terms of human-interpretable concepts (Ghorbani et al., 2019a;[START_REF] Georgiev | Algorithmic concept-based explainable reasoning[END_REF][START_REF] Azzolin | Global explainability of gnns via logic combination of learned concepts[END_REF][START_REF] Magister | Encoding concepts in graph neural networks[END_REF][START_REF] Xuanyuan | Global concept-based interpretability for graph neural networks via neuron analysis[END_REF]. However, Espinosa Zarlenga et al. ( 2022) and [START_REF] Mahinpei | Promises and pitfalls of black-box concept learning models[END_REF] emphasise how state-of-the-art concept-based models either struggle to efficiently solve real-world tasks using concept truth-values only or they weaken their interpretability using concept embeddings to increase their learning capacity. This is true even when concept-based models use a simple logistic regression or decision tree to map concept embeddings to tasks because concept embedding dimensions do not have a clear semantic meaning, and models composing such dimensions generate prediction rules that are not human-interpretable. Our work solves this issue by introducing the first interpretable concept-based model that learns logic rules from concept embeddings.

Relations with neural-symbolic methods A common paradigm in neural-symbolic is to exploit deep learning models to map subsymbolic information (e.g. images) to an intermediate logical representation, which is then manipulated using weighted logic formalisms, such as probabilistic logic (DeepProbLog [START_REF] Manhaeve | Deepproblog: Neural probabilistic logic programming[END_REF], NeurASP [START_REF] Yang | Embracing neural networks into answer set programming[END_REF]), fuzzy logic (Lyrics (Marra et al., 2020c), LTN [START_REF] Badreddine | Logic tensor networks[END_REF][START_REF] Wagner | Neural-symbolic integration for interactive learning and conceptual grounding[END_REF])) or both (DLM (Marra et al., 2020b), RNM (Marra et al., 2020a)). This sets DCR between concept-based and neuralsymbolic models. However, while these neural symbolic models focus on how to maximally exploit available logic knowledge (e.g. a logic program) to improve neural predictions, DCR focuses on learning such logical knowledge. Other neural symbolic approaches, such as Neuro-Symbolic Concept Learner [START_REF] Mao | The neuro-symbolic concept learner: Interpreting scenes, words, and sentences from natural supervision[END_REF], the Neural Logic Machines [START_REF] Dong | Neural logic machines[END_REF], and the Neural State Machine [START_REF] Hudson | Learning by abstraction: The neural state machine[END_REF], are actually closer in spirit to concept based models as they exploit intermediate symbolic representations. However, the decision-making process on top of the concepts/symbols still relies on (or is uniquely) an uninterpretable neural component. In contrast, DCR encodes its decision process in a logical rule that is executed explicitly giving the user full knowledge and control over the concept-to-task decision-making process. This would be impossible in these neural symbolic approaches, as the decision process is implicit in the weights of the networks.

Key advantages of DCR

The main advantage of DCR w.r.t. existing interpretable and black-box methods arises when dealing with challenging tasks where both interpretability and accuracy should be maximized. For simpler tasks, existing interpretable methods, such logistic regression, could be enough. On the other side, when interpretability is not a hard user requirement, then a simple black-box model would be easier to set up (e.g., it does not require concept labels or concept encoders). However, in all cases where interpretability plays a crucial role for the end user and existing interpretable models fail, then DCR could be preferable. Finally, compared to existing neural-symbolic approaches, DCR has an edge in all settings where the rules are unknown, while other methods (like DeepProbLog) might be more stable when the full set of rules is known in advance. For other limitations/drawbacks, please see our reply to common questions. 

Conclusion

A. Datasets & Experimental Setup

XOR dataset The first dataset used in our experiments is inspired by the exclusive-OR (XOR) problem proposed by [START_REF] Minsky | Perceptrons: An introduction to computational geometry[END_REF] to show the limitations of Perceptrons. We draw input samples from a uniform distribution in the unit square x ∈ [0, 1] 2 and define two binary concepts {c 1 , c 2 } by using the Boolean (discrete) version of the input features c i = ⊮ xi>0.5 . Finally, we construct a downstream task label using the XOR of the two concepts y = c 1 ⊕ c 2 .

Trigonometric dataset

The second dataset we use in our experiments is inspired by that proposed by [START_REF] Mahinpei | Promises and pitfalls of black-box concept learning models[END_REF] (see Appendix D of their paper). Specifically, we construct synthetic concept-annotated samples from three independent latent normal random variables h i ∼ N (0, 2). Each of the 7 features in each sample is constructed via a non-invertible function transformation of the latent factors, where 3 features are of the form (sin(h i ) + h i ), 3 features of the form (cos(h i ) + h i ), and 1 is the nonlinear combination (h 2 1 + h 2 2 + h 2 3 ). Each sample is then associated with 3 binary concepts representing the sign of their corresponding latent variables, i.e. c i = (h i > 0). In order to make this task Boolean-undecidable from its binary concepts, we modify the downstream task proposed by [START_REF] Mahinpei | Promises and pitfalls of black-box concept learning models[END_REF] by assigning each sample a label y = ⊮ (h1+h2)>0 indicating whether h 1 + h 2 is positive or not.

Vector dataset As much as the Trigonometric dataset is designed to highlight that fuzzy concept representations generalize better than Boolean concept representations, we designed the Vector dataset to show the advantage of embedding concept representations over fuzzy concept representations. The Vector dataset is based on four 2-dimensional latent factors from which concepts and task labels are constructed. Two of these four vectors correspond to fixed reference vectors w + and w - while the remaining two vectors {v i } 2 i=1 are sampled from a 2-dimensional normal distribution. We then create four input features as the sum and difference of the two factors v i . From this, we create two binary concepts representing whether or not the latent factors v i point in the same direction as the reference vectors w j (as determined by their dot products). Finally, we construct the downstream task as determining whether or not vectors v 1 and v 2 point in the same direction (as determined by their dot product).

MNIST Addition

In the MNIST addition dataset [START_REF] Manhaeve | Deepproblog: Neural probabilistic logic programming[END_REF], MNIST images are paired and the pair is labelled with the sum of the two corresponding digits. There are 30000 labelled pairs. The two images are given as two separate inputs to the model (i.e. they are not concateneted).

Mutagenicity The Mutagenicity dataset [START_REF] Morris | Tudataset: A collection of benchmark datasets for learning with graphs[END_REF] is a labelled graph classification dataset, where a graph represents a molecule. The task is to predict whether the molecule is mutagenic or non-mutagenic. The dataset has 4337 graphs. We use the version available as part of the PyTorch Geometric (Fey & Lenssen, 2019) library.

CelebA We use the CelebA dataset to simulate a real-world condition where the set of training and test concepts is not the same, though the embeddings of training and test concepts are still correlated. To this end, we work using pre-trained embeddings generated by a Concept Embedding Model in the setting described by Espinosa [START_REF] Espinosa Zarlenga | Concept embedding models[END_REF]. We then select the 3 most frequent concepts and train DCR and all the other baseline models on these concepts. However, at test time shift the set of concepts and we use the 3rd, 4th, and 5-th most frequent concept to make predictions. While all the first 5 concepts are highly correlated being attributes in human face images, the shift in distribution is quite significant. DCR can cope with this shift without any modification. However, usually AI models require a fixed number of features at training and test time. For this reason, we use zero-padding on training and test concepts to allow the other baselines to be trained and tested.

B. Training details B.1. Deep Concept Reasoner

For all datasets we train DCR using a Godel t-norm semantics. We also implement the neural modules ϕ and ψ as with two-layer MLPs with a number of hidden layers given by the size of the concept embeddings. For all synthetic datasets (i.e., XOR, Trig, Dot) and for CelebA we train DCR for 3000 epochs using a temperature of τ = 100. In Mutagenicity we train DCR for 7000 epochs using a temperature of 100.

B.2. Concept Embedding Generators

To generate concept embeddings on synthetic datasets (i.e., XOR, Trig, Dot), we use a Concept Embedding Model [START_REF] Espinosa Zarlenga | Concept embedding models[END_REF] implemented as an MLP with hidden layer sizes {128, 128} and LeakyReLU activations. When learning concept embedding representations in synthetic datasets, we learn embeddings with m = 128 activations.

In CelebA, we use a Concept Embedding Model on top of a pretrained ResNet-34 model [START_REF] He | Deep residual learning for image recognition[END_REF] with its last layer modified to output n hidden = m activations. In this case, we learn embeddings with m = 16 activations, smaller than in the synthetic datasets given the larger number of concepts in these tasks.

In Mutagenicity, we use a Graph Convolutional Network [START_REF] Scarselli | The graph neural network model[END_REF][START_REF] Morris | Weisfeiler and leman go neural: Higher-order graph neural networks[END_REF] to map input graphs to the given task. We then extract concept embeddings using GCExplainer [START_REF] Magister | Human-in-the-loop concept-based explanations for graph neural networks[END_REF]?), a graph-based variant of the Automated Concept-based Explanation proposed by Ghorbani et al. (2019b) for image data. We implement the GNN with four layers of graph convolutions with 40 hidden neurons followed by leaky ReLU activation function each. We then apply mean pooling on node embeddings produced by the preceding graph convolutions and extract predictions via a linear readout function with 10 hidden units. We train these networks for 20 epochs with a learning rate of 0.001 and a batch size of 16 graphs, where we use an 80:20 split for the training and testing set. After training, we run GCExplainer on the node embeddings computed before pooling and extract 30 concepts using k-Means [START_REF] Forgy | Cluster analysis of multivariate data: efficiency versus interpretability of classifications[END_REF], where each concept corresponds to a cluster of graph nodes in the embedding space. We encode these cluster labels as one-hot binary arrays and associate each node with the binary label of the closest cluster. We then obtain the concept truth values of a given graph by aggregating the binary labels of its nodes. To generate concept embeddings, we consider the node embeddings closest to the cluster centroids for active concepts.

Training Hyperparameters In all synthetic tasks, we generate datasets with 3,000 samples and use a traditional 70%-10%-20% random split for training, validation, and testing datasets, respectively. During training, we then set the weight of the concept loss to α = 1 across all models. We then train all models for 500 epochs using a batch size of 256 and a default Adam [START_REF] Kingma | A method for stochastic optimization[END_REF] optimizer with learning rate 10 -2 .

In our CelebA task, we fix the concept loss weight to α = 1 in all models and also use a weighted cross entropy loss for concept prediction to mitigate imbalances in concept labels. All models in this task are trained for 200 epochs using a batch size of 512 and an SGD optimizer with 0.9 momentum and learning rate of 5 × 10 -3 . In all models and tasks, we use a weight decay factor of 4e -05 and scale the learning rate during training by a factor of 0.1 if no improvement has been seen in validation loss for the last 10 epochs. Furthermore, all models are trained using an early stopping mechanism monitoring validation loss and stopping training if no improvement has been seen for 15 epochs.

B.3. Hyperparameter search for benchmark classifiers

xWe run a grid search using an internal 3-fold cross-validation to find the optimal settings for benchmark classifiers. The parameter grid we use is:

• decision tree 

C. Mutagenicity: Extracted Concepts

Here we report the visualization of the concepts extracted in Mutagenicity by GCExplainer. Following [START_REF] Magister | Human-in-the-loop concept-based explanations for graph neural networks[END_REF] we represent the concept of a node by expanding and visualizing its p-hop neighborhood. In this experiment we set p = 4 as we used four graph convolutional layers. Figures 678show the 30 concepts extracted using GCExplainer when k = 30 in k-Means, where the red nodes are the nodes clustered together for a given concept. A human can identify the concept present by reasoning about which features and structures are repeated across the five sample subgraphs, representative of a concept. Using this approach, a number of concepts can be clearly identified. For example, concept 0 (Figure 6, highlights the importance of the Carbon atom for the prediction that the molecule is mutagenic. In contrast, concepts 8 (Figure 6) and 28 (Figure 8) highlight the importance of the star structure in both the prediction of the molecule being mutagenic and non-mutagenic. Concept 11 clearly identified a complex structure of carbon, nitrogen and hydrogen atoms for predicting the label 'mutagenic'. For a complete overview, we visualise the full molecule of the medoids of each cluster in Figures 9 and 10, highlighting in red the node corresponding to the closest concept. This highlights the size and variety of the molecules classified as different concepts. 

C C O C C C O C C C C C C C O H H H H H H H H H H Label: non-mutagenic -Concept ID: 0 C C C C C C C C C C C C C C C C C N C C O O C H H H H H H H H H H H H H Label: mutagenic -Concept ID: 1 C C C C C C C O C O C C O C C C C C O C O C C O C C O C O C C CO C O C C C O C O C O C C C O C O C C C O C O C C C C O C O C O C C C O C O C C C O C C O C C O C C O H H
C C C C C C C C C C C C C C C N C C C O H H H H H H H H H H H H H Label: mutagenic -Concept ID: 3 C C C C C C C C N C C C C C C C C N C C O O C H H H H H H H H H H Label: mutagenic -Concept ID: 4 P O O O O C C C C C C C C C C C C C C H H H H H H H H H H H H H H H H H H H H
C C C C C C C O C O C C O C C C C C O C O C C O C C O C O C C C O C O C C C O C O C O C C C O C O C C C O C O C C C C O C O C O C C CO CO C CC O C C OC C O C CO

D. Softmax temperature effect on relevant concepts

We perform an ablation study on the temperature hyperparameter of DCR. This hyperparameter controls the number of concepts selected by DCR to generate rules in the activation function of Equation 6. A low temperature biases DCR towards simpler rules composing fewer concepts, while a high temperature biases DCR towards more complex rules composing many concepts. To assess this we train DCR on the embeddings of a pre-trained Concept Embedding Model on the Caltech-UCSD Birds-200-2011 dataset [START_REF] Wah | The caltech-ucsd birds-200-2011 dataset[END_REF] as it contains a large number of concepts. We test 7 temperature ranges τ ∈ [0.1, 10] and we train DCR using 5 different initialization seeds. 

E. Number of concepts effect on training and test time

We evaluate the computational cost of DCR as a function of the number of training concepts. To this end, we train DCR on the embeddings of a pre-trained Concept Embedding Model on the Caltech-UCSD Birds-200-2011 dataset [START_REF] Wah | The caltech-ucsd birds-200-2011 dataset[END_REF] as it contains a large number of concepts. We then randomly select 10, 50, 100, and 150 concepts to train DCR. We train DCR using 5 different initialization seeds. We observe that the computational time increases linearly when the number of concepts is small, and then it becomes almost constant. 

F. Sensitivity analysis

In Table 4, we report the results of the sensitivity analysis comparing DCR with interpretable models and local post-hoc explainers. More precisely, we report the area under the sensitivity curves of Figure 4, when increasing the perturbation radius. The lower the values, the more stable the local explanations are on similar samples. These samples x ⋆ correspond to

H. MNIST addition experiment

In this experiment, we tested DCR in a task where it is not provided with any label on the concepts. In the MNIST addition dataset [START_REF] Manhaeve | Deepproblog: Neural probabilistic logic programming[END_REF], pairs of MNIST images are labelled with the sum of the corresponding digit. The single images are, therefore, never labelled. The idea behind the task is that an image classifier can still be asked to predict the class of the single images, while a differentiable symbolic program can be used to map the class of the images to their sum. In terms of learning, the knowledge of both the label on the addition and the symbolic program provides a distant supervision signal to the image classifier.

This task can be easily mapped in terms of a concept-based model. The output of the classifier for the two images constitutes a set of 20 concepts (i.e. 10 class predictions for each of the two images). The set of all possible additions constitutes a set of 19 tasks. The MNIST addition task could be considered a first example of a more structured (i.e. relational) setting, where the input is a list of two images. However, it is still simple enough not to require any specific modelling.

The absence of direct supervision on the concepts puts our system in a different regime. In fact, there is no loss that forces the concept probabilities to represent crisp decisions. The softmax activation function tends to crisp decisions only when coupled with a categorical cross-entropy loss. In the absence of such loss, the network can still exploit the entire categorical distribution as an embedding to latently encode the identity of the digits.

Our solution to the absence of a concept loss is made of two ingredients. First, the softmax output distribution is substituted with a Gumbel-softmax sampling layer. The Gumbel-softmax forces the network to always make crisp decisions by sampling from the corresponding categorical distribution. Notice that a categorical distribution and its one-hot samples coincide when the distribution becomes very peaked on its prediction (e.g. at the end of the learning). Second, we introduce a second task predictor function f N N : C → Y , that akin to standard concept bottleneck models, predicts the task only from the probabilities, and we add a corresponding loss encouraging f N N (g(x)) = y. The goal here is to force the model to exploit (and thus learn) the concept probabilities ĉi and not to rely only on their embeddings ĉi .

In Table ??, we show the comparison with state-of-the-art Neural Symbolic frameworks, as described in the main text. Moreover, in Table 7, we show the entire list of global rules learned by DCR, showing that it actually captured perfectly the semantics of the addition relation.

Figure 1 .

 1 Figure 1. (a) An interpretable concept-based model f maps concepts Ĉ to tasks Ŷ generating an interpretable rule. When input features are not semantically meaningful, a concept encoder g can map raw features to a concept space. (b) The proposed approach (DCR) outperforms interpretable concept-based models in the Dot dataset. CE stands for concept embeddings and CT for concept truth values.

Figure 2 .

 2 Figure 2. (left) Deep Concept Reasoner (DCR) generates fuzzy logic rules using neural models on concept embeddings. Then DCR executes the rule using the concept truth degrees to evaluate the rule symbolically. (right) Schema of DCR modules: first neural models ϕ and ψ generate the rule, and then the rule is executed symbolically.

Figure 4 .

 4 Figure4. Sensitivity of model explanation when changing the radius of the input perturbation. The lower, the better. DCR explanations engender trust as they are stable under small perturbations of the input. The same does not hold generally for LIME explanations of XGBoost or Relu Net decision rules.

Figure 5 .

 5 Figure 5. Model confidence as a function of the number of perturbed features on counterfactual examples. The lower, the better.Similarly to interpretable methods, DCR prediction confidence quickly drops after inverting the truth degree of a small set of relevant concepts, facilitating the discovery of counterfactual examples.

-

  max depth: [2, 4, 10, all leaves pure] -min samples split: [2, 4, 10] -min samples leaf: [1, 2, 5, 10] • logistic regression penalty: [l1, l2, elasticnet] • XGBoostbooster: [tree, linear, dart] 

Figure 6 .

 6 Figure 6. Concept discovered by the graph concept explainer. Part I.

Figure 7 .Figure 8 .

 78 Figure 7. Concept discovered by the graph concept explainer. Part II.

Figure 9 .

 9 Figure 9. Full molecule corresponding to the closest node embedding to the concept centroid. Part I.

Figure 10 .

 10 Figure 10. Full molecule corresponding to the closest node embedding to the concept centroid. Part II.

Figure 11 .

 11 Figure 11. Temperature ablation on pre-trained concept embeddings from the CUB dataset.

Figure 12 .

 12 Figure 12. DCR computational time on pre-trained concept embeddings from the CUB dataset.

  dataset. In particular, we define a new CelebA task to simulate a real-world condition of concept "shifts" where train and test concepts are correlated (e.g., "beard" and "mustaches") but do not match exactly. To this end, we split the set of CelebA attributes defined by Espinosa Zarlenga et al. (2022) in two partially disjoint sets and use one set of attributes for training models and one for testing. Finally, we use Mutagenicity as a real-world scenario the concept encoder is unsupervised. As Mutagenicity does not have concept annotations, we first train a graph neural network (GNN) on this dataset, and then we use the Graph Concept Explainer (GCExplainer,[START_REF] Magister | Human-in-the-loop concept-based explanations for graph neural networks[END_REF]) to extract a set of concepts from the embeddings of the trained GNN. For dataset with concept labels instead, we generate concept embeddings and truth degrees by training a Concept Embedding Model[START_REF] Espinosa Zarlenga | Concept embedding models[END_REF].

Table 1 .

 1 Task accuracy on the MNIST-addition dataset. The neuralsymbolic baselines use the knowledge of the symbolic task to distantly supervise the image recognition task. DCR achieves similar performances even though it learns the rules from scratch.

	MODEL	ACCURACY (%)
	With ground truth rules 97.2 ± 0.5 DeepProbLog DeepStochLog 97.9 ± 0.1 97.7 ± 0.1 Embed2Sym LTN 98.0 ± 0.1
	Without ground truth rules DCR(ours) 97.4 ± 0.2

of Booleanized DCR rules with the corresponding ground truth rules in Table

2

. Our results indicate that DCR's rules align with human-designed ground truth rules, making them highly interpretable. For instance, DCR predicts that the sum of two MNIST digits is 17 if either the first image is a (i.e., c ′ 9

Table 2 .

 2 Error rate of Booleanised DCR rules w.r.t. ground truth rules. Error rate represents how often the label predicted by a Booleanised rule differs from the fuzzy rule generated by our model. The error rate is reported with the mean and standard error of the mean. A full list of logic rules for MNIST is in Appendix H.

Table 3 .

 3 DCR explains prediction errors.

	Dataset	Concepts	DCR rule	Ground truth label
	XOR	[0.0, 0.0]		

Code available in public repository: https://github. com/pietrobarbiero/pytorch_explain.

Here and in all equations we omit the explicit dependence on x for simplicity, i.e., we write ŷj for ŷj(x).

Acknowledgements

The authors would like to thank Nikola Simidjievski for his insightful comments on earlier versions of this manuscript. PB acknowledges support from the European Union's Horizon 2020 research and innovation programme under grant agreement No 848077. GC and FP acknowledges support from the EU Horizon 2020 project AI4Media, under contract no. 951911 and by the French government, through Investments in the Future projects managed by the National Research Agency (ANR), 3IA Cote d'Azur with the reference number ANR-19-P3IA-0002. MEZ acknowledges support from the Gates Cambridge Trust via a Gates Cambridge Scholarship. FG was supported by TAILOR and by HumanE-AI-Net projects funded by EU Horizon 2020 research and innovation programme under GA No 952215 and No 952026, respectively.

randomly perturbed sample x drawn by from the test set. More precisely, we draw them from a Gaussian distribution with maximum radius ϵ. These perturbations must be non-significant, i.e., the model prediction must not change. We can see how DCR sensitivity is typically close to existing interpretable models. On the contrary, the compared explanation-based methods Lime and ReluNet have higher sensitivity, strongly reducing the user trust in these explanation methods. Indeed, since samples are very similar and the model predictions do not change, a user expects that also the corresponding explanation should not change, which does not happen for these methods.

Table 4. AUC of the explanation sensitivity curves when increasing the perturbation radius ϵ. The lower, the better.

Model

XOR Trig Vec Mutag DT 0.000±0.000 0.000±0.000 0.000±0.000 0.000±0.000 LR 0.000±0.000 0.000±0.000 0.000±0.000 0.000±0.000 ReluNet 0.939±1.301 0.110±0.181 0.148±0.247 0.995±1.480 LIME 0.984±0.885 0.013±0.009 0.592±0.534 1.900±0.969 DCR 0.000±0.000 0.000±0.000 0.165±0.614 0.000±0.000

G. Counterfactual explanations

In table 5 we report the Areas under the model confidence curves of Figure 5 when increasing the number of perturbed features. The lower the values, the easier it is to find a counterfactual sample. By comparing DCR with existing interpretable models and local post-hoc explainers, we can see how DCR provides the lowest values in three datasets out of four, confirming that the provided explanations are very precise as they correctly indicate the most important features for a given prediction.

In Table 6, instead, we report some examples of counterfactual rules provided by DCR on some benchmarked datasets. 

Table 7. MNIST addition global rules for 10000 training examples. fij reads "class of the digit in position i is j. Therefore, the rule y0 ← f00 ∧ f10 means that if the first digit is a 0 and the second digit is a 0 then the sum is a 0. The semantics is correct except for a single rule y8 ← f03 ∧ f16, which is easily identifiable as having a count of 1. Notice that we had to map the network concept IDs to the corresponding human digits, as there was no supervision on concepts during training. Our solution to the MNIST addition task shows that DCR can be enhanced with an unsupervised (or distantly supervised) criterion for the learning of meaningful concepts. This creates interesting links with generative models for learning representations, but we leave such interpretation for future works.

The architecture of the image classifiers is those in [START_REF] Manhaeve | Deepproblog: Neural probabilistic logic programming[END_REF]. The additional task network is MLP with 1 hidden layer of 30 hidden neurons and relu activations. We searched over the following grid of parameters (bold selected): embedding size [10,20,30,50]; gumbel-softmax temperature [1, 1.25, 1.50, 1.75, 2.0].

I. Complexity of logic rules

We compute rule complexity as the average size of the learnt logic rules. Table 8 summarizes the main outcomes comparing DCR rules with decision tree rules. In most datasets, such as Trigonometry, Dot, or CelebA, the rule complexity of DCR matches that of decision tree rules while providing superior task performance. However, in Mutagenicity, there is a tradeoff between performance and complexity compared to decision trees. Nevertheless, we don't observe a significant increase in rule complexity as shown in the plot, partly because DCR rules are "per sample." However, if we were to learn global rules, the complexity would likely increase, especially if multiple combinations of concepts could result in the same task prediction. It is worth noting that overly complex rules may not be a machine error, but rather a limitation of the human side.

For example, asking a model to explain complex tasks using raw features like pixel intensities as concepts would lead to complex rules. [START_REF] Pedregosa | Scikit-learn: Machine learning in python[END_REF] (BSD license). To produce the plots seen in this paper, we made use of Matplotlib 3.5 (BSD license). We will release all of the code required to recreate our experiments in an MIT-licensed public repository.

Resources All of our experiments were run on a private machine with 8 Intel(R) Xeon(R) Gold 5218 CPUs (2.30GHz), 64GB of RAM, and 2 Quadro RTX 8000 Nvidia GPUs. We estimate that approximately 240-GPU hours were required to complete all of our experiments.